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ABSTRACT 

The modified nonlinear Schr6dinger (MNLS) equation for spa- 
tial evolution of weakly nonlinear water surface waves is shown 
to yield good comparisons with experimental measurements of 
bichromatic waves in a long tank. While linear theory does not 
predict neither the phase velocity nor the evolution of the en- 
velope well, the cubic nonlinear Schr6dinger (NLS) equation im- 
proves the prediction of the phase velocity but not the modulation 
of the envelope. The MNLS equation predicts both the evolution 
of individual wave crests and the modulation of the envelope over 
longer fetch, and thus permits accurate forecasting of individual 
ocean wave crests over a fetch of several tens of wavelengths. 
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INTRODUCTION 

Wave grouping is a prominent feature of ocean waves, fre- 
quently discussed in the literature. It may be partly responsible 
for the generation of freak waves. The simplest realization of 
wave groups is the bichromatic wave, achieved by mixing two 
monochromatic waves. In the present paper we use experiments 
of bichromatic waves as a benchmark to assess the capability of 
three different simulation models to describe wave group evolu- 
tion. The three models are the linear wave equation, the cubic 
nonlinear Schr~dinger (NLS) equation and the modified nonlinear 
SchrSdinger (MNLS) equation. 

It is common to stress the importance of time-domain sim- 
ulation, as opposed to frequency-domain simulation, of nonlin- 
ear ocean waves. However, conventional methods for measuring 
waves in the laboratory and the field yield time series at selected 
spatial locations. Space evolution is implied between the selected 
points. For such cases a time-domain simulator is likely not very 
useful, or at best quite difficult to initialize. A better approach is 
to interchange the role of space and time in the evolution equa- 
tion to obtain a genuine space-domain simulator. The nonlinear 

SchrSdinger equation and its higher order modifications are par- 
ticularly well-suited for this purpose. Lo ~ Mei (1985) first pre- 
sented comparisons between experiments and the space evolution 
predicted by the MNLS equation, and obtained good results. 

Recently the MNLS equation was enhanced with exact linear 
dispersion (Trulsen et al. 2000) for better bandwidth resolution 
for application to realistic ocean wave spectra. This approach 
is based on the assumption that the spectrum to leading order 
of approximation is narrow-banded. The remaining part of the 
spectrum is reconstructed only to the extent that it is nonlinearly 
forced by, and thus coherent with, the linear waves near the spec- 
tral peak. Special care must be taken for proper initialization 
to distinguish between linear free waves and nonlinearly forced 
waves. To this end we have developed an iterative technique by 
which the extracted spectrum of linear free waves is refined until 
exact reconstruction of the measured complex spectrum has been 
achieved within the bandpass region. 

The natural spatial scale of nonlinear modulation is ~/= e2kcx, 
where e = kcac is the wave steepness, kc and ac are characteristic 
scales for wavenumher and amplitude, and x is the fetch. The 
present simulation results of the MNLS equation suggest that 
prediction of the evolution of individual wave crests is good at 
least up to ~/-- 3, while it becomes poor for ~/> 5. If we assume 
e = 0.1 for typical ocean waves, then ~} = 5 roughly corresponds to 
80 wavelengths. For 12 s waves on deep water, corresponding to 
220 m wavelength, that could imply up to half an hour warning for 
individual wave crests for propagation over 16 km in long-crested 
seas. Proper verification should be done against experimental 
data for short-crested seas. 

Similar work with the cubic nonlinear Schr~idinger (NLS) equa- 
tion was done by Shemer et al. (1998) for deep water and with 
the Korteweg de-Vries equation for shallow water by Kit et al. 
(2000). The Zakharov equation, which in its original form is 
a time-domain equation, has been discretized for application to 
measurements (Rasmussen ~ Stiassnie 1999); recently it was cast 
as a space domain simulator for one horizontal dimension by She- 
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mer et al. (2001). 

T H E  E X P E R I M E N T  

The experiments were carried out in the 260 m long and 10.5 
m wide towing tank at Marintek. Waves were generated by a 
horizontally double-hinged flap-type wave maker. The depth of 
the tank is 10 m for the first 80 m closest to the wave maker, 
and 5 m elsewhere. A vertical bot tom jump connects the two 
tank parts. A sloping beach is located at the far end of the tank 
opposite the wave maker. The wave elevation was measured by 
wave staffs at different locations simultaneously downstream the 
tank, see figure 1. 

.•Y wavemaker beach 
, / 
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9.3 40 80 120 160 200 x (m) 

F igure  1: Sketch of the  wave t a n k  with  the  loca t ions  of the  
wave staffs. 

The time series measured by probe 1 at 9.3 m is used in this 
paper for initialization of the numerical simulations. Probe 2 is 
at 40 m and is 0.5 m in front of probe 3. Probes 6 and 8 are 0.4 
m ahead of and behind probe 7 at 160 m. Probe 9 is 1.5 m from 
the tank wall and serves to assess the importance of transversal 
modulations. 

