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3INFN, Sezione di Bologna, I-40127 Bologna (BO), Italy
4INFN, Sezione di Perugia, 06123 Perugia (PG), Italy

5CNR-INO, Istituto Nazionale di Ottica, Sede di Firenze, 50125 (FI), Italy

In a superfluid system, Off-Diagonal Long-Range Order (ODLRO) is expected to be exhibited in
the appropriate reduced density matrices when the relevant particles (either bosons or fermion pairs)
are considered to recede sufficiently far apart from each other. This concept is usually exploited to
identify the value of the condensate density, without explicit concern, however, on the spatial range
over which this asymptotic condition can effectively be achieved. Here, based on a diagrammatic
approach that includes beyond-mean-field pairing fluctuations in the broken-symmetry phase at the
level of the t-matrix also with the inclusion of the Gorkov-Melik-Barkhudarov (GMB) correction,
we present a systematic study of the two-particle reduced density matrix for a superfluid fermionic
system undergoing the BCS-BEC crossover, when the entities to recede far apart from each other
evolve with continuity from largely overlapping Cooper pairs in the BCS limit to dilute composite
bosons in the BEC limit. By this approach, we not only provide the coupling and temperature
dependence of the condensate density at the level of our diagrammatic approach which includes
the GMB correction, but we also obtain the evolution of the spatial dependence of the two-particle
reduced density matrix, from a power-law at low temperature to an exponential dependence at high
temperature in the superfluid phase, when the inter-particle coupling spans the BCS-BEC crossover.
Our results put limitations on the minimum spatial extent of a finite-size system for which superfluid
correlations can effectively be established.

I. INTRODUCTION

The concept of Off-Diagonal Long-Range Order
(ODLRO) [1] is central to superfluid and superconduct-
ing systems in the broken-symmetry phase. It entails
the appearance of an asymptotic correlation in the off-
diagonal matrix elements in the spatial representation
of the one-particle (for bosons) and two-particle (for
fermions) reduced density matrices [1, 2].
Accordingly, it could be of interest to assess how this

property manifests itself in the context of the BCS-BEC
crossover, whereby the system evolves with continuity
from a BCS (fermionic) regime of highly overlapping
Cooper pairs to a BEC (bosonic) regime of dilute com-
posite bosons [3]. In particular, for a Fermi gas this
crossover is spanned in terms of the dimensionless cou-
pling parameter (kF aF )

−1 where kF = (3π2n)1/3 is the
Fermi wave vector with density n and aF the scatter-
ing length of the two-fermion problem. This parameter
ranges from (kF aF )

−1 . −1 in the weak-coupling (BCS)
regime when aF < 0, to (kF aF )

−1 & +1 in the strong-
coupling (BEC) regime when aF > 0, across the unitary
limit when |aF | diverges.
In this context, previous theoretical works have specif-

ically considered obtaining only the condensate density

n0, that can be extracted from the values of the above off-
diagonal matrix elements in the asymptotic limit of large
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spatial separation. This has been done for a wide cou-
pling range across the BCS-BEC crossover and for tem-
peratures from zero up to the superfluid critical temper-
ature Tc, both at the mean-field level [4] and with the in-
clusion of fluctuation effects at the Gaussian level [5]. Ex-
perimental works with ultra-cold Fermi gases, too, have
considered determining the condensate density, mainly
at low temperatures around the unitary regime [6, 7] and
more recently over a wider coupling range [8]. The value
of the condensate density at unitarity (both at zero and
finire temperature) was also recently obtained by several
Quantum Monte Carlo simulations [9–14]. In the present
work, we complement and extend the above previous the-
oretical studies about the ODLRO for a Fermi gas under-
going the BCS-BEC crossover, by not only addressing the
value of the condensate density as previously done in the
literature, but also determining over what spatial range

this asymptotic correlation is established below the su-
perfluid temperature Tc in the broken-symmetry phase.

A characteristic feature of a superfluid is that, ow-
ing to broken gauge symmetry, correlations of infinite
range establish long-range phase coherence. This prop-
erty results into the static phase-phase (transverse) cor-
relation function to decay as the inverse power of the
distance [15]. In the case of the ODLRO of interest here,
on the other hand, the two-particle reduced density ma-
trix corresponds to an equal-time correlation function (cf.
Eq. (1) below and Sec. II-E), where by equal-time we
mean that its calculation implies summing over an infi-
nite set of frequencies (in contrast to a static correlation
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function for which only the zero frequency is required).
Through an analysis of its spatial behavior, we will show
that, at sufficiently low temperature, this correlation
function decays with distance as an inverse-square law,
while only at higher temperatures in the superfluid phase
the inverse-proportionality decay with distance charac-
teristic of the static phase-phase correlation function is
recovered. This finding is consistent with the progressive
irrelevance of the finite-frequency components in the de-
scription of a quantum many-body system as the temper-
ature is raised above zero [16], when a crossover tempera-
ture from quantum to thermal regimes can be identified.
In the following, this temperature analysis will be car-
ried out in detail with the inter-particle coupling varying
along the BCS-BEC crossover. Our findings are consis-
tent with the occurrence of a generic scale invariance,
whereby long-range order appears in a whole region of
the phase diagram, with power-law decays of correlation
functions occurring in an entire phase and not just at an
isolated critical point [17].

Notwithstanding the occurrence of the inverse power-
law behaviors mentioned above, from the spatial de-
pendence of the two-particle reduced density matrix we
shall be able to extract (albeit with some limitations
in the temperature interval 0 ≤ T ≤ Tc - see below)
a coupling- and temperature-dependent length referred
to as the ODLRO length ξodlro, which turns out to be
related to the inter-pair (healing) length and, similarly
to it, diverges at the critical temperature. This heal-
ing length (sometimes referred to as the “phase coher-
ence length” ξphase) was originally determined as a func-
tion of coupling along the BCS-BEC crossover, at zero
temperature in Ref. [18] as well as a function of tem-
perature in the superfluid phase in Ref. [19], by looking
at the large-distance exponential behavior of the static
amplitude-amplitude (longitudinal) correlation function.
Here, we will demonstrate that this length scale charac-
teristic of the (massive) static longitudinal correlation
function manifests itself also in the (massless) equal-
time two-particle reduced density matrix associated with
ODLRO. However, this will turn out to be possible only
in the temperature ranges near absolute zero and near
the transition temperature Tc, for reasons related to
the fact that determining a time-dependent Ginzburg-
Landau equation in the BCS regime was found to be
possible only in those temperature regimes [20]. Phys-
ically, this is because at finite temperature there is the
possibility of local conversion of the thermally excited
normal excitations to superfluid. Mathematically, this is
due to the intrinsic contribution of the finite-frequency
components to the equal-time ODLRO correlation func-
tion of interest here.

A distinctive feature of both lengths ξodlro and ξphase
at low temperature is that, as a function of coupling,
they saturate to a minimum value which is of the order
of the inter-particle distance. Recently, this feature has
also been highlighted in condensed-matter experiments
[21, 22], where it was used to bring out analogies with

the BCS-BEC crossover [3] and, in particular, to identify
what would therein correspond to the unitary regime.
We shall further find that an additional length scale

(referred to as ξ1) enters the ODLRO correlation func-
tion, which turns out to be related to the intra-pair cor-
relation length (or Cooper pair size) ξpair that remains
finite at Tc. This length was determined as a function of
coupling along the BCS-BEC crossover, at zero temper-
ature in Ref. [23] and as a function of temperature in the
superfluid phase in Ref. [19].
In practice, achieving these goals will be implemented

by relying on the diagrammatic t-matrix approxima-
tion in the broken-symmetry phase as developed in
Refs. [24, 25], which will enable us to extract the asymp-
totic spatial behavior of the two-particle reduced density
matrix of ODLRO with reasonable numerical effort. In
addition, as far as the calculation of the condensate den-
sity is concerned, we will go beyond this approach and
include also the Gorkov-Melik-Barkhudarov (GMB) cor-
rection [26] throughout the whole BCS-BEC crossover,
which was proved in Ref. [27] to be an important step
for a reliable description of the superfluid gap parameter
not only in the BCS but even in the unitary regime.
The main results obtained in this article are as follows:

(i) The improved values of the condensate density n0,
both as a function of coupling and temperature, whose
novelty is to include the GMB correction and which are
compared with recent experimental and Quantum Monte
Carlo results.
(ii) The spatial profiles of the projected density matrix
(as obtained by suitably tracing the two-particle reduced
density matrix), also as a function of coupling and tem-
perature, which show visually how the asymptotic value
n0 is eventually reached for large separations.
(iii) The coupling and temperature dependence of the
characteristic length ξodlro associated with the ODLRO,
whenever it can be extracted from the above spatial pro-
files and thus compared with the inter-pair healing length
ξphase.
(iv) The coupling and temperature dependence of the
length ξ1 associated with the normal contribution to the
two-particle reduced density matrix, which brings out
of this density matrix also the other relevant (intra-pair
healing) length ξpair of the BCS-BEC crossover.
(v) The coupling and temperature dependence of the dis-
tance R∗, at which the asymptotic correlations entailed
by the ODLRO can effectively (and pragmatically) be
reached within a given default uncertainty.
(vi) The effect of the finite size of the system on the
apparent value of the condensate system, which can also
be extended above the critical temperature.
The article is organized as follows. Section II sets up

the diagrammatic approach to the two-particle reduced
density matrix and discusses its various contributions
within the t-matrix approach. Section III reports on the
numerical results obtained for the spatial behavior of the
two-particle reduced density matrix throughout the BCS-
BEC crossover over a wide temperature range, from zero
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up to (and even above) Tc. Section IV gives our con-
clusions. Additional technical details are given in the
Appendices. Analytic results are given, in Appendix A
for the fermionic one-particle density matrix within the
BCS approximation, in Appendix B for the bosonic one-
particle density matrix within the Bogoliubov approxi-
mation, and in Appendix C for the asymptotic behavior
of the two-particle reduced density matrix at zero tem-
perature in the BCS limit.

