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We examined contrast sensitivity and suprathreshold apparent contrast with natural images. The spatial-
frequency components within single octaves of the images were removed (notch filtered), their phases were
randomized, or the polarity of the images was inverted. Of Michelson contrast, root-mean-square (RMS) con-
trast, and band-limited contrast, RMS contrast was the best index of detectability. Negative images had lower
apparent contrast than their positives. Contrast detection thresholds showed spatial-frequency-dependent el-
evation following both notch filtering and phase randomization. The peak of the spatial-frequency tuning
function was approximately 0.5–2 cycles per degree (c/deg). Suprathreshold contrast matching functions also
showed spatial-frequency-dependent contrast loss for both notch-filtered and phase-randomized images. The
peak of the spatial-frequency tuning function was approximately 1–3 c/deg. There was no detectable differ-
ence between the effects of phase randomization and notch filtering on contrast sensitivity. We argue that
these observations are consistent with changes in the activity within spatial-frequency channels caused by the
higher-order phase structure of natural images that is responsible for the presence of edges and specularities.
© 2002 Optical Society of America

OCIS codes: 330.1800, 330.5510, 330.6100, 330.6110, 330.7310, 30.1880.

1. INTRODUCTION

The application of linear systems theory to visual
processing1 has led to the widespread use of sine-wave
grating patterns in behavioral, electrophysiological, and
computational studies of visual perception. However,
outside the laboratory the visual system normally pro-
cesses images of far greater complexity than sine-wave
gratings, so the question we address here is how well the
understanding derived from gratings generalizes to natu-
ral images.

A. Sine-Wave Gratings
Human sensitivity to sinusoidal modulations in lumi-
nance has a classic inverted U shape, peaking at approxi-
mately 2–4 cycles per degree (c/deg).1,2 The drop in sen-
sitivity at higher frequencies has been attributed to
blurring from two main sources: the optical limitations
of the eye and spatial summation within the visual
system.2 The fall-off in sensitivity at lower spatial fre-
quencies has been attributed to lateral inhibition,3 spatial
summation,4 and masking by the zero-frequency (dc) com-
ponents in visual stimuli.5

Several authors have also studied the apparent
contrast of sinusoidal patterns at suprathreshold
contrasts6–15; for review see Ref. 16. The general finding
of these contrast matching studies has been that at high
contrast levels, apparent contrast is relatively indepen-
dent of spatial frequency, a phenomenon termed ‘‘contrast
constancy.’’ 9 Contrast constancy has been attributed to
spatial-frequency-dependent contrast gain,9,17,18 or to

noise at low contrasts followed by pseudo-linearity at
higher contrasts.10,11,14

B. Natural Images
Natural images have received increasing attention in re-
cent years, and it is becoming clear that there is no simple
relationship between experiences of gratings at threshold
and the perception of real scenes at high contrast. It has
been known for some time that natural images have a
characteristic Fourier spectrum19:

ampl~ f ! 5 cf 2a, (1)

where amplitude (ampl) is averaged across all orienta-
tions, c is a constant, f is spatial frequency, and a repre-
sents the negative slope on log-log coordinates. The
value of a varies from image to image, but lies within a
fairly narrow range (0.7–1.5) in achromatic images20–25;
see Ref. 26 for a comparison of studies. Several in-
vestigators have speculated that the visual system may
be specially adapted to exploit this statistical redun-
dancy.21,22,27–38 For a recent review see Ref. 35.

C. Contrast in Natural Images
The apparent contrast of broadband images has received
relatively little attention; indeed, it has proven difficult
even to determine a metric for the contrast of natural im-
ages. The conventional metric for sine-wave-grating con-
trast is Michelson contrast (CM), which is most commonly
calculated as follows:
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CM 5

Lmax 2 Lmin

Lmax 1 Lmin

. (2)

While its calculation is simple, CM is based on the most
and the least intense points in the image, irrespective of
their surface area, frequency, or relative separation. The
root-mean-square (RMS) calculation of image contrast
Crms is the standard deviation of luminance values:

Crms 5
F( L ~x, y !

2
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2

N

N

G
1/2

. (3)

This measure is also relatively simple to calculate and is
a good predictor of the relative subjective/apparent con-
trasts of compound grating images36 and random noise
patterns, when divided by the mean luminance of the
image.37 Another contrast metric, band-limited contrast
(Cbl),

38 represents an attempt to take account of the in-
tensity of a point in an image and the local mean lumi-
nance at that point by computing a quantity that can be
called the local contrast, CL . This is achieved by divid-
ing the luminance Lb of each point in a band-pass-filtered
version of the image by the luminance L l of the corre-
sponding point in a low-pass-filtered version of the image
(dividing by zero is avoided by ignoring points with zero
denominator) and is therefore more complex to calculate:

CL~x, y ! 5

Lb~x, y !

L l~x, y !
. (4)

This produces a matrix of local contrast values (equal in
size to the original image), the mean of which is the band-
limited contrast of the image:

Cbl 5 CL~x, y !. (5)

In the present study, we attempt to relate the well-
studied perception of grating contrast to the less well-
studied perception of natural image contrast. We exam-
ine the contribution of structure at particular spatial
frequencies to the overall apparent contrast of natural
images. A selection of 216 natural images was drawn at
random from a calibrated image database.22 Contrast
detection thresholds and suprathreshold apparent con-
trast matches were obtained following notch filtering (all
components within a specific spatial-frequency octave
were removed) or phase randomization (the phases of all
components within a specific spatial frequency band were
randomized). Natural images generally contain edges
and specularities and tend to have non-Gaussian-
distributed projections. Phase randomization takes any
image and turns it into Gaussian-distributed noise of the
same power (or, equivalently, variance). The only aspect
that is preserved is the variance, with all aspects of the
distributions of any projection onto the data such as the
mean absolute deviation, or any other moment other than
the second, being affected.