We consider two experiments with bichromatic waves (test 60 
and test 61) which were done according to the following specifi- 
Cations: 

Test Wave periods 
TlIsl T2Isl 

60 1.90 2.10 
61 0.95 1.05 

Wave heights 
H1 [m] H2 [m] 

0.16 0.16 
0.04 0.04 

Further details of the experiment have been reported in Stans- 
berg (1993, 1995, 1998). 

M A T H E M A T I C A L  M O D E L  F O R  S P A C E - D O M A I N  S I M -  
U L A T I O N  

Starting from the inviscid equations for potential flow, nor- 
malized by the characteristic wavenumber k~ and frequency w¢, 
and assuming constant depth h which is great in comparison with 
the wavelength k~h >> 1, we make an assumption that  the veloc- 
ity potential ~b and surface displacement ~ of the wave field can 
be expanded in harmonic expansions 

1 (Aei(X_t)+~ A2e21(z_ t )+2 z ¢ = ¢ + 5  + 

+Aze si(~-t)+3~ + .--  + c.c.~ (1) 
] 

1 [ ~Be i(~-t) + B2e 21(z-t) + B3e ai(~-t) + . . . +  c.c . ) .  \ (2) ¢=~+ ~  

Here (z, V) and z are horizontal and vertical coordinates, t is time, 
and ~ are mean field variables, and A, An, B, Bn are complex 

harmonic amplitudes. The complex conjugate is denoted by "c.c." 

Recently, Trulsen et al. (2000) explained how the MNLS equa- 
tion can be enhanced with exact linear dispersion by introducing a 
pseudo-differential operator for the linear part. In two horizontal 
dimensions it reads 

OB " 3 _.2OB 1BeOB* 
O---t- +L(O~'Ou)B+ 2 IBI2B+ ~l~l ~ + 4-  0x 

• B +l~--~x = 0  at z = 0 ,  (3) 

0¢  1 0 2 
Oz -- 2 ~ I B I  at z = 0, (4) 

V2@=0 for - h < z < 0 ,  (5)  

0-~ = 0  at z = - h ,  (6) 

where the pseudo-differential operator L is 

L(O~, 0v) = i { [(1 - i0~) 2 - 0~] ,/4 _ 1}.  (7) 

These equations can be inverted with respect to space and 
time to yield a space-domain formulation 

013 
+ £(O~,O~,)B + i I B I 2 B  - 8 l B I 2 - ~  -. - 

0x 

- 4 i - ~ B - - 0  at z = 0 ,  (8) 

o $  O 2 
O---~= ~ [ B [  at z = 0 ,  (9) 

V ~ ¢ = 0  for - h < z < 0 ,  (10) 

0---~=0 at z = - h .  (11) 

Here we have used the fact that  0 ¢ / 0 x  = - 2 0 ¢ / 0 t  to the lead- 
ing order. This transformation should also be reflected in the 
Laplacian of the induced velocity potential in (10). The pseudo- 
differential operator becomes 

r-(0t,0y) = - i  { [(1 + i0t)4 + 021 x/2 - 1} .  (12) 

By expanding the linear pseudo-differential operators L or L: 
in power series expansions and truncating at appropriate orders, 
we recover the MNLS equation of Dysthe (1979) and the broader 
bandwidth equation of Trulsen ~ Dysthe (1996). Furthermore by 
truncating the nonlinear part  to retain only the leading cubic non- 
linear term, we recover the standard cubic nonlinear SchrSdinger 
equation. 

We remark that  in one horizontal dimension (x), the operator 
£ is algebraic. In this paper we consider the one-dimensional (x) 
limit of (8)-(12). The MNLS equation becomes 

OB 20B  • 02B 20B 20B* 
Ox b --5~ + I-~-~- + ilBI2 B -- 8[BI - ~  - 2B --~ 

- 4 i - ~ - ~ B = 0  at z = 0 .  (13) 
U #  
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The cubic nonlinear (NLS) equation is 

OB OB .02B 
Ox + 2-~- + 1 - ~  + i]S[2B = 0. (14) 

The linear equation is 

OB OB .02 B 
0-~ + 2-oy + , - ~  = 0. (15) 

The reconstruction of the surface displacement (2) is achieved 
by the formulas 

~ =  0¢ 06)  
Ot ' 

and 

1 B 2 OB 
= + i B m - ,  (17) B2 

B3 = 3Ba. (18) 

N U M E R I C A L  I M P L E M E N T A T I O N  

The present implementation is based on imposing periodic 
boundary conditions in time, which is appropriate for the exper- 
imental data under consideration. Letting B be represented by a 
suitable number of modes M, the Fourier transform pair for B is 
defined by 

M - - X  

[~(x,wj) = M E B(x ' tm)e i~ t '~ '  
m=o (19) 

s (~ , t~ )  = ~ b ( ~ , ~ ) e  - ~ ,  
iV /  • M 

where wj = 2 r j / T ,  tm = m T / M ,  and T is the length of the 
periodic domain. 

