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Abstract

The polio eradication programme in Nigeria has been successful in reducing incidence to

just six confirmed cases in 2014 and zero to date in 2015, but prediction and management

of future outbreaks remains a concern. A Poisson mixed effects model was used to

describe poliovirus spread between January 2001 and November 2013, incorporating the

strength of connectivity between districts (local government areas, LGAs) as estimated by

three models of human mobility: simple distance, gravity and radiation models. Potential

explanatory variables associated with the case numbers in each LGA were investigated

and the model fit was tested by simulation. Spatial connectivity, the number of non-immune

children under five years old, and season were associated with the incidence of poliomyeli-

tis in an LGA (all P < 0.001). The best-fitting spatial model was the radiation model, outper-

forming the simple distance and gravity models (likelihood ratio test P < 0.05), under which

the number of people estimated to move from an infected LGA to an uninfected LGA was

strongly associated with the incidence of poliomyelitis in that LGA. We inferred transmis-

sion networks between LGAs based on this model and found these to be highly local,

largely restricted to neighbouring LGAs (e.g. 67.7% of secondary spread from Kano was

expected to occur within 10 km). The remaining secondary spread occurred along routes of

high population movement. Poliovirus transmission in Nigeria is predominantly localised,

occurring between spatially contiguous areas. Outbreak response should be guided by

knowledge of high-probability pathways to ensure vulnerable children are protected.

Introduction

The World Health Assembly determined in 1988 that paralytic poliomyelitis would be elimi-

nated from the 125 infected countries by the year 2000 [1]. Despite great successes in eliminat-

ing polio in Europe, the Americas and parts of Asia by the Global Polio Eradication Initiative

(GPEI), a few remaining endemic countries continue to support poliovirus transmission. Dis-

ease burden from the three wild poliovirus serotypes has fallen from 350,000 cases worldwide
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in 1988 to just 122 cases in 2014 and since 2012, wild poliovirus types 2 and 3 have not been

detected [2]. The international spread of poliovirus from the endemic countries to polio-free

countries constitutes a “public health emergency of international concern” but continued prog-

ress in interrupting transmission and protecting the most vulnerable makes global eradication

a realistic prospect [3]. The three endemic countries, Nigeria, Pakistan and Afghanistan, have

seen remarkable reductions in case numbers over the past five years; indeed by June 2016 Nige-

ria had reached almost two years without reporting a single case due to wild poliovirus.

In the last decade, outbreaks of poliomyelitis in Nigeria have been limited to the northern

states, predominantly around a few, key districts which have suffered the greatest burden of

disease. These districts were often the target of intensive “mop-up” campaigns with oral polio-

virus vaccine (OPV) in addition to the supplementary and routine immunisation programmes

conducted in all at-risk areas. Despite this focussed vaccination strategy, cases continued to

appear, aided by sub-optimal population immunity. The recent successes in the global polio

eradication programme in reducing case numbers in Nigeria have brought the goal of eradica-

tion closer. Serotypes 2 and 3 wild poliovirus are no longer circulating in Nigeria and serotype

1 wild poliovirus caused just six cases of paralytic poliomyelitis in 2014–2015, compared with

53 cases in 2013 [4]. Cases due to type 2 circulating vaccine-derivedpoliovirus still pose a

threat to the eradication programme and identifying networks of high probability transmission

is essential to limit the spread of these emerging viruses. Poliovirus transmission can be diffi-

cult to track, as the majority of carriers are asymptomatic and those that do present with symp-

toms experience a long incubation period [5].

Spatial models have long been used to describe the transmission of infectious diseases and

rely on an underlying knowledge of population movements and their relationship to disease

transmission [6–8]. Several studies have implemented spatial models to describe subnational

transmission of polio in Nigeria. Analysis of the serotype 2 vaccine-derivedpoliovirus outbreak

in Nigeria during 2005–2008 using partially-observedtransmission networks highlighted the

difficulties in applying spatial models to a disease with a low case: infection ratio such as polio

[9]. Such a low sampling rate precluded estimation of the direct ancestors for cases and recon-

struction of the underlying transmission network. Certain risk factors, such as measures of

immunity, presence (and distance) of cases in neighbouring districts and population density

can predict outbreaks at a subnational level [10–12]. Extending this type of analysis to predict

pathways linking districts along which poliovirus transmission is highly likely to occur by

incorporating human mobility patterns would provide a valuable tool for outbreak response.

