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Spatial Filtering of RF Interference
in Radio Astronomy

Jamil Raza, Albert-Jan Boonstra, and Alle-Jan van der Veen

Abstract—We investigate spatial filtering techniques for inter-
ference removal in multichannel radio astronomical observations.
The techniques are based on the estimation of the spatial signature
vector of the interferer from short-term spatial covariance ma-
trices followed by a subspace projection to remove that dimension
from the covariance matrix, and by further averaging. The projec-
tions will also modify the astronomical data, and hence a correction
has to be applied to the long-term average to compensate for this.
As shown by experimental results, the proposed technique leads
to significantly improved estimates of the interference-free covari-
ance matrix.

Index Terms—Antenna arrays, array signal processing, inter-
ference suppression, interferometry, radio astronomy, spatial fil-
tering.

I. INTRODUCTION

T HE contamination of radio astronomical measurements by
man-made radio frequency Interference (RFI) is becoming

an increasingly serious problem and therefore the application
of interference mitigation techniques is essential. Most current
techniques address impulsive or intermittent interference and
are based on time-frequency detection and blanking, using a
single sensor [1], [2] or multiple sensors [3]. A start has been
made in applying adaptive filtering techniques using a reference
signal [4]–[6].

In this paper, we investigate the efficacy of multichannel spa-
tial filtering for the removal of continuously present radio in-
terference such as TV signals, radio broadcasts, or the GPS
satellite system. The proposed technique applies to interfero-
metric radio telescope arrays such as the Westerbork synthesis
radio telescope (WSRT) in The Netherlands, the very large array
(VLA) in the USA, or future massive phased array telescopes,
such as the square kilometer array (SKA) currently in design.
Initial results on spatial filtering specifically for the purpose of
astronomicalimagingwere published in [7]; this letter presents
a refinement which is more generally applicable.

In interferometric radio astronomy the signals from various
sensors (telescopes) are usually split into narrow frequency bins
(say, 50 kHz), and correlated over 1 to 100 ms to yield short-term
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correlation matrices. These are then integrated over longer pe-
riods of typically 10 to 60 s to yield long-term correlation ma-
trices, which are stored onto tape and constitute the output of
the telescope interferometer.

The long-term correlation matrices contain contributions
from the astronomical sources in the pointing direction
through the main lobe of the telescope, from interferers in the
near and far field through the side lobes, and from spatially
white receiver noise. The astronomical signals usually have
a signal-to-noise ratio (SNR) of 20 dB or less, and hence
they are too weak to be detected over short integration periods.
Harmful interference may range from70 dB up to 50 dB
with respect to the instantaneous system noise level.

Continually present interferers cannot be cut out in the time-
frequency plane and have to be removed using spatial filtering.
Assuming that the frequency bins are sufficiently narrow band,
we can associate a spatial signature vector to each interferer and
estimate these from the short-term correlation matrices. By pro-
jecting out the corresponding dimensions, the interference is re-
moved. However, this spatial filtering also modifies the correla-
tion matrix of interest to astronomers and therefore a correction
must be applied. The correction is possible under the assumption
that the spatial signatures of interferers are sufficiently changing
over the 10-s period.

In the next sections, we first introduce the spatial filtering
algorithm and discuss the correction that has to be applied. We
then show the performance of the algorithm in simulated data,
and real data collected at the WSRT.

II. DATA MODEL

Assume we have a telescope array withelements. We con-
sider a single frequency bin, with for simplicity at most
interferer present. The array output vector is modeled in
complex baseband form as

where is the vector of output
signals at time ( is the transpose operator), is the inter-
ferer signal with spatial signature vector which is assumed
stationary only over short time intervals, is the received sky
signal, assumed a stationary Gaussian vector with covariance
matrix , and is the noise vector with independent
identically distributed Gaussian entries and covariance matrix

. We assume that is known from a calibration observa-
tion, and that . Given observations ,
where is the sampling period, the objective is to estimate.
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III. SPATIAL FILTERING ALGORITHM

Given the observations, we first construct short-term covari-
ance estimates

where is the number of short-term samples to average,
is of the order of 1 to 100 ms ( denotes the Hermitian trans-
pose). In the usual procedure, these matrices are then further
averaged to obtain a long-term (say, s) estimate

If there is only an astronomical signal and white Gaussian
noise, is an unbiased estimate of the true covariance
matrix .

