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Summary 29 

Leptospirosis is a global zoonotic disease that the transmission is driven by complex 30 

geographical and temporal variation in demographics, animal hosts, and socio-ecological factors. 31 

This result in complex challenges for the identification of high-risk areas. Spatiotemporal 32 

epidemiological tools could be used to support leptospirosis control programs, but the adequacy 33 

of its application has not been evaluated. We searched literature in six databases including 34 

Pubmed, Web of Science, EMBASE, Scopus, SciELO, and Zoological Record to systematically 35 

review and critically assess the use of spatiotemporal analytical tools for leptospirosis and to 36 

provide general framework for its application in future studies. We reviewed 109 articles 37 

published between 1930 and October 2018 from 41 different countries. Of these, 65 (56.52%) 38 

articles were on human leptospirosis, 39 (33.91%) on animal leptospirosis, and 11 (9.5%) used 39 

data from both human and animal leptospirosis. Spatial analytical (n=106) tools were used to to 40 

describe the distribution of incidence/prevalence at various geographical scales (96.5%) and to 41 

explored spatial patterns to detect clustering and hotspots (33%). A total of 51 studies modeled 42 

the relationships of various variables on the risk of human (n=31), animal (n=17) and both 43 

human and animal infection (n=3). Among those modeling studies, few studies had generated 44 

spatially-structured models and predictive maps of human (n=2/31) and animal leptospirosis 45 

(n=1/17). In addition, nine studies applied time-series analytical tools to predict leptospirosis 46 

incidence. Spatiotemporal analytical tools have been greatly utilized to improve our 47 

understanding on leptospirosis epidemiology. Yet the quality of the epidemiological data, the 48 

selection of covariates and spatial analytical techniques should be carefully considered in future 49 

studies to improve usefulness of evidence as tools to support leptospirosis control. A general 50 

framework for the application of spatial analytical tools for leptospirosis was proposed. 51 
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 54 

Impacts 55 

• The increase trend in the utilization of spatial epidemiological approaches in the field of 56 

human and animal leptospirosis demonstrating the importance of such framework to 57 

provide better knowledge on disease aetiology and prediction models.   58 

• The value of evidence is greatly depends on the quality of the epidemiological data and 59 

the selection of risk factors and spatial analytical techniques. 60 

• General framework on the use of spatial analytical tools are developed to provide 61 

guidance for future works and to improve the the usefulness of such tools to support 62 

leptospirosis control. 63 

  64 
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1. Introduction 65 

Leptospirosis is a zoonotic disease of major public health and animal health importance caused 66 

by pathogenic spirochete belonging to the genus Leptospira that is common in tropical and sub-67 

tropical countries (Bharti et al., 2003; Faine, Adler, Bolin, & Perolat, 1999). Annualy worldwide, 68 

it is estimated that at least one million human cases and 58,900 deaths occur leading to the lost of 69 

approximately 2.9 million disability-adjusted life-years (DALYs) (Costa et al., 2015; Torgerson 70 

et al., 2015). In animals, Leptospira infection can lead to reproductive failure in livestock (e.g., 71 

abortion, premature progeny, stillbirths, infertility, and fetal mummification), decreased milk 72 

production and systemic illness, which may be fatal and cause significant economic losses 73 

(Donahue, Smith, Poonacha, Donahoe, & Rigsby, 1995; Ellis, 2015; Martins et al., 2012). 74 

Hence, it is imperative to improve the delivery of disease control strategies in both human and 75 

animals. 76 

Leptospirosis transmission is driven by a complex interaction of environmental, socioeconomic, 77 

demographic and individual determinants which result in considerable geographical and 78 

temporal variation in infection risk (C. L. Lau, Smythe, Craig, & Weinstein, 2010; Mwachui, 79 

Crump, Hartskeerl, Zinsstag, & Hattendorf, 2015). Infection may occur through contact with 80 

infected reservoir animals urine and tissues, or with Leptospira-contaminated soil or water. More 81 

than 300 serovars of Leptospira spp, categorized into 25 serogroups, have now been identified 82 

worldwide (Levett, 2001). There are 10 pathogenic species and five intermediate species which 83 

occasionally cause mild clinical manifestations (Xu et al., 2016). A wide range of animals 84 

including domestic (e.g., livestock and companion animals), wildlife, and rodents have been 85 

identified as Leptospira carriers (Adler & de la Pena Moctezuma, 2010; Haake & Levett, 2015).   86 
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The incidence of leptospirosis is geographically and temporally varied and it is strongly 87 

associated with climatic, environmental and local socioeconomic factors (Cosson et al., 2014). 88 

Higher incidence is reported in tropical, humid and temperate regions, especially during the wet 89 

season, disproportionately affects deprived populations both in rural and urban areas (Albert I. 90 

Ko, Reis, Dourado, Johnson, & Riley, 1999). Numerous leptospirosis outbreaks, particularly in 91 

urban setting are often linked with severe flooding resulting from heavy rainfall or cyclones 92 

(Amilasan et al., 2012; Dechet et al., 2012; Albert I. Ko et al., 1999). In rural areas, leptospirosis 93 

is closely correlate with agricultural processes such as rice paddy harvesting and livestock 94 

husbandry (Ellis, 2015; Prabhakaran, Shanmughapriya, Dhanapaul, James, & 95 

Natarajaseenivasan, 2014). Ecological degradation of living conditions due to rapid population 96 

growth and urbanization coupled with climate change are considered to be some of the most 97 

important driving forces behind current and future leptospirosis outbreaks (C. L. Lau et al., 2010)  98 

The complexity in transmission pathways for leptospirosis constitute a major challenge for 99 

control strategies, especially in remote and poor resource endemic areas. There is a need to 100 

develop accurate and cost-effective tools to improve existing surveillance and strengthen control 101 

strategies. Geographic information systems (GIS), remote sensing (RS), and geospatial statistics 102 

tools have now been greatly enhanced and used in public health studies and have the potential to 103 

improve disease epidemiology and control. In order to gain more values from such tools, the 104 

present paper is aimed to comprehensively review the use of spatial analytical methods in 105 

leptospirosis studies to help improve research designs and lay foundation for further leptospirosis 106 

studies to support more effective surveillance and control programs. As leptospirosis 107 

transmission strongly involves interdependent interaction between animals, human and 108 

environment (Rabinowitz et al., 2013), in this paper we focused on how spatial and temporal 109 
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approaches have been used in leptospirosis studies of both animals and humans. Future research 110 

directions on the application of spatiotemporal analysis in leptospirosis are also discussed. 111 

 112 

2. Materials and methods 113 

2.1 Search strategy  114 

Using standard systematic review and meta-analysis (PRISMA) guidelines (Moher, Liberati, 115 

Tetzlaff, Altman, & The Prisma Group, 2009), we searched Pubmed, Web of Science, EMBASE, 116 

Scopus, SciELO, and Zoological Record for peer-reviewed articles published until October 31st, 117 

2018. In order to identify other relevant articles not captured by our initial searches, we manually 118 

searched the reference lists of included articles (Hopewell, Clarke, Lefebvre, & Scherer, 2007). 119 

To retrieve relevant articles, we used a combination of the following search terms: “spatial”, 120 

“spatiotemporal”, “geographical information system”, “mapping”, “remote sensing”, 121 

“prediction”, “outbreak”, “cluster” and “leptospirosis” (Supporting information: Table S1). No 122 

restrictions on language or publication date were applied.  123 

All articles retrieved from the databases were stored and checked for duplicates using EndNote™ 124 

(Thomson Reuters, Philadelphia, PA, USA) reference manager. All unique titles and abstracts 125 

(when available) were screened to identify relevant publications that met inclusion criteria by 126 

one reviewer (PWD). Full review was then applied to all articles available in full-text for 127 

eligibility by two authors (PWD and RJSM). Eligible articles were grouped into three categories: 128 

studies that used data on (i) human, (ii) animal, or (iii) both human and animal infection.  129 

2.2 Inclusion and exclusion criteria 130 

Studies were eligible for inclusion if they applied one or more spatial analyses techniques 131 
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including visualization (defined as mapping leptospirosis infection data to illustrate spatial 132 

patterns of disease distribution), exploration (defined as applying statitistical tools to analyse 133 

such patterns, including whether the infection data were clustered or random), and modelling 134 

(e.g., utilize spatial and non-spatial data to explore associated risk factors for infection, to 135 

quantify spatial variation in risk, and to develop spatial and/or temporal predictive models). 136 