The numerical implementation has been documented else- 
where (Lo &: Mei 1985; Trulsen & Dysthe 1997). The differential 
equation is solved by an operator splitting method. The nonlinear 
part is integrated by a finite difference method in physical space, 
while the linear dispersive part is solved exactly in Fourier space. 
In particular, we remark that the full pseudo-differential operator 
becomes algebraic in Fourier space, and thus integration of the 
exact linear dispersive part in two horizontal dimensions can be 
done as fast and easily as for any of the truncated equations. 

I N I T I A L I Z A T I O N  

The surface displacement ~(x, t )  is measured at a fixed posi- 
tion x with a sampling period r ,  providing a time series ~(x, t,~) 
for t ,  = nT, r~ = O, 1, 2 , . . .  , N -  1 over a total time interval 
T = N~-. The Fourier transform pair for the surface displacement 
is 

N - - 1  

.=o (20) 
C(~,t.) = ~ ~(~,~i)e - '~ '~ ,  

N • N 

where wj = 27tilT. 

It is in general not possible to deduce what portion of the 
power spectrum is due to free or bound waves based on a time 
series from a single point. A good approximation is to construct 
/~ by bandpassing the complex spectrum ~ around a central fre- 
quency. To this end we determine the characteristic frequency wc 
from the mean of the dimensional frequency power spectrum 

27rMo Ey IwJ I[~J[ 2 
~o = - -  ~ ( ~ 1 )  

T y~q [~[2 ' 

such that M0 is an integral number of central wave oscillations 
in the computational domain. The corresponding characteristic 
wavenumber kc is computed from the linear dispersion relation. 

The complex spectrum of the first harmonic B is first assigned 
by bandpassing Mbp components of the desired complex spectrum 
~j centered around we, 

= 2cje-lZ~(~,wj+Mo) for IJl ~ -'~-"--~P, (22) S ( ~ , ~ )  

where cy are adjustable coefficients initially set to unity. As far 
a s /}  is concerned, wj is a modulation frequency relative to the 
characteristic frequency we. 

The complex coefficients cj are adjusted in an iterative man- 
ner to compensate for the higher-order nonlinear modification of 
the measured wave spectrum (16)-(18). If the desired spectrum 

^ 

is ~j, suppose that after an iteration the reconstruction of the 
spectrum is ~j and the reconstruction of the linear first-harmonic 
part of the spectrum is ~x,j, then the new iterate for cj is 

~ - 5,~ (23) c j = l  ~j 

The iteration scheme is stopped when the adjustment coefficients 
have converged, typically after 10-20 iterations. 

C O M P A R I S O N  B E T W E E N  S I M U L A T I O N  A N D  EX- 
P E R I M E N T  

Experimental test 60 is periodic with period 39.9 s. We use a 
computational domain of length 279.3 s, corresponding to 7 peri- 
ods, after skipping the first 19.7 s of startup. The nondimensional 
depth is kch = 10 for the first 80 m and kch = 5 for the rest of the 
tank, however we here present simulations using kch = 10 for the 
entire tank. Simulations with kch = 5 revealed only insignificant 
modifications for large fetch, thus we believe that as far as this 
comparison between experiment and simulations is concerned, the 
effect of the jump at 80 m is not important. 

The time series measured at wave staff 1 is used for initial- 
ization. Here the transient effects of startup do not occur in the 
computational domain. At successive wave staffs, the transient 
effects of startup propagate into the computational domain, but 
are not accounted for in the numerical simulation. We present 
results from the last period in the computational domain which 
remains unaffected by transient effects of startup for the duration 
of the simulation. Measurements and initialization at staff 1 is 
shown in figure 2. 

Linear wave theory at staffs 2, 4 and 5 are shown in figures 3-5. 
Linear theory underpredicts both the phase and group velocities 
observed in the experiments. Linear theory also does not account 
for the change in shape of the wave group. 

NLS simulation results at staffs 2, 4 and 5 are shown in fig- 
ures 6-8. The NLS equation accounts for a nonlinear increase 
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in phase velocity, and yields good agreement with the observed 
phase velocity in the experiment. The NLS equation does not 
account for the nonlinear increase in group velocity. The NLS 
equation does account for the nonlinear increase in amplitude of 
the group, but does not capture the asymmetric forward-leaning 
evolution seen in the experiments. 

MNLS simulation results at staffs 2, 4, 5, 7 and 10 are shown in 
figures 9-13. The MNLS equation accounts for nonlinear increase 
in both the phase and group velocities, in good agreement with the 
experimental observations. The nonlinear increase in amplitude 
of the group and the asymmetric forward-leaning evolution of the 
group seen in the experiments are also captured. 

