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High accuracy, high spatial resolution precipitation data is important for understanding basin-scale hydrology and the
spatiotemporal distributions of regional precipitation. �e objective of this study was to develop a reliable statistical downscaling
algorithm to produce high quality, high spatial resolution precipitation products from Tropical Rainfall Monitoring Mission
(TRMM) 3B43 data over the Yarlung Zangbo River Basin using an optimal subset regression (OSR) model combined with multiple
topographical factors, the Normalized Di�erence Vegetation Index (NDVI), and observational data from rain gauge stations. A�er
downscaling, the bias between TRMM 3B43 and rain gauge data decreased considerably from 0.397 to 0.109, the root-mean-
square error decreased from 235.16 to 124.60mm, and the �2 increased from 0.54 to 0.61, indicating signi�cant improvement in
the spatial resolution and accuracy of the TRMM 3B43 data. Moreover, the spatial patterns of both precipitation rates of change
and their corresponding � value statistics were consistent between the downscaled results and the original TRMM 3B43 during
the 2001–2014 period, which veri�es that the downscaling method performed well in the Yarlung Zangbo River Basin. Its high
performance in downscaling precipitation was also proven by comparing with other models. All of these �ndings indicate that the
proposed approach greatly improved the quality and spatial resolution of TRMM 3B43 rainfall products in the Yarlung Zangbo
River Basin, for which rain gauge data is limited.�e potential of the post-real-time Integrated Multi-satellite Retrievals for Global
Precipitation Measurement (IMERG) downscaled precipitation product was also demonstrated in this study.

1. Introduction

Precipitation is an important meteorological variable, and
its spatial and temporal distribution and variations are of
great signi�cance for the hydrological cycle, land-atmosphere
interactions, and water resource utilization [1–3]. �e accu-
rate estimation of precipitation, globally and/or within a spe-
ci�c basin, is a crucial component of related research [4, 5].
Accurate precipitation estimation approaches can be roughly
divided into two categories: ground observations at surface

weather stations and indirect measurements via surface pre-
cipitation radar, remote sensing, and similar techniques [1].
Although surface weather stations can be used to obtain fairly
accurate precipitation data with limited spatial coverage [6],
logistical expenses andmaintenancemake it di�cult to oper-
ate stations on cold plateaus such as the Yarlung ZangboRiver
Basin, where the high altitude and complex terrain e�ectively
prevent the sole use of station observations to obtain accurate,
spatially, and temporally resolved precipitation information.
�e lack of high-resolution data can be attributed primarily
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to the generally signi�cant spatial variations in rainfall. �e
interpolation of observed precipitation data is in�uenced by
the interpolation method and the number and distribution
of stations. �erefore, precipitation data obtained by inter-
polation are usually imprecise when the number of surface
observation stations is small. In contrast, surface weather
radar can be used to obtain spatial and temporal precipitation
information indirectly; however, due to the limited scope of
observation, theoretical complexity, and other factors, surface
radar cannot be used to derive high-precision precipitation
data su�cient for use in hydrological models or for the
description of a given basin [7].�erefore, the development of
innovative approaches for accurate precipitation estimation
in areas with no or inadequate data is of crucial importance.

During the rapid development of earth observation tech-
nologies in recent decades, microwave remote sensing has
been shown to possess unique advantages for obtaining accu-
rate spatial and temporal precipitation information over areas
lacking meteorological observations [8, 9]. Currently, the
global mainstream satellite-based quantitative precipitation
estimate (QPE) products available include TRMM (Tropical
Rainfall MonitoringMission) [10], CMORPH (Climate Pred-
ication Centre Morphing Technique) [11], GSMaP (Global
Satellite Mapping of Precipitation) [12, 13], and PERSIANN
(Precipitation Estimation fromRemotely Sensed Information
using Arti�cial Neural Networks) [14, 15]. As studies have
shown, TRMM 3B43 (V7) integrates four independent types
of precipitation information derived from microwave, near
infrared, and other sensor fusion estimates and rain gauge
data from the United States National Oceanic and Atmo-
sphericAdministration (NOAA) and theGlobal Precipitation
Climatology Centre (GPCC) [1, 10]. �erefore, this dataset
is highly consistent with data from rain gauge stations and
Doppler radar observations, and, thus, is used in various
applications. �e global successor to TRMM, the Global
Precipitation Measurement (GPM) mission, was launched
on February 28, 2014 and provides next-generation global
observations of rain and snow [16, 17]. �e Integrated Multi-
satellite Retrievals for GPM (IMERG) product has much
higher spatial resolution (0.1∘ × 0.1∘) and better ability to
monitor light rain and snow than does the TRMM product
[17, 18], but the IMERG time series is not long enough for use
herein.

