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Abstract An emerging disease is one infectious epidemic

caused by a newly transmissible pathogen, which has either

appeared for the first time or already existed in human

populations, having the capacity to increase rapidly in

incidence as well as geographic range. Adapting to human

immune system, emerging diseases may trigger large-scale

pandemic spreading, such as the transnational spreading of

SARS, the global outbreak of A(H1N1), and the recent

potential invasion of avian influenza A(H7N9). To study

the dynamics mediating the transmission of emerging dis-

eases, spatial epidemiology of networked metapopulation

provides a valuable modeling framework, which takes

spatially distributed factors into consideration. This review

elaborates the latest progresses on the spatial metapopula-

tion dynamics, discusses empirical and theoretical findings

that verify the validity of networked metapopulations, and

the sketches application in evaluating the effectiveness of

disease intervention strategies as well.
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1 Introduction

The term metapopulation was coined by Levins [1] in 1969

to describe a population dynamics model of insect pests in

farmlands, yet the perspective has been broadly applied

to study the effect of spatially distributed factors on evo-

lutionary dynamics [2], including genetic drift, pattern

formation, extinction and recolonization, etc. The devel-

opment of metapopulation theory, in conjunction with the

fast development of complex networks theory, lead to the

innovative application of the networked metapopulation in

modeling large-scale spatial transmission of emerging dis-

eases. This interdisciplinary research field has attracted

much attention by the scientific communities from diverse

disciplines, such as public health, mathematical biology,

statistical physics, information science, sociology, and

complexity science. New insights are contributed to under-

standing the spatial dynamics of epidemic spreading, which

provides valuable support to public healthcare.

This review presents a survey of recent advances in the

emergent discipline of networked metapopulation epide-

miology, which is organized as follows. Section 2 intro-

duces some preliminaries of the compartment model,

network epidemiology, and networked metapopulation, and

also elucidates their relevance. Section 3 specifies the

validity of networked metapopulation. Section 4 focuses on

the recent progresses on metapopulation dynamics. The

application in evaluating the performance of intervention

strategies is presented in Sect. 5, and some outlooks are

provided at last.
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2 Dynamical models of infectious diseases: from single

population to networked metapopulation

2.1 Compartment model

To study the phenomena of epidemic spreading in human

society, a variety of dynamical models have been pro-

posed [3, 4]. The compartment model is one of the simplest

yet basic epidemic models, which was first introduced by

Bernoulli [5] in the 18th century. Assuming that a popu-

lation of individuals is mixed homogeneously, this model

organizes the persons into different compartments (states),

according to their health status, e.g., susceptible (denoted

by S, those healthy ones who may acquire the infection),

infectious (I, those infected ones who are contagious), and

recovered (R, those who are recovered from the disease).

Within each compartment, all individuals are identical. The

transitions between different compartments depend on the

specific transition rates. For example, the transmission rate

b represents the infection probability for a susceptible

individual that encounters an infectious person, and the

recovery rate l represents the probability with which an

infectious individual is recovered.

If the disease could not endow recovered persons with a

long lasting immunity but infect them again, e.g., seasonal

flu, asthma, gonorrhoea, the related epidemic reactions are

well described by the so-called SIS model; otherwise, if

recovered people become immune permanently to the

disease, e.g., pandemic influenza, pertussis, smallpox, the

epidemic dynamics can be characterized by the SIR model

properly. Figure 1a, b illustrate the relevant compartment

transitions in the SIS and SIR models, respectively. The

dynamical evolution of these models can be simply delin-

eated by ordinary differential equations [3].

One key parameter characterizing the severity of a dis-

ease is the basic reproductive number, R0, which identifies

the expected number of infected individuals generated by

introducing an infectious carrier into an entire susceptible

population. This parameter signifies the epidemic threshold

applied for predicting whether or not an infectious disease

will prevail. Typically, given a ‘‘well-mixed’’ population,

R0 ¼ b=l. If R0\1, the disease dies out quickly, which

implies that the population remains at the disease-free

state.