This would enable key planning and policy questions currently faced by the GPEI to be

addressed, for example, if a district reports a case of poliomyelitis, is it feasible to stop the out-

break by immunising only in neighbouring districts?

Human mobility patterns can be captured using a number of sources such as census records

or transport data, but in the absence of detailed data on population movement, as is the case in

Nigeria, we rely on spatial coupling models linking pairs of locations to predict pathways of

highly frequent travel. In the simplest case, spatial models assume that the connectivity

between populations is a function of the distance between them, overlooking the fact that pop-

ulation movement tends to be higher betweenmore populous areas [13]. Density-dependent

gravity models have previously been used to describe transmission pathways of highly conta-

gious airborne viruses such as measles and influenza which have high case: infection ratios

[14–16]. However, it is unknown whether a gravity model can accurately describe the spatial

dynamics of poliovirus, an enterovirus spread via the faecal-oral route [5]. The radiation

model, first developed to describe radiation and absorption processes in particle physics, cap-

tures “fluxes” between population centres by considering daily commuting patterns driven by

job-seekingbehaviour. This model has been shown to outperform the gravity model in
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capturing patterns of movement on various timescales, from hourly trips extracted from

mobile phone records to long-term migration patterns [17].

Here we use data on poliomyelitis incidence in Nigeria during 2001–2013 to examine the

spread of poliovirus and identify potential risk factors such as population immunity, seasonal-

ity and population density. We also explore potential pathways with a high probability of polio-

virus transmission and discuss the implications of our findings for the appropriate scale of the

vaccination response.

Methods

Data

Nigeria is divided into 774 local government areas (LGAs), each with a mean area of 1,165km2

(SD 1,414 km2) and mean population size in 2006 of 177,363 (SD 86,734) [18]. We used the

Euclidean distance between the centroids of each LGA pair (dij) and estimated the area of each

LGA using the Spatial Statistics toolbox in ArcMap 10.

The incidence data used in this analysis was collected during routine acute flaccid paralysis

(AFP) surveillance in Nigeria between January 2001 and November 2013. All children with

AFP who are reported to a health facility undergo clinical and laboratory investigations, includ-

ing a verbal report of vaccination history (typically from the caregiver) [19]. We defined a

poliomyelitis case as any child with clinically confirmedAFP and at least one stool sample pos-

itive for wild poliovirus.We considered serotype 1 cases only, as no cases of poliomyelitis due

to serotype 3 have been detected in Nigeria since 16th November 2012. Four OPV formulations

are currently licensed for use in Nigeria, trivalent OPV, two monovalent OPVs and a bivalent

OPV. We therefore estimated the numbers of each type of OPV received by a child with AFP

by multiplying the total number of doses reported during the initial case investigation by the

proportion of supplementary immunisation activities (SIA) in their LGA between the child’s

date of birth and onset of paralysis that used the corresponding type of OPV (see Mangal et al,

Supplementary Appendix for details) [12]. We assumed that all doses were received via SIAs

rather than through routine immunisation, as routine coverage in key areas is low and highly

heterogeneous [20].

We calculated the size of the susceptible population aged under 15 years using census data

and sliding window estimates of vaccine-inducedpopulation immunity. The majority of

reported non-polio AFP cases are aged under five years and we use this age group to estimate

immunity. The individual probability of protection against poliomyelitis for non-polio AFP

cases under five years of age was estimated using the efficacy of the trivalent, bivalent and

monovalent vaccines (v) which differs for northern and southern LGAs [12] and the number

of doses received (x):

1� ð1� vtÞ
xt ð1� vbÞ

xb ð1� vmÞ
xm ð1Þ

This was used to calculate an average probability of protection for each LGA. Uncertainty in

vaccine efficacy estimates was incorporated by randomly sampling 1000 times from a multivar-

iate normal distribution of efficacy estimates and re-estimating individual and population

immunity. We then used the median population immunity value multiplied by the population

size under 15 years of age to derive the susceptible population size.