Coarse spatial resolution severely restricts the use of such
precipitation products in regional scale or watershed scale
applications [19]. Pioneering studies have indicated that, as
a climatic factor, precipitation is closely related to natural
environmental factors such as topography and vegetation
growth [20–22] and that high-resolution precipitation data
can be produced by statistical models using terrain and
vegetative growth parameters derived from remote sensing
inversions [3]. A number of relevant studies can be found in
the literature. One study improved the spatial resolution of
TRMMdata from0.25∘ × 0.25∘ to 1 km× 1 kmby establishing
exponential equations between Normalized Di�erence Vege-
tation Index (NDVI) and TRMM precipitation data during
2001–2007 [2]. Jia et al. developed a downscaling approach
to improve the spatial resolution of TRMM 3B43 data in the
Qaidam Basin using DEM and NDVI data during 1999–2009

[3]. Finally, Fang et al. downscaled TRMM 3B42 (V7) data
in the Xiao River Basin in southern China based solely
on orographic e�ects and meteorological conditions [23].
However, the regions used in previous studies featured low
terrain complexity; also, while NDVI and elevation control
factors were generally adopted, the e�ects of longitude,
latitude, slope, and aspect on precipitation were ignored,
resulting in increased deviations in the downscaled results.
�e topography of the Yarlung Zangbo River Basin features a
narrow band of undulating mountains in which the east-west
length far exceeds the north-south width; this topography
results in local precipitation of moist warm air from the
Bay of Bengal in the Indian Ocean, which is blocked by
the Himalayas to the south and dri�s upward to the artery
estuary of the river. To the best of our knowledge, the
Yarlung Zangbo River Basin has been the focus of little
satellite-based precipitation downscaling research and no
upstream deviation estimates, which hampers the application
of satellite-based precipitation data in hydrological research.

In this study, an optimal subset regression (OSR) model
with integrated NDVI, elevation, longitude, latitude, slope,
aspect, and observation data from rain gauge stations was
developed over the Yarlung ZangboRiver Basin for the spatial
statistical downscaling of the TRMM 3B43 precipitation
product between 2001 and 2014; observations and deviation
distribution from 17 rain gauge stations within this Basin
during the same period were used to evaluate performance of
the proposed downscaling approach. Additionally, we com-
pared the annual downscaled precipitation results of TRMM
3B43 and IMERG in 2014 to demonstrate the potential of the
IMERG product for downscaling precipitation.

�e rest of this paper is organized as follows. Section 2
introduces the study area. �e data and methodology used
for downscaling precipitation and evaluating the accuracy of
the downscaled results are presented in Section 3. Section 4
focuses on the results and a discussion thereof. Finally, a brief
summary and study conclusions are given in Section 5.

2. Study Area

�e Yarlung Zangbo River, which is the ��h longest river
in China, originates from the Chamyungdung glacier at
an elevation of 5200m a.s.l. in south-central Tibet and
is approximately 2229 km long [24]. �e Yarlung Zangbo
River Basin, located at 27∘49�N–31∘7�N, 82∘1�E–97∘6�E, has
an area of approximately 257.7 × 103 km2 (Figure 1) and,
with its average elevation of more than 4600m a.s.l., is
considered to be the highest river basin in the world [25].
�e Yarlung Zangbo River Basin is a part of Indian Ocean
hydrological system. Due to its geographic location in the
YarlungZangbo SutureZone, theYarlungZangboRiver Basin
contributes to moisture movement from the Indian Ocean
to the inner regions of the Qinghai-Tibet Plateau and has a
signi�cant e�ect on the amount of rainfall in the Qinghai-
Tibet Plateau [26]. �e YZRB is characterized by complex
topography,which results in obvious variations in the amount
of precipitation between the upstream and downstream
regions of the basin [25]; annual precipitation decreases
clearly from over 2000mm in the lower reaches to less than
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Table 1: Geographic information and multiannual mean precipitation for the 17 meteorological stations within the Yarlung Zangbo River
Basin. �e multiannual mean precipitation values were calculated from daily meteorological data from 2001 to 2014.

ID Station
Longitude

(∘)
Latitude

(∘)
Altitude
(m)

Precipitation
(mm year−1)

55493 Damxung 91.1 30.48 4200 497.7

55569 Lazi 87.6 29.08 4000 336.1

55572 Namling 89.1 29.68 4000 479.9

55578 Shigatse 88.88 29.25 3836 428.7

55585 Nimu 90.17 29.43 3809.4 353.1

55589 Konka 90.98 29.3 3555.3 415.2

55591 Lhasa 91.13 29.67 3648.9 477.2

55593 Maizhokunggar 91.73 29.85 3804.3 579.8

55597 Qonggyai 91.68 29.03 3741 415.5

55598 Zedang 91.77 29.25 3551.7 465.9

55680 Jiangzi 89.6 28.92 4040 336.4

55681 Nagarze 90.4 28.97 4432.4 388.1

56202 Jiali 93.28 30.67 4488.8 595.5

56227 Bomi 95.77 29.87 2736 583.7

56307 Gyaca 92.58 29.15 8260 571.9

56312 Linzhi 94.33 29.67 2991.8 689.3

56317 Milin 94.22 29.22 2950 590.6

300mm in the upper reaches due to declining monsoon
e�ects [27]. �e basin-averaged annual precipitation is ∼
300–500mm, and precipitation features large �uctuations in
both spatial and temporal distribution [25].�e subpar living
environment, di�culty of access, and logistical complexity
limit the number of meteorological observation stations in
the area and render their distribution uneven, especially in
the upstream region.Within this extensive basin, only 17 basic
nationalmeteorological stations have been established to date
(Figure 1 and Table 1), which has restricted the spatial and
temporal description of local climate and hydrology.