2.2 Network epidemiology

Due to the ubiquity of complex systems in modern society,

the study of complex networks becomes prosperous [6–9] .

The Internet and human friendship networks are just a few

examples that can be regarded as systems comprised of a

large number of connected dynamical units. The most

intuitive approach of modeling such complex systems is to

treat them as networks, where nodes represent component

units and edges represent connectivity. Importantly,

empirical findings have unraveled the presence of universal

features in most socio-technical networks, e.g., small-

world [10], scale-free (SF) [11], which inspires extensive

studies towards a better understanding about the impact of

population infrastructures (network connectivity) on

dynamical processes [12–15], including robustness [16,

17], synchronization [18–20], consensus [21–24], con-

trol [25–28], evolutionary game [29–36], traffic rout-

ing [37–39], self-organized criticality [40–43], etc.

Assuming that interactive individuals are mixed homo-

geneously, the aforementioned epidemic compartment

model neglects the significance of population connectivity.

Such simplification can hardly solve new puzzles emerged in

the present networking society. For example, why is it

extremely difficult to eradicate computer viruses from the

Internet or the World Wide Web, and why do those viruses

have an unusual long lifetime [44]? Similar matters have

been observed in diverse systems, ranging from the web of

human sexual relations to vaccination campaigns [4]. One

key factor inducing such problems is the scale-free property

of the networked systems, which causes a serious trouble that

the threshold of disease outbreak vanishes [45]. Within

complex networks, the basic reproductive number is

R
sf
0 ¼ R0½1þ ðCVÞ2�, with CV identifying the coefficient of

variation of the degree distribution (degree represents the

number of edges k per node) [46]. For large networks taking

on a scale-free heterogeneous topology, R0 is always larger

than 1 nomatter how small the transmission rate may be, due

to the infinite variance of the degree distribution.

This meaningful finding has motivated the research of

network epidemiology, which concerns particularly the

spreading of epidemics in human social networks

[4, 14, 47]. Many subsequent works investigated exten-

sively the epidemic threshold on networks with special

RecoveredSusceptible Infectious
µβ

µ
β

Susceptible Infectious

(a) (b)

SIS SIR

Fig. 1 (Color online) Schematic illustrations of the SIS (a) and the SIR (b) compartment models, where b, l denote the transmission rate and the

recovery rate, respectively
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topological features, such as degree correlations [48],

small world [49], community [50], edge length [51], and

K-core [52]. Parshani et al. [53], Castellano and Pastor-

Satorras [54] demonstrated that the vanishing epidemic

threshold of the SIS model derives from the active

behavior of the largest hub, which acts as a self-sus-

tained source of the infection. Such disastrous effect of

highly connected hubs can also be observed in reality,

such as the presence of core groups in the propagation of

sexually transmitted diseases, and the appearance of the

patient zero that induces the dissemination of human

immunodeficiency virus (HIV). Considering that the

threshold condition generally predicts the final state of

the epidemic evolution, Li and Wang [49] studied the

relaxation behavior of epidemic spreading before reach-

ing a final disease-free or endemic phase.

2.3 Networked metapopulation

Although the performance of public healthcare systems has

been improved prominently to weaken the threat of

emerging diseases, it is impossible to entail a world free of

infectious pathogens [55]. From the beginning of this new

century, we have already witnessed several cases of the

large-scale geographic transmission of pandemics. In 2003,

through the international airline network, the SARS coro-

navirus (SARS-CoV) was rapidly transmitted from Hong

Kong to more than 30 countries [56, 57]. Several years

later, in 2009, the A(H1N1) swept across the world through

public transportation networks again: With only 3–4

months, it had spread over about 200 countries [58–61].

Recent potential invasion of avian influenza A(H7N9)

poses a new challenge [62–65]. It seems that the wide-

spread risk of emerging diseases is higher than before.

This urgent circumstance stems from the changes of

human social ecology in population distribution as well as

human mobility patterns [66, 67]. Crowded metropolises

resulting from the urbanization process induce people’s

frequent contacts, and the fast development of massive

transportation (e.g., civil aviation) generates a nonlocal

pattern of human mobility, sharply reducing the time of

travel as well as the distance between populous cities.