Experiment 61 was done for shorter wavelength and larger 
steepness, yielding an effectively much longer tank. The waves are 
periodic with period 19.95 s. We use a computational domain of 
length 199.5 s corresponding to 10 periods, after skipping the first 
270.5 s of the time series. The nondimensional depth is kch = 40 
for the first 80 m and kch = 20 for the rest of the tank. These 
depths are effectively infinite as far as experiment 61 is concerned. 

The time series measured at wave staff 1 is used for initializa- 
tion and is shown in figure 14. 

MNLS simulation results at staffs 2, 4 and 5 are shown in 
figures 15-17. In figure 15 we observe that the qualitative features 
of group splitting are well captured. The last figure 17 reveals that 
the simulation results of the MNLS equation become unreliable 
for large fetch. 

C O N C L U S I O N  

We have shown that the MNLS equation can be used to pre- 
dict the evolution of individual long wave crests at least up to the 
dimensionless scale for evolution ~ = ~2kcx ---- 3. The prediction 
becomes poor for ~ ) 5, and is unreliable for ~7 ) 8. If we set 

= 0.1 for typical ocean waves, then ~ = 5 roughly corresponds 
to 80 wavelengths. For 12 s waves on deep water, corresponding 
to a wavelength of 220 m, that could imply up to half an hour 
warning for individual wave crests at a distance of up to 16 km 
for a long-crested sea. 

On the other hand, the NLS equation and t he  linear theory 
are not able to predict the evolution well even up to ~ = 1. 

The characteristic qualitative features of bichromatic wave 
evolution, e.g. nonlinear increase in phase and group veloci- 
ties, asymmetric forward-leaning evolution of initially symmetric 
groups, and group splitting, are captured by the MNLS equation. 
On the other hand, the standard cubic nonlinear SchrSdinger 
(NLS) equation only accounts for the nonlinear increase in the 
phase velocity. We conclude that the higher order nonlinearities 
originally found by Dysthe (1979), are essential to explain non- 
linear ocean wave evolution, even over short fetch. 

These experiments and simulations were done for long-crested 
waves. It is necessary to perform experiments and simulations 
for short-crested waves to assess if forecasting of individual wave 
crests can be done in a realistic short-crested sea. However, for 
long-crested sea states, we anticipate that this model is capable 
of accurately forecasting individual wave crests over a fetch of 
several tens of wavelengths. 
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Figure 2: Test  60, wave staff 1 at 9.3 m,  r/ -- 0, used for 
initialization: - - ,  exper iment  and all wave theories linear, 
NLS, MNLS).  
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Figure 5: Test 60, staff 5 at 120 m, ~ -- 1.4: --, experiment;  
- - ,  linear. 
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Figure 3: Test  60, staff 2 at 40 m,  ~ / - -  0.4: - - ,  experiment;  
- - ,  l inear. 
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Figure 6: Test  60, staff 2 at 40 m,  ~ -- 0.4: - - ,  experiment;  
- - ,  NLS. 
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Figure 4: Test  60, staff 4 at 80 m,  ~ = 0.9: - - ,  experiment;  
- - ,  linear. 
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Figure 7: Test  60, staff 4 at 80 m, r/-- 0.9: --, experiment;  
- -, NLS. 
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Figure 8: Test 60, staff 5 at 120 m, rl = 1.4: - - ,  experiment; 
, NLS. 
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Figure 11: Test 60, staff 5 at 120  m ,  rl = 1.4:  - - ,  experiment; 
- - ,  MNLS. 
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Figure 9: Test 60, staff 2 at 40 m, r 1 = 0.4: - - ,  experiment; 
, MNLS. 
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Figure 12: Test 60, staff 7 at 160 m, rl = 1.9: - - ,  experiment; 
, MNLS. 
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Figure 10: Test 60, staff 4 at 80 m, r / =  0.9: - - ,  experiment; 
, MNLS. 
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Figure 13: Test 60, staff 10 at 2 0 0  m ,  ~ = 2.4:  - - ,  experi- 
m e n t ; - - ,  MNLS. 
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Figure 14: Test 61, staff 1 at 9.3 m, ~ / =  0, used for initial-  
ization: - - ,  e x p e r i m e n t ; -  - ,  MNLS. 
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Figure 15: Test 61, staff 2 at 40 m, 7 / =  2.5: i ,  experiment; 
- - ,  MNLS. 
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Figure 17: Test 61, staff 5 at 120 m, ~ -- 8.9: - - ,  experiment; 
- - ,  MNLS. 
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Figure 16: Test 61, staff 4 at 80 m, ~ / =  5.7: - - ,  experiment; 
, MNLS. 
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