3. Data and Methods

3.1. Data Sources and Processing

3.1.1. TRMM 3B43. �e TRMM satellite was jointly devel-
oped and launched by the National Aeronautics and Space
Administration (NASA) of theUnited States and theNational
Space Development Agency (NASDA) of Japan in order to
understand the global energy and water cycle by studying
precipitation and latent heat in the tropics [10]. A number
of sophisticated algorithms have been developed since the
satellite launch in November, 1997 [28, 29]. Because the
TRMM precipitation products are of good quality and also
highly consistent with station observations [30], they are
o�en used as reference standards for testing and evaluat-
ing other satellite precipitation products. Among TRMM
products, TRMM 3B43 algorithm produces the best root-
mean-square error (RMSE) for precipitation rate and amount
between TRMM and other data sources. �e TRMM 3B43
product from January 2001 toDecember 2014was selected for
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Figure 1: Topographic map showing the locations of rain gauge
stations in the Yarlung Zangbo River Basin.

the present study; this dataset was archived in Hierarchical
Data Format (HDF), had spatial and temporal resolutions
of 0.25∘ and a month, respectively, and covered an extensive
area (from 50∘N to 50∘S). �e total precipitation spatial
distribution for 2001–2014 was obtained by summing the
monthly precipitation derived from TRMM 3B43.

Using only the 17 stationswith available precipitation data
in the Yarlung Zangbo River Basin for TRMM 3B43 product
calibration, Sawunyama and Hughes attempted to calibrate
satellite precipitation data via a nonlinear optimization algo-
rithm and achieved good results for use in a hydrological
model [31]. �e algorithm proposed by Sawunyama and
Hughes [31] was used for the TRMM 3B43 product in the
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Figure 2: A comparison of annual TRMM 3B43 precipitation and
observed precipitation during 2001–2014.

present study.�emonthly precipitation values derived from
the observation stations were summed up to obtain the
total precipitation from 2001 to 2014, with obvious outliers
excluded. Equation (1) (�2 = 0.54, � < 0.001), which was
derived between the observation stations and corresponding
TRMM 3B43 precipitation grid points (see Figure 2), was
established and used to calibrate the TRMM 3B43 data in the
Yarlung Zangbo River Basin.

� = 3.437�0.756, (1)

where � (mm) represents TRMM 3B43 annual precipitation
and � (mm) represents annual precipitation observed at
meteorological stations between 2001 and 2014.

3.1.2. NDVI Data. �e Normalized Di�erence Vegetation
Index (NDVI) is an important indicator used to measure
the status of vegetative activity and biomass [32]. NDVI
products not only cover a wider range, but also have a
higher spatial resolution than doprecipitation data.Generally
positive correlations have been found between NDVI and
precipitation in numerous research projects on the spatial and
temporal relationships betweenNDVI and precipitation both
in China and abroad [20, 33]. �is study adopted MOD13A2,
a Moderate Resolution Image Spectroradiometer (MODIS)
NDVI product developed by NASA with a spatial resolution
of 1 km × 1 km, a temporal resolution of 1 month, and EOS-
HDF format data storage for which the secondary product
was developed by calibrating and positioning the primary
product. �e data selected for the present study, which
ranged from January, 2001, to December, 2014, were batch
processed into GEO-TIFF format via an IDL code before the
commencement of further research.

3.1.3. Topographic Data. Digital elevation model (DEM)
data from the Shuttle Radar Topography Mission, Version
4 (SRTM4), were used to characterize the topography of
the basin. SRTM is a spacecra� radar topography survey
jointly implemented by NASA, the United States National
Imagery and Mapping Agency (NIMA), and the German

and Italian Space Agencies. SRTM DEM data includes three
levels of resolution at 1,000m, 90m, and 30m [34]. To match
the spatial resolution of NDVI in the development of a
precipitation downscaling approach for the Yarlung Zangbo
River Basin, DEM data with a spatial resolution of 1,000m
was used in association with geographic information to
calculate topographic features of the basin such as longitude,
latitude, slope, aspect, and elevation.

3.1.4. GPM IMERG. IMERG provides three types of prod-
ucts: early run, late run, and �nal run [16]. Both the early run
and late run products are near-real-time, while the �nal run
product is a post-real-time research product and is available
beginning from March 12, 2014. Half-hourly and monthly
IMERG �nal run products are available, both of which have
a spatial resolution of 0.1∘ × 0.1∘. In this study, the accuracy
of the 2014 monthly IMERG �nal run product was compared
with that of TRMM3B43 in order to demonstrate its potential
for use in downscaling precipitation. Please note that the 2014
annual precipitation is in fact the sum of precipitation from
March 2014 to February 2015, as the IMERG product is not
available before March 2014.

3.2. Methodology

3.2.1. Optimal Subset Regression Model. Optimal Subset Re-
gression (OSR) models can be used to determine an optimal
regression equation from all possible subset regressions of
the variables according to certain criteria [35]. Regression
equations are established through all possible permutations
of the independent and dependent variables. In a case with �
variables, 2�−1 possible regression equations can be obtained
(except in cases with variable-free equations) and an optimal
regression subset can thus be determined. �is di�ers from
stepwise regression in that the regression equation obtained
from optimal subset regression is the best option. In contrast,
in stepwise regression, variables are selected or removed
based on statistical tests, and the choice of signi�cance level� is arbitrary. �erefore, it is theoretically di�cult to ensure
the signi�cance of independent variables selected at any
probability. For amore detailed review of OSRmodels, please
refer to Boyce et al. [35].