Statistical analysis

We fitted a generalised linear mixed-effectsmodel with an over-dispersed Poisson error struc-

ture to the number of cases over a six month interval in a given LGA. We included a random
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effects term in the intercept for observations from the same LGA, to allow for the correlated

nature of these observations [21]. Population density derived from census data [18] (S1 Fig),

seasonality, population size and susceptible population size were included as predictor vari-

ables in an univariate analysis, then significant terms (P < 0.05 in the Poisson mixed-effects

model) were retained for a multivariate regression. The spatial model components (distance,

gravity and radiation) were examined first as separate predictor variables in the univariate anal-

ysis, then as part of a force of infection term described below. The force of infection is a com-

posite parameter, including exposure to infection from within the district (captured by past

incidence of poliomyelitis), exposure to infection resulting from cases in neighbouring districts

(incorporating spatial connectivity) and a background level of infection reflecting long distance

travel and importation of infection nationwide. Consequently, the model formulation for the

expected number of cases (μi) in LGA i with a force of infection (λi), potential explanatory vari-

ables such as population density and seasonality (Xi1 . . . Xiq) and a random effects term (εi)
was:

logðmi;tÞ � aþ b
1
li;t þ b

2
Xi1 þ . . .þ bqXiq þ εi ð2Þ

The transmission intensity (λi) estimated the force of infection acting on LGA (i) within

each six month time-period.The transmission variable (λi) at time t+1 was describedby:

li;tþ1
¼ a

1
Ii;t þ a

2

X

j;j 6¼i

Ij;tSij þ a
3

X

j;j 6¼i

Ij;t

Sij 2 Dij;Gij;Tij

ð3Þ

The incidence (I) refers to the number of virologically confirmed poliomyelitis cases in the

preceding time period t. The first term of the transmission variable (Ii,t) refers to new infections

as a result of ongoing transmission within a LGA. The second includes the spatial component

(Ij,t Sij) describing the connectivity between LGA i and j, which may be one of three spatial

models detailed below, and the third term (Ij,t) denotes a background force of infection experi-

enced equally by all LGAs, independent of distance or population size. This background risk of

infectionmay partly explain the appearance of cases in previously unaffected areas, far from

LGAs currently experiencing symptomatic cases. The parameters α1, α2, and α3 in Eq 3 were

estimated simultaneously with the beta coefficients in Eq 2. An optimisation algorithm was

used to find the optimum parameter values which maximised the likelihood returned by the

over-dispersed Poisson model.

Spatial component

To explore the effect of population movement on the risk of infection, we compared three spa-

tial models to describe the connectivity between LGAs. Each of N LGA administrative regions

(i) forms one unit (N = 774) with a constant population size ni and distance (dij) between all

LGA pairs. The strength of connectivity between LGAs i and j was described in three different

ways. Firstly, we used a density-independent distance model (Dij), with spatial coupling

between two locations depending only on the distance between them, independent of the popu-

lation sizes (Eq 3) [22]. The strength of connectivity was describedby a power law γ, optimised

during the multiple regression analysis.

Dij ¼
1

dg
ij

ð4Þ

Secondly, we used a gravity model (Gij), which allows for a flexible dependence between
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each city pair i and j, driven by their respective population sizes (ni and nj) and the distance

(dij) between them (Eq 4). The parameters γ, μ and ν are optimised exponents for the distance,

source populations and destination populations respectively and the population sizes are in

units of 100,000 people. The distance exponent will be low if disease spread is highly geograph-

ically concentrated.

Gij ¼
nm
i n

n
j

dg
ij

ð5Þ

Thirdly, we used a radiation model (Tij), predicting mobility patterns using a diffusion

model (Eq 5) [17]. The radiation model predicts that the population movement between LGAs

i and j is dependent on the population sizes ni and nj and the population within a circle of

radius equal to the distance between the two populations sij centred on LGA i [17]. We

included two elements in this analysis, one describing commuter flow from uninfected LGA i

to infected LGA j, and the second describing commuter flow from infected LGA j to i, since

these terms are not symmetric.

Tij ¼ Ti

ninj

ðni þ sijÞðni þ nj þ sijÞ
ð6Þ

By combining expected population movements with incidence in a given time periodX

j;j 6¼i

Ij;tSij, it is possible to connect pairs of LGA based on the likelihoodof infection travelling

between them. We estimated these high probability transmission pathways by aggregating inci-

dence and movement patterns over six year periods (and additionally over one-year periods,

S2–S4 Figs).