Papers were excluded if: (i) abstract or full paper not available; (ii) experimental design studies, 137 

case series or case reports, studies on the genetic characterization of Leptospira spp. without 138 

involving spatial analyses; (iii) ecological or environmental surveys associated with animal 139 

reservoirs without providing Leptospira infection data; (iv) non-spatial studies; (v) studies that 140 

dealt with seasonality with no further attempt to develop temporal predictive models; or (vi) 141 

short communications, conference proceedings, commentaries, review articles, books or book 142 

sections. 143 

2.3 Data extraction 144 

For each eligible article, we extracted and summarized data on study location, year of 145 

publication, study design (e.g., cross-sectional, case-control, cohort), leptospirosis 146 

epidemiological data (e.g., human, animal, or both) and diagnostic methods used, study objective 147 

(e.g., disease mapping, detect clustering, spatial and/or temporal modeling), spatial and/or 148 

temporal analysis methods (e.g., visualisation, exploration, modelling), predictors (e.g. 149 

environmental, climatic, socioeconomic, demographic), and outcomes (e.g. maps, findings).   150 
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3. Results 151 

3.1 General characteristics of studies included in the review 152 

A total of 1468 records were identified from six databases and 23 additional records were 153 

identified through manual searches from bibliographic lists of included papers. A total of 690 154 

unique records remained after the removal of 778 duplicates. A total of 263 papers published  155 

until October 2018 met our inclusion criteria were included for full-text review. After full-text 156 

review, a total of 115 articles from 41 countries were finally included in our systematic review 157 

(Figure 1). The trend in number of publications reporting the use of spatiotemporal approaches to 158 

understand the epidemiology of human and/or animal leptospirosis has been increasing with 159 

most studies occurring after 2010 (Figure 2). A total of 65 studies used data on human infection, 160 

39 studies used animal infection data, and 11 studies used data on both human and animal 161 

infection. Studies were performed either at the sub-national (n=79/115) level, national level 162 

(n=35/115) or regional level (n=1/115). No global or continental-scale studies were reported in 163 

any of the papers included in our review.  164 

The majority of leptospirosis studies were reported from the Americas, especially in Brazil 165 

(24.61%, n=16/65) for human leptospirosis studies and the USA (28.20%, n=11/39) for animal 166 

leptospirosis studies (Figure 3). Studies using both human and animal infection data were 167 

conducted in eight countries, mainly in Southeast Asia (45%, n =5/11), including Thailand, 168 

Indonesia, and the Philippines. 169 

From the total of 115 eligible articles, 106 (92.17%) studies in 37 countries dealt with spatial 170 

analyses which included visualization (90.56%, n=97/106), exploration (33.01%, n=35/106), and 171 

modeling (47.16%, n=50/106). Whereas, nine articles applied temporal or time-series modeling 172 
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techniques as tools to predict human (n=7) and animal (n=2) leptospirosis incidence. Among 173 

those studies that included spatial analysis, few studies (15.09% , n=16/106) conducted 174 

visualisation, exploration, and modeling concurrently (Della Rossa et al., 2016; Gracie, 175 

Barcellos, Magalhaes, Souza-Santos, & Barrocas, 2014; C. L. Lau, Clements, et al., 2012; Helen 176 

J. Mayfield et al., 2018; Miyama et al., 2018; Mohd Radi et al., 2018; R. K. Raghavan, Brenner, 177 

Higgins, Shawn Hutchinson, & Harkin, 2012; Robertson, Nelson, & Stephen, 2012; Soares, 178 

Latorre Mdo, Laporta, & Buzzar, 2010; Suwanpakdee et al., 2015; Tassinari et al., 2008) 179 

(Supporting information: Table S2).  180 

3.2 Leptospirosis infection data sources, case definitions and diagnostic tests 181 

Leptospirosis infection data were mostly obtained from national notification system (45.21%, 182 

n=52/115), medical records or laboratory databases (include hospital admission database) 183 

(22.60%, n=26/115). Only 40 studies (34.78%, n=40/115) used infection data generated by 184 

surveys. Most studies were cross-sectional (86.95%, n=100/115), few (6.08%, n=7/115) were 185 

case-control studies (Ghneim et al., 2007; Hennebelle, Sykes, Carpenter, & Foley, 2013; R. 186 

Raghavan, Brenner, Higgins, Van der Merwe, & Harkin, 2011; R. K. Raghavan, Brenner, 187 

Harrington, Higgins, & Harkin, 2013; Suryani, Pramoedyo, Sudarto, & Andarini, 2016; Ward, 188 

2002a; Ward, Guptill, & Wu, 2004) and only six studies (5.21%) employed a prospective cohort 189 

design (Deshmukh et al., 2018; Hagan et al., 2016; A. I. Ko, Galvão Reis, Ribeiro Dourado, 190 

Johnson Jr, & Riley, 1999; Ledien et al., 2017; Mišić-Majerus, 2014; Reis et al., 2008).  191 

In terms of diagnostic approaches, human infection data used were most commonly based on 192 

microscopic agglutination test (MAT) (50.76%, n=33/65), enzyme linked immunosorbent assay 193 

(ELISA) (33.84%, n=22/65) or polymerase chain reaction (PCR) (13.84%, n=9/65). Eleven 194 

studies used culture in combination with serological tests or PCR (Biscornet et al., 2017; Desvars 195 
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et al., 2011; Jansen et al., 2005; Pijnacker et al., 2016; Rood, Goris, Pijnacker, Bakker, & 196 

Hartskeerl, 2017; Slack, Symonds, Dohnt, Corney, & Smythe, 2007; Slack, Symonds, Dohnt, & 197 

Smythe, 2006; Soares et al., 2010; Suwanpakdee et al., 2015; Tassinari et al., 2008; Weinberger, 198 

Baroux, Grangeon, Ko, & Goarant, 2014) to diagnose human infection. As with human studies, 199 

the majority of animal studies also used MAT (53.84%, n=21/39) to determine animal infection 200 

status, and three studies used ELISA only (Miyama et al., 2018; Pijnacker et al., 2016; Soares et 201 

al., 2010). Eight studies used culture in combination with serological tests or PCR.  202 

Thirty-one (47.69%, n=31/65) human leptospirosis studies, four studies (10.25%, n=4/39) on 203 

animal leptospirosis, and four studies (36.36%, n=4/11) that used animal and human infection 204 

data did not clearly describe the case definitions of leptospirosis infection. And, 28 studies did 205 

not specifically describe the diagnostic techniques used. 206 

3.3 Mapping the geographical distribution of leptospirosis 207 

3.3.1 Mapping human leptospirosis data 208 

Most spatial studies (96.55%, n=56/58) produced human infection maps and most utilized data 209 

obtained from the national disease surveillance notification systems (73.21%, n=41/56). Maps 210 

were produced to depict incidence or prevalence in certain administrative areas (48.21%; 211 

n=27/56) either at regional (n=1) (M. Schneider et al., 2017), national (n=11) (Gonwong et al., 212 

2017; Jansen et al., 2005; C. L. Lau, Clements, et al., 2012; Massenet, Yvon, Couteaux, & 213 

Goarant, 2015; Robertson et al., 2012; Rood et al., 2017; M. C. Schneider et al., 2012; Shi, Tu, & 214 

Li, 1995; Stevens, Carter, Kiep, Stevenson, & Schneeweiss, 2011; van Alphen et al., 2015; Zhao 215 

et al., 2016) or sub-national scales (n=15) (Barcellos, Lammerhirt, de Almeida, & dos Santos, 216 

2003; Barcellos & Sabroza, 2000; Chaiblich, Lima, Oliveira, Monken, & Penna, 2017; Garcia-217 

Ramirez et al., 2015; Gracie et al., 2014; Herbreteau et al., 2006; A. I. Ko et al., 1999; C. L. Lau, 218 
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Skelly, Dohnt, & Smythe, 2015; Mišić-Majerus, 2014; Mohammadinia, Alimohammadi, & 219 

Saeidian, 2017; Mohd Radi et al., 2018; Myint et al., 2007; M. C. Schneider et al., 2015; Soares 220 

et al., 2010; Vega-Corredor & Opadeyi, 2014). Twelve studies used Kernel density estimation 221 

technique to generate smoothed distribution maps of disease counts, risk or population density 222 

(Chaiblich et al., 2017; Cook et al., 2017; de Melo et al., 2011; Deshmukh et al., 2018; Filho et 223 

al., 2014; C. L. Lau, Dobson, et al., 2012; C. L. Lau, Skelly, Smythe, Craig, & Weinstein, 2012; 224 

Mohd Radi et al., 2018; Reis et al., 2008; Rood et al., 2017; Tassinari Wde, Pellegrini Dda, 225 

Sabroza, & Carvalho, 2004; Vega-Corredor & Opadeyi, 2014). Two studies constructed 226 

suitability maps for leptospirosis occurrence at national-level (Sanchez-Montes, Espinosa-227 