It is not convincing to describe the large-scale spatial

pandemic spreading by directly following the routine of

network epidemiology, since the network perspective still

concerns the epidemic outbreak in a single population,

despite considering the connectivity structure among hosts.

This can hardly capture the key features of spatial trans-

mission of infectious diseases: epidemics prevails inside

separate locations such as cities, each of which can be

regarded as a population, and is transmitted among popu-

lations through the travel of infected individuals.

Spatial distribution of populations and human mobility

among connected locations are thepivotal elementsmediating

the transmission of pandemic diseases. To introduce spatially

distributed factors into modeling substrates, it is intuitive to

generalize the network model by defining each node as a

subpopulation that has a specific location, in which a popu-

lation of individuals interplays according to the compartment

rule. People are also permitted to transfer among subpopula-

tions through mobility networks. This individual-network

frame organizes the entire system into networked populations,

leading to an important class of model in modern epidemiol-

ogy, namely, the networked metapopulation. Figure 2 illus-

trates the basic modeling structure.

3 Validity of networked metapopulation

Aside from the above conceptual descriptions, it is also

essential to verify the validity of the model from theoretical

as well as empirical perspectives.

x

y

x

y

S

I

R
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(a) (b)

Metapopulation

network

Fig. 2 (Color online) Illustration of the individual-network frame of the networked metapopulation model. a The model is composed of a

network of subpopulations. The disease transmission among subpopulations stems from the mobility of infected individuals. b Each

subpopulation refers to a location, in which a population of individuals interplays according to the compartment rule (e.g., SIR) that induces local

disease outbreaks. Individuals are transferred among subpopulations via mobility networks
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Developing a probabilistic metapopulation with the

consideration of long-range human migrations via a

worldwide aviation network composed of 500 largest air-

ports, Hufnagel et al. [68] first demonstrated the feasibility

of forecasting the real-world transmission of SARS through

computational approaches. To study the spatiotemporal

patterns of the transmission process, Colizza et al. [69]

defined a statistical measure based on the information

entropy, which quantifies the disorder level encoded in the

evolution profiles of disease prevalence. Comparing the

pandemic spreading on a data-driven networked metapop-

ulation with that on random reshuffled models providing

null hypotheses, the authors unveiled the presence of a

high-level heterogeneity in the geographic transmission of

epidemics.

To assess the predictability of metapopulation models,

one typical approach focuses on the coincident extent

between the simulation results and the realistic surveillance

reports for each contaminated region, which is an arduous

task due to the sophisticated calibration of parameters as

well as the unavoidable noise presented in the surveillance

process. Concerning the logistical feasibility of the model,

one can resort to an alternative simple means of inspecting

the evolution of related scaling laws [70], which is relevant

to critical transition patterns. The scaling theory concerns

the functional relations describing the data collapsing onto

a power-law curve, and the relations of the critical-point

exponents [71].

The Zipf’s law and the Heaps’ law are two representa-

tive scaling laws that usually emerge together in various

complex systems, however, their joint emergence has

hardly been clarified [72]. Using the data of laboratory

confirmed cases of SARS, H5N1, and A(H1N1) to analyze

the joint emergence of these two scalings in the evolution

process of large-scale geographic transmissions, Wang

et al. [70] unraveled a universal feature that the Zipf’s law

and the Heaps’ law are naturally shaped to coexist at the

initial stage of an outbreak, while a crossover comes with

their incoherence later before reaching a stable state, where

the Heaps’ law still presents with the wane of the strict

Zipf’s law. With the census populations and domestic air

transportation data of the United States (US) [73, 74], a

data-driven metapopulation network model on the US

country level is developed to analyze the evolution patterns

of scaling emergence. In contrast with a random reshuffled

model with a homogeneous structure, the data-driven het-

erogeneous metapopulation successfully reproduced the

scaling transitions observed in the real-world pandemics.

This demonstrates that the high-level heterogeneity of

infrastructure plays a key role in characterizing the spatial

transmission of infectious diseases, which also provides a

new insight to clarifying the interdependence between the

Zipf’s and Heaps’ scaling laws.