Consider now the situation where there is an interferer with
zero mean, power and a spatial signature vector (normal-
ized to unit norm), assumed constant over the short integration
periods. The expected value of the short-term estimateswill
then be

In the construction of the long-term estimate, the interferer
contribution will be . Depending on the
variability of , the contribution will somewhat average out,
but if is strong, its influence will be felt: the estimate of

will be biased and also have an increased variance. It is
therefore desired to filter the interferer out.

Suppose that the spatial signature of the interferer is
known. We can then form a spatial filter

which is such that . Thus, when this spatial filter is
applied to the data covariance matrix all the energy due to the
interferer will be nulled

where denotes that the right hand side is the expected value of
the left hand side. Note that the astronomical data is modified as
well, so that we will have to apply a correction at a later stage.

When the spatial signature of the interferer is unknown, it
can be estimated by an eigenanalysis of the sample covariance
matrix. More in general, assuming that the noise is white and
the astronomical contribution is small, it is well-known that the
number of interferers can be detected from the eigenvalues of

, and that the subspace spanned by the spatial signatures of
the interferers can be estimated by the corresponding eigenvec-
tors. This allows us to construct the projection matrix [3].

When we average the modified covariance matrices, we
obtain the long-term estimate

We now discuss the correction that has to be applied to
to recover an unbiased estimate of, assuming that the inter-
ferer has been projected out completely. We employ the matrix
identity where denotes
a stacking of the columns of a matrix, andthe Kronecker
product. This gives

where . Thus, we can obtain
an unbiased estimate of by applying the inverse of to

(1)

In short, to obtain the covariance matrix due to the astronom-
ical sources, we can average the projected short-term covariance
matrices as usual to long-term averages, but have to apply the
correction matrix which is formed in the same way by aver-
aging .

At this point, we can make several remarks.

• The invertibility of is crucial to be able to recover .
If all are the same ( is stationary), then will not be
invertible. One can show that an average of only a few dif-
ferent is needed to ensure invertibility. Thus we need

to be sufficiently variable over the long integration pe-
riod. This is expected since a) ground-based mobile inter-
ferers are often subject to multipath fading, which limits
the coherency time of to 10 to 100 ms, b) satellite and
airplane interferers are moving, and moreover, c) the tele-
scopes are slowly rotating while tracking a point in the
sky, and continuously compensate the changing baseline
lengths by delay tracking and a phase rotation (fringe cor-
rection) in the order of a hertz. This causes even stationary
interferers (TV stations) to have some change in spatial
signature over a period of 10 s. The effect is stronger at
small declinations of the astronomical field of interest (the
telescopes rotate faster), but will be absent at high decli-
nations (e.g., pointing at the North Celestial Pole). Spatial
filtering will also not work (and will be not invertible)
if the interference is entering only on a single telescope.

• The amount of residual interference is determined by the
accuracy of the interferer spatial signature estimate. A
good estimate can be obtained only if it is sufficiently
strong. Thus, we propose to detect the presence of an inter-
ferer using a standard test on the eigenvalues, and to apply
a projection only if the interferer is detected.

IV. SIMULATION RESULTS

In a computer simulation, we considered a scenario in
which there are telescopes, a weak astronomical signal
( 20 dB), and a single interferer of varying power and random
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Fig. 1. MSE as function of interferer power.

unit-norm . The received data is correlated over
samples, the projection is applied, and the result further aver-
aged over such matrices. The performance measure is
the mean-squared estimation error .
Fig. 1 shows the MSE curves for several cases.

• Unfiltered Interference:The long-term covariance esti-
mate is computed as traditionally done.

• RFI-free:The data does not contain interference and the
covariance is estimated as traditionally done.

• Perfect Filter: Assumes that the spatial signatures of the
interferer are perfectly known.

• Eigenfilter: The spatial signatures are estimated from the
eigenvalue decomposition of the short-term data covari-
ance matrices.

• Detection Eigenfilter: First, it is seen whether the
interference is observable in the data using a standard
likelihood test (white-noise test with known) on the
short-term covariance estimates [8]

where is a detection threshold. (In Fig. 1, the detection
threshold was selected to obtain a false alarm probability
of 0.1.) If an interferer is detected, then the spatial projec-
tion is applied as before.

For reference, we also show the result of applying the eigenfil-
tering algorithm to RFI-free data.