Martinez, Rios-Munoz, Berzunza-Cruz, & Becker, 2015; Zhao et al., 2016).  228 

Seroprevalence maps were produced by three studies (5.35%, n=3/56) based on ELISA 229 

(Gonwong et al., 2017) or MAT (C. L. Lau, Clements, et al., 2012; C. L. Lau et al., 2016). 230 

Seropositivity maps were created based on serological (MAT) data collected from the field 231 

surveys (C. L. Lau, Dobson, et al., 2012; C. L. Lau, Skelly, et al., 2012). Six studies mapped the 232 

distribution of predominant serovars identified from field studies (C. L. Lau, Clements, et al., 233 

2012; C. L. Lau, Dobson, et al., 2012; C. L. Lau et al., 2015; C. L. Lau, Skelly, et al., 2012; 234 

Myint et al., 2007; Slack et al., 2007). No serogroup or serovar distribution maps at regional and 235 

global scale were reported. Spatiotemporal maps were created (21.42%, n=12/56) (Baquero & 236 

Machado, 2018; Dhewantara et al., 2018; Garcia-Ramirez et al., 2015; Gracie et al., 2014; Hagan 237 

et al., 2016; C. L. Lau et al., 2015; Robertson et al., 2012; Soares et al., 2010; Sulistyawati, 238 

Nirmalawati, & Mardenta, 2016; Suwanpakdee et al., 2015; Tassinari Wde et al., 2004; Tassinari 239 

et al., 2008; van Alphen et al., 2015) to illustrate changes in distribution (Della Rossa et al., 240 

2016; Gracie et al., 2014; C. L. Lau et al., 2015; M. C. Schneider et al., 2012; Soares et al., 2010; 241 
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Sulistyawati et al., 2016; Suwanpakdee et al., 2015; Tassinari Wde et al., 2004; Tassinari et al., 242 

2008), disease rates/risks (Baquero & Machado, 2018; Garcia-Ramirez et al., 2015; Hagan et al., 243 

2016; Robertson et al., 2012; Suwanpakdee et al., 2015; van Alphen et al., 2015) or burden in 244 

terms of disability-adjusted life years (DALYs) (Dhewantara et al., 2018). One set of sub-245 

national spatiotemporal maps describing changes in serovar-specific cases was produced at state-246 

level in Australia (C. L. Lau et al., 2015). Summary of the studies on mapping leptospirosis is 247 

provided Supporting information: Table S3-S4. 248 

 249 

3.3.2 Mapping animal leptospirosis data 250 

Thirty-four studies used mapping approaches to describe spatial heterogeneity in 251 

incidence/prevalence, serostatus, or distribution of Leptospira infections among various reservoir 252 

animals including companion animals, livestock, rodents, and wildlife. Few studies created 253 

prevalence maps at national (2.94%; n=1/34) (Suwancharoen et al., 2016) or sub-national 254 

(14.70%; n=5/34) (Filho et al., 2014; Hesterberg et al., 2009; Machado et al., 2016; 255 

Scolamacchia et al., 2010; Silva et al., 2018) levels. The infection data of companion animals 256 

(e.g. dogs) were obtained commonly from laboratory databases/medical records deposited at 257 

veterinary clinics (32.35%, n=11/34). Serovar-specific prevalence in livestock was mapped 258 

(8.82%, n=3/34) in Australia (J. K. Elder, McKeon, Duncalfe, Ward, & Leutton, 1986; Jean K. 259 

Elder & Ward, 1978) and Japan (Miyama et al., 2018). Livestock, rodents or wildlife animals 260 

infection data were often collected from animal sampling. Few studies reported the use of Kernel 261 

density risk maps (n=2) (Filho et al., 2014; Hashimoto et al., 2015) and suitability maps (n=1) 262 

(Dobigny et al., 2015). No spatiotemporal maps for animal leptospirosis was reported.  263 

 264 
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3.3.3 Mapping human and animal infection data 265 

Eleven articles used both human and animal infection data (Assenga, Matemba, Muller, 266 

Mhamphi, & Kazwala, 2015; Biscornet et al., 2017; S. Chadsuthi et al., 2017; Cipullo & Dias, 267 

2012; Della Rossa et al., 2016; Fonzar & Langoni, 2012; Hurd, Berke, Poljak, & Runge, 2017; 268 

Pijnacker et al., 2016; Sumanta, Wibawa, Hadisusanto, Nuryati, & Kusnanto, 2015; Villanueva 269 

et al., 2014; Widiastuti, Sholichah, Agustiningsih, & Wijayanti, 2016), but only 64% (n=7/11) of 270 

studies incorporated both human and animals infection data into their maps. One study created a 271 

national-level seroprevalence map for both human and animals (S. Chadsuthi et al., 2017). At the 272 

sub-national level, six studies mapped the geographic co-distribution of serogroups (Assenga et 273 

al., 2015; Villanueva et al., 2014) or Leptospira seropositivity (Cipullo & Dias, 2012; Fonzar & 274 

Langoni, 2012; Sumanta et al., 2015; Widiastuti et al., 2016) in both human and animals. No 275 

maps have been produced on describing spatial temporal changes in risks were identified in this 276 

group of study. 277 
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3.4 Exploratory analysis: detecting spatial autocorrelation and disease clustering  278 

3.4.1 On studies that used human infection data  279 

A wide range of classic global and local spatial clustering analyses were used to investigate 280 

large-scale and small-scale variations in patterns of disease distribution (Table 1; Supporting 281 

information: Table S5). Eight studies used global Moran’s I to test spatial clustering on areal 282 

data (Cook et al., 2017; Della Rossa et al., 2016; Goncalves et al., 2016; Gracie et al., 2014; 283 

Mohammadinia et al., 2017; Rood et al., 2017; Soares et al., 2010; Suryani et al., 2016). Two 284 

studies analysed clustering of point data by using global Moran and average nearest neighbor 285 

methods (Mohd Radi et al., 2018; Suryani et al., 2016). While Knox test was used to assess 286 

global spatial clustering of the leptospirosis over space and time (Bennett & Everard, 1991). 287 

Localized spatial clustering techniques were applied to determine hotspots, including Local 288 

Indicators of Spatial Association (LISA) (n=3) (Mohd Radi et al., 2018; Rood et al., 2017; 289 

Soares et al., 2010) and Getis and Ord’s (Gi
*) (n=3) (Hassan & Tahar, 2016; Helen J. 290 

Mayfield et al., 2018; Suwanpakdee et al., 2015). Both global and local tests for clustering 291 

were only applied in few number of studies (14.28%) (n=3/21) (C. L. Lau, Clements, et al., 292 

2012; Rood et al., 2017; Soares et al., 2010). 293 

Locating the high-risk clusters across space, seven studies used SaTScan (M. Kulldorff & N. 294 

Nagarwalla, 1995) at national (Gutierrez & Martinez-Vega, 2018; C. L. Lau, Clements, et al., 295 

2012; Massenet et al., 2015; Robertson et al., 2012) and sub-national scale (Deshmukh et al., 296 

2018; Sulistyawati et al., 2016; Tassinari et al., 2008). The maximum circular spatial window 297 

was often set at 50% (Gutierrez & Martinez-Vega, 2018; C. L. Lau, Clements, et al., 2012; 298 

Massenet et al., 2015; Sumanta et al., 2015) of the population at risk. The temporal window 299 

used ranged from 30 days (Tassinari et al., 2008) to one year (Massenet et al., 2015) although 300 
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five studies did not explicitly define spatial or temporal windows (Deshmukh et al., 2018; 301 

Robertson et al., 2012; Sulistyawati et al., 2016). 302 

3.4.2 On studies that used animal infection data 303 

Eleven articles tested for global or local spatial clustering on the animal infection data. Few 304 

studies applied both global and local tests (n=2) (Alton, Berke, Reid-Smith, Ojkic, & 305 

Prescott, 2009; Hennebelle et al., 2013). A variety of methods were used including global 306 

Moran’s I (n=1) (Alton et al., 2009), Cuzick and Edwards’ k-nearest neighbor and variogram 307 

(n=3) (Hennebelle et al., 2013; R. K. Raghavan et al., 2012; Scolamacchia et al., 2010) to 308 

detect spatial clustering of infected animals. Nine studies investigated clusters of infected 309 

animals using scan statistics including spatial scan test, temporal and spatial scan statistics, 310 

spatial permutation test (69.23%, n=9/13) (Alton et al., 2009; da Silva et al., 2006; Gautam, 311 

Guptill, Wu, Potter, & Moore, 2010; Hennebelle et al., 2013; Himsworth et al., 2013; 312 

Miyama et al., 2018; Nicolino, Lopes, Rodrigues, Teixeira, & Haddad, 2014; Sumanta et al., 313 