Within each subpopulation, the individuals are mixed

homogeneously, according to the coarse-grained approxi-

mation of the metapopulation framework. Interestingly,

this assumption can be supported by recent empirical

studies on the intra-urban human mobility. The analysis of

the data generated by the mobile phone or GPS shows that

human movement in the urban scale (e.g., inside a city)

generally has an exponential or binomial trip-length dis-

tribution [75–79]. Although this does not simply mean that

short-range human mobility is random, the related

dynamical feature is similar with that of the Boltzmann

gas, if the relevance among individuals is so weak as to be

negligible [76, 80, 81]. Accordingly, the homogeneous

mixing (within each subpopulation) assumption is adopted

to ease the computation.

More promisingly, full-scales computational models

become increasingly popular, due to the continuous

increase of computer power as well as the fast technical

developments of data collection and processing [82–84]. In

some cases, the real-time forecast of pandemic spreading is

becoming reality [85]. Technical details for the estimation

and validation of a large number of parameters in these

models are beyond the interest of this review. Next section

focuses on the recent theoretical progress of metapopula-

tion dynamics.

4 Two scales of dynamics: recent progress

As stated in Sect. 2, the networked metapopulation model

is constructed with the individual-network frame, where

the individuals are organized into social units (e.g., vil-

lages, towns, cities) defined as subpopulations, which are

connected by transportation networks that identify the

mobility routes. The disease prevails inside each subpop-

ulation due to interpersonal contacts, and is transmitted

among subpopulations through the mobility of infected

individuals. Typically, the model is comprised of two

scales of dynamics: (i) disease invasion among different

subpopulations; (ii) disease reaction within each subpopu-

lation. Recent progresses on these two aspects are specified

here.

4.1 Inter-subpopulation invasion

The substrate of metapopulation depends on the spatial

structure of social environment, such as transport infra-

structures and mobility patterns. The lack of fine-grained

data capturing structural features of human mobility sys-

tems leads to the traditional application of random graphs

or regular lattices, which assumes homogeneous infra-

structures for the mobility substrates. To generalize meta-

population models with network approaches, the first
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attempt was contributed by Rvachev and Longini [86], in

which 52 major cities worldwide in that epoch were con-

nected through an intercity aviation transportation network.

They applied this mathematical model to simulate the

global spread of the 1968–1969 Hong Kong (H3N2) flu.

Subsequently, comparing the effect of non-local human

anomalous diffusion with that of the ordinary diffusion

behavior, Brockmann et al. [87] unraveled that long-range

human mobility and interactions generate novel irregular

spreading patterns without an apparent wavefront. Such

complex dynamical features require a mathematical

description of fractional diffusion equations, and they are

also well captured by the networked metapopulations.

Colizza et al. [69] developed a global stochastic meta-

population model in, using the data of worldwide sched-

uled flights and census populations to establish a complete

worldwide air transportation network (more than 3,000

airports). They studied the predictability and the reliability

of the pandemic forecast with respect to the intrinsic sto-

chasticity, and declared that the topological heterogeneity

reduces the predictability, whereas the high-level

heterogeneity of traffic flows improves the pandemic

predictability.

As illustrated by Fig. 3a, air traffic network acts as a

major channel serving human long-range travels, which

mediates the pandemic transmission on a large geographic

scale. The epidemic dynamics occurred under this scenario

is well characterized by the reaction-diffusion pro-

cesses [88], which are also widely applied to model phe-

nomena as diverse as genetic drift, chemical reactions, and

population evolution [2].

From a theoretical viewpoint, it is significant to analyze

the epidemic threshold, which is instructive for the

assessment of the disease transmissibility as well as the

outbreak potential. Such information is also important to

regulate the implementation of intervention strategies.