�e Couple Score Criterion (CSC) algorithm [36], which
is commonly used in meteorology, was adopted to select
a predictor in the present study. �e CSC can be used to
evaluate the number of independent variables and trend pre-
diction results in terms of climatic prediction characteristics.
�erefore, the CSC trend and number ratings are considered
in order to improve themodel �t and trend prediction.When
the CSC score is maximized, the corresponding regression
model is optimal. In other words, optimal subset regression
is achieved when the CSC is maximized with the fewest
variables.

3.2.2. Downscaling Methods. Great e�ort has been expended
to correct the lack of high-resolution precipitation datasets
needed to analyze the spatiotemporal variability of precipita-
tion regimes [23] and understand the basin-scale hydrology
[2, 37]. Agam et al. proposed a downscaling algorithm
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to sharpen vegetation index-based thermal infrared images
[38]. Immerzeel et al. simpli�ed the algorithm by selecting
only the most basic functions [2]. �e downscaling approach
used in this study referenced the simpli�ed algorithm used
by Immerzeel et al. [2], which was based on Agam et al.
[38], with some revisions. �e OSR model was applied to
multiple variables to achieve optimal downscaled results
consistent with the data derived from observation stations.
Speci�cally, the downscaling consisted of the following �ve
steps. (1) Multiple variables, such as elevation, longitude,
latitude, slope, aspect, annual average NDVI, and TRMM
3B43precipitation data, were retrieved between 2001 and 2014
with a spatial resolution of 0.25∘ × 0.25∘ to coordinate with
the meteorological observation station data. (2) A regression
equation was established for the variables using the OSR
algorithm, and the annual total precipitation between 2001
and 2014 was predicted (at 0.25∘ × 0.25∘ resolution). (3)
Residuals were obtained by subtracting the predicted data
from the TRMM 3B43 precipitation data (0.25∘ × 0.25∘),
and the spatial resolution was increased to 1 km × 1 km
via interpolation. (4) �e annual total precipitation (1 km× 1 km) between 2001 and 2014 for the Yarlung Zangbo
River Basin was predicted by applying the OSR model to the
multiple variables as described in step (1). (5)�e downscaled
precipitation data (with a spatial resolution of 1 km × 1 km)
was then obtained by summing the above-mentioned 1 km ×
1 km predicted precipitation data and 1 km × 1 km residuals.

According to previous studies [3], regions with abnormal
NDVI values should be examined carefully when establishing
regression models. In order to use the NDVI to establish the
regressionmodel, a signi�cant correlationmust exist between
precipitation and NDVI; however, this requirement is not
always met, especially in the presence of rivers, lakes, and
other water bodies. �e Moran Index is an indicator of the
NDVI autocorrelation in a given area and can be used to
distinguish randompixels. During regressionmodel develop-
ment, detected random pixels are removed to eliminate their
e�ects, and the annual precipitation at those pixels is obtained
through interpolation of the adjacent pixels.

3.2.3. Veri�cation Method. In this study, the downscaled
results were veri�ed using the following three methods. (1)

�e coe�cient of determination (�2), bias (	), and RMSE
were calculated between the downscaled results and the
yearly precipitation data from the 17 observation stations in
the Yarlung Zangbo River Basin from 2001 to 2014.�e 	 and
RMSE equations can be written as follows:

	 = ∑��=1 �̂�∑��=1 �� − 1

RMSE = √∑��=1 (�� − �̂�)2� ,
(2)

where �� is the annual precipitation observed at the stations,�̂� is the precipitation extracted from the downscaled results,� is the code number of the station, and � is the number
of stations within the basin. (2) Although the precision of
the downscaled results at the observation stations (which
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Figure 3: Spatial distribution of NDVI Moran Index values in the
Yarlung Zangbo River Basin.

are mostly located in the middle and lower reaches of the
River Basin) were veri�ed by method (1), it is impossible to
guarantee their accuracy, especially for the upper reaches, as
only data from observation stations in the middle and lower
reaches were used to generate the downscaled results. In
veri�cation step (2), the restrictions imposed by observation
stations were considered, and the deviation distribution was
used to analyze and evaluate the signi�cance of the down-
scaled results throughout the basin. (3) Finally, the e�ective-
ness of the downscaling OSR model herein was compared
with other downscaling algorithms, such as Multiple Linear
Regression (MLR), Arti�cial Neural Network (ANN) [39],
and Geographically Weighted Regression (GWR) models.
Two approaches were used in the ANN comparison, ANN D
and ANN S; in the ANN D approach, the downscaled pre-
cipitation results were obtained directly through the trained
neural network, while the ANN S approach was similar to
the downscaling method discussed in Section 3.2.2, except
that steps (1) and (4) were replaced with ANN in the ANN S
approach. Additionally, when using theGWRmodel, variable
collinearity was checked beforehand using Ordinary Least
Squares (OLS) regressions to prevent errors.

3.2.4. Statistical Indicators for Spatial Precipitation Trends. In
order to examine spatial precipitation trend patterns in the
Yarlung Zangbo River Basin, a linear �tting (least squares)
method was used to calculate trends in precipitation; �-tests
were used to assess the statistical signi�cance (�) of the
trends in this study. � values less than 0.05 indicate that the
corresponding pixel is statistically signi�cant.