Model fitting

The unknown parameters were estimated jointly by optimisation to find the best parameter set

which maximised the log likelihood returned by the mixed-effects regression model. Five sets

of initial values within a credible range were chosen to explore the sensitivity of convergence to

the starting values. All numerical optimisations were performed in R (version 3.0.2) using the

Broyden, Fletcher, Goldfarb and Shanno variable metric algorithm with box constraints and

the likelihood of the over-dispersed Poisson mixed-effects regression model calculated using

the lme4 package.

The fit of the model was tested by simulation. Firstly, we derived the mean number of LGAs

predicted to experience at least one case from 1000 simulated datasets using the fitted model,

comparing it to observeddata using R2. Secondly, we simulated 1000 datasets for each time

period using data up to that period. The accuracy of the model in identifying the number and

locations of cases during each six month periodwas assessed using a receiver operator charac-

teristic (ROC) curvewhich plots the true positive rate against the false positive rate at various

thresholds. The area under the curve (AUC) was calculated for each simulated set of responses

and the average value is presented. Finally, to predict the number and distribution of cases

occurring as a result of one poliomyelitis case during the high season months of April to Sep-

tember 2013, given the conditions in each LGA during this time period (for example, the size

of the susceptible population derived from vaccination coverage estimates during this time),

we fitted the model to data up to September 2013. The resulting model was used to predict case

numbers in the following six months, under the assumption that population immunity in each

LGA remained the same. We used Kano Municipal Area, the capital of Kano state in North

Central Nigeria, as an example here as it had historically sustained uninterrupted transmission
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of wild poliovirus. Kano Municipal Area was classified as having a high risk of polio outbreaks

in 2014; 33 of 44 LGAs within the state are high risk or very high risk LGAs [23]. From the geo-

graphic distribution of resulting cases, we estimated the size of the vaccination response needed

to give each child in at-risk LGAs one booster dose of OPV following an outbreak in Kano

Municipal Area. We classified districts as “at-risk” if their predicted number of cases was

greater than 0.5.

Institutional ethics approval and individual informed consent were not sought because this

is a retrospective study using anonymised national surveillancedata collected routinely by the

Government of Nigeria.

Results

Univariate analyses of all spatial components and other potential explanatory variables showed

no significant association of population density or population size under 15 years of age

(P = 0.276 and P = 0.159 respectively) with the risk of outbreaks (Table 1). The force of infec-

tion term, irrespective of spatial model, the size of the susceptible population (based on vac-

cine-induced immunity) and high season (months April-September) versus low season (all

P< 0.05) were associated with the incidence of poliomyelitis.

The density-independent distance model and density-dependent gravity models offered

only a marginal improvement over the non-spatial model (likelihood ratio test, both P< 0.05,

Table 2). The radiation model clearly provides a better fit to the data (log likelihood -5023 com-

pared with -5219 for the gravity model) and we use this for the remaining analyses. If we con-

sider the radiation and gravity models to be nested (under the assumption that population size

within a given area is uniformly distributed), we use can the likelihood ratio test to formally

test the model fit (P< 0.05). The optimisation algorithm was not strongly influenced by the

starting values, with each initial parameter set yielding very similar final estimates.

There are two key quantities estimated in the radiation model. Firstly, how much infection

is exported by movement from infected LGAs to their connected networks? Secondly, how

much infection is acquired by movement from uninfected LGAs to an infected LGA? The

model suggests that the first quantity (exporting infection from an infected LGA) is a stronger

determinant of spatial spread of the virus than the second (coefficient 4.63, 95% CI: 1.05, 8.22

compared with 0.65, 95% CI: -0.49, 1.78). The log odds of a case increase by 0.72 (95% CI: 0.53,

0.87) in the high season of poliovirus transmission relative to the low season.

Population movement predicted by the radiation model for Kano Municipal Area in Kano

state is illustrated in Fig 1. The predicted pathways of high transmission show highly localised

Table 1. Univariate Analysis of Potential Explanatory Variables AssociatedWith Risk of Poliomyelitis Cases in Nigeria, 2001–2013 Using a Pois-
son Mixed Effects Regression Model.