Based on the empirical evidences that the topology of

various socio-technical networks including the airline net-

work presents a high-level heterogeneity, Colizza

et al. [88] studied the effect of general heterogeneous

networks, demonstrating that the epidemic threshold is

significantly decreased with the augmentation of

(a)

(b)

US Air transportation network

US commuting network

Fig. 3 (Color online) Air transportation network (a) vs. commuting network (b) of the US. Long-range airlines dominate the air transportation

network, whereas the commuting routes are much geographically localized
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topological fluctuations. Considering that the theory

developed in Colizza et al. [88] is based on the simplifi-

cation that individual diffusion rate per subpopulation is

inversely proportional to the degree of subpopulations,

Colizza and Vespignani [89] generalized the study by

introducing more realistic diffusion rules, such as the

traffic- and the population-dependent patterns. Importantly,

using the approach of branching process, Colizza and Ve-

spignani [89] proposed a global invasion threshold, RH,

which distinguishes the lower bound condition for trans-

mitting the infections to downstream unaffected subpopu-

lations. The formula of RH can be summarized as

RH ¼ EðR0; lÞ � T ðk; h;x0Þ, which combines the epide-

miology factors EðR0; lÞ with the diffusion properties of

mobility networks T ðk; h;x0Þ. For large networks with a

high-level topological heterogeneity, the mobility item T

diverges, i.e., T �1 ! 0, thus RH is always larger than

unity, which leads to a decreased epidemic threshold.

Based on the observation that human beings usually do not

perform random walks, yet have specific travel destina-

tions, Tang et al. [90] addressed the effect of objective

traveling behavior which enlarges the final morbidity.

The above studies mainly concern the influence of

human random diffusion, usually defining the mobility

scheme as a Markovian memoryless diffusive process [91].

Recent empirical findings on human mobility have shown

the crucial role of commuting mobility in human daily

transportation, which is reflected by the individual recur-

rent movement between frequently visited locations such

as household, school, and workplace [92–95]. Fig. 3b

visualizes the US commuting network with the census data

on commuting trips between counties [96]. Evidently, the

structural features are different between the commuting

network and the air transportation network.

It might be infeasible to analyze the non-Markovian

properties of human commuting with previous reaction-

diffusion theory. In this regard, Balcan and Vespignan-

i [91] extended the metapopulation framework by consid-

ering the impact of human recurrent commuting, which

assumes that individuals remember their subpopulations of

residence, with a constraint that commuters staying at their

destination subpopulations cannot continue moving to

other places but return to the residences with a certain rate.

The approach of time-scale separation is applied to perform

theoretical analysis, since in reality the number of frequent

commuters only accounts for a small fraction of local

populations. This leads to a mean-field description of sta-

tionary populations distribution. Generalizing the theory of

branching process, Balcan and Vespignani [97] obtained

the global invasion threshold for the reaction-commuting

networked metapopulation systems, which establishes a

new threshold relevant to the typical visiting duration of

commuters. With a high return rate, the sojourn time (i.e.,

length of stay) of infected commuters might be too short to

transmit the infection to susceptibles in adjacent unaffected

subpopulations.

To study the dynamical differences between the reac-

tion-commuting and the reaction-diffusion processes, Belik

et al. [98] analyzed their respective traveling wave solu-

tions on the one dimensional lattice. As the diffusion rate

increases, spatially constrained human commuting gener-

ates a saturated threshold of the wave front velocity,

whereas the reaction-diffusion model has an unbounded

front velocity threshold. Such distinction implies that the

estimation of transmission speed might be overestimated

under the reaction-diffusion framework. Besides, they have

also found that the characteristic sojourn time spent by

commuters induces a novel epidemic threshold. Since air-

line traffic and ground commuting networks both serve

human routine transportation, Balcan et al. [94] developed

a multiscale networked metapopulation model, where the

commuting networks in about 30 countries were embedded

into the worldwide long-range air transportation network.

The introduction of short-range commuting mobility

enhances the synchronization of epidemic evolution pro-

files for subpopulations in close geographical proximity.