II. THEORETICAL APPROACH

In this Section, the two-particle reduced density ma-
trix for a fermionic system is analyzed in terms of a di-
agrammatic approach in the broken-symmetry phase. In
this way, not only the condensate density will be identi-
fied through the emergence of the asymptotic ODLRO for
large spatial separation of fermion pairs, but also the spa-
tial extent for reaching this asymptotic situation will be
obtained as a function of coupling and temperature. To
this end, we shall explicitly rely on the t-matrix approach
developed in Refs. [24, 25] and adapt it to the present
circumstances. In addition, whenever relevant, we shall
also include the GMB correction as made to evolve along
the BCS-BEC crossover in Ref. [27]. Throughout, we
consider balanced spin populations and set ~ = 1 for
convenience.

A. Diagrammatic approach to

the two-particle reduced density matrix

The two-particle reduced density matrix is defined by
(cf., e.g., Ref. [2])

h2(r1, r2; r1′ , r2′) = 〈ψ†
↑(r1)ψ

†
↓(r2)ψ↓(r2′)ψ↑(r1′)〉 (1)

where ψσ(r) is a fermionic field operator with spin σ =
(↑, ↓) and 〈· · · 〉 stands for an ensemble average. It will
be convenient to group the spatial variables in Eq. (1) as
follows:







r1 = r+ ρ

2 ρ = r1 − r2
=⇒

r2 = r− ρ

2 r = 1
2 (r1 + r2)

(2)

and similarly for the primed quantities







r1′ = r′ + ρ
′

2 ρ
′ = r1′ − r2′

=⇒
r2′ = r′ − ρ

′

2 r′ = 1
2 (r1′ + r2′)

(3)

such that the magnitude of R = r′ − r identifies the
distance between the center-of-mass coordinates r and
r′ of the two pairs (r1, r2) and (r1′ , r2′), respectively, of
opposite-spin fermions (cf. Fig. 1(a)). For the homoge-
neous system we are interested in, only three coordinates
(say, ρ, ρ

′, and R) suffice to describe the full spatial
dependence of h2. In particular, the ODLRO we are af-
ter corresponds to the behavior of h2 for large values of
R = |R|.
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FIG. 1. (Color online) (a) Spatial coordinates for the two-
particle reduced density matrix h2, according to the defini-
tions (2) and (3). (b) Diagrammatic representation of h2

corresponding to the Bethe-Salpeter equation (6), where the
external indices are identified by the dictionary (5) while the
internal indices are integrated over. (c) Pairing fluctuations
contribution to h2 with the structure of a Maki-Thompson di-
agram, where the quantity labeled by t stands for a t-matrix.
In panels (b) and (c), full lines represent the single-particle
Green’s functions (with the arrows pointing from the second
to the first of their arguments) and broken lines correspond
to the inter-particle interaction.

When dealing with the broken-symmetry phase, it is
convenient to introduce at the outset the Nambu repre-

sentation [28], whereby Ψ1(r) = ψ↑(r) and Ψ2(r) = ψ†
↓(r)

with the index ℓ = (1, 2) distinguishing the two compo-
nents. In terms of this representation, the two-particle
reduced density matrix (1) can be cast in the form

− h2(r1, r2; r1′ , r2′) (4)

= 〈Tτ [Ψ1(r1′ , τ)Ψ2(r2, τ
++)Ψ†

2(r2′ , τ
+)Ψ†

1(r1, τ
+++)]〉

where Tτ is the imaginary-time order operator and τ+

signify that the imaginary time τ is augmented by the
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positive infinitesimal η. In addition, with the dictionary






1←→ (r1′ , τ, ℓ = 1) 2′ ←→ (r2′ , τ
+, ℓ = 2)

1′ ←→ (r1, τ
+++, ℓ = 1) 2←→ (r2, τ

++, ℓ = 2)
(5)

whose short-hand notation encompasses space, imaginary
time, and Nambu indices, h2 can be expressed in terms
of the two-particle Green’s function G2, in the compact
form [24]:

h2(r1, r2; r1′ , r2′) = −G2(1, 2; 1′, 2′)
= G(1, 2′)G(2, 1′)− G(1, 1′)G(2, 2′) (6)

+

∫

d3456G(1, 3)G(6, 1′)T (3, 5; 6, 4)G(4, 2′)G(2, 5) .

Here, G is the single-particle Green’s function and T the
many-particle T -matrix which formally solves the Bethe-
Salpeter equation for G2 (as depicted in Fig. 1(b)) [24].
In any practical calculation based on diagrammatic ap-
proaches, suitable approximations have to be selected for
G and T . Their choice in the present context will be
discussed below.
The three terms on the right-hand side of Eq. (6) con-

tribute in different ways to the two-particle reduced den-
sity matrix and will accordingly be dealt with separately
in the following.

B. Anomalous contribution to h2

The first term on the right-hand side of Eq. (6) does
not depend on R and can be written only in terms of the
anomalous single-particle Green’s functions G12 and G21.
With the definitions (2) and (3) and the dictionary (5),
we obtain for this contribution to h2:

G(1, 2′)G(2, 1′) = G12(ρ′, 0−)G21(−ρ, 0−) (7)

where G21(−ρ, 0−) = G21(ρ, 0−) = G12(ρ, 0−) and
the negative infinitesimal refers again to the imaginary
time domain. Physically, the spatial (ρ) dependence of
G12(ρ, 0−) accounts for the internal structure of a Cooper
pair and identifies the associated pair size ξpair at any
coupling and temperature [19].
In particular, at the mean-field (mf) level one gets:

Gmf
12 (ρ, 0

−) =

∫

dk

(2π)3
eik·ρ

∆

2E(k)
[1− 2f(E(k))] . (8)

Here, ∆ is the gap parameter (taken real in the following

without loss of generality), E(k) =
√

ξ(k)2 +∆2 where

ξ(k) = k2

2m −µ with m the fermion mass and µ the chem-

ical potential, and f(ǫ) =
(

eβǫ + 1
)−1

is the Fermi func-

tion with inverse temperature β = (kBT )
−1 (kB being

the Boltzmann constant). In addition, in the strong-
coupling (BEC) limit whereby βµ→ −∞, the expression
(8) simplifies to the form

Gmf
12 (ρ, 0

−) −→
∫

dk

(2π)3
eik·ρ

∆

2 ξ(k)
=
√
n0 φ(ρ) (9)

since |µ| ≃ (2ma2F )
−1 (µ < 0), where

n0 =
m2aF
8π

∆2 (10)

is the mean-field condensate density in this limit [4] and

φ(ρ) =
e−|ρ|/aF

√
2πaF |ρ|

(11)

the normalized two-fermion wave function in vacuum.
Quite generally, at any coupling and temperature be-

low Tc, the condensate density can be obtained from the
expression [29]

n0 =

∫

dρ G12(ρ, 0−)G21(−ρ, 0−) =

∫

dρ G12(ρ, 0−)2

=

∫

dk

(2π)3

[

1

β

∑

n

eiωnη G21(k, ωn)

]2

, (12)

where again η is a positive infinitesimal and ωn =
(2n + 1)π/β (n integer) is a fermionic Matsubara fre-
quency [30]. In particular, at the mean-field level owing
to Eq. (8) the expression (12) reduces to the form [4]:

n0 =

∫

dk

(2π)3
∆2

4E(k)2

[

tanh

(

βE(k)

2

)]2

. (13)

In Sec. III A below, we will compare the results of n0

obtained numerically by (six) different levels of approxi-
mation:
(i) For reference purposes, we will initially consider the
mean-field approximation (13) to the expression (12) [4],
whereby the values of the gap parameter ∆ and chemical
potential µ to be inserted therein are obtained by solving
the coupled gap and density equations:

− m

4πaF
=

∫

dk

(2π)3

(

1− 2f(E(k))

2E(k)
− m

k2

)

(14)

n =

∫

dk

(2π)3

(

1− ξ(k)

E(k)
[1− 2f(E(k))]

)

. (15)

(ii) Inclusion of pairing fluctuations beyond mean field
will be first considered at the level of the t-matrix ap-
proach in the broken-symmetry phase of Ref. [25]. Ac-
cordingly, the gap equation will be kept of the form (14)
while the density equation will be replaced by

n =

∫

dk

(2π)3
2

β

∑

n

eiωnη Gpf11(k, ωn) . (16)

Here, the normal single-particle Green’s functions Gpf11
(with the suffix pf standing for “pairing fluctuations”) is
taken of the form [25]:

Gpf11(k, ωn) =
1

iωn − ξ(k) − Σ11(k, ωn)− ∆2

iωn+ξ(k)+Σ11(k,−ωn)

Σ11(k, ωn)=−
∫

dQ

(2π)3
1

β

∑

Ων

Γ11(Q,Ων)Gmf
11 (Q− k,Ων − ωn)

Gmf
11 (k, ωn) =

iωn + ξ(k)

(iωn − E(k))(iωn + E(k))
(17)
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where Ων = 2νπ/β (ν integer) is a bosonic Matsubara
frequency [30], Gmf

11 the mean-field version of G11, and Γ11

the 11-component of the particle-particle ladder propa-
gator to be discussed in detail below (cf. Eqs. (26)-(28)).
The values of ∆ and µ obtained in this way can then
be entered into the mean-field expression (13) for n0. In
this case, our results should be compared with those of
Ref. [5] where the condensate density was obtained with
the inclusion of pairing fluctuation effects within a Gaus-
sian approximation, although only at first order in the
relevant fluctuation contribution.

(iii) Next, following the approach of Ref. [27], we will im-
prove on the approach of Ref. [25] and include the GMB
correction throughout the BCS-BEC crossover at any
temperature below Tc. Accordingly, the density equation
will be kept of the form (16) while the gap equation will
be cast in a form equivalent to a Hugenholtz-Pines condi-
tion for fermion pairs, to which the GMB correction can
be added through (normal and anomalous) bosonic-like
self-energies [27]. The values of ∆ and µ obtained in this
way will again be entered into the mean-field expression
(13) for n0.

(iv) Further improvements will be achieved by enter-
ing in the general expression (12) for n0 the anomalous

single-particle Green’s function Gpf21 taken from Ref. [25],
namely,

Gpf21(k, ωn) =∆ [(iωn − ξ(k)− Σ11(k, ωn)) (18)

× (iωn + ξ(k) + Σ11(k,−ωn))−∆2
]−1

whose form now includes pairing fluctuations beyond
mean field. Here, the values of ∆ and µ can alternatively
be taken at the mean-field level [point (i) above], with
the inclusion of pairing fluctuations within the t-matrix
[point (ii) above], and with the further inclusion of the
GMB correction [point (iii) above]. In this way, we will

be able to test how the replacement Gmf
21 → Gpf21 in the

expression (12) will affect n0, over and above the effects
of taking the numerical values of ∆ and µ at increasing
levels of sophistication according to the points (i), (ii),
and (iii) above.