Coefficient(95% CI) P-value Log likelihood

Season(high versus low) 0.56(0.41–0.70) <0.001 -5930.286

Population density (km-2) 0.07(-0.05–0.18) 0.276 -5960.887

Population size <15 years -2.34e-6(-5.60e-6–9.19e-7) 0.159 -6003.284

Susceptible population size <15 years 2.09e-5(1.87e-5–2.31e-5) <0.001 -5805.839

Spatial components

Distance model 0.79(0.55–1.03) <0.001 -5941.396

Gravity model 0.01(0.01–0.02) <0.001 -5956.154

Radiation model 0.05(0.05–0.06) <0.001 -5894.627

Coefficients obtained by maximum likelihood are presented with 95% confidence intervals.

doi:10.1371/journal.pone.0163065.t001
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spread, dominated by short-range infection paths (Fig 2, S2–S4 Figs). We present here only the

transmission pathways linking LGAs in northern states of Nigeria as incidence of poliomyelitis

in the southern states is relatively rare (123 cases in southern states and 3414 cases in northern

states during the study period). The inset maps in Fig 2A and 2B show that transmission

betweenKano Municipal Area and the surrounding LGAs is highly probable and the strong

inter-connectivity of these areas is likely to support continued poliovirus transmission in the

absence of high population immunity.

The radiation model predicts that, given the size of the susceptible population during April

to September 2013, 67.7% of secondary spread resulting from two cases in Kano Municipal

Area would occurwithin Kano and in neighbouringGwale and Tarauni LGAs. A further eight

highly connected LGAs located on average 323.7km from Kano Municipal Area have predicted

caseloads of >0.25. In this instance, a mop-up vaccination campaign targeting approximately

500,000 children in Kano and the three neighbouring LGAs could prevent any further cases

emerging. However, given the high connectivity of LGAs in this area (Fig 2A and 2B insets),

protecting all children within highly connected areas would be recommended.

Validation

We first simulated 1000 datasets using the best-fitting model and calculated the mean number

of LGAs predicted to experience an outbreak for each simulation (Fig 3). A comparison of

these simulations with the observedvalues indicated reasonable agreement (mean R2 value

0.62 [95% CI: 0.54, 0.70]). However, the model failed to capture the short-term dynamics and

lagged behind the observeddata, underestimating the number of infected LGAs at the start of a

peak. Secondly we examined the geographic distribution of cases in 1000 simulated datasets at

each time point, comparing the performance of the model in identifyingwhich LGAs would

become infected with the observeddata. The geographic distributions of cases were well-esti-

mated with an average AUC of 0.81 (SE 0.02) suggesting that it performs well in estimating the

probability and location of outbreaks (S5 Fig).

Table 2. Optimised Estimates for Components of the Spatial and Non-Spatial Models and the Poisson Mixed-Effects Model Coefficients.

Non-spatial model Distance model Gravity model Radiation model

Spatial model components

Distance power (γ) — 1.89(1.68–2.11) 1.75(1.31–2.19) —

Source population (μ) — — 2.08(0.53–3.63) —

Destination population (ν) — — 2.71(1.25–4.17) —

Within LGA transmission (α1) 2.81(1.02–4.59) 3.01(0.68–5.34) 1.08(0.20–1.97) 3.77(0.52–7.03)

Between LGA transmission (α2) — 1.04(-0.65–2.74) 1.00(-0.47–2.48) —

- Commuter flux susceptible to infected LGA — — — 0.65(-0.49–1.78)

- Commuter flux infected to susceptible LGA — — — 4.63(1.05–8.22)

Long-range transmission (α3) 0.002(0.002–0.002) 0.002(0.002–0.002) 0.001(0.001–0.001) 0.000(-0.0002–0.0002)

Poissonmixed-effects model coefficients

Force of infection (λ) 0.52(0.47–0.56) 0.51(0.46–0.55) 0.44(0.40–0.48) 0.39(0.37–0.42)

Season(high versus low) 0.82(0.65–0.99) 0.82(0.65–0.99) 0.66(0.50–0.83) 0.72(0.53–0.87)