4. Results and Discussion

4.1. Excluding Random Pixels. Figure 3 shows the local NDVI
Moran Index (exempli�ed by the average NDVI from 2001
to 2014) in the Yarlung Zangbo River Basin, which re�ects
the spatial autocorrelation of the NDVI distribution in the
Basin. According to the de�nition of the local Moran Index,
pixels with negative Moran Index values imply that the
corresponding NDVI values were caused by random factors,
such as the presence of rivers, lakes, or other water bodies,
and therefore should be excluded during the establishment
of the optimal regression model. As can be seen in Figure 3,
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Table 2: All possible optimal regression subsets.

Number of
variables

Optimal
subsets

Multiple correlation
coe�cient (�) RMSE

(mm)
CSC
results

1 �6 0.75 154.81 266.68

2 �1�2 0.83 144.59 284.81

3 �2�4�6 0.88 138.06 290.07

4 �1�2�4�6 0.89 134.83 293.33

5 �1�2�4�5�6 0.89 133.74 294.62

6 �1�2�3�4�5�6 0.89 133.93 293.84

the random pixels are concentrated in the middle and lower
reaches of the Yarlung Zangbo River Basin, where water
bodies are densely distributed and water resources utilization
is relatively intense, which is consistent with the de�nition
of the Moran Index. �erefore, pixels with negative Moran
Index values were removed during the development of the
optimal subset regression model, and the �nal downscaled
results for these pixels were obtained via Kriging interpola-
tion by ArcGIS so�ware.

4.2. Spatial Downscaling Process. Table 2 shows all of the
possible optimal subsets and the corresponding multiple
correlation coe�cient (�) and CSC values for the multiple
regression analyses of TRMM 3B43 data with elevation,
longitude, latitude, slope, aspect, and NDVI in the Yarlung
Zangbo River Basin. Table 2 shows that the CSC value of
the optimal subset regression model, which consists of �ve
independent variables (namely, elevation, longitude, slope,
aspect, and NDVI) as shown in (3), reaches a maximum of
294.62.

� = −0.1�1 + 17.395�2 + 160.182�4 − 8.133�5
+ 545.688�6 − 725.689, (3)

where � is the predicted annual precipitation; �1, �2, �4, �5,
and �6 are the elevation, longitude, slope, aspect, and NDVI
of the study watershed, respectively, and �3 is the excluded
variable (latitude).

�e factors that a�ect precipitation in the Yarlung Zangbo
River Basin can be ranked according to the OSR model
analysis in order of decreasing in�uence as follows: NDVI,
slope, longitude, aspect, and elevation (where the latitude
variable was excluded). �e NDVI is highly correlated with
precipitation [2, 3]. �e contributions of slope, longitude,
aspect, and elevation to precipitation are markedly di�erent.
Latitude has a negligible in�uence on precipitation.

In the Yarlung Zangbo River Basin, precipitation is a
function of longitude but not latitude, for which there are
two key physical explanations. First, the basin is very narrow
in the north-south direction, with a maximum width of
less than 300 km which is far less than the basin length in
the west-east direction. Second, approximately 77.9% of the
annual precipitation falls during the summer (from June to
September); this precipitation arises primarily frommoisture
from the Bay of Bengal transported by the Indian monsoon
and moisture transported by the Western Paci�c subtropical
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Figure 4: Scatter diagram of annual precipitation derived from
TRMM 3B43 and that predicted by the OSR model.

high, which converge and are then transported from east to
west through the Yarlung Zangbo Suture Zone. �erefore,
longitude has a higher correlation with precipitation than
does latitude in the Yarlung Zangbo River Basin.

�e OSR model was used to determine an optimal
regression equation from all possible subsets of multiple
independent variables with speci�c criterion [35]; the CSC
adopted in this study was chosen to minimize the number
of independent variables and maximize the CSC score to
achieve the optimal predicted value [36]. To verify the
e�ciency of the OSR approach and CSC used in this study,
RMSEswere calculated between the predicted precipitation at
low spatial resolution (0.25∘ × 0.25∘) and six optimal TRMM
3B43 subsets (Table 2). Clearly, the RMSE is minimized
among the 6 optimal regression subsets when the number
of independent variables is equal to 5, which demonstrates
the advantages of using OSR and the CSC in the TRMM
3B43 downscaling algorithm presented in this study; such
advantages will be more pronounced if more independent
variables are involved in the downscaling procedure.

Figure 4 shows a scatter diagram of annual mean pre-
cipitation derived from calibrated TRMM 3B43 data against
annual mean precipitation predicted by OSR during the

2001–2014 period at coarse resolution (0.25∘ × 0.25∘). �e �2
value is 0.79 and the relationship is signi�cant (� < 0.001),
indicating that elevation, longitude, slope, aspect, and NDVI
can be used in the interpretation ofTRMM3B43precipitation
data.