The numerical results obtained in these ways will even-
tually be compared with those obtained by several Quan-
tum Monte Carlo simulations as well as with the experi-
mental data of Ref. [8].

C. Normal contribution to h2

With the definitions (2) and (3) and the dictionary (5),
the second term on the right-hand side of Eq. (6) reads:

G(1, 1′)G(2, 2′) = G11(r1′−r1, 0
−)G22(r2−r2′ , 0

+) (19)

where again the (±) infinitesimals refer to the imaginary
time domain [31]. In this term, one may set r1 = r2 = r

and r1′ = r2′ = r′ such that r1′ − r1 = r2′ − r2 = R (cf.
Fig. 1(a)), and study directly its dependence on R = |R|.

In particular, at the mean-field level one obtains in
Eq. (19):

Gmf
11 (R, 0

−)=

∫

dk

(2π)3
eik·R

1

β

∑

ωn

eiωnη Gmf
11 (k, ωn) (20)

=

∫

dk

(2π)3
eik·R

{

u(k)2f(E(k)) + v(k)2 [1− f(E(k))]
}

where u(k)2 = 1−v(k)2 = 1
2

(

1 + ξ(k)
E(k)

)

are the BCS co-

herence factors [30]. A similar result can be obtained for
Gmf
22 (R, 0

+), by taking into account that, quite generally,
G22(k, ωn) = −G11(k,−ωn).
For a non-interacting Fermi gas at zero temperature,

on the other hand, the expression (20) would reduce to
the form [32]

G0(R|T = 0) =
1

2 π2

[

sin(kFR)

R3
− kF

cos(kFR)

R2

]

, (21)

which shows the characteristic Friedel’s oscillations due
to the sharpness of the Fermi surface. At finite tempera-
ture, the Fermi surface is smeared by temperature effects
and the amplitude of the oscillations decays exponen-
tially [30]. For a gas with attractive inter-particle inter-
action, the Fermi surface is further smeared by interac-
tion effects even at zero temperature. In Appendix A, it
will be shown that Gmf

11 (R, 0
−) converges exponentially to

zero for increasing R over a length scale ξ1; in Sec. III B,
it will further be shown that ξ1 (about) coincides with
the Cooper pair size ξpair for any coupling throughout
the BCS-BEC crossover, both at zero [23] and finite [19]
temperature. Similar results for the exponential damping
of Friedel’s oscillations were obtained in Ref. [33] both at
T = 0 and T → T−

c but only in the BCS (weak-coupling)
limit, and more recently in Ref. [34] throughout the BCS-
BEC crossover but only at T = 0.

D. Fluctuations contribution to h2

within the t-matrix approximation

The third term on the right-hand side of Eq. (6) rep-
resents the contribution δh2 by pairing fluctuations to
the two-particle reduced density matrix h2. This contri-
bution, which survives even in the normal phase above
Tc where it reveals the presence of fluctuating Cooper
pairs, is expected to progressively vanish for increasing
distance R between the centers of mass of the two pairs
(cf. Fig. 1(a)). In the following, we shall analyze in detail
the dependence of δh2 on R and extract from it, when-
ever possible, a characteristic (coupling and temperature
dependent) length scale. Or, at least, determine from it
a definite distance at which the asymptotic correlations
entailed by the ODLRO are effectively reached.
To this end, it will be convenient to eliminate at the

outset the dependence of δh2 on the relative coordinates
ρ and ρ

′ of the separate pairs (cf. Fig. 1(a)) and con-
centrate directly on the dependence of δh2 on R. This
is achieved by introducing the so-called projected density
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matrix [35]

δh(R) =

∫

dρ δh2(ρ,ρ,R) (22)

as far as the fluctuations contribution δh2 is concerned.
[Note that a similar procedure was already followed in
Eq. (12) to obtain the condensate density n0 from the
anomalous contribution to h2.]
The simplest pairing fluctuations contribution

δh2(ρ,ρ
′,R) that one can consider is depicted dia-

grammatically in Fig. 1(c). Taking into account the

dictionary (5) for the space and Nambu spin coordinates
of the two-particle reduced density matrix, and owing
to the contact form of the inter-particle interaction for
the superfluid Fermi gas, the diagram of Fig. 1(c) has
the same topological structure of a Maki-Thompson
(MT) diagram [36, 37]. Accordingly, it inherits the same
overall sign of the MT diagram, due to the way the pairs
of external points (1,1’) and (2,2’) therein are mutually
connected. The contribution to δh2(ρ,ρ

′,R) from this
diagram can then be cast in the following matrix form:

δh2(ρ,ρ
′,R)=

∫

dQ

(2π)3
e
iQ·

(

R+ ρ−ρ
′

2

)

1

β

∑

ν

eiΩνη
[

Π̃11(ρ;Q,Ων), Π̃12(ρ;Q,Ων)
]

[

Γ11(Q,Ων) Γ12(Q,Ων)
Γ21(Q,Ων) Γ22(Q,Ων)

][

Π̃11(ρ
′;Q,Ων)

Π̃12(ρ
′;Q,Ων)

]

.

(23)
Here,

Π̃11(ρ;Q,Ων) =

∫

dk

(2π)3
eik·ρ

1

β

∑

n

Gmf
11 (k +Q, ωn +Ων)Gmf

11 (k,−ωn) (24)

Π̃12(ρ;Q,Ων) =

∫

dk

(2π)3
eik·ρ

1

β

∑

n

Gmf
12 (k+Q, ωn +Ων)Gmf

12 (k,−ωn) (25)

are form factors, and

[

Γ11(Q,Ων) Γ12(Q,Ων)
Γ21(Q,Ων) Γ22(Q,Ων)

]

=
1

A(Q,Ων)A(Q,−Ων)−B(Q,Ων)2

[

A(Q,−Ων) B(Q,Ων)
B(Q,Ων) A(Q,Ων)

]

(26)

are the components of the particle-particle ladder where

A(Q,Ων)=−
m

4πaF
+

∫

dk

(2π)3
m

k2
−
∫

dk

(2π)3
1

β

∑

n

Gmf
11 (k+Q, ωn +Ων)Gmf

11 (k,−ωn) (27)

B(Q,Ων)=

∫

dk

(2π)3
1

β

∑

n

Gmf
12 (k +Q, ωn +Ων)Gmf

12 (k,−ωn) (28)

according to the notation of Refs. [24, 25]. In Eq. (27)
use has been made of the regularization condition

m

4πaF
=

1

v0
+

∫

|k|≤k0

dk

(2π)3
m

k2
, (29)

whereby the limits v0 → 0− for the strength of the con-
tact inter-particle interaction and k0 → ∞ for the ul-
traviolet cutoff are taken simultaneously, with aF kept
at the desired value. Note that in the normal phase
above Tc, whereby Gmf

12 (k, ωn) = ∆/
(

ω2
n + E(k)2

)

→ 0

and Gmf
11 (k, ωn) → G0(k, ωn) = (ξ(k) − iωn)

−1, only the
term containing Γ11(Q,Ων) → A(Q,Ων)

−1 survives in
Eq. (23) and the resulting expression corresponds to the
non-self-consistent t-matrix approximation above Tc [38].
The expression (23) gets considerably simplified by set-

ting ρ = ρ
′ and integrating over ρ, to obtain the pro-

jected density matrix δh(R) according to Eq. (22). The
dependence on R of the resulting expression for δh(R)
will be calculated numerically in Sec. III C, for all tem-

peratures in the superfluid phase and couplings through-
out the BCS-BEC crossover.

E. BEC limit of the fluctuations contribution to h2

Before embarking in numerical calculations, it is rele-
vant to show analytically that the fermionic expression
for δh(R), as it results from Eqs. (22) and (23), reduces in
the strong-coupling (BEC) limit to the fluctuations con-
tribution to the one-particle density matrix for a gas of
bosons described by the Bogoliubov approximation (fur-
ther details will be given in Appendix B at zero tempera-
ture). This analysis appears important, not only because
it represents a benchmark for the fully fermionic calcu-
lation of the projected density matrix when carried over
to the BEC limit, but also because it highlights what we
shall later find from our numerical results along the whole
BCS-BEC crossover, about: (i) The progressive evolution
for rising temperature of the long-range spatial behavior
of the equal-time correlation function (1) into that of
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its static counterpart; (ii) The identification of a single
temperature-dependent length scale even in the presence
of an asymptotic inverse-power-law spatial behavior. [A
corresponding analysis of the asymptotic spatial behav-
ior of the fluctuations contribution to δh(R) in the BCS
(weak-coupling) limit will be considered in Appendix C
at zero temperature.]
In the BEC limit, whereby ∆/|µ| << 1 and 2m|µ| ≃

a−2
F with µ < 0 [3], the following leading contribution to
δh(R) is obtained from Eq. (23):

δh(R) ≃
∫

dQ

(2π)3
eiQ·R 1

β

∑

ν

eiΩνη Γ11(Q,Ων)

×
∫

dρ Π̃11(ρ;Q,Ων) Π̃11(−ρ;Q,Ων) . (30)

In this expression, the form factor (24) can be further
approximated consistently with the BEC limit, yielding
∫

dρ Π̃11(ρ;Q,Ων) Π̃11(−ρ;Q,Ων) (31)

=

∫

dk

(2π)3

[

1

β

∑

n

Gmf
11 (k+Q, ωn +Ων)Gmf

11 (k,−ωn)

]2

≃
∫

dk

(2π)3
1

4E(k)2
≃ m2

2 π2

∫ ∞

0

dk
k2

(k2 + 2m|µ|)2
≃m

2 aF
8 π

.