2015; Ward, 2002a).  314 

 315 

3.4.3 On studies that used both human and animal infection data 316 

Only one study explored spatial pattern of both human and animal infection data. This study 317 

used a variety of spatial clustering methods including Moran’s I and Geary’s c as well as 318 

employing several different cluster detection techniques using SaTScan and FlexScan 319 

software (Hurd et al., 2017).  320 

 321 

3.5 Modeling risk of leptospirosis infection and spatial risk prediction 322 

3.5.1 Modeling risk of human infection 323 

Thirty-one studies (53.44%, n=31/58) quantified the effect of a set of selected explanatory 324 

variables on leptospirosis incidence/prevalence, at national-level (n=15/31) and sub-national 325 
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level (n=17/31) (Table 2). The summary of studies on modelling leptospirosis risk was 326 

detailed in Table S6. Most studies assessed the association between environment (e.g., land 327 

use, altitude, flood risk) (n=29/31) or climatic factors (e.g., precipitation) (n=18/31) and 328 

leptospirosis incidence/prevalence (Figure 4). Half of the studies utilized environmental data, 329 

including land cover, elevation, Normalized Difference Vegetation Index (NDVI) 330 

Normalized Difference Water Index (NDWI) and climatic data obtained from remote-sense 331 

databases (e.g. MODIS, Landsat) (Baquero & Machado, 2018; Gracie et al., 2014; C. L. Lau, 332 

Clements, et al., 2012; C. L. Lau, Dobson, et al., 2012; C. L. Lau et al., 2016; M. C. 333 

Schneider et al., 2012; Suwanpakdee et al., 2015; Vega-Corredor & Opadeyi, 2014; Zhao et 334 

al., 2016) (Supporting Table S7). A recent study proposed the use of Modified NDWI to 335 

estimate the risk of Leptospira infection following flood (Ledien et al., 2017).  336 

About half of modeling studies included host-related variables such as the presence of 337 

animals (e.g., rodents, pigs, dogs, livestock) or animal population size or density into the 338 

models (Cook et al., 2017; Dozsa, Monego, & Kummer, 2016; Hagan et al., 2016; C. L. Lau, 339 

Clements, et al., 2012; C. L. Lau, Dobson, et al., 2012; C. L. Lau et al., 2016; Helen J. 340 

Mayfield et al., 2018a; H. J. Mayfield et al., 2018b; Reis et al., 2008; M. C. Schneider et al., 341 

2012; Suwanpakdee et al., 2015; Zhao et al., 2016). Animal hosts data were collected either 342 

from animal surveys (e.g., trapping), livestock census data, or from publicly available GIS 343 

databases (e.g., Food and Agricultural Organization, FAO- GeoNetwork).  344 

Twenty-one studies (67.72%, n=21/31) included socioeconomic variables (e.g., population 345 

density, income, agricultural production and urbanization) into their models. Population 346 

density (Ledien et al., 2017; H. J. Mayfield et al., 2018; Zhao et al., 2016) and socioeconomic 347 

indicators (e.g., GDP or poverty rate) (Baquero & Machado, 2018; Helen J. Mayfield et al., 348 

2018a; H. J. Mayfield et al., 2018b; M. C. Schneider et al., 2015; Zhao et al., 2016) were the 349 

most common predictors included in the models. Individual-level variables (e.g., age, gender, 350 
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occupation, education/literacy, behavioral risk, or ethnicity) were incorporated in 16 out of 31 351 

(51.61%) studies.  352 

Traditional regression analyses were the most common statistical modelling technique used 353 

to quantify the association between these variables and leptospirosis incidence/prevalence 354 

(Table 2). Simultaneous autoregressive models (n=1) (Rood et al., 2017) and boosted 355 

regression tree (BRT) models (n=1) (Ledien et al., 2017) were also reported. To address the 356 

spatial non-stationarity of relationships between the spatial distribution of leptospirosis 357 

incidence and environmental and sociodemographic factors, five studies applied 358 

geographically weighted regression (GWR) (Helen J. Mayfield et al., 2018a; Mohammadinia 359 

et al., 2017; Mohd Radi et al., 2018; Vega-Corredor & Opadeyi, 2014; Widayani, Gunawan, 360 

Danoedoro, & Mardihusodo, 2016). Two studies used ecological niche modelling using 361 

Maxent (Zhao et al., 2016) and Genetic Algorithm for Rule-set Production (GARP) 362 

(Sanchez-Montes et al., 2015) at a national scale (Sanchez-Montes et al., 2015; Zhao et al., 363 

2016), and three studies applied a Bayesian approach to their analyses (n=3) (Baquero & 364 

Machado, 2018; Hagan et al., 2016; Reis et al., 2008). In addition, the spatially-explicit 365 

Bayesian Networks (BNs) have been introduced by one Fijian study (H. J. Mayfield et al., 366 

2018b).  367 

 368 

Overall, only two studies completely constructed spatially-structured models (n=2/31) (C. L. 369 

Lau, Clements, et al., 2012; Rood et al., 2017) in which model parameters were estimated 370 

(SAR and logistic regression, respectively), global and local spatial autocorrelation in the 371 

residuals of the models were tested (using global Moran’s I and semi-variogram), and spatial 372 

predictive maps were generated.  373 

 374 
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3.5.2 Modelling risk of animal infection  375 

Seventeen studies (43.36%, n=17/39) conducted in six countries assessed the association 376 

between incidence (n=7) (Ghneim et al., 2007; Major, Schweighauser, & Francey, 2014; R. 377 

Raghavan et al., 2011; R. K. Raghavan et al., 2013; R. K. Raghavan et al., 2012; Ward et al., 378 

2004; White et al., 2017) or prevalence (n=10) (Alton et al., 2009; Bier et al., 2012; Bier et 379 

al., 2013; Biscornet et al., 2017; J. K. Elder et al., 1986; Jean K. Elder & Ward, 1978; 380 

Himsworth et al., 2013; Ivanova et al., 2012; Miyama et al., 2018; Silva et al., 2018) with 381 

various predictors at national (n=6) and sub-national (n=11) levels. As with human studies, 382 

the effect of physical environmental (64.70%, n=11/17) (Alton et al., 2009; Biscornet et al., 383 

2017; J. K. Elder et al., 1986; Ghneim et al., 2007; Ivanova et al., 2012; R. Raghavan et al., 384 

2011; R. K. Raghavan et al., 2013; R. K. Raghavan et al., 2012; Silva et al., 2018; Ward et 385 

al., 2004; White et al., 2017) and climatic factors (52.94%, n=9/17) (J. K. Elder et al., 1986; 386 

Jean K. Elder & Ward, 1978; Ghneim et al., 2007; Himsworth et al., 2013; Ivanova et al., 387 

2012; Major et al., 2014; Silva et al., 2018; Ward et al., 2004; White et al., 2017) on animal 388 

infections were the most commonly studied. Nine studies used RS-based environmental data 389 

(Dobigny et al., 2015; Ghneim et al., 2007; Ivanova et al., 2012; R. Raghavan et al., 2011; R. 390 

K. Raghavan et al., 2013; Silva et al., 2018; Ward et al., 2004; White et al., 2017) including 391 

land cover/land use, elevation, or slope (Supporting information: Table S7). Eight studies 392 

included parameters on the presence of other animal species in their models (Bier et al., 2012; 393 

Bier et al., 2013; Ghneim et al., 2007; Miyama et al., 2018; R. K. Raghavan et al., 2012; Silva 394 

et al., 2018; Ward et al., 2004; White et al., 2017). Only three studies assessed the role of 395 

socioeconomic covariates (e.g., household income of the owner) on animal infection (n=2) 396 

(R. K. Raghavan et al., 2012; Silva et al., 2018; White et al., 2017). The individual-level 397 

variables, such as animal age, sex, breed, and behaviors, were less reported (n=4) (Alton et 398 

al., 2009; Bier et al., 2013; Himsworth et al., 2013; Silva et al., 2018).  399 
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In terms of modeling techniques, regression models were most commonly used (n=12/17) 400 

(Table 2). Among those, only three studies accounted for spatial autocorrelation in the 401 

residual of the models (R. Raghavan et al., 2011; R. K. Raghavan et al., 2013; R. K. 402 

Raghavan et al., 2012). Using boosted regression tree, one study generated a national-scale 403 

predictive map of canine leptospirosis in the USA (White et al., 2017), but this study did not 404 

address spatial autocorrelation in the residuals or prediction uncertainty. None of studies 405 

generated spatially-structured prediction maps for animal leptospirosis incidence/prevalence. 406 

 407 

3.5.3 Modeling risk of both human and animal infection 408 

Three articles from three countries assessed the effect of various covariates on both animal 409 

and human infection (n=3/11) (S. Chadsuthi et al., 2017; Della Rossa et al., 2016; Hurd et al., 410 