Figure 5 illustrates the integrated downscaling process
used for TRMM 3B43 annual mean precipitation between
2001 and 2014. Figure 5(a) shows the spatial distribution of
TRMM 3B43 annual precipitation, and Figure 5(b) shows
the predicted annual precipitation with a spatial resolution
of 0.25∘ × 0.25∘. �e residual data, which feature a reso-
lution of 0.25∘ × 0.25∘, were obtained by subtracting the
predicted annual precipitation from the TRMM 3B43 annual
precipitation and are shown in Figure 5(c). Negative residual
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Figure 5: TRMM 3B43 annual mean precipitation downscaling processes from 2001 to 2014: (a) TRMM 3B43 annual mean precipitation
from 2001 to 2014; (b) predicted annual precipitation with low spatial resolution; (c) residual data with low spatial resolution; (d) residual
data with high spatial resolution; (e) predicted annual precipitation with high spatial resolution; (f) downscaled annual mean precipitation
at 1 km × 1 km resolution.

values indicate overestimated annual precipitation, which
results from “abnormally” high vegetative NDVI values due
to thawing ice or snow rather than precipitation; positive
residual values suggest an underestimation of annual precip-
itation and likely result from “abnormally” low precipitation

caused by steep terrain and sparse vegetation. Low-resolution
residual data with were transformed into a higher resolution
of 1 km × 1 km via spline interpolation using ArcGIS so�ware
(Figure 5(d)). �e predicted annual precipitation (spatial
resolution = 1 km × 1 km) was obtained by applying the OSR
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Figure 6: Scatter diagramof the precipitation observed at rain gauge
stations and the downscaled precipitation.

model to elevation, longitude, slope, aspect, andNDVI data at
their original spatial resolution (Figure 5(e)). Yarlung Zangbo
River Basin annual precipitation with a spatial resolution of
1 km × 1 km is shown in Figure 5(f) and was derived by
adding the residual data (shown in Figure 5(d)), which arose
in turn from a Kriging interpolation algorithm applied to the
randompixels obtained fromMoran Index, to the 1 km× 1 km
predicted annual precipitation.

4.3. Veri�cation of the Downscaled Results. In this study, the
downscaled annual precipitation results were veri�ed using
threemethods. First, the downscaled results at the location of
the 17 observation stations from 2001 to 2014 were extracted
(yielding 238 samples in total) and a scatter diagram of
the observed annual precipitation (�obs) and the downscaled
annual precipitation (�ds) was produced (Figure 6). �e cal-

culated �2 value between�obs and�ds from 2001 to 2014 is 0.61
(� < 0.001); the bias B is 0.109; and the RMSE is 124.60mm.

�e �2 (0.54), B (0.397), and RMSE (235.16mm) values for
the actual annual precipitation against the TRMM 3B43 data
before downscaling were also calculated for 2001–2014. �e

results above show that the annual precipitation �2 value is
greatly improved a�er downscaling, while B and RMSE are
reduced somewhat; in other words, the downscaled annual
precipitation is more accurate than the original TRMM 3B43
annual precipitation.�erefore, the use of theOSRmodel and
elevation, longitude, slope, aspect, and MODIS NDVI data
in spatial TRMM 3B43 annual precipitation downscaling is
highly e�cient.

Although the observation stations were used to validate
the accuracy of the 2001–2014 downscaled results in the �rst
step, this does not address the reliability of the downscaled
results for the entire basin, especially for upstream areas
where no observation stations exist. In this study, deviation
distributions were used to evaluate the downscaled results
for the entire basin under the basic assumptions that the

Table 3: A comparison of results from the di�erent downscaling
models.

Model
RMSE
(mm)

	 �2 Signi�cance

OSR 124.6 0.109 0.61 ∗∗
MLR 149.46 0.152 0.44 ∗∗
ANN D 218.27 0.195 0.11 -

ANN S 157.35 0.161 0.32 ∗
GWR 141.07 0.146 0.53 ∗∗
Note. “-” represents insigni�cance; “∗” is signi�cant at the � < 0.05 level;
and “∗∗” is signi�cant at the � < 0.01 level.

normalized standard deviation, (�ds − �obs)/�obs, of all pixels
within the basin are normally distributed and that the errors
of the observed data accurately represent the entire basin.
�e Kolmogorov-Smirnov Method was adopted to test the
normality of the normalized standard deviation distribution
(238 samples) for the 17 stations between 2001 and 2014;
the normalized standard deviations of the 238 samples are
normally distributed, and the mean and standard deviations,� and �, are 0.1593 and 0.2553, respectively. According to
the characteristics of the normal distribution curve, the
probability of samples fallingwithin the (�−�) to (�+�) range
is 68.26%. In the present study, there is a 68.26% probability
that the relative deviation for the downscaled result at a
given pixel falls between −0.096 and 0.4146. For example, the
average downscaled annual precipitation between 2001 and
2014 is 551.2mm, and the probability of the deviation falling
within the −52.92mm to 228.53mm range is 68.26%. �e
deviations and signi�cance of the downscaled results for the
entire Yarlung Zangbo River Basin can be evaluated based on
the above analysis.

Table 3 compares results from di�erent downscaling
models, including OSR, MLR, ANN D, ANN S, and GWR.
�ese results indicate that, among these �ve models, the OSR
model performs best at downscaling precipitation data over
the Yarlung Zangbo River Basin. In contrast, the ANN D
model downscaled results are the least accurate, which may
be explained by terrain complexity and climate diversity, as
well as the limited number of observations. �e GWRmodel
introduced numerous errors into the �nal downscaled results
when the regression coe�cients were interpolated to high
spatial resolution data to obtain high spatial resolution down-
scaled precipitation, leading to its relative low performance in
comparison to OSR.