We also recall from Ref. [24] that, in the BEC limit, Γ11

acquires the following form

Γ11(Q,Ων) ≃ −
8 π

m2 aF
G′

B(Q,Ων) , (32)

where

G′

B(Q,Ων) =
uB(Q)2

iΩν − EB(Q)
− vB(Q)2

iΩν + EB(Q)
(33)

is the normal bosonic single-particle propagator within
the Bogoliubov approximation, with the bosonic coher-
ence factors [30]

uB(Q)2 = 1 + vB(Q)2 =
1

2

[

Q2

2mB
+ µB

EB(Q)
+ 1

]

(34)

and the dispersion relation

EB(Q) =

√

(

Q2

2mB
+ µB

)2

− µ2
B . (35)

In the above expressions, mB = 2m is the mass of the
composite bosons (dimers) that form in the BEC limit
and µB = 4πaB

mB
nB is the bosonic chemical potential ob-

tained from the definition µB = 2µ+ (ma2F )
−1 in terms

of the chemical potential µ of the constituent fermions
[3]. Here, nB = n/2 and aB = 2aF are the bosonic
density and scattering length expressed in terms of their
fermionic counterparts n and aF , at the level of the

present approximation. With the results (31)-(33), the
expression (30) in the BEC limit becomes eventually:

δh(R) ≃ −
∫

dQ

(2π)3
eiQ·R 1

β

∑

ν

eiΩνη G′

B(Q,Ων) (36)

=

∫

dQ

(2π)3
eiQ·R{vB(Q)2 +

[

uB(Q)2+vB(Q)2
]

b(EB(Q))
}

where b(ǫ) =
(

eβǫ − 1
)−1

is the Bose function.
The results (33) and (36) can now be exploited to il-

lustrate in rather simple terms how the evolution with
increasing temperature, between the asymptotic spatial
behaviors of the static and equal-time correlation func-
tions, manifests itself in practice.
In the static limit, one sets Ων = 0 in the expression

(33) and obtains for all values of Q

−G′

B(Q,Ων = 0) =
uB(Q)2 + vB(Q)2

EB(Q)

= mB

(

1

Q2
+

1

Q2 + 4mBµB

)

, (37)

where 4mBµB = ξ−2
B defines the healing length ξB in

the BEC limit. The two terms within parentheses on
the right-hand side of Eq. (37) correspond, respectively,
to the transverse (massless) and longitudinal (massive)
contributions to the static correlation function. Both
contributions were considered in Ref. [18] at zero tem-
perature, and the longitudinal contribution was consid-
ered in Ref. [19] also at finite temperature (up and past
Tc), with the purpose of identifying the healing length at
any temperature for a fermionic system undergoing the
BCS-BEC crossover. In the BEC limit, the two terms on
the right-hand side of Eq. (37) then yield the following
behavior in real space

− G′

B(R,Ων = 0) =
mB

4πR

(

1 + e−R/ξB
)

(38)

with R = |R|. This result shows how ξB can be identified
from the exponentially decaying term, which is associated
with the longitudinal contribution.
For the equal-time function, on the other hand, one

obtains from the expression (33) in the zero-temperature
limit

− 1

β

∑

ν

eiΩνη G′

B(Q,Ων)
(T→0)
−−−→ vB(Q)2

=
1

4

(

√

1 +Q2ξ2B
QξB

− 1

)

+
1

4

(

QξB
√

1 +Q2ξ2B
− 1

)

(QξB≪1)
−−−→ −1

2
+

1

4ξBQ
+

3

8
QξB + · · · (39)

with Q = |Q|, where we have considered only the small-
Q behavior to capture directly the large-R behavior of
the corresponding Fourier transform in real space [39].
Accordingly,

− 1

β

∑

ν

eiΩνηG′

B(R,Ων) ≈
1

8π2ξBR2
+ O

(

1

R4

)

+ · · ·

(40)
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where ξB is formally the same length entering Eq. (38).
When raising the temperature close enough to Tc

such that µB ≪ kBT , and for Q small enough such
that Q2/(2mB) ≪ kBT , the Bose function b(EB(Q)) in
Eq. (36) becomes approximately kBT/EB(Q). With the
help of Eq. (37), one then obtains:

− 1

β

∑

ν

eiΩνηG′

B(Q,Ων) −→ kBT

(

uB(Q)2 + vB(Q)2

EB(Q)

)

(41)

= mBkBT

(

1

Q2
+

1

Q2 + 4mBµB

)

=−kBTG
′

B(Q,Ων = 0).

Note that the result on the right-hand side of this expres-
sion is equivalent to having retained only the terms with
Ων = 0 in the original sum on the left-hand side of the
same expression. Accordingly, the asymptotic spatial be-
havior of − 1

β

∑

ν e
iΩνηG′

B(R,Ων) for large R evolves into

that given by Eq. (38), in agreement with what we had
anticipated in the Introduction on general grounds.
The above evolution for increasing temperature, of the

long-range spatial behavior of the equal-time correlation
function into that of its static counterpart, will be re-
covered throughout the BCS-BEC crossover by the nu-
merical calculations presented in the next Section for the
projected density matrix given by Eqs. (22) and (23).
In this context, it is convenient to summarize how the

asymptotic spatial behavior of the projected density ma-
trix (36) in the BEC limit evolves continuously from zero
up to the critical temperature. To this end, it is suffi-
cient to determine the evolution with temperature of the
small-Q behavior of the Fourier transform of the expres-
sion (36), namely,

δh(Q) = vB(Q)2 +
[

uB(Q)2+vB(Q)2
]

b(EB(Q)) . (42)

Three main regimes can be identified to the purpose:

1) A low-temperature regime, whereby kBT ≪ Q2

2mB
≪

1
mBξ2

B

. In this case,

δh(Q) ≃ vB(Q)2 ≃ 1

4ξBQ
(43)

like in Eq. (39), yielding δh(R) ≃ 1
8π2ξBR2 like in

Eq. (40). Accordingly, the value of ξB can be obtained
from this expression in the low-temperature regime.

2) An intermediate-temperature regime, whereby Q2

2mB
≪

kBT . 1
mBξ2

B

, such that EB(Q) ≃ |Q|
2mBξB

≪ kBT . In

this case, the Bose function can be approximated by

b(EB(Q)) ≃ kBT

EB(Q)
− 1

2
+ · · · (44)

such that the second term on the right-hand side of
Eq. (42) becomes

[

uB(Q)2+vB(Q)2
]

b(EB(Q)) ≃ mBkBT

Q2
− 1

4ξBQ
. (45)

Here, the term ∝ Q−1 cancels the term of Eq. (43),
thereby converting the leading asymptotic behavior of
δh(R) from O(R−2) to O(R−1). Correspondingly, the
relevant length turns out to be the thermal length ξT =
(mBkBT )

−1/2, with no reference, however, to the intrin-
sic parameters of the many-body system. In this temper-
ature regime there is thus no way to extract the healing
length ξB from the spatial profile of δh(R).

3) A high-temperature regime, whereby Q2

2mB
≪ kBT

and 1
mBξ2

B

≪ kBT . In this case, EB(Q) ≪ kBT and

b(EB(Q)) ≃ kBT/EB(Q) with EB(Q) given by Eq. (35).
This yields approximately

δh(Q) ≃ kBT
[

uB(Q)2+vB(Q)2

EB(Q)

]

= mBkBT

(

1

Q2
+

1

Q2 + ξ−2
B

)

(46)

where the result (37) has been utilized. Correspondingly,
the leading asymptotic behavior of δh(R) becomes that
of Eq. (38) (apart from an overall factor kBT ).

III. NUMERICAL RESULTS

In this Section, we present the numerical results ob-
tained by evaluating all three terms on the right-hand
side of Eq. (6) within the approximations that were spec-
ified in Secs. II B, II C, and IID, respectively, over a
wide range of coupling across the BCS-BEC crossover
and temperature in the superfluid phase. In the next
three subsections, we shall deal with these three terms
separately.

A. Results for the anomalous contribution

The relevant quantity to be extracted from the anoma-
lous contribution to the two-particle reduced density ma-
trix h2 is the condensate density n0 given by the expres-
sion (12), which depends on the specific choice of the
anomalous single-particle Green’s function G21.
In this respect, several choices of G21 are at our dis-

posal, as already discussed in detail in Sec. II B. Let’s
here recall that we can either take G21 at the mean-
field level (cf. Eq. (8)), with the thermodynamic pa-
rameters (∆, µ) calculated alternatively at the mean-field
level (approximation I), within the t-matrix approach
(approximation II), and with the further inclusion of the
GMB correction (approximation III). Or else, we can
take G21 of the form (18) which includes pairing fluc-
tuations beyond mean field, again with the thermody-
namic parameters (∆, µ) calculated alternatively at the
mean-field level (approximation IV), within the t-matrix
approach (approximation V), and with the further inclu-
sion of the GMB correction (approximation VI). These
calculations can be done for any coupling throughout the
BCS-BEC crossover and for any temperature in the su-
perfluid phase.
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FIG. 2. (Color online) The condensate fraction n0 (in units
of half the number density n), calculated at zero temperature
within the six alternative approximations I-VI described in
the text, is shown as a function of coupling. In panel (a)
the anomalous single-particle Green’s function G21 is taken
at the mean-field level, while in panel (b) G21 also includes
pairing fluctuations beyond mean field. In addition, in both
panels the values of the thermodynamic parameters (∆, µ)
correspond to three different approximations (see the text).

Figure 2 shows the results for the condensate density
n0 at zero temperature as a function of coupling span-
ning the unitary regime from the BCS to the BEC limits,
obtained within the above six approximations I-VI. Note
how the main differences in these plots among the dif-
ferent curves are due to the use of the alternative sets
of values for the thermodynamic parameters (∆, µ), and
not to the different functional forms used for the anoma-
lous single-particle Green’s function G21. In the follow-
ing, we shall consider approximation VI as the most so-
phisticated of our approximations, to the extent that it
includes the GMB correction both in the functional form
of G21 and in the parameters (∆, µ), and use it when
comparing with the available experimental and Quantum
Monte Carlo data.

With these premises, Fig. 3 shows (on an absolute tem-

 0
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n 0
(T

)/
(n
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FIG. 3. (Color online) Condensate fraction n0(T ) (in units
of half the number density n) vs temperature T (in units of
the Fermi temperature TF ), obtained at unitarity within the
following three approximations described in the text: I (mf
- squares), V (TM - triangles), and VI (GMB - dots). The
experimental results from Ref. [40] for the unitary Fermi gas
are also shown for comparison (EXP - diamonds).

perature scale set by the Fermi temperature TF ) the tem-
perature dependence of the condensate density n0(T ) at
unitarity, obtained within the mean-field approximation
I (mf), the t-matrix approximation V (TM), and the ap-
proximation VI that includes also the GMB correction
(GMB), as described above. The experimental results
from Ref. [40] for the unitary Fermi gas are also reported
for comparison. Close to the critical temperature, note
the concave behavior of all theoretical curves, as well as
the occurrence of a slight re-entrant behavior of n0(T )
within both the TM and GMB approaches, which is in-
herited from a similar behavior present in the gap pa-
rameter ∆(T ) [27]. On the other hand, the experimen-
tal results show an opposite (convex) behavior, which is
rather peculiar for the temperature dependence of the
condensate density and might originate from the rapid
ramp method utilized in the experiment [40].