2017). All of the them focused on the role of environmental factors and climate on human 411 

and animal infection. Of these, only two studies generated spatially-structured models and 412 

addressed spatial autocorrelation (Della Rossa et al., 2016; Hurd et al., 2017). No reviewed 413 

studies generated spatial prediction maps for both human and animal incidence/prevalence. 414 

 415 

3.6 Temporal modeling as tools for leptospirosis outbreak detection  416 

Nine studies performed time-series (temporal) regression at national (Sudarat Chadsuthi, 417 

Modchang, Lenbury, Iamsirithaworn, & Triampo, 2012; Desvars et al., 2011; Joshi, Kim, & 418 

Cheong, 2017; Lee et al., 2014; Ward, 2002b; Weinberger et al., 2014) and sub-national 419 

levels (Coelho & Massad, 2012; Deshmukh et al., 2018; Matsushita et al., 2018) to assess the 420 

effect of climatic variables and forecast leptospirosis outbreaks for humans (n=7) (Sudarat 421 

Chadsuthi et al., 2012; Coelho & Massad, 2012; Deshmukh et al., 2018; Desvars et al., 2011; 422 

Joshi et al., 2017; Matsushita et al., 2018; Weinberger et al., 2014) and canine infection (n=2) 423 

(Lee et al., 2014; Ward, 2002b) (Table 3). Various temporal resolutions ranging from daily to 424 



20 

 

 

 

monthly infection data were used with various timespans ranging from 7-16 years. Most 425 

studies included climatic factors such as precipitation, temperature and humidity as predictors 426 

(n=8/9) in the models. One study investigated the effect of El-Nino Southern Oscillation 427 

(ENSO) components (e.g., sea surface temperature anomaly, southern oscillation index, and 428 

oceanic Nino index) on human leptospirosis incidence in New Caledonia (Weinberger et al., 429 

2014). Autoregressive models were used in three studies: human leptospirosis (n=2) (Sudarat 430 

Chadsuthi et al., 2012; Desvars et al., 2011) and canine leptospirosis (n=1) (Ward, 2002b). 431 

One sub-national study in Philippines employed distributed lag non-linear (quasi-Poisson) 432 

model to assess non-linear relationships between rainfall and leptospirosis and the role of 433 

flood events (Matsushita et al., 2018). 434 

3.7 Model validation 435 

Overall, model validation procedures to determine model accuracy were described in less 436 

than half of spatial modelling studies. Several measures were used to evaluate models 437 

including information criteria such as Akaike’s information criterion (AIC), Bayesian 438 

information criterion (BIC), or deviance information criteria (DIC), Pearson chi-squared 439 

goodness-of-fit tests, and Hosmer-Lemeshow test. Data partitioning (e.g., splitting the data 440 

into ‘training’ and ‘testing’ subsets) was often used to validate the models as well as internal 441 

cross-validation (White et al., 2017). The Area Under the Receiver-operator curve (AUC 442 

ROC) analysis (C. L. Lau, Clements, et al., 2012; H. J. Mayfield et al., 2018b; Zhao et al., 443 

2016) was applied to determine discriminatory performance and predictive accuracy of the 444 

models.   445 

4. Discussion 446 

This study is the first to review the application of spatial analytical methods in the field of 447 

leptospirosis epidemiology. Our review demonstrates the potential of spatial-temporal 448 

epidemiological approaches to improve our knowledge of human and animal leptospirosis 449 
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and its possible applications for assisting future intervention strategies to reduce leptospirosis 450 

burden. However, this review has identified a number of methodological limitations of 451 

existing studies that hinders their ability to provide a sound evidence base to guide local 452 

control efforts to reduce the burden of leptospirosis in humans and animals. 453 

The source and quality of leptospirosis infection data substantially underpins the validity of 454 

spatial epidemiological studies. Indeed, our review noted that most studies have utilized 455 

leptospirosis notification data obtained from passive surveillance, which is likely to under 456 

represent the true incidence; although using notification data could be more feasible 457 

compared to conducting cross-sectional eco-epidemiological studies. It is noteworthy to 458 

acknowledge important disadvantages when using notification data, particularly for a disease 459 

such as leptospirosis, which is prone to being highly underreported. Of note, one concern 460 

with leptospirosis case ascertainment is that many endemic countries have limited laboratory 461 

capacity to undertake confirmatory diagnostic tests, so that the notification data may be 462 

primarily based on rapid diagnostic tests (RDT) or ELISA. Even these tests may not be 463 

routinely available throughout the country and this could lead to significant underdiagnosis 464 

and underreporting. In addition, other issues including the sensitivity and specificity of the 465 

diagnostic methods used and discrepancies in reporting systems may also impede the quality 466 

of such notification data. To further compound this problem, we identified several studies 467 

that did not clearly state the diagnostic tests or the case definitions used. These issues may 468 

greatly affect the clarity and quality of the data and thus lead to uncertainty about the 469 

geographical distribution of leptospirosis. This could misguide policy makers when 470 

developing strategies to efficiently target interventions to populations and areas at greatest 471 

risk. Given these limitations, future studies should carefully deal with the uncertainty in the 472 

epidemiological data.     473 
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In terms of spatial analysis approach, a considerable number of studies have used 474 

visualization techniques to produce morbidity and mortality distribution  maps. Indeed, such 475 

maps could be useful to assist health authorities to understand the geographical distribution of 476 

cases or risks. However, there are some common issues that needs to be carefully addressed 477 

when producing maps so that they are not misinterpreted. Besides the quality of data, the 478 

validity of the outcome of spatio-temporal analyses is greatly dependant on the spatial scale 479 

at which the analysis was performed, the type of data used (point or areal data), and how 480 

aggregation of areal data was conducted.  481 

In particular, mapping geographical distribution of Leptospira serogroups or serovars 482 

identified in humans, host animals, and environment is also of great importance; yet, our 483 

review indicates that this is still poorly explored. Such maps could be beneficial to support 484 

vaccine development (mainly for animals) and to better design control programs (e.g., 485 

identifying key animal sources of human infection to target One Health interventions). Of 486 

note, mapping the current distribution and future spread of pathogenic Leptospira may 487 

provide better understanding on the burden of leptospirosis. Further studies are therefore 488 

strongly encouraged to map the distribution of serogroups or serovars at various spatial-scales 489 

as it has important implications for understanding patterns of leptospirosis endemicity and aid 490 

investigators to generate hypotheses on the potential source(s) of infection (host animals) as 491 

some specific serogroups/serovars are linked with specific host animals (e.g., serovars 492 

Canicola with dogs, Pomona with pigs, Hardjo with cattle) as well as disease severity and 493 

associated socioecological conditions.  494 

Exploring spatial clustering of leptospirosis prior to modeling is fundamental for 495 

understanding spatial dependency of cases (Lawson, 2013). Furthermore, investigation of the 496 

presence of spatial dependence is a first step for deciding the best modelling approach for 497 

quantifying predictors of disease and predictive risk mapping. Our review demonstrates 498 
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significant variation in the application of techniques used to test for spatial clustering, which 499 

requires systematic analysis as demonstrated by some of the studies reviewed here (C. L. 500 

Lau, Clements, et al., 2012; Rood et al., 2017). To detect spatial clustering, both global and 501 

local indices of spatial autocorrelation should be estimated, and it is also important to 502 

consider the type of the data (areal or point data) when choosing methods. Our review 503 

highlights that almost all studies have overlooked the importance of assessing spatial 504 

autocorrelation in the residuals of non-spatial models. It also appears that most studies solely 505 

evaluated spatial autocorrelation, but when present, did not incorporate it into the modeling 506 

framework. Ignoring spatial dependence in the data can give rise to spurious associations, 507 

inaccurate and biased parameter estimations and spatial risk predictions (Dormann, 2007; 508 

Pfeiffer, 2008).  509 

Another step for exploring spatial dependence involves the utilization of spatial cluster 510 

detection techniques; by far the most commonly used by the studies reviewed here was 511 

Kuldorff’s Spatial Scan statistic (SaTScan). This method allows researchers to estimate the 512 

relative risk inside and outside identified geographical clusters of disease by using predefined 513 

scanning windows and Monte Carlo simulation (Martin Kulldorff & Neville Nagarwalla, 514 

1995). Despite its simplicity, there was no standard selection of thresholds across studies for 515 

the shape and size of the cluster scanning window (~10-50% of the population at risk) as the 516 

size and shape selection may depend on the nature of the data and their objectives. All studies 517 

assumed that disease clusters were circular, while ecologically, the disease often forms 518 

irregularly-shaped clusters (e.g., due to variation in a population or environmental 519 

characteristics). The use of circular scanning windows may reduce the chance to detect non-520 

circular shaped clusters. To better detect and deal with irregularity of the disease clusters, 521 

alternative cluster detection tools could be used for future studies, such as FlexScan or a 522 
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multidirectional optimal ecotope-based algorithm (AMOEBA) (Aldstadt & Getis, 2006; 523 