4.4. Precipitation Trends over the Yarlung Zangbo River Basin.
�e downscaled results were veri�ed using observed precipi-
tation data, which has shown that the downscaled results were
suitable for practical applications, such as spatiotemporal
precipitation variability analysis and basin-scale hydrology.
Figure 7 illustrates the spatial precipitation rates of change
and their corresponding � value statistics derived from
the downscaled results and TRMM 3B43 products during
the 2001–2014 period. Figures 7(a) and 7(c) show spatial
distributions very similar to those in Figures 7(b) and 7(d),
respectively.�ere are large errors in theTRMMprecipitation
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Figure 7: Changes in annual precipitation derived from (a) downscaled results (DS-P) and (b) TRMM 3B43 and the corresponding � value
statistics for the changes in (c) DS-P and (d) TRMM-P in the Yarlung Zangbo River Basin during the 2001–2014 period.

products at the site scale; however, preexisting studies have
shown that TRMM products provide accurate precipitation
spatial patterns [1, 22, 23], which implies that the downscaled
results produced in this study are accurate, even in regions
without observed precipitation data.

According to the precipitation trends and corresponding� value statistics derived from the downscaled results (Fig-
ures 7(a) and 7(c), resp.), precipitation increases in approxi-
mately half (53%) of the pixels in the Yarlung Zangbo River
Basin, and 13.4% of the pixels show signi�cant increases,
mostly in the western and southern regions of the basin.
�e average rate of increase in precipitation over the entire

Yarlung Zangbo River Basin was 7.7mm year−1. Precipitation
decreased in 47% of the pixels; however, only 5.2% of
the pixels show signi�cant decreases, most of which are
concentrated in small regions in the westernmost and eastern
parts of the basin.�e average rate of decrease in precipitation

over the entire basin was relatively low at −5.5mm year−1. In
total, the average precipitation rate of change over the Yarlung

Zangbo River Basin was 1.6mm year−1, which indicates
that precipitation in the basin increased overall during the
2001–2014 period.

4.5. Uncertainties in the Downscaled Results. �e spatial res-
olution and �tting �2 were greatly improved by downscaling;
however, certain errors remain, as indicated by 	 and RMSE
(0.109 and 124.60mm, resp.) in the downscaled precipitation
result from the 2001–2014 period in the Yarlung ZangboRiver

Basin. �e bias, 	, indicates an overestimation of rainfall
over the basin; this overestimation may be caused partially
by TRMM product errors [40, 41], which arise from mixed
water-body and land pixels within the passive microwave
radiometric �eld of view and poor performance regarding
the di�erences in emissivity and brightness temperature of
water surfaces in the passive microwave frequencies used
by the retrieval algorithms [1, 9]. �e error propagation
process during downscaling can be detailed as follows.
(1) Overall, the annual precipitation derived from original
TRMM products is overestimated as compared to observed
precipitation during the 2001–2014 period. (2) Overestima-
tion and underestimation are more likely to occur in the
relatively wet and relative dry regions, respectively, a�er the
data are calibrated with observed precipitation data. (3) An
overall overestimation exists in the predicted high spatial
resolution data due tometeorological station elevations below
the average elevation, which results in (4) the underestima-
tion of residual data in most regions (see Figure 5(d)) and
residual data absolute errors less than those for predicted
data. (5) �us, the �nal downscaled precipitation results
feature overall overestimation.

Rain gauges, which have a sparse and uneven spatial
distribution in the basin, may also be partially responsible for
this overestimation [42]. Because they are sensitive to sen-
sor and retrieval algorithm accuracy, precipitation products
derived from TRMM 3B43 are relatively inconsistent with
observations.�erefore, original products fromTRMM3B43
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must be calibrated with local rain gauge station observations
before they are applied to a speci�c study area. However, with
only 17 rain gauge stations in the Yarlung Zangbo River Basin
(all ofwhich are located in themiddle and lower reaches of the
basin), gauge measurements are scarce, which greatly impact
the e�ective calibration of TRMM 3B43 data. �is lack of
observations thus a�ects the e�ectiveness of the downscaling
algorithm.

In this study, the downscaling model was established
upon the basic assumption that precipitation amount has a
strong relationship with NDVI, topographical factors, and
geographical location in the Yarlung Zangbo River Basin.
Numerous studies have found positive correlations between
precipitation andNDVI [2, 43, 44] and between precipitation
and topographical factors (i.e., elevation) [3]. In addition,
geographical location (i.e., longitude) must be considered, as
it is an important factor due to the long and narrow terrain
in the Yarlung Zangbo River Basin. Although rainfall has
a strong relationship with NDVI, there is a time lag of 1–3
months between rainfall and the response NDVI in monthly
data [45–47]; it is well-known that NDVI may become
saturated when the precipitation exceeds a certain value in
humid regions, which may impact the downscaled results.
In the Yarlung Zangbo River Basin speci�cally, hydrological
conditions have particularly obvious impacts on NDVI in
the midstream and downstream regions, where water bodies
such as rivers, lakes, and groundwater runo� disrupt the
relationship between precipitation and NDVI [3].