Figure 4(a) further shows the temperature dependence
of the condensate density n0(T ) for three different cou-
plings, as obtained by our most sophisticated approxima-
tion VI (GMB) described above. In addition, Fig. 4(b)
reproduces from panel (a) the temperature dependence
of n0(T ) at unitarity, and compares it with the temper-
ature dependence of the condensate density obtained ex-
perimentally for 4He in Ref. [41]. In both panels, the
condensate density is normalized to its value n0(0) at
zero temperature, while the temperature is rescaled in
terms of the respective value of the critical temperature
Tc for given coupling [42]. Figure 4(b) shows also a least-
square fit of the form n0(T )/n0(0) = (1 − (T/Tc)

α) (full
line) to the experimental data of Ref. [41] (diamonds),
for which we find α = 4.56 [44]. Note how this fit encom-
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FIG. 4. (Color online) Condensate fraction n0(T ) (in units
of the value n0(0) at zero temperature) vs temperature T
(in units of the critical temperature Tc). In panel (a), the re-
sults obtained within the (GMB) approximation VI are shown
for three different couplings. In panel (b), the results of the
GMB calculation at unitarity (dots) are compared with the
experimental data for 4He from Ref. [41] (diamonds). The
latter data are also fitted by the expression 1− (T/Tc)

α with
α = 4.56 (full line).

passes reasonably well also the values calculated at uni-
tarity within the GMB approximation (dots). Note also
that to the temperature dependence of the experimen-
tal data for 4He reported in Fig. 4(b) there corresponds
a concave-type behavior, in contrast to the convex-type
behavior of the experimental data from Ref. [40] for the
unitary Fermi gas reported in Fig. 3.

Finally, Fig. 5 compares the results of our most sophis-
ticated calculation for the condensate density n0 (corre-
sponding to the (GMB) approximation VI) across the
unitary regime at zero temperature, with the results of
a self-consistent t-matrix approach (LW) and of several
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FIG. 5. (Color online) The coupling dependence of the con-
densate fraction n0 at zero temperature (in units of half the
number density n) obtained by our (GMB) approximation VI
(full line) is compared with the Luttinger-Ward (LW) results
of Ref. [43] (dashed line) and with the Quantum Monte Carlo
calculations of Refs. [9] (QMC-2005, circles), [10] (QMC-
2010, down triangles), [11] (QMC-2011, up triangles), and
[12] (QMC-2020, squares). In the inset, the GMB results
(full line) are further compared with the experimental data
from Ref. [8] (EXP, diamonds and circles).

Quantum Monte Carlo (QMC) calculations. Here, the
smaller (larger) values of n0 on the BCS (BEC) side of the
crossover, obtained by the GMB approach with respect
to those obtained by the LW approach, are consistent
with a similar behavior obtained by the two approaches
for the coupling dependence of the gap parameter ∆ at
zero temperature, as shown in Fig. 4 of Ref. [45]. In that
figure it is also apparent that on the BCS side of the
crossover the experimental data for ∆ agree better with
the GMB than with the LW results, while the opposite
is true on the BEC side of the crossover. The inset of
Fig. 5 compares further the GMB results with the recent
experimental data for n0 from Ref. [8], for which a dis-
agreement can be noted on the BCS side of the crossover.
In the light of the good agreement obtained on the BCS
side of the crossover between the results of the GMB cal-
culation with the experimental data for ∆ reported in
Ref. [45], the disagreement for n0 that appears in the
inset of Fig. 5 on the BCS side of the crossover may pos-
sibly be due to the specific protocol adopted in Ref. [8]
to extract the values of n0, which is expected to better
apply to the BEC rather than to the BCS side of the
crossover.

B. Results for the normal contribution

The normal contribution to h2, as given at the mean-
field level by the expression (20), is considered in de-
tail in Appendix A, where its spatial behavior is con-
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FIG. 6. (Color online) The coupling dependence of the length
scale ξ1 (in units of the inverse Fermi wave vector kF ), en-
tering the normal contribution to h2 and calculated at the
mean-field level, is shown (a) at zero temperature and (b)
at the critical temperature. In both cases, the insets show
a comparison with the corresponding coupling dependence of
the Cooper pair size ξpair taken from Ref. [19]. (c) The tem-
perature dependence of ξ1 (in units of the value ξ1(0) at zero
temperature and of the mean-field critical temperature Tmf

c )
is shown for three characteristic couplings across unitarity.
The inset shows the corresponding temperature dependence
of ξpair reproduced from Fig. 2(b) of Ref. [19].

veniently expressed by the sum of elementary functions
(cf. Eq.(A10) therein). In addition, in Appendix A the
overall spatial behavior of the expression (20) is shown to
be suitably captured by a characteristic length ξ1 given
by Eq. (A11), which itself depends on coupling and tem-
perature. Here, we consider explicitly this dependence

and compare it with that of the characteristic length
ξpair entering the anomalous contribution to h2, given
at the mean-field level by the expression (8). We recall
that ξpair represents the intra-pair correlation length (or
Cooper pair size) and was calculated across the BCS-
BEC crossover, at zero temperature in Ref. [23] and as a
function of temperature in Ref. [19].

Figure 6(a) shows the coupling dependence of ξ1 at
zero temperature, which is compared with the corre-
sponding dependence of ξpair in the inset. This com-
parison confirms that ξ1 differs from ξpair by at most
a factor of order unity, as it could have been expected
on physical grounds. In particular, at zero tempera-
ture one readily obtains from the expression (A11) that

ξ1 ≃ kF /(m∆) ≃ 2
√
2 ξpair in the BCS limit (whereby

∆≪ µ and µ ≃ EF ), and that ξ1 ≃ aF ≃
√
2 ξpair in the

BEC limit (whereby ∆≪ |µ| and µ ≃ −(2ma2F )−1). As
shown in the inset of Fig. 6(a), both these limiting values
are reached essentially at the boundaries of the unitarity
regime −1 . (kF aF )

−1 . +1 [46]. Figure 6(b) shows
further the coupling dependence of ξ1 at the (mean-field)
critical temperature Tmf

c , which is again compared with
the corresponding dependence of ξpair in the inset. Even
in this case, ξ1 differs from ξpair by at most a factor of
order unity. Finally, Fig. 6(c) shows the temperature de-
pendence of ξ1 for three characteristic couplings across
the BCS-BEC crossover, while the inset reports for com-
parison the corresponding dependence of ξpair reproduced
from Fig. 2(b) of Ref. [19].

Due to the above similarities between the coupling and
temperature dependences of ξ1 and ξpair, we expect that
the inclusion of pairing fluctuations beyond mean field
would only marginally affect ξ1, similarly to what was
explicitly shown to occur for ξpair in Ref. [19].

C. Results for the fluctuations contribution

To obtain the leading asymptotic spatial behavior of
the projected density matrix δh(R) given by Eqs. (22)
and (23) throughout the BCS-BEC crossover, we follow
closely the short summary made at the end of Sec. II E for
the corresponding behavior in the BEC limit and adapt
it to the present context. In this respect, we are implic-
itly assuming that, as far as the leading asymptotic spa-
tial behavior of δh(R) is concerned (and apart from the
explicit numerical values of the healing length ξodlro as-
sociated with the ODLRO), there should be no substan-
tial difference in the asymptotic functional dependence
of δh(R) on R from the BEC to the BCS limits. This is
provided the considered values of R are sufficiently larger
than the spatial extent of the fermionic pairs involved in
superfluidity, being either Cooper pairs in the BCS limit
or composite bosons in the BEC limit.

Accordingly, as we did in Sec. II E, we identify several
temperature regimes where different asymptotic func-
tional dependences of δh(R) on R are assumed to hold:

1) A low-temperature regime kBT ≪ 1
mξ2

odlro

, where we
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take

δh(R) ≈ 1

8π2 ξodlroR2
, (47)

from which ξodlro can be readily extracted. With this
definition, the value of ξodlro coincides with the corre-
sponding value of ξphase in the BEC regime.
2) An intermediate-temperature regime kBT . 1

mξ2
odlro

where we take

δh(R) ≈







1
8π2 ξodlro R2 (R . R̃)

c1
mkBT
2πR (R & R̃)

(48)

where c1 is a numerical coefficient (of order unity) and

R̃ is consistently determined by the condition c1kBT =
(4πmξodlro R̃)

−1. Note, however, that the R−2 behavior
in Eq. (48) may hardly be visible in practice, to the extent
that the (upper) limit of this intermediate-temperature

regime corresponds to the condition ξodlro/R̃ . 4π. This
implies that, in the temperature regime “intermediate”
between T ≪ Tc and T . Tc, it is not possible to extract
from the radial profile of δh(R) a characteristic length
ξodlro that depends on the parameters of the many-body
system, a conclusion which is in line with that reached
in Ref. [20] under a related perspective.
3) A high-temperature regime 1

mξ2
odlro

≪ kBT still in the

superfluid phase, where we take

δh(R) ≈ c1
mkBT

2πR

(

1 + c2 e
−R/ξodlro

)

. (49)

Here, the coefficient c1 is determined for sufficiently
large R when the decaying exponential becomes negli-
gible, while the coefficient c2 and ξodlro are determined
at smaller R from this decaying exponential.
4) An even higher temperature regime 1

mξ2
odlro

≪ kBT

past Tc in the normal phase, where we take

δh(R) ≈ c1
mkBT

πR
e−R/ξodlro , (50)

in line with a general argument on the asymptotic be-
havior of correlation functions in the neighbourhood of
Tc [47].
The dimensionless coefficients c1 and c2 depend on cou-

pling and on temperature within the respective temper-
ature ranges. In particular, from the analysis of Sec. II E
both coefficients are expected to tend to unity in the BEC
limit. In the following, we shall omit reporting the val-
ues of the coefficients c1 and c2 and rather concentrate
on the length scale ξodlro of direct physical interest.
Figure 7 shows the coupling dependence of the length