Ramis, Gomez-Barroso, & López-Abente, 2014; Zhu et al., 2016).  524 

Our review shows that large number of spatial modelling studies assessed the association 525 

between physical environment (e.g., altitude, vegetation, proximity to water bodies, sewerage 526 

systems or waste) and climatic factors on leptospirosis, suggesting the high importance of the 527 

environment on leptospirosis transmission, while factors associated with sociodemographic 528 

conditions (e.g., urbanization, poverty) and animal hosts appears remain overlooked by many 529 

studies. In the context of zoonotic disease control, it is recognized that a One Health approach 530 

has greater potential to effectively control disease burden than focusing on human disease 531 

alone. Such One Health framework should therefore be accommodated in future spatial 532 

models (i.e., the inclusion of animals host factors along with environment predictors and 533 

social determinants of health) to provide more comprehensive evidence for decision-making 534 

processes.  535 

In terms of modeling methodology, the majority of spatial modelling studies reviewed here 536 

used a range of traditional regression models (frequentists) and very few have applied 537 

modeling techniques (e.g., Bayesian geostatistics methods) that fully address spatial 538 

autocorrelation. A disadvantage when using standard statistical modelling techniques is that 539 

they assume independence of observations and do not account for potential spatial 540 

dependency between neighbouring locations. When overdispersion or the effect of spatial 541 

dependence on the data are ignored, the standard errors could be underestimated and hence 542 

increase the risk of Type I errors (Pfeiffer, 2008). In addition, such traditional regression 543 

models are not able to identify variation in the relationships between the predictors and 544 

capture the complexity of disease transmission. There are several promising methods that 545 

could be used in future leptospirosis studies, such as Bayesian geostatistics, geographically 546 

weighted regression (GWR) and spatial Bayesian Belief Network (BBN). Recently, Bayesian 547 
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geostatistics techniques have been widely used in various spatial epidemiological zoonotic 548 

diseases studies. This method has advantages over common frequentist regression models. 549 

Bayesian approaches are suitable when data are sparse and highly clustered. It allows 550 

accounting for spatial autocorrelation and adequately addresses uncertainties in the model 551 

design (Cressie, Calder, Clark, Ver Hoef, & Wikle, 2009; P. Diggle & Ribeiro, 2007; P. J. 552 

Diggle, Tawn, & Moyeed, 1998). Other methods such as geographically weighted regression 553 

(GWR) (Helen J. Mayfield et al., 2018a) and Bayesian Belief Network (BBN) (C.L. Lau et 554 

al., 2017; Pittavino et al., 2017) have also been used in a few epidemiological studies in 555 

leptospirosis. The former provides opportunity to better deal with spatial non-stationarity of 556 

covariates in the models (Fotheringham, Brunsdon, & Charlton, 2002), while the latter has 557 

the ability to effectively reveal and describe the complexity of relationships between 558 

variables in disease system (Landuyt et al., 2013; Lewis & McCormick, 2012). To help 559 

enhance understanding of leptospirosis transmission and predictive maps, further studies 560 

should be directed on exploring such non-traditional modeling techniques and incorporating 561 

spatial-temporal elements into the models. All of these methods may allow researchers to 562 

produce more robust and better predictive risk maps for leptospirosis to better inform health 563 

managers on planning leptospirosis control. However, as the models become more complex 564 

and more advance modeling techniques being used, it may greatly need considerable time, 565 

technical skill requirements and computational capacity. For instance, using Bayesian 566 

geostatistical models could take hours or even days to run the model, while some techniques 567 

(e.g., spatial BNs) could be much faster and almost instantaneous. Recent study in Fiji offers 568 

promising approach to better understand leptospirosis transmission under various socio-569 

ecological scenarios by using spatial Bayesian Networks (H. J. Mayfield et al., 2018b) 570 

Assessing the effect of climate variability (e.g. precipitation, temperature, ENSO) on 571 

leptospirosis risk allows researchers and public health officials to forecast when outbreaks 572 
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may occur. It should be noted that one of the critical limitations of the conventional time-573 

series modeling (e.g., ARIMA) is that it mainly assesses linear relationships of variables 574 

within the time series data (Zhang, Zhang, Young, & Li, 2014), while the relationships 575 

between variables and infection are commonly non-linear. To better address this non-linearity 576 

of associations, some techniques could be used in the future model such as distributed lag 577 

non-linear models (DLNM) (Gasparrini, Armstrong, & Kenward, 2010). Given the 578 

complexity of leptospirosis infection pathway, future spatiotemporal models of leptospirosis 579 

distribution also need to incorporate the joint effects of multiple variables such as climatic 580 

and socioecological factors. One potential approach to better incorporate those complexity 581 

and enhance predictive capability of leptospirosis forecasting models is machine learning. 582 

The application of machine learning algorithms such as Random Forest, Boosted Gradient 583 

and Neural Networks, have been demonstrated to have better performance and high 584 

predictive ability in several public health studies (Carvajal et al., 2018; Chen et al., 2018; 585 

Guo et al., 2017; Hu et al., 2018). Future studies should be directed on exploring such 586 

machine learning methods in modeling leptospirosis transmission. 587 

 588 

4.1 Framework for the application of spatial analytical tools for leptospirosis studies 589 

We proposed a general framework that could guide for the application of spatial 590 

epidemiological methods for future leptospirosis studies (Box 1). In general, there are three 591 

key components, including input, spatial analytical processes and output. Note that the first 592 

stage (input) is a critical part of the inference as the analytical processes and the usefulness of 593 

the outputs (maps) greatly depend on the quality, type and spatial and/or temporal scale of the 594 

infection data and attributes. This framework may have potential to be adopted not only for 595 

leptospirosis but also other diseases.  596 
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4.2 Limitations 597 

Publication bias is an important limitation which should be considered when interpretating 598 

our findings. Our review solely relied on published research manuscripts and we did not take 599 

into account another types of publications (e.g. theses or dissertations, conference 600 

proceedings). In addition, most studies captured by our systematic search came from a 601 

limited set of countries; this may reflect substantial issues within the countries regarding the 602 

availability of the data due to technical issues (e.g., reporting systems, diagnostic capacity) in 603 

many endemic countries (Musso & La Scola, 2013; Schreier, Doungchawee, Chadsuthi, 604 

Triampo, & Triampo, 2013), poor public awareness and knowledge on recognizing the 605 

disease (Mohan & Chadee, 2011), and variation in surveillance systems (Costa et al., 2012).      606 

 607 

5. Conclusions 608 

While the use of spatial and temporal analyses has been greatly appreciated in the field of 609 

leptospirosis research, the quality of studies and analytical approaches varied significantly. 610 

To better understand the epidemiology and processes underlying leptospirosis transmission, 611 

appropriate spatio-temporal techniques should be chosen and applied taking into 612 

consideration quality and type of data, the geographical scale of analysis and type of 613 

covariates for inclusion. Uncertainty in disease modelling outputs should be carefully 614 

considered so that the model outputs can be effectively applied to support leptospirosis 615 

control interventions. Future work should be prioritized on optimizing the potential of 616 

GIS/RS for developing user-friendly and interactive decision-support system, providing an 617 

updateable maps at local and national level at finer resolution as new data become available, 618 

and constructing more robust and reliable predictive models that account for spatial and 619 

temporal dependencies in leptospirosis transmission from different animal hosts and in 620 

different environments. 621 
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Table 1. Summary of approaches used to measure spatial clustering in human, animal, and both human-animal leptospirosis studies  1136 

Spatial clustering methods N Infection data 

Human (n=21) Animal (n=13) Both human and 
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Global measures  Moran’s I / Global Moran 11 (Cook et al., 2017; 
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2016; Goncalves et 

al., 2016; Gracie et 

al., 2014; 

Mohammadinia et 

al., 2017; Mohd 

Radi et al., 2018; 
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Soares et al., 2010; 

Suryani et al., 2016) 

(Alton et al., 2009) (Hurd et al., 2017)  

Geary’s c 1   (Hurd et al., 2017) 

Cuzick-Edwards Kth neighbor test 3  (Hennebelle et al., 

2013; R. K. 

Raghavan et al., 

2012; 

Scolamacchia et 

al., 2010) 

 

Average nearest neighbor 2 (Mohd Radi et al., 

2018; Suryani et al., 

2016)  
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Knox test 1 (Bennett & Everard, 
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Semivariogram/Empirical variogram 6 (C. L. Lau, 

Clements, et al., 

2012) 

(Alton et al., 2009; 

R. Raghavan et al., 

2011; R. K. 