Log likelihood -5227.799 -5225.761 -5218.819 -5022.952

The spatial model components and mixed-effects model coefficients for each model are estimated jointly using an optimisation algorithm which maximises

the log likelihood returned by the mixed-effects model.

doi:10.1371/journal.pone.0163065.t002
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Discussion

The results from the four multivariate models all conclude that within-LGA transmission is

highly predictive of future transmission, in agreement with earlier studies of poliovirus trans-

mission in Nigeria [10–12]. All three spatial models (distance, gravity and radiation) are

strongly predictive of poliovirus risk. Our study illustrates the highly localised transmission

dynamics of poliovirus, giving an indication of the scale of response needed to prevent an out-

break from spreading. The current WHO guidelines for the vaccination response following

detection of circulating polioviruses in large population countries are to vaccinate between two

million and five million children in the affected and adjacent areas [24]. The majority of pre-

dicted high probability transmission routes occur between spatially contiguous LGAs and so a

response policy protecting all neighbouring LGAs surrounding an infected area would likely be

effective in preventing spread. This scale of response targeting children in all highly linked

areas would be necessary even if only one affected child is identified, as each symptomatic case

can be connectedwith potentially hundreds of asymptomatic infections

Fig 1. Simulated populationmovement under the radiation model from KanoMunicipal Area, Kano state (population density 14 064.1
people per km2). Population movements with fewer than ten people are excluded.

doi:10.1371/journal.pone.0163065.g001
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The best fitting model of population movement to the incidence of poliomyelitis was the

radiation model. This parameter-free model has other advantages, including removing the

need to estimate the population and distance exponents (μ, ν and γ), which require some prior

knowledge of mobility patterns, frequently absent in areas most affected by infectious diseases.

An additional advantage of the radiation model over the gravity model is the ability to distin-

guish migration into or away from a population centre. Here the radiation model predicts that

people travelling from infected LGA j are more likely to infect uninfected LGA i, than people

travelling from i, becoming infected in LGA j and then returning home. This is a particularly

interesting point and worthwhile of additional investigation as Temporary Recommendations

on vaccination of travellers from infected areas are issued by the International Health Regula-

tions Emergency Committee in light of the declaration of wild poliovirus spread as a public

health emergency of international concern [25].

Fig 2. Themost probable infection pathways for the northern states of Nigeria (arrows) based on
estimated population movement during 2002–2007 (A) and 2008–2013 (B). The expected number of
susceptible children (aged under 15 years) during April-September 2012 based on reported vaccination
records and vaccine efficacy (C). Arrows indicating the direction of the infection pathway originate from the
centrepoints of infected LGAs to the most highly connected LGAs and are colour-coded by the strength of the
force of infection (A-B). The force of infection is estimated by the incidence within LGA i and the spatial coupling
between LGAs i and j, following the radiation model. Incidence of poliomyelitis is aggregated over the time-
periods (fill colours) and refers to confirmed, symptomatic cases caused by wild-type 1 poliovirus only. Inset:
Kano Municipal Area and surrounding LGAs.

doi:10.1371/journal.pone.0163065.g002

Fig 3. The expected number of LGAs (of 774) reporting at least one case of poliomyelitis during each six month period. The shaded area
represents 95% of the distribution of outcomes using 1000 simulations of the radiation model with the actual number of LGAs reporting a case overlaid in
blue.

doi:10.1371/journal.pone.0163065.g003

Spatial Dynamics of Poliovirus in Nigeria
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Our approach has a number of limitations. Firstly, we only expect to see one symptomatic

case for every 200 infections; therefore, some LGAs will have circulating poliovirus that is not

picked up by routine surveillance.We assume here that the total number of infections (symp-

tomatic plus asymptomatic) is proportional to the number of cases of paralysis, as the propor-

tion of infections that cause paralysis is fairly constant. The model fits the post-2010 data much

better and this may in part be due to improvements in surveillance in recent years (median R2

for 2002–2005 was 0.66 [95% CI 0.51–0.79] compared with 0.89 [0.46–0.99] for 2011–2012).