ξodlro across the unitary regime at zero temperature, as
obtained from the relation (47). This length is calcu-
lated using the thermodynamic parameters ∆ and µ ob-
tained within either the mean-field or the t-matrix ap-
proach. In both cases, the length ξodlro associated with
the two-particle reduced density matrix is compared with
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FIG. 7. (Color online) The coupling dependence of ξodlro at
zero temperature (squares) is compared with that of ξphase
(circles). These two lengths (given in units of the inverse
Fermi wave vector kF ) are computed with the thermodynamic
parameters, calculated either at the mean-field level (empty
symbols and dotted lines) or with the inclusion of pairing fluc-
tuations at the level of the t-matrix approach (filled symbols
and full lines). In the inset, the ratio ξodlro/ξphase is shown at
the two levels of approximation, namely, mean field (dashed
line) and t-matrix (full line).

the healing length ξphase associated with the static (zero-
frequency) pair-pair correlation function. It is rather re-
markable how these two lengths, obtained independently
in different ways, essentially coincides with each other
over the whole coupling range shown in the figure. This
feature is further evidenced in the inset, where the cou-
pling dependence of the ratio ξodlro/ξphase is reported.
This finding confirms our expectation that a single (inter-
pair) coherence length can be identified along the whole
BCS-BEC crossover. Note, in particular, that, irrespec-
tive of the adopted approximation, the coupling depen-
dence of ξodlro (like that of ξphase [18]) has a characteris-
tic minimum close to unitarity on the BEC side, where
it becomes comparable with the size k−1

F of the inter-
particle distance. Both features were regarded as dis-
tinctive properties of the coupling dependence of ξphase
throughout the BCS-BEC crossover [18], and have re-
cently been exploited also experimentally to highlight the
proximity to this crossover [21, 22].

Figure 8 shows the temperature dependence of the
length ξodlro for three distinctive couplings across the uni-
tary regime (dots), in the high-temperature range T . Tc
where the expression (49) holds, as well as in the higher
temperature range T & Tc where the expression (50) in-
stead holds. For simplicity, the thermodynamic param-
eters are here taken at the mean-field level. To connect
with the low-temperature results of Fig. 7, fits of the type
kF ξfit/

√

|1− T/Tmf
c | (solid lines) are also made through

the numerical data of Fig. 8, with the parameter ξfit tak-
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FIG. 8. (Color online) The temperature dependence of ξodlro
close to Tc (dots), obtained with mean-field thermodynamic
parameters, is shown for three couplings: (kF aF )

−1 = -1.0
(a), 0.0 (b), and 1.0 (c). In each case, the value of ξodlro at
zero temperature taken from Fig. 7 is also shown for com-
parison (stars). In all panels, the solid lines represent fits of

the type kF ξfit/
√

|1− T/Tmf
c | where the fitting parameter ξfit

takes different values below and above Tmf
c , showing the ex-

pected temperature behavior with a mean-field critical expo-
nent on both sides of the critical temperature Tmf

c . The insets
show the behavior of the healing length ξphase obtained from
Ref. [19] (squares) with the corresponding fits (solid lines).

ing different values below and above Tmf
c . In particular,

below Tmf
c the fitting parameter ξfit corresponds to the

value of ξodlro extrapolated in this way from high down
to zero temperature. For the three couplings considered
in the figure, we obtain kF ξfit = (1.93, 0.66, 0.62) when
(kF aF )

−1 = (−1.0, 0.0, 1.0), respectively. It is reward-
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FIG. 9. (Color online) The radial profile of the projected den-
sity matrix h2(R) = n0(T ) + δh(R) (in units of its value at
R = 0) is shown at unitarity for various temperatures (full
lines), with the thermodynamic parameters calculated within
mean field (mf, top panel) and the t-matrix approach (TM,
bottom panel). In all cases, the broken lines represent the val-
ues of the condensate fraction n0(T ) reached asymptotically
by h2(R) at the given temperature.

ing that the extrapolated values of kF ξodlro(T → 0) ob-
tained from the above fits about coincide with values of
kF ξodlro(T = 0) = (1.88, 0.84, 0.86) at zero temperature
extracted from Fig. 7 (stars). In each panel of Fig. 8,
the inset shows the corresponding behavior of the heal-
ing length ξphase obtained from Ref. [19] (squares) with
the associated temperature fit (solid line). From this
comparison we may conclude that, not only ξodlro and
ξphase (about) coincide with each other at zero tempera-
ture for all couplings as shown in Fig. 7, but these two
lengths also share a similar temperature dependence for
given coupling (whenever it is possible to extract ξodlro
from the relevant spatial profiles of the projected density
matrix).

Although it is not possible to determine in a mean-
ingful way the length scale ξodlro from the spatial pro-
files of the projected density matrix δh(R), in between
the low- and the high-temperature regimes of the super-
fluid phase, even in this intermediate temperature range
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it is always possible to examine the overall spatial de-
pendence of the full projected density matrix h2(R) =
n0(T )+δh(R), obtained by adding to the expression (22)
for δh(R) the value of the condensate density n0(T ) at
given temperature and coupling. Quite generally, these
profiles are obtained by setting ρ = ρ

′ and integrating
over ρ on the same footing, not only in the fluctuations
contribution to h2 like in Eq. (22) for δh(R), but also
in the anomalous contribution to h2 given by Eq. (7).
The results obtained in this way at unitarity are shown
in Fig. 9 for various temperatures in the superfluid phase
(full lines), where the thermodynamic parameters ∆ and
µ obtained either within the mean-field (top panel) or the
t-matrix approach (bottom panel). These plots help one
to visualize how the convergence of h2(R) to its asymp-
totic value n0(T ) (broken lines) occurs in practice, and,
in particular, how it progressively crosses over from a
power-law behavior at low temperature to an exponen-
tial decay at high temperature.

In this context, it would also be of practical impor-
tance (especially when considering finite-size systems,
like ultra-cold Fermi gases or nuclei [3]) to identify the
distance R∗, at which the function h2(R) reaches its
asymptotic value n0(T ) within a given relative error , for
given coupling and temperature. The values of R∗ iden-
tified in this way are shown in Fig. 10, where two relative
errors of 10% and 5% are specifically considered. In this
case the calculations were done only with the t-matrix
approach, since it is expected to be more reliable than
the mean-field approach. For instance, for the 5% rela-
tive error considered in Fig. 10(b), when T ≃ 0.1TF the
value of R∗ at unitarity is about 15 k−1

F .

It is further interesting to compare the values of R∗

obtained in this way with the size of the cloud of a Fermi
gas embedded in a harmonic trapping potential at zero
temperature, for which the Thomas-Fermi radius RTF of
the non-interacting case represents an upper bound. This
radius is given by kF (0)RTF = (48N)1/3, where kF (0) =
(6π2n(0))1/3 is the Fermi wave-vector corresponding to
the density n(0) at the center of the cloud and N is the
total number of fermions. For typical experimental values
N ≈ 104−105 one obtains correspondinglyRTF ≈ (100−
200)kF (0)

−1, which is one order of magnitude larger than
the representative value R∗ ≃ 15 k−1

F indicated above.

This result may also serve to provide a pragmatic an-
swer to the question asked for trapped gases in Ref. [29],
where a concern was raised about utilizing the definition
of the order parameter based on ODLRO, to the extent
that, strictly speaking, for finite-size systems the limit
R → ∞ cannot be taken in a sensible way. This is be-
cause, whenever the distance R∗ can be considered to
be much smaller than the typical size of the cloud, in
practice the occurrence of asymptotic correlations in the
two-particle reduced density matrix should be taken for
granted, at least within a given default uncertainty.

Finally, the results for h2(R) = n0(T ) + δh(R), which
were reported in Fig. 9 below Tc, can also be extended
above Tc because the term containing Γ11 in Eq. (23) sur-
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FIG. 10. (Color online) The temperature dependence of the
distance R∗ (in units of the inverse of the Fermi wave vector
kF ), at which h2(R) has reached its asymptotic value n0(T )
for given coupling with a relative error of (a) 10% and (b) 5%,
is shown for three representative couplings. The calculations
are here done within the t-matrix approach. In both panels,
the arrows indicate the corresponding value of the critical
temperature for given coupling.

vives in the normal phase even though n0(T ≥ Tc) van-
ishes therein. This property enables us to examine the
behavior of h2(R) across the critical temperature when it
is calculated for a finite value Rmax of the radial variable
R. This is shown in Fig. 11 at unitarity for the value
Rmax = 10k−1

F , where h2(R = Rmax) not only remains fi-
nite at Tc but also shows a “convex” behavior for T & Tc.
In this context, it is interesting to mention that a sim-
ilar convex behavior across Tc was reported in Ref. [14]
for the condensate density obtained by QMC calculations
performed on systems of finite size, as shown in the inset
of Fig. 11.
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F
, calculated at uni-

tarity within the t-matrix approach like in Fig. 9, is shown as
a function of temperature across the critical temperature Tc.
The inset reports the values of the condensate fraction α taken
from Fig. 1 of Ref. [14], as obtained by QMC calculations on
systems of finite size.

IV. CONCLUDING REMARKS

In this article, we have considered the two-particle re-
duced density matrix, which has long been identified as
the central quantity for establishing the superfluid prop-
erties of a fermionic system [1], and calculated it nu-
merically in all of its aspects throughout the BCS-BEC
crossover. To this end, we have relied on a diagram-
matic approach that includes beyond-mean-field pairing
fluctuations, which has proved sufficient to describe the
relevant features of the BCS-BEC crossover [3]. The nov-
elty here is that we have not only been concerned with
the condensate density, which is extracted from the two-
particle reduced density matrix in the limit when either
Cooper pairs (in the BCS limit) or bosonic dimers (in the
BEC limit) recede far apart from each other, but we have
also determined the spatial range past which the asymp-
totic correlations associated with ODLRO are effectively
established, an information which can be of practical im-
portance especially for finite-size systems [29].