Raghavan et al., 

2013; R. K. 

Raghavan et al., 

2012) 

(Hurd et al., 2017) 

      

Local measures / cluster 

detection  

LISA / Local Moran 3 (Mohd Radi et al., 

2018; Rood et al., 

2017; Soares et al., 

2010) 

  

Getis-Ord G* 3 (Hassan & Tahar, 

2016; Helen J. 

Mayfield et al., 

2018; Suwanpakdee 

et al., 2015) 

  

Bernoulli/Poisson spatial scan statistics 10 (Cipullo & Dias, 

2012; Deshmukh et 

al., 2018; C. L. Lau, 

Clements, et al., 

2012) 

(Alton et al., 2009; 

da Silva et al., 

2006; Hennebelle 

et al., 2013; 

Himsworth et al., 

2013; Miyama et 

al., 2018; Nicolino 

et al., 2014; 
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Sumanta et al., 

2015) 

Poisson/Binomial/Multinomial space-time scan 

statistics 

8 (Gutierrez & 

Martinez-Vega, 

2018; Massenet et 

al., 2015; Robertson 

et al., 2012; 

Sulistyawati et al., 

2016; Tassinari et 

al., 2008) 

(Alton et al., 2009; 

Gautam et al., 

2010; Hennebelle 

et al., 2013; Ward, 

2002a) 

 

FlexScan spatial cluster test 1   (Hurd et al., 2017) 
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Table 2. Summary of modeling techniques used in eligible leptospirosis studies  1143 

Modeling approach N Leptospirosis epidemiological data 

Human (n=31) Animal (n=17) Human and 

animal 

(n=3) 

Regression  Linear regression/Generalized linear models (GLMs) /Poisson 

regression/Binomial GLM/Quadratic regression 

14 (Ledien et al., 

2017; Mohd Radi 

et al., 2018; Reis et 

al., 2008; M. C. 

Schneider et al., 

2012; Vega-

Corredor & 

Opadeyi, 2014) 

(Biscornet et al., 

2017; J. K. 

Elder et al., 

1986; 

Himsworth et 

al., 2013; 

Ivanova et al., 

2012; Major et 

al., 2014; 

Miyama et al., 

2018) 

 

(S. Chadsuthi et 

al., 2017; Della 

Rossa et al., 

2016; Hurd et 

al., 2017) 

 Logistic regression/multilevel mixed-effect logistic 

models/multinomial logistic models 

17 (Cook et al., 2017; 

C. L. Lau, 

Clements, et al., 

2012; C. L. Lau, 

Dobson, et al., 

2012; C. L. Lau et 

al., 2016; 

Robertson et al., 

2012; M. C. 

Schneider et al., 

2012; Tassinari et 

(Alton et al., 

2009; Ghneim 

et al., 2007; 

Himsworth et 

al., 2013; R. 

Raghavan et al., 

2011; R. K. 

Raghavan et al., 

2013; R. K. 

Raghavan et al., 

2012; Silva et 

(S. Chadsuthi et 

al., 2017) 
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al., 2008; Zhao et 

al., 2016) 

al., 2018; Ward 

et al., 2004) 

 Generalized additive models (GAMs) 3 (Hagan et al., 

2016; Reis et al., 

2008) 

(Bier et al., 

2013) 

 

 Negative binomial (NB)/Zero-inflated negative binomial regression 

models 

2 (M. C. Schneider 

et al., 2015; 

Suwanpakdee et 

al., 2015) 

  

 Geographical weighted regression (GWR) 5 (Helen J. Mayfield 

et al., 2018a; 

Mohammadinia et 

al., 2017; Mohd 

Radi et al., 2018; 

Vega-Corredor & 

Opadeyi, 2014; 

Widayani et al., 

2016) 

  

 Generalized linear mixed models (GLMMs) 2 (Tassinari et al., 

2008) 

(Alton et al., 

2009) 

 

 Boosted regression trees (BRTs)  2 (Ledien et al., 

2017) 

(White et al., 

2017) 

 

Autoregressive models Simultaneous Auto Regression (SAR) 1 (Rood et al., 2017)   
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Disease distribution 

modelling 

Maximum entropy (MAXENT) Ecological niche models, Genetic 

Algorithm for Rule Set Production (GARP) 

2 (Sanchez-Montes 

et al., 2015; Zhao 

et al., 2016) 

  

      

Bayesian approach Integrated Nested Laplace Approximation (INLA) + Stochastic 

Partial Differential Equations (SPDE); Bayesian inference; Besag, 

York and Mollie (BYM) model; Spatial Bayesian Networks 

4 (Baquero & 

Machado, 2018; 

Hagan et al., 2016; 

Reis et al., 2008; 

(H. J. Mayfield et 

al., 2018b)) 

  

Interpolation technique Kriging 3 (Deshmukh et al., 

2018; Dozsa et al., 

2016; Goncalves et 

al., 2016) 

  

      

Correlation Pearson correlation / Spearman’s correlation 4 (Gonwong et al., 

2017; Gracie et al., 

2014; Soares et al., 

2010) 

(Jean K. Elder 

& Ward, 1978) 

 

 Chi-square test 3 (Barcellos & 

Sabroza, 2001; 

Goncalves et al., 

2016) 

(Ghneim et al., 

2007) 

 

 ANOVA/Bivariate analysis 3 (Barcellos & 

Sabroza, 2000; M. 

C. Schneider et al., 
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2012; Suryani et 

al., 2016) 

 Mallow’s Cp statistics 1  (J. K. Elder et 

al., 1986) 

 

Decision analysis Decision tree analysis 1  (Bier et al., 

2012) 

 

 1144 

 1145 

 1146 

 1147 

 1148 

 1149 

 1150 

 1151 



51 

 

 

 

Table 3. Summary of papers dealing with temporal time-series modeling  1152 

Reference Objective Location 

(Spatial 

scale) 

Study 

period 

(Temporal 

scale) 

Data source Method(s) Predictor(s) Findings  

Human 

leptospirosis 

(n=7) 

       

(Weinberger 

et al., 2014) 

To assess the 

relationships 

between climate 

and 

meteorological 

variables with 

leptospirosis 

cases; to develop 

a predictive model 

for timing of 

leptospirosis 

outbreaks 

New 

Caledonia 

(national) 

2000-2012 

(Monthly) 

Laboratory-

based 

passive 

surveillance 

notification 

Negative Binomial 

Regression model 

(NBM), Principal 

component analysis, 

Bayesian information 

criteria (BIC), partial 

correlations, 

multivariate analysis, 

log-transformation, 

training tests, Serfling 

approach 

Oceanic Nino Index 

(ONI), sea surface 

temperature, Southern 

Oscillation Index 

(SOI), rainfall, and 

temperature 

Significant associations between 

leptospirosis incidence and El 

Nino indices, SST anomalies, 

and rainfall. SST anomaly could 

forecast an increase in 

leptospirosis cases with a 4-

month lag.  

(Coelho & 

Massad, 

2012) 

To examine the 

correlation 

between 

leptospirosis cases 

with climatic 

predictors 

Sao Paolo, 

Brazil (sub-

national) 

1998-2005 

(Daily) 

Hospital 

admission 

report 

Negative binomial 

regression model 

(NBM) 

Rainfall, Max-Min 

humidity, and 

temperature 

Significant correlation between 

hospital admissions and rainfall 

intensity with lag of 14-18 days. 
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(Desvars et 

al., 2011) 

To describe 

seasonality of 

leptospirosis and 

to test for 

correlation with 

meteorological 

factors 

Reunion 

Island 

(national) 

1998-2008 

(Monthly) 

Hospital-

based 

passive 

surveillance 

notification 

Time-series analysis, 

log transformation, 

autocorrelation function 

(ACF), partial 

autocorrelation (PACF), 

augmented Dickey-

Fuller test, ARIMAX, 

cross-correlations 

functions, goodness of 

fit criterion, AIC, 

Student’s test 

Rainfall, temperature, 

global solar radiation 

(GSR) 

Monthly cases of leptospirosis 

influenced by cumulated rainfall 

with lag of 2 months and mean 

temperature and GSR during the 

month. Overall, the model could 

explain 67.7% of the variation of 

leptospirosis incidence.  

(Sudarat 

Chadsuthi et 

al., 2012) 

To determine and 

forecast the 

seasonal pattern of 

leptospirosis 

based on historical 

leptospirosis cases 

and 

meteorological 

data 

Thailand 

(national) 

2003-2009 

(Monthly) 

Passive 

surveillance 

notification 

Time-series analysis, 

log transformation, 

autocorrelation function 

(ACF), partial 

autocorrelation (PACF), 

augmented Dickey-

Fuller test, ARIMAX, 

cross-correlations 

functions, goodness of 

fit criterion, AIC 

Rainfall, temperature The role of rainfall and 

temperature on leptospirosis 

cases varied spatially across 

different regions. In the northern 

region, leptospirosis was driven 

by rainfall with a lag of 8-

months; while in northeastern, 

rainfall and temperature were 

found to be associated with 

leptospirosis incidence with 10-

months and 8-months lag, 

respectively. 