Human beings are intelligent. Their risk perception and

adaptive abilities promote the active response to epidemic

outbreaks, which might in turn alter the disease propaga-

tion [99–101]. Many works [102–111] have investigated

the effect of disease-behavior mutual feedback on com-

partment models as well as network epidemiology, and

recent research topics also begin the generalization to deal

with human behavior of mobility response. For example,

Meloni et al. [112], Wang et al. [113] analyzed the impact

of self-initiated mobility on the invasion threshold, show-

ing a counterintuitive phenomenon that the mobility

change of avoiding infected locations with high preva-

lences enhances the disease spreading to the entire system.

4.2 Intra-subpopulation contagion

The above studies focus on understanding the influence of

inter-subpopulation human mobility patterns, generally

assuming that the individuals behave identically in each

subpopulation. However, the diversity of individual

behaviors in different subpopulations also affects the pan-

demic spreading.

Although it is well-known that human contacts have

crucial impact on the spatiotemporal dynamics of infec-

tious diseases in a population [3], previous works assumed

that individual contact patterns are identical among all

subpopulations. Since the basic reproductive number, R0, is

equivalent to the same constant in all subpopulations, it is
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predictable that the epidemic attack rates as well as evo-

lution profiles in different areas are similar, as one can

clearly observe in [114].

At the intra-subpopulation scale, aside from the empir-

ical support from the data analysis of intra-urban human

mobility (see Sect. 3), the feasibility of the ‘‘well-mixed’’

contacts assumption is also consistent with the recent

findings on interactive patterns of human contact. For

example, diverse digital instruments, e.g., wireless sen-

sors [115], active Radio Frequency Identification (RFID)

devices [116, 117], and WiFi [118–120] (we resort to the

WiFi technology in our social experiments, due to its

ubiquity in urban areas), have been deployed in realistic

social circumstances to collect the data of human close

proximity contacts [121]. The data analyses have unveiled

an unexpected feature that the squared coefficient of vari-

ance is quite small for the distribution of the number of

distinct persons each individual encounters per day [115–119],

which implies the presence of a characteristic contact rate

within each subpopulation.

Note that the characteristic contact rate might vary

evidently in different subpopulations. As illustrated by

empirical studies [122, 123], in reality, location-specific

factors are the potential drivers resulting in a substantial

variation of disease incidences between populations.

Inspired by this finding, Wang et al. [124, 125] introduced

two categories of location-specific human contact patterns

into a phenomenological reaction-commuting metapopu-

lation model. A simple destination-driven scenario is

considered first, where individual contact features are

determined by the visited locations. Since the residence

and the destination can be distinguished by the commuting

mobility, an origin-driven scenario is also introduced,

where the contacts of individuals are relevant to their

subpopulations of residence. Figure 4a–b illustrate the

modeling structures of these two scenarios.
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Fig. 4 (Color online) Effect of location-specific human contact patterns. a, b The structure of the phenomenological metapopulation model used

in [124], where the reaction-commuting processes couple two typical subpopulations x, y. In the destination-driven scenario (a), individual

characteristic contact rates (cx, cy) depend on the visited locations, while in the origin-driven scenario (b), the contacts of individuals correlate to

their subpopulations of residence. c, d The phase diagrams of the global R
g
0 under these two scenarios, respectively. The white dashed curve in

each panel shows the global threshold R
g
0 obtained through the NGM analysis. From Wang et al. [124]
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In these cases, it is infeasible to analyze the invasion

threshold through the theory of branching process, since the

prerequisite of identical basic reproductive number in all

subpopulations is invalid. Instead, the next generationmatrix

(NGM) approach [126] can be applied to analyze the global

outbreak threshold R
g
0 here. Due to the mixing of individuals

with heterogeneous contact capacities in each subpopula-

tion, which is analogous to the effect induced by annealed

heterogeneous networks [45], the addressed location-spe-

cific contact patterns reduce the epidemic threshold signifi-

cantly, and thus favor disease outbreaks in contrast to the

traditional homogeneous cases. Figure 4c–d show the phase

diagrams of the global R
g
0 under these two types of contact

patterns, respectively. Interestingly, the variance of disease

prevalence under the destination-driven scenario has a

monotonic dependence on the characteristic contact rates,

whereas under the origin-driven scenario, counterintuitively,

the increase of contact rates weakens the disease prevalence

in some parametric ranges. This topic was also extended to

study the metapopulation network, which unraveled a new

problem of disease localization, i.e., the epidemic might be

localized on a finite number of highly connected hubs.