Recall in this context that, for a Bose-Einstein conden-
sate, spatial coherence is measured by means of the fringe
visibility in interferometric experiments, which shows an
algebraic decay for large separations as expected accord-
ing to the off-diagonal elements of the one-particle re-
duced density matrix [48]. For a Fermi gas, on the other
hand, spatial coherence emerges only via the two-particle
reduced density matrix, which requires more sophisti-
cated interferometric techniques to be detected [49].

Whenever possible on physical grounds [17], from
our numerical calculations we have also extracted
the coupling- and temperature-dependent length ξodlro
specifically associated with ODLRO, and found that it

(about) coincides with the length ξphase associated in-
stead with the static limit of the pair-pair correlation
function considered some time ago in the context of the
BCS-BEC crossover [18, 19]. In particular, at low tem-
perature both lengths as function of coupling show a
characteristic minimum where they reach the value of
the inter-particle distance. This feature has been re-
cently utilized in experiments on condensed-matter sam-
ples [21, 22], to identify what would correspond to the
unitary regime of the BCS-BEC crossover with ultra-cold
Fermi gases.

In the present article, the BCS-BEC crossover has been
exploited as a theoretical tool to make the entities, which
recede far apart from each other in the ODLRO protocol,
to evolve in a continuous fashion from Cooper pairs to
bosonic dimers. In the process, we have verified that the
two-particle reduced density matrix for the constituent
fermions effectively evolves, when passing from the BCS
to the BEC limits, into the one-particle reduced den-
sity matrix for (composite) bosons made up of tightly-
bound fermion pairs. With the experimental methodolo-
gies nowadays available for ultra-cold Fermi gases [50],
it should then be possible to turn this “gedankenexperi-
ment” into a real experiment by measuring the frequency
and wave-vector dependence of the pair-pair correlation
function, from which the length ξphase could be obtained
in the limit of zero-frequency and the length ξodlro by an
averaging over frequencies, once the wave-vector depen-
dence has been turned into spatial profiles.
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Appendix A: Analytic results for the fermionic

one-particle reduced density matrix

at T = 0 within the mean-field approximation

In this Appendix, we consider the expression (20)
of the fermionic one-particle reduced density matrix
Gmf
11 (R, 0

−) at the mean-field level, and obtain analyt-
ically its asymptotic spatial width ξ1 at any tempera-
ture throughout the BCS-BEC crossover. It will turn
out that ξ1 (about) coincides with the Cooper pair size
ξpair [19, 23], as determined from the anomalous term
Gmf
12 (ρ, 0

−) given by Eq. (8). The results here discussed
complement the numerical analysis of Sec. III B and
extend to any temperature throughout the BCS-BEC
crossover the results obtained in Ref. [33] at any tem-
perature but in the weak-coupling (BCS) limit only, on
the one hand, and in Ref. [34] throughout the BCS-BEC
crossover but at zero temperature only, on the other
hand.

We begin by rewriting the expression within braces in
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FIG. 12. (Color online) The function ln
[

πR

mT
|Gmf

11 (R, 0
−)|

]

, obtained from the expression (A10) with nmax = 100 (full lines) and
n = 0 only (dashed lines), is shown versus R/ξ1 for three characteristic couplings across the BCS-BEC crossover and three
temperatures, from T ≃ 0 to T ≃ Tc. In each panel, the straight lines −R/ξ1 represent the asymptotic behavior of this function
(apart from a constant term), where the length ξ1 depends on coupling and temperature according to the expression (A11).

the second line of Eq. (20) in the form

u(k)2f(E(k)) + v(k)2 [1− f(E(k))]

=
1

2
− ξ(k) 2

β

+∞
∑

n=0

1

ω2
n + E(k)2

, (A1)

obtained by using the spectral representation of the
Fermi function

f(ǫ) =
1

β

+∞
∑

n=−∞

eiωnη

iωn − ǫ
(A2)

in terms of fermionic Matsubara frequencies ωn [30].
Once the expression (A1) is inserted into Eq. (20), the
constant (12 ) term therein gives rise to a Dirac delta func-
tion in the spatial variable R, which we will consistently
omit in the following. Upon performing the integration
over the angle between k and R in Eq. (20) and integrat-
ing by parts the remaining radial integral in k = |k|, we
are left with the expression

Gmf
11 (R, 0

−) = I(R) + I(R)∗ (A3)

for R = |R| > 0, where

I(R) =
i

2π2mR

d

dR

1

Rβ

+∞
∑

n=0

∫ ∞

0

dk k eikR

×
[

1

ω2
n + E(k)2

− 2 ξ(k)2

(ω2
n + E(k)2)2

]

. (A4)

We can follow at this point Ref. [33] and introduce the
auxiliary function

Kn(R;λ) = −i
∫ ∞

0

dk k eikR
1

ω2
n + λ2ξ(k)2 +∆2

, (A5)

in such a way that the expression (A4) is rewritten in the
compact form:

I(R) = − 1

2π2mR

d

dR

1

Rβ

+∞
∑

n=0

∫ ∞

0

dk k eikR

×
+∞
∑

n=0

∂

∂λ
(λKn(R;λ))|λ=1 . (A6)

To proceed further, we look for the zeros of the denomi-
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nator in Eq. (A5) in the complex k-plane and write

(

2m

λ

)2
(

ω2
n + λ2ξ(k)2 +∆2

)

= [k − (qn + ipn)]

× [k − (qn − ipn)][k + (qn + ipn)][k + (qn − ipn)]

where














qn =

√

m

√

µ2 +
ω2

n
+∆2

λ2 +mµ

pn =

√

m

√

µ2 +
ω2

n
+∆2

λ2 −mµ .
(A7)

To the k-integral from k = 0 up to k = +∞ along the real
axis in Eq. (A5) we can now add a vanishing contribution
coming from a large semicircle in the first quadrant of the
complex k-plane, plus the integral along the imaginary
axis from k = +i∞ down to k = 0 which is not going,
however, to affect the expression (A3) we are after. In
this way, the k-integral in Eq. (A5) can be transformed
into an integral over a closed curve that encircles the pole
at (qn + ipn). Applying Cauchy’s integral formula over
this closed curve then gives

Kn(R;λ) = −
iπm

λ

ei(qn+ipn)R

√

ω2
n +∆2

, (A8)

which can be utilized in Eq. (A6) to obtain

I(R) = − m

2πR

1

β

+∞
∑

n=0

ei(qn+ipn)R . (A9)

This yields eventually the desired result [cf. Eq. (A3)]

Gmf
11 (R, 0

−) = − m

πR

1

β

+∞
∑

n=0

e−pnR cos(qnR) . (A10)

From this expression one gets that the leading contribu-
tion to Gmf

11 (R, 0
−) for large R stems from the smallest

value of pn, which corresponds to the term with n = 0
according to Eq. (A7). This identifies the characteristic

length ξ1 of the fermionic one-particle reduced density
matrix as follows

ξ1 =
1

pn=0
=

[

m

(

√

µ2 +∆2 +
π2

β2
− µ

)]−1/2

, (A11)

which holds at the mean-field level for any coupling and
temperature.
The coupling and temperature dependence of ξ1 was

reported in Sec. III-B, where it was also compared with
the corresponding behavior of the Cooper pair size. Here,
we instead show the full spatial profile of the expression
(A10) (for which we have found it sufficient to extend the
sum over n up to nmax = 100, in order to obtain good
convergence over the whole considered spatial range) and
compare it with the spatial profile obtained by the n = 0
term only. This is done in Fig. 12, where the function

ln
[

πR
mT |Gmf

11 (R, 0
−)|
]

is shown versus R/ξ1 for a choice of
temperatures and couplings in both cases, namely, with
nmax = 100 (full lines) and n = 0 only (dashed lines).
In each panel, this comparison evidences that retaining
the n = 0 term only represents a good approximation
to the full function on the BCS side of the crossover,
while the comparison becomes slightly worse on the BEC
side. In addition, in each panel the straight line −R/ξ1
corresponds to the asymptotic damping envelope of the
expression (A10) and evidences the role played by the
length scale (A11) in that expression. For the lowest
temperature considered in Fig. 12, these plots reflect the
same behavior reported in Ref. [34] across the BCS-BEC
crossover albeit at zero temperature only.
Finally, the expression (20) for Gmf

11 (R, 0
−) can be read-

ily calculated in the normal phase for temperatures much
larger than Tc (such that µ/kBT → −∞), where it recov-
ers the classical (Boltzmann) result for non-interacting
particles

G0(R|T ≫ TF ) ≃ eβµ
e
−πR

2

λ2
T

λ3T
(A12)

with λT =
√

2π
mkBT the thermal wavelength. In this limit,

we can identify ξ1 = λT /
√
π, to be compared with the

corresponding result ξpair = λT /(2
√
π) for the Cooper

pair size [19]. This yields ξ1/ξpair = 2, in line with the
results shown in the insets of Figs. 6(a) and 6(b).

Appendix B: Analytic results for the bosonic

one-particle reduced density matrix

at T = 0 within the Bogoliubov approximation

In this Appendix, we consider the bosonic one-particle
reduced density matrix obtained from the Bogoliubov ap-
proximation (33) for the normal single-particle Green’s

function G′

B , which is associated with the particles out
of the condensate. In particular, at zero temperature the
term containing the Bose function (cf. Eq. (36)) drops
out and one obtains:

− G
′

B(R)

n′
B

=
1

4π2n′
BR

∫ +∞

0

dQ sin(QR)Q

[

Q2

2mB
+ µB

EB(Q)
− 1

]

=
1

4π2n′
B ξ̃

3
B

ξ̃B
R

∫ +∞

0

dx sin

(

R

ξ̃B
x

)

x

[

1 + x2√
x4 + 2x2

− 1

]

(B1)

with Q = |Q|. Here, n′
B is the non-condensate density,

mB the particle mass, µB = 4πaB

mB
nB the chemical po-

tential with scattering length aB and particle density nB,
and ξ̃B = (2mBµB)

−1/2 the healing length in the present
context (with the suffix B referring to bosonic quantities)
[51]. The expression within brackets in the second line of

Eq. (B1), with the rescaled integration variable x = Q ξ̃B
in the place of the original variableQ, reduces to (

√
2x)−1

for x≪ 1 and to (2x4)−1 for x≫ 1. The singular small-x
behavior is responsible for the asymptotic R−2 tail of the
Fourier transform G′

B(R) for R ≫ ξ̃B , while the large-x
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FIG. 13. (Color online) (a) Comparison between the functions
f(x) of Eq. (B3) (full line) and b kα(x) of Eq. (B5) (dashed
line), with the reported values of b and α. (b) Comparison

between the spatial profiles of −G′

B(R)/n
′
B of Eq. (B1) (full

line) and bK0(αR/ξ̃B)/(4π
2n′

B ξ̃
3
B) of Eqs. (B4)-(B5) (dashed-

dotted line), with the same values of b and α reported in panel

(a). Also shown are the linear approximation to −G′

B(R)/n
′
B

for R . ξ̃B (dotted line) and the asymptotic (R/ξ̃B)
−2 be-

havior of −G′

B(R)/n
′
B for R ≫ ξ̃B (dashed line). The inset

shows −G′

B(R)/n
′
B (full line) and bK0(αR/ξ̃B)/(4π2n′

B ξ̃
3
B)

(dashed-dotted line), both multiplied by (R/ξ̃B)2 to evidence

their different asymptotic behavior for R ≫ ξ̃B .

behavior is related to the Tan contact C [52]-[54] and

gives rise to a cusp in G′

B(R) at R = 0 [55].