The results indicate that for INRs above15 dB,1 it is es-
sential to apply the spatial filter. If the spatial signatures of the
interferer are perfectly known, then the final estimate is almost
as good as in the RFI-free case. If the spatial signatures are esti-
mated from the data, then it is important first to detect if there is
an interferer, otherwise for weak interferers the final covariance
estimate is biased. In combination with detection, it is seen that
the covariance estimate is very close to the interference-free re-
sult.

1This level depends on the number of telescopesp, the number of short-term
samplesM , and on the selected false alarm rate.

Fig. 2. Amateur broadcast interference, both continuous and intermittent,
recorded at the WSRT. Spectrogram of the largest eigenvalue of^R .

Fig. 3. Top: mean cross-correlation spectrum and bottom: all auto-correlation
spectra, before and after the spatial projection algorithm.

V. EXPERIMENTAL RESULTS

We applied the spatial filtering technique to a data set con-
taining time continuous and intermittent interference observed
at the WSRT. The data set is a -channel recording of a
1.25-MHz-wide band at 434 MHz containing signals from the
astronomical source 3C48 (white noise signal) contaminated by
narrow-band amateur radio broadcasts. The data was partitioned
into 32 frequency bins (each processed separately), the short
term averaging period was 10 ms ( ), and the number
of time intervals was .

Fig. 2 shows the largest eigenvalue, on a logarithmic scale, of
the correlation matrix as a function of time and frequency.
We see that there is continuous interference at 434.3 MHz and
434.4 MHz, as well as at least four intermittent sources at other
frequencies in the band. Comparing the eigenvalues to a fre-
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quency-dependent threshold showed that in most cases, about
one or two eigenvalues were affected and needed to be projected
out. Occasionally (the channel at 433.9 MHz), up to about six
eigenvalues were affected.

The results of the spatial filtering algorithm are shown in
Fig. 3. The upper graph shows the mean of all cross-correla-
tions, before and after applying the spatial filter, and the lower
graph shows the eight auto-correlations. It is seen that at most
frequency bins both the time-continuous and intermittent inter-
ference is suppressed significantly, and the resulting spectrum
is flat with a cross-correlation of about 0.01 indicative of the as-
tronomical source.

The condition number of determines the amount of noise
amplification due to the correction in (1). In the experiment, it
was small over almost all frequency bins, in the range of three
to occasionally 20. This shows that the interference usually has
sufficient spatial fluctuations due to multipath fading or the
fringe correction. Only at 434.3 MHz, the condition number
was extremely large (order 200), which explains the relatively
poor filtering performance at that frequency. For this frequency,
the lower graph shows that only a single telescope received
the strong continuous interference, hence the corresponding

-vector was nearly stationary. We conclude that for interfer-

ometric radio telescope arrays, the proposed spatial filtering
algorithm provides a very interesting and practical technique
for interference mitigation.

REFERENCES

[1] P. Friedman, “A change point detection method for elimination of indus-
trial interference in radio astronomy receivers,” inProc. 8th IEEE Signal
Processing Workshop on Statistical Signal Array Processing, 1996, pp.
264–266.

[2] R. Weber, C. Faye, F. Biraud, and J. Dansou, “Spectral detector for in-
terference time blanking using quantized correlator,”Astron. Astrophys.
Supp., vol. 126, pp. 161–167, Nov. 1997.

[3] A. Leshem, A.-J. van der Veen, and A.-J. Boonstra, “Multichannel in-
terference mitigation techniques in radio astronomy,”Astrophys. J., vol.
131, pp. 355–373, Nov. 2000.

[4] P. A. Fridman and W. A. Baan, “RFI mitigation methods in radio as-
tronomy,”Astron. Astrophys., 2001, submitted for publication.

[5] S. W. Ellingson, J. D. Bunton, and J. F. Bell, “Cancellation of GLONASS
signals from radio astronomy data,”Proc. SPIE, vol. 4015, pp. 400–407,
2000.

[6] F. H. Briggs, J. F. Bell, and M. J. Kesteven, “Removing radio interference
from contaminated astronomical spectra using an independent reference
signal and closure relations,”Astron. J., vol. 120, pp. 3351–3361, 2000.

[7] A. Leshem and A.-J. van der Veen, “Radio-astronomical imaging in the
presence of strong radio interference,”IEEE Trans. Inform. Theory, vol.
46, pp. 1730–1747, Aug. 2000.

[8] K. V. Mardia, J. T. Kent, and J. M. Bibby,Multivariate Analysis. New
York: Academic, 1979.