Secondly, aggregating population immunity estimates for children under five years of age may

not adequately capture short time-scale dynamics. Estimating immunity in children up to

three years of age would perhaps better reproduce the temporal trends in immunity, but the

small numbers of non-polio AFP cases in this age group in many LGAs made it difficult to

obtain reliable immunity estimates. Thirdly, we rely on recall of vaccination history for chil-

dren by their carers when we estimate population immunity. These estimates may therefore be

subject to errors, which have been described elsewhere, although they have been shown to be

highly predictive of an outbreak at the population-level [11, 12, 26]. Finally, we have relied on a

simple model of population movement, not empirical data. Mobility data in sub-Saharan

Africa is generally limited, however, using mobile phone call records in combination with cen-

sus data to track individual movement patterns, previously implemented in West Africa, offers

an interesting opportunity [27, 28].

Maps of wild poliovirus outbreaks in Nigeria revealing genetic clusters support our findings,

showing markedly clustering of related genotypes [29]. Each of the three main reservoirs

(Northwest, North Central, and Northeast Nigeria) supports distinct clusters with some trans-

mission between adjacent areas. Integrating this work with genetic sequence data would pro-

vide a more thorough understanding of the spatial dynamics, helping to inform guidelines for

mop-up campaigns following an outbreak.

Our findings emphasize the need for focussed responses to outbreaks, prioritising high cov-

erage in LGAs along high transmission pathways. The recent successes in the polio eradication

efforts in Nigeria during 2014 and 2015, driven by significant improvements in SIA campaign

quality and micro planning to increase vaccine coverage in poor performing LGAS, demon-

strate that eradication of polio in this region is possible. The current Nigeria Polio Eradication

Emergency Plan identifies targeted micro planning as a strategic priority [23]. This form of

concentrated response to outbreaks, along with continued improvements in childhood immu-

nity against poliomyelitis could finally achieve Nigeria’s goal of a polio-free society.

Supporting Information

S1 Fig. Population density (population size / area km2) in Nigeria with northern states

highlighted in red.

(TIF)

S2 Fig. (i-iii). The most probable infection pathways for the northern states of Nigeria

(arrows) based on estimated commuter flows during 2005–2007. Arrows indicating the

direction of the infection pathway originate from the centrepoints of infected LGAs to the

most highly connected LGAs and are colour-coded by the strength of the force of infection.

The force of infection is estimated by the incidence within LGA i and the spatial coupling

between LGAs i and j, following the radiation model. Incidence of poliomyelitis is aggregated

over the time-periods (fill colours) and refers to confirmed, symptomatic cases caused by wild-

type 1 poliovirus only. Inset: Kano Municipal Area and surrounding LGAs.

(TIF)
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S3 Fig. (i-iii). The most probable infection pathways for the northern states of Nigeria

(arrows) based on estimated commuter flows during 2008–2010. Arrows indicating the

direction of the infection pathway originate from the centrepoints of infected LGAs to the

most highly connected LGAs and are colour-coded by the strength of the force of infection.

The force of infection is estimated by the incidence within LGA i and the spatial coupling

between LGAs i and j, following the radiation model. Incidence of poliomyelitis is aggregated

over the time-periods (fill colours) and refers to confirmed, symptomatic cases caused by wild-

type 1 poliovirus only. Inset: Kano Municipal Area and surrounding LGAs.

(TIF)

S4 Fig. (i-iii). The most probable infection pathways for the northern states of Nigeria

(arrows) based on estimated commuter flows during 2011–2013. Arrows indicating the

direction of the infection pathway originate from the centrepoints of infected LGAs to the

most highly connected LGAs and are colour-coded by the strength of the force of infection.

The force of infection is estimated by the incidence within LGA i and the spatial coupling

between LGAs i and j, following the radiation model. Incidence of poliomyelitis is aggregated

over the time-periods (fill colours) and refers to confirmed, symptomatic cases caused by wild-

type 1 poliovirus only.

(TIF)

S5 Fig. Receiver operating characteristic (ROC) curve illustrating the performance of the

model in identifying outbreaks in local government areas (LGA) averaged across each six

month interval between 2001 and 2013. Predictions of outbreaks were generated for each

LGA during each six month time period and a ROC curve produced for each set of predictions.

The variation around the average curve (green line) is depicted using 95% confidence intervals

around the average. The area under the curve (AUC) and the standard error of the AUC are

0.81 and 0.02 respectively.

(TIF)
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