Other types of human behavioral diversity have also been

considered recently. Motivated by the evidence that the

diversity of travel habits or trip durations might yield het-

erogeneity in the sojourn time spent at destinations, Poletto

et al. [127] studied the impact of large fluctuations of vis-

iting durations on the epidemic threshold, finding that the

positively-correlated and the negatively-correlated degree-

based staying durations lead to distinct invasion paths to

global outbreaks. Based on the observation that the specific

curing (recovery) condition depends on the available med-

ical resources supplied by local health sectors, Shen

et al. [128] studied the effect of degree-dependent curing

rates, which demonstrates that an optimal intervention

performance with the largest epidemic threshold is obtained

by designing the heterogeneous distribution of curing rates

as a superlinear mode. Since the epidemic spreading is also

relevant to casual contacts during public gatherings, Cao

et al. [129] introduced the rendezvous effect into a bipartite

metapopulation network, and showed that the rendezvous-

induced transmission accelerates the pandemic outbreaks.

5 Performance of intervention strategies

The study of metapopulation model not only expands our

knowledge on the dynamics of spatial epidemic spreading,

but also manifests the power in evaluating the performance

of intervention strategies. For example, although the strat-

egy of travel ban is usually deployed during a pandemic

outbreak in reality, it is unclear whether the effectiveness is

excellent enough in limiting the pandemic spreading.

Counterintuitively, recent studies have unraveled the lim-

ited utility of travel restrictions: Even if the worldwide air

traffic is decreased to an unprecedented low level, e.g., less

than 10 %, the disease landing to unaffected regions is only

postponed several weeks [130–133]; the contribution to

reducing the morbity is also quite limited [130, 131, 134].

Such findings are consistent with the aforementioned fact

that the global invasion threshold is decreased significantly

by the presence of the high-level topological heterogeneity.

It thus becomes urgent to study the controllability of intra-

subpopulation measures, such as the usage of vaccine or

antiviral drugs, and the implementation of community-based

interventions, which are typical containment strategies sug-

gested by the World Health Organization (WHO) [55]. To

estimate and also to improve the performance of disease

response plans on decreasing the morbidity, large-scale

computational simulations have been performed extensively

to study various types of pharmaceutical interventions [4, 14,

56, 57, 60, 68, 134–139],which aid in identifying the targeted-

groups and guiding the deployment of limited resources.

Despite technical difficulties, it is probable to analyze

the delaying effect of different strategies. With the theory

of renewal process, Wang et al. [140] developed a general

mathematical framework to deal with the scenario of

minimum metapopulation, where two typical subpopula-

tions are connected by the travel flows. This is a rational

approximation of the initial stage of an outbreak. It is

shown that with a short response time, the intra-subpopu-

lation measures perform much better than that of the inter-

subpopulation travel restrictions. However, this advantage

is weakened considerably as the response time increases.

Recent clinical evidences obtained from the real-world

pandemic campaigns have uncovered new problems on the

prompt response with pharmaceutical interventions. For

example, there presents an unavoidable delay of 4–6

months for developing the proper vaccine against a par-

ticular pandemic virus [141–143]; and an extensive usage

of antiviral drugs might induce the prevalence of antiviral

resistance [144–146]. Therefore, it is crucial to thoroughly

examine the effectiveness of community-based interven-

tions by using the models of networked metapopulation,

which deserves more efforts in near future.

6 Conclusions and outlooks

Networked metapopulation contributes an ideal epidemic

modeling platform, which promotes our understanding on

the dynamics of large-scale geographic transmission of

emergent diseases. The models have the potential to be

applied in the real-time numerical pandemic forecast, and

are also very useful in evaluating the effectiveness of dis-

ease response strategies.
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Recently, the good, the bad and the ugly facts of the Big

Data have triggered extensive debates around the world.