Precipitation, which is an extremely complex meteoro-
logical phenomenon, is in�uenced by many factors other
than NDVI and topography (i.e., monsoon and tempera-
ture), as evidenced by the residual errors in Figure 5(c).
�eoretically, the dominant factors controlling precipitation
vary in di�erent locations within the Yarlung Zangbo River
Basin; thus, deviations remain in the downscaled results
despite the inclusion of multiple factors and the removal of
nonsigni�cant factor(s) in this study.

�e errors in the downscaled results arise partially
because of the sparse and uneven rain gauge spatial dis-
tribution in the Yarlung Zangbo River Basin; however, the
correct spatial pattern provided by TRMM 3B43 guarantees
the rationality of the results. Moreover, the accuracy is
improved greatly by downscaling. �us, this study shows
that the downscaling model presented herein can be used
to produce high spatial resolution precipitation data in the
Yarlung Zangbo River Basin.

4.6. �e Potential of IMERG for Downscaling Precipitation.
Figure 8(a) illustrates the accuracy of TRMM 3B43 and
IMERG products before downscaling and indicates that
IMERG is closer to observations than is TRMM 3B43 in
the Yarlung Zangbo River Basin; TRMM 3B43 overestimates
precipitation amount to a greater degree than does IMERG.
Both TRMM-based and IMERG-based downscaled precip-
itation are closer to observations a�er downscaling than
before downscaling (Figure 8(b)).

As shown in Table 4, IMERG has lower 	 and RMSE
values than does TRMM 3B43 before downscaling, which
indicates that the IMERG product is more accurate than the

Table 4: Statistical results for comparisons of TRMM 3B43 and
IMERG with observed precipitation before and a�er downscaling
for 2014.

Before downscaling A�er downscaling

TRMM 3B43 IMERG TRMM 3B43 IMERG

	 0.508 0.223 0.157 0.170

RMSE (mm) 283.94 171.58 119.89 126.03�2 0.54 0.31 0.63 0.60

TRMM 3B43 product. However, the IMERG �2 is lower than
that for TRMM 3B43, which may lead to a less accurate
calibration using observed precipitation. A�er downscaling,

the lower 	 and RMSE and higher �2 values indicate great
improvements in precipitation accuracy in both the TRMM
3B43 and IMERG data along with the higher spatial resolu-
tion. It is worth noting that the TRMM-based downscaled
precipitation is more accurate than the IMERG-based results;
one possible explanation for this result is that the poor
linear, or nonlinear, correlation between IMERG data and
observed precipitation leads to a poor IMERG calibration,
which suggests that the downscaling algorithm presented
herein is more suitable for TRMM 3B43. �erefore, a new
downscaling algorithm must be developed for IMERG.

5. Conclusions

�e precipitation downscaling process performed in this
study yielded a number of primary �ndings. Using a nonlin-
ear optimization method, annual precipitation from TRMM
3B43 was e�ectively calibrated with observations from 17
meteorological stations within the Yarlung Zangbo River
Basin taken from 2001 to 2014. A�er downscaling, both
the spatial resolution and the accuracy of the precipitation
data were greatly improved; the bias between TRMM 3B43
and rain gauge data decreased considerably from 0.397 to
0.109, the RMSE decreased from 235.16 to 124.60mm, and�2 increased from 0.54 to 0.61. In addition, a deviation
distribution method was used to derive deviation estimates
for the downscaled precipitation in regions without obser-
vation stations; the results show a 68.26% probability that
the normalized standard deviation for the downscaled result
at a given pixel falls between −0.096 and 0.4146. �erefore,
the �nal downscaled results are statistically signi�cant for the
entire Yarlung Zangbo River Basin.

�e precipitation rates of change and their corresponding� value statistics based on the downscaled results were
consistent with those based on TRMM 3B43 data, which
suggests that the proposed downscaling approach performed
quite well in the Yarlung Zangbo River Basin. Its high
performance in downscaling precipitation was proven again
by comparing with MLR, ANN, and GWR models over the
Yarlung Zangbo River Basin. Precipitation over the study
area featured a dominant increasing trend at an average

rate of 1.6mm year−1 during the period from 2001 to 2014;
in individual pixels, increases in precipitation were more
common, and greater in magnitude, than were decreases in
precipitation.
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Figure 8: Comparisons between TRMM 3B43 precipitation, IMERG precipitation, and observed precipitation (a) before downscaling and
(b) a�er downscaling for 2014.

IMERGwasmore accurate than TRMM3B43 when com-
pared with observed precipitation, but had a low correlation
with observed precipitation, resulting in the introduction of
numerous errors during calibration. �erefore, the accuracy
of the IMERG-based downscaled precipitation was lower
than that of the TRMM-based downscaled result, which
suggests that the downscaling method presented herein is
more suitable for TRMM 3B43 than for IMERG.

Overall, errors do likely exist in the downscaled pre-
cipitation data produced in this study. However, the spatial
downscaling algorithm presented herein can provide high
spatial resolution, high accuracy precipitation datasets in
the Yarlung Zangbo River Basin using a number of relevant
factors, even in regions with extremely sparse meteorological
stations. �ese downscaled datasets o�er an opportunity
to better understand spatial variations in precipitation in
the Yarlung Zangbo River Basin and provide foundational
data for the development of monthly and daily precipitation
datasets that can be used to drive hydrological models.
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