(Joshi et al., 

2017) 

To estimate the 

influence of 

climatic variables 

on leptospirosis 

cases 

Republic of 

Korea 

(national) 

2001-2009 

Daily) 

Passive 

surveillance 

notification 

Time-series analysis, 

multivariate Poisson 

generalized linear 

models, variance 

inflation factor (VIF) 

Daily minimum, 

maximum, and mean 

of temperature, 

minimum relative 

humidity, daily 

cumulative rainfall, 

solar radiation, total 

hours of sunshine 

The minimum temperature, 

rainfall, and solar radiation were 

positively associated with 

leptospirosis cases with a lag of 

0-11-weeks. 
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(Deshmukh 

et al., 2018) 

To determine the 

association of 

climatic factors 

and leptospirosis 

incidence 

Wardha 

district, 

India (sub-

national)  

2015-2016 

(monthly) 

Hospital-

based 

surveillance 

Poisson time-series 

regression 

Minimum-maximum 

temperature, relative 

humidity, rainfall 

Relative humidity in the month 

and rainfall in the previous 

month was the main determinant 

of leptospirosis incidence in a 

given month 

(Matsushita 

et al., 2018) 

To estimate the 

relationship 

between rainfall, 

flooding and 

leptospirosis 

infection  

Manila, 

Philippines 

(sub-

national) 

2001-2012 

(weekly) 

Hospital-

based 

surveillance 

Distributed lag non-

linear (quasi-Poisson) 

model, natural cubic 

spline, quasi-AIC, 

variance inflation factor 

(VIF) 

Rainfall, flood Rainfall were correlated with 

increased hospital admission for 

leptospirosis at a lag of 2 weeks. 

This association may partly be 

explain by flood events. 

Animal 

leptospirosis 

(n=2) 

       

(Lee et al., 

2014) 

To assess and 

compare regional 

seasonal patterns 

in seropositivity 

for canine 

leptospirosis  

United 

States 

(national) 

2000-2010 

(Monthly) 

Laboratory 

database 

Seasonal-trend 

decomposition analysis 

based on Loess (STL), 

logistic regression 

model 

- Each geographic region has 

distinctive seasonal patterns for 

seropositivity. In general, the 

highest positivity rates were 

reported in the fall.  

(Ward, 

2002b) 

To describe the 

seasonal patterns 

of canine 

leptospirosis; to 

assess the role of 

rainfall on canine 

leptospirosis 

incidence  

United 

States and 

Canada 

(national) 

1983-1998 

(Monthly) 

 

Laboratory 

database 

Time-series analysis, 

autocovariance (ACF), 

partial autocovariance 

(PACF), autoregression 

models, Akaike’s 
information criteria 

(AIC), cumulative 

spectrum, Box-Pierce, 

fluctuation tests, z-

distribution, t-statistic,  

Rainfall Rainfall (lag of 3 months) could 

be used to predict canine 

leptospirosis incidence in the U.S 

and Canada. 

1153 
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 1154 Box 1. General framework for the application of spatial analytical tools for leptospirosis studies  

 

Leptospiral infection data could be obtained from either notification or surveys. Case definitions and 

methods used to diagnose leptospiral infection should be clearly reported. Prior to the analysis, spatial 

data type should be determined as point or areal data (by aggregating the data into certain level of 

spatial unit) as well as the spatial and temporal unit of analysis. Incorporating a wider range covariates 

(e.g., human and animal hosts, climatic, physical environments, socioeconomic) into the analysis would 

improve understanding the determinants of the geographical variation of risk of leptospirosis. 

Geographical and temporal patterns of disease risk is considered influenced by the heterogeneity in 

hosts (including humans and animals), climatic and physical environments, socio-demographical and 

also the quality of existing control measures. The spatial and temporal resolutions of those covariates 

should mirror the resolution of the epidemiological data. Based on the type of spatial data, using GIS 

tools (e.g., point or zonal mean statistics), the value of each covariate could be sampled.     

The basic step of spatial analysis is visualization, which aims to describe patterns in the infection data. 

Data could be presented as point or choropleth to describe prevalence/incidence or standardized 

morbidity ratio. To investigate the spatial pattern of the data, according to the type of the data (point or 

areal data) appropriate statistical tests are carried out to test global (first-order) and local (second-order) 

spatial clustering. These tests are essential for exploring disease distribution over space (e.g., random 

or clustered over the space) and to locate high-risk areas. The ultimate objective of spatial and/or 

temporal analysis is to quantify risks and generate spatial and/or temporal prediction models. This stage 

employs both non-spatial and spatial regression techniques. All potential covariates are included and 

selected using fixed-effect regression model. Spatial autocorrelation in the residuals of the final models 

should be assessed, both by using global and local tests.  

Models with the ability to incorporate a spatial dependence component (i.e., Bayesian geostatistical 

model) are the most relevant to use when spatial autocorrelation is evident. Spatial regression models 

for risks (prevalence or incidence) could be constructed in Bayesian statistical software e.g. OpenBUGS 

version 1.4 (Medical Research Council Biostatistics Unit, Cambridge, UK and Imperial College London, 

London, UK). All models should include all selected covariates as fixed effects plus a geostatistical 

random effect, in which spatial autocorrelation between locations is modelled using an exponentially 

decaying autocorrelation function. The outputs of Bayesian models, including parameter estimates and 

spatial prediction at unsampled locations, are termed as “posterior distributions”. The posterior 
distributions in terms of the posterior mean and standard deviation then could be mapped using GIS 

software. This map is known as predictive risk maps. Further details on Bayesian model-based 
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Figure legends 1155 

 1156 

Figure 1. Search and selection process based on PRISMA framework (Moher, Liberati, 1157 

Tetzlaff, Altman, & The, 2009). Total of 115 records published until 31 October 2018 were 1158 

reviewed.  1159 

Figure 2. Number of included articles in the review classified by time period. Articles were 1160 

grouped into three categories based on the epidemiological data used: human, animal, and 1161 

both human and animal infection data. The use of spatial analytical methods in the field of 1162 

leptospirosis appears to grow since 1970s.   1163 

Figure 3. Distribution of selected papers on spatial and/or temporal analysis of human 1164 

leptospirosis (A), animal leptospirosis (B), and both human and animal leptospirosis (C). 1165 

Figure 4. Covariates included in the models and the proportion of studies that incorporated 1166 

those variables. Land-use/land cover (e.g., NDVI, type of residence, presence of paddy field), 1167 

precipitation, altitude, presence of animal reservoirs, population density and poverty were the 1168 

most common predictors included in the models to estimate risk of leptospiral infection. 1169 
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Supporting information (filename: Supp_Table S1- S7.docx) 1181 

Table S1. Keyword combination used in selection process for the systematic review 1182 

Table S2. Summary of the characteristics of studies included in the systematic review  1183 

Table S3.  Summary of studies on mapping human leptospirosis  1184 

Table S4. Summary of studies on mapping animal infection and both animal and human 1185 

infection data 1186 

Table S5. Summary of reviewed studies that explored spatial patterns or spatial 1187 

autocorrelation of leptospirosis  1188 

Table S7. Characteristics of studies that used RS data for leptospirosis epidemiology 1189 
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Table S6. Summary of studies on quantifying risk and modeling on leptospirosis including 1191 

environmental and socioeconomic predictors used (filename: Supp_Table S6.xlsx) 1192 
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 1208 

Figure 1. Search and selection process based on PRISMA framework (Moher, Liberati, Tetzlaff, Altman, & The, 2009). Total of 115 records 1209 

published until 31 October 2018 were reviewed.  1210 
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 1211 

Figure 2. Number of included articles in the review classified by time period. Articles were grouped into three categories based on the 1212 

epidemiological data used: human, animal, and both human and animal infection data. The use of spatial analytical methods in the field of 1213 

leptospirosis appears to grow since 1970s.   1214 
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 1215 

Figure 3. Distribution of selected papers on spatial and/or temporal analysis of human leptospirosis (A), animal leptospirosis (B), and both 1216 

human and animal leptospirosis (C). 1217 
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 1218 

Figure 4. Covariates included in the models and the proportion of studies that incorporated those variables. Land-use/land cover (e.g., NDVI, 1219 

type of residence, presence of paddy field), precipitation, altitude, presence of animal reservoirs, population density and poverty were the most 1220 

common predictors included in the models to estimate risk of leptospiral infection. 1221 

 1222 