The interdisciplinary research of metapopulation epidemi-

ology establishes a paradigm for the study of data science,

since one remarkable progress in this field is the innovative

usage of fine-grained data in verifying key assumptions and

in establishing model substrates. Technical developments

in the data collection, processing and analysis not only

offer key insights into the dynamical properties of human

mobility infrastructures as well as human behavioral

diversity, but also raise new questions referring to their

influences on the spatial transmission of emerging infec-

tious diseases. Such methodology can be applied to study

diverse types of contagion phenomena, including the

spreading of computer viruses, information, innovations,

emotion, behavior, crisis, culture, etc.

At the end of discussions, some open questions still

deserve to be addressed. The development of the sophisti-

cated computational techniques and the consideration of

detailed human/population dynamics are quite important for

the research of spatial epidemiology. However, it is also

crucial to understand the fundamental principals governing

the complex contagion phenomena [147]. In this regard, an

interesting question poses itself, namely, whether it is

possible to define a unified mathematical framework that

can characterize different kinds of spatial dynamics models

of emerging diseases.

It is also probable to generalize present theoretical

results to deal with reverse problems, such as the identifi-

cation of infection sources [147–149], possible mobility

networks [150], and disease invasion process. Such infer-

ence problems are valuable to establish an optimal

response plan for tracing and preventing the pandemics.
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30. Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys

Rep 446:97–216

Chin. Sci. Bull. (2014) 59(28):3511–3522 3519

123



31. Rong ZH, Li X, Wang XF (2007) Roles of mixing patterns in

cooperation on a scale-free networked game. Phys Rev E

76:027101

32. Wang Z, Wang L, Yin ZY et al (2012) Inferring reputation

promotes the evolution of cooperation in spatial social dilemma

games. PLoS One 7:e40218

33. Wang Z, Szolnoki A, Perc M (2013) Interdependent network

reciprocity in evolutionary games. Sci Rep 3:1183

34. Zhang GQ, Sun QB, Wang L (2013) Noise-induced enhance-

ment of network reciprocity in social dilemmas. Chaos Soliton

Fract 51:31–35

35. Tan SL, Lv JH, Yu XH et al (2013) Evolution and maintenance

of cooperation via inheritance of neighborhood relationship.

Chin Sci Bull 58:3491–3498

36. Jin Q, Wang L, Xia CY et al (2014) Spontaneous symmetry

breaking in interdependent networked game. Sci Rep 4:4095

37. Wang WX, Wang BH, Hu B et al (2005) General dynamics of

topology and traffic on weighted technological networks. Phys

Rev Lett 94:188702

38. Meloni S, Arenas A, Moreno Y (2009) Traffic-driven epidemic

spreading in finite-size scale-free networks. Proc Natl Acad Sci

USA 106:16897–16902

39. Wu J, Tse CK, Lau FCM et al (2013) Analysis of communi-

cation network performance from a complex network perspec-

tive. IEEE Trans Circuits Syst I 60:3303–3316

40. Zhang GQ, Wang L, Chen TL (2009) Analysis of self-organized

criticality in weighted coupled systems. Phys A 388:1249–1256

41. Zhang GQ, Tirnakli U, Wang L et al (2011) Self organized

criticality in a modified Olami–Feder–Christensen model. Eur

Phys J B 82:83–89

42. Wang L, Zhang GQ, Chen TL (2011) Self-organized criticality

analysis of earthquake model based on heterogeneous networks.

Commun Theor Phys 55:89–94

43. Brummitt CD, D’Souza RM, Leicht EA (2012) Suppressing

cascades of load in interdependent networks. Proc Natl Acad Sci

USA 109:E680–E689

44. Pastor-Satorras R, Vespignani A (2004) Evolution and structure

of the internet: a statistical physics approach. Cambridge Uni-

versity Press, New York

45. Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in

scale-free networks. Phys Rev Lett 86:3200–3203

46. Lloyd AL, May RM (2001) How viruses spread among com-

puters and people. Science 292:1316–1317

47. Fu XC, Small M, Chen GR (2014) Propagation dynamics on

complex networks: models, methods and stability analysis.

Wiley, New York
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