We can also determine the behavior of G′

B(R) for inter-

mediate values of R lying between ξ̃B . R and R≫ ξ̃B,
which should account in practice for most part of the spa-
tial profile of G′

B(R). To this end, we exploit the formal
similarity between the function occurring in the second
line of Eq. (B1), which we rewrite in the form

F
(

R

ξ̃B

)

=
ξ̃B
R

∫ +∞

0

dx sin

(

R

ξ̃B
x

)

f(x) (B2)

f(x) = x

[

1 + x2√
x4 + 2x2

− 1

]

, (B3)

and the integral representation of the modified Bessel

function of zero order [57], which can be cast in the form

K0

(

α
R

ξ̃B

)

=
ξ̃B
R

∫ +∞

0

dx sin

(

R

ξ̃B
x

)

kα(x) (B4)

kα(x) =
1

α2

x
α

(

1 + x2

α2

)3/2
. (B5)

We thus multiply the function kα(x) by an overall factor
b, and vary b and α so as to optimize the comparison
between kα(x) and f(x) of Eq. (B3), with emphasis on
an extended interval of intermediate values of x centered
about x = 1. This is because we expect this interval
to be relevant for the corresponding interval of interme-
diate values of R/ξ̃B, where we would like to optimize
the comparison between the corresponding (sine) Fourier

transforms bK0(αR/ξ̃B) and F(R/ξ̃B).
Figure 13(a) compares the functions f(x) of Eq. (B3)

(full line) and b kα(x) of Eq. (B5) (dashed line), where the
fitting parameters b and α are suitably chosen to optimize
the comparison. With the values of b and α determined in
this way, Fig. 13(b) then compares the spatial profiles of

the functions −G′

B(R)/n
′
B and bK0(αR/ξ̃B)/(4π

2n′
B ξ̃

3
B)

over an extended interval of R spanning several times ξ̃B.
Note how bK0(αR/ξ̃B)/(4π

2n′
B ξ̃

3
B) well approximates

−G′

B(R)/n
′
B over the extended interval ξ̃B . R . 5 ξ̃B of

intermediate values of R, with G′

B(R ≈ 5ξ̃B) ≈ G
′

B(R =
0)/20. Figure 13(b) also reports for comparison the lin-

ear approximation to −G′

B(R)/n
′
B for R . ξ̃B and the

asymptotic (R/ξ̃B)
−2 tail for R≫ ξ̃B. Although in these

outer ranges of R the function bK0(αR/ξ̃B)/(4π
2n′

B ξ̃
3
B)

fails to well approximate −G′

B(R)/n
′
B, the resulting

discrepancies appear irrelevant to our main conclusion
that (−4π2 ξ̃3B)G

′

B(R) converges to zero essentially like

b

√

πξ̃B
2αRe

−αR/ξ̃B [57] and that this convergence is ex-

hausted when R has reached about a few times ξ̃B .
This piece of physical information is relevant to the

numerical analysis made in Sec. III C when dealing with
a gas of superfluid fermions undergoing the BCS-BEC
crossover. However, a different (and, in practice, more
efficient) systematic procedure was there utilized to iden-
tify (whenever possible) the length scale ξodlro over which
the projected density matrix δh(R) of Eq. (22), obtained
from the expression (23) of the contribution by pairing
fluctuations to the two-particle reduced density matrix,
converges to zero.

Appendix C: Asymptotic behavior of

the two-particle reduced density matrix

in the BCS limit at zero temperature

In this Appendix, we extend to the weak-coupling
(BCS) limit of the BCS-BEC crossover the estimate
for the leading asymptotic spatial behavior of the pro-
jected density matrix δh(R) given by Eqs. (22) and (23),
that was considered in Sec. II E in the opposite strong-
coupling (BEC) limit. Here, our analysis will be lim-
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ited to zero temperature, for which the analytic results
of Ref. [58] in terms of elliptic integrals will be exploited.
In the BCS limit, whereby ∆/µ << 1 and µ ≃ EF [3],

the following leading contribution to δh(R) is obtained
from Eq. (23):

δh(R) ≃
∫

dQ

(2π)3
eiQ·R 1

β

∑

ν

eiΩνη Γ11(Q,Ων)

×
∫

dρ Π̃11(ρ;Q,Ων) Π̃11(−ρ;Q,Ων) . (C1)

Although this result is formally similar to Eq. (30) ob-
tained in the BEC limit, the two factors of the Q-
integrand in Eq. (C1) now acquire values specific to the
BCS limit. In particular, we are interested in their lead-
ing small-Q behavior (where Q = |Q|), since this ac-
counts for the leading large-R behavior of the Fourier
transform in Eq. (C1) [39]. With the help of the analytic
results of Ref. [58], we obtain accordingly:
∫

dρ Π̃11(ρ;Q,Ων) Π̃11(−ρ;Q,Ων)

=

∫

dk

(2π)3

[

1

β

∑

n

Gmf
11 (k+Q, ωn +Ων)Gmf

11 (k,−ωn)

]2

≃
∫

dk

(2π)3
1

4E(k)2
≃ mkF

8 π∆
=
m2 ξ0
8

(C2)

where ξ0 = kF

πm∆ is the Pippard coherence length char-
acteristic of BCS superconductivity [30]. On the other
hand, in Eq. (C1) the sum over the bosonic Matsubara
frequencies of the 11-component of the particle-particle
ladder can conveniently be dealt via the spectral repre-
sentation [25]

Γ11(Q,Ων) = −
∫ +∞

−∞

dω

π

ImΓR
11(Q, ω)

iΩν − ω
, (C3)

where the spectral function ΓR
11(Q, ω) with real frequency

ω is obtained from Γ11(Q,Ων) given by Eqs. (26)-(28)
with the replacement iΩν → ω+iη. At zero temperature,
in the small-Q limit the spectral function in Eq. (C3) is
expected to take the form

ImΓR
11(Q, ω) = α+(Q) δ(ω − EAB(Q))

+ α−(Q) δ(ω + EAB(Q)) , (C4)

where EAB(Q) = sQ is the dispersion relation of the
Anderson-Bogoliubov mode with sound velocity c. In
this limit, one then gets:

1

β

∑

ν

eiΩνη Γ11(Q,Ων) = −
α−(Q)

π
. (C5)

In turn, the amplitude α−(Q) can be obtained by ex-
panding the expressions (26)-(28) (where iΩν → ω + iη)
for small Q and ω, yielding at the relevant order

ΓR
11(Q, ω) ≃

a0
F [s2Q2 − (ω + iη)2]

. (C6)

From this expression we get

ImΓR
11(Q, ω) ≃

a0
2FsQ

sgn(ω) [δ(ω − sQ) + δ(ω + sQ)] ,

(C7)

such that

α−(Q) = − a0π
2Fs

1

Q
(C8)

where Fs =
√

2a0(a2 − b2)[2a0(b3 − a3) + a21].

The expressions of the coefficients (a0, a1, a2, a3, b2, b3)
needed in Eqs. (C7) and (C8) are provided in Ref. [58],
where they are calculated analytically in terms of elliptic
integrals. In particular, in the BCS limit

(a1)
2

2a0(b3 − a3)
≃ 1

4

[

ln(8x0)

x0

]2

≪ 1 (C9)

since x0 = µ/∆ ≃ EF /∆≫ 1 in this limit. Accordingly,
in the expression (C8) for α−(Q) one approximates

a0
2Fs

≃ 1

4
√

(a2 − b2)(b3 − a3)
≃
√
3π2∆

mx0
≃ 2
√
3

m2ξ20
,

(C10)
which has also been expressed in terms of the Pippard
coherence length ξ0.

In conclusion, the results (C2), (C5), (C8), and (C10)
can be entered in the expression (C1), yielding for the
leading asymptotic spatial behavior of δh(R):

δh(R) ≃
√
3

4 ξ0

∫

dQ

(2π)3
eiQ·R

|Q| =

√
3

8π2 ξ0

1

R2
. (C11)

As a final comment, it might be interesting to com-
pare the result (C11) obtained in the BCS limit at zero
temperature with the corresponding result (40) obtained
in the BEC limit. This comparison can conveniently be
made in terms of the phase coherence length ξphase dis-
cussed in Ref. [18] at zero temperature, which, at the level
of the pairing fluctuations here considered, reduces to the
healing length ξB of the Bogoliubov theory in the BEC
limit and to (π/6)ξ0 in the BCS limit (see also Ref. [23]).
The BCS result (C11) can thus be cast in the form

δh(R) ≃
(

π

2
√
3

)

1

8π2ξphaseR2
, (C12)

which differs from the BEC result (40) by the factor
π

2
√
3
≃ 0.91.

The results (40) for the BEC limit and (C12) for the
BCS limit have suggested us to introduce the length
ξodlro associated with the asymptotic spatial behavior
of δh(R) in the context of the ODLRO, which at zero
temperature evolves from ξphase in the BEC limit to
2
√
3

π ξphase ≃ 1.1 ξphase in the BCS limit (cf. the inset of
Fig. 7). The values of ξodlro identified from the asymp-
totic spatial behavior of δh(R) were then obtained nu-
merically throughout the BCS-BEC crossover Sec. III C,
not only at zero temperature but also where it was pos-
sible for temperatures close to Tc.
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