2. METHODS

A. Apparatus
Stimuli were generated on a Macintosh G4 computer by
using software adapted from the VideoToolbox routines39

and were displayed on a LaCie Electron22blue monitor at
a frame rate of 75 Hz and a mean luminance of 50 cd/m2.
The luminance of the display was linearized with pseudo-
12-bit resolution40 in monochrome and calibrated with a
Minolta CS-100 photometer. Images were presented in
gray scale by amplifying and sending the same 12-bit
monochrome signal to all red–green–blue guns of the dis-
play. The display measured 36 deg horizontally (1152
pixels), 27.2 deg vertically (870 pixels) and was 57 cm
from the observer in a dark room.

B. Stimuli
The 216 natural images were drawn at random from a
calibrated image database as described elsewhere.22 The
source images were imported as 16-bit numbers corre-
sponding to a rectangular image of size 1536
3 1024 pixels. The angular resolution of each image
pixel was approximately 2 arc min, and this resolution
was maintained in our experiments at the 57-cm viewing
distance. Each image was cropped down to the 256
3 256 central square region. The fast Fourier trans-
form (FFT) of the image was calculated with ‘‘Numerical
Recipes’’ routines41 without data windowing. The ampli-
tude of the dc component was set to zero and later was
presented at a fixed value (50 cd/m2) to ensure that the
mean luminances of all images were equal to one another
and to the mean luminance of the background. The 216
images were used to compute some statistical properties
of van Hateran’s images, but only a subset of ten, de-
scribed below, were used for the psychophysics tests.

C. Slope Calculation
The magnitude and phase of each spatial-frequency com-
ponent were calculated as follows:

amplf 5 ~r f
2

1 i f
2!1/2, (6)

r f 5 a tan~i f /r f!, (7)

where r represents the phase and r is the real and i, the
imaginary part of the complex number for component f.
The amplitude of each spatial frequency was averaged
across orientations. The slope of the function relating log
amplitude to spatial frequency was calculated by linear
regression.

D. Spatial-Frequency Filtering
Our 256 3 256 images covered seven octaves (1–128
c/image, 0.125–16 c/deg), following dc adjustment. We
used seven single-octave (0.125–0.25; 0.25–0.5; 0.5–01;
1–2; 2–4; 4–8; 8–16 c/deg) spatial-frequency filters that
had abrupt (‘‘hatbox’’) profiles to simplify phase random-
ization. There were two spatial manipulations:

1. Notch filtering, in which all components within one
octave were removed (their amplitude was set to zero).

2. Phase randomization, in which the amplitude of
each component was first calculated [according to Eq. (6)]
and a new phase for the component was selected at ran-
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dom from 0 to 2p rad. The new real and imaginary num-
bers were calculated as follows:

r f8 5 amplf 3 cos r f8 , (8)

i f8 5 amplf 3 sin r f8 , (9)

and they were inserted into the relevant locations of the
FFT, preserving Hermitean symmetry.
The inverse FFT was then performed. The effects of
these manipulations on the appearance of the images are
shown in Fig. 1.

Fig. 1. Examples of the stimuli. The images on the left (a, d, g, j) show four images representative of the ten used in the experiments.
Each is followed by two versions of the same image after phase randomization (b, e, h, k), notch filtering (c, f, i), or contrast polarity
reversal (l). The center frequency (in cycles per degree) of the one-octave filter is shown in the insets, where relevant (white text). For
image k, the phases of all components were randomized. See Section 2 for details.
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E. Contrast Calculations
Removal of the dc component ensured a mean value of
zero. The image values were then rescaled so that the
mean was 50 cd/m2:

L~x, y ! 5 50 1 CM 3 50 3

~x, y !

max@abs~x, y !#
.

The scaling by max@abs(x, y)# confined the range of im-
age values between 21 and 11 before final scaling (by
CM 3 50) to the required luminance range and restora-
tion of the dc component (at 50 cd/m2). Max@abs(x, y)#

was stored and used as a relative contrast metric, denoted
scaling contrast, CS . CS was used to compare the rela-

tive amplitudes of individual components of a given im-
age, i.e., the amplitude of the individual component fol-
lowing our manipulations of spatial structure (because it
was based on the FFT of the same image) relative to its
amplitude before the manipulations.

In preserving the mean luminance (Lmid) at 50 cd/m2,
the actual values of Lmin or Lmax may be slightly closer to
Lmid than expected (because of image specularities).
This meant that CM and Crms were slightly different from
image to image, depending on the spatial frequency of the
notch filter and on the particular randomization of phase.
Therefore CS , CM and Crms were calculated for every im-
age on every trial. The mean value from at least 1280
trials is used in the following data. Cbl was calculated as
in Eqs. (4) and (5).38 For completeness, each of the six
single-octave bandpass filters (centered on 0.35, 0.71,
1.41, 2.82, 5.66, or 11.31 c/deg) was used for the analysis
(the seventh, centered on 0.18 c/deg, was the lowest oc-
tave and had no low-pass image for division).

The images were presented within a circular window 8
deg in diameter, with edges smoothed over 1 deg by a
raised cosine. The images were centered 4 deg to the left
and right of a central fixation cross. In the threshold
task, the images were presented for 500 ms, and the con-
trast was ramped on and off with a raised cosine temporal
envelope lasting 53 ms.

3. PROCEDURE

We selected 10 of the 216 images at random, and exam-
ined the effects of two spatial manipulations (notch filter-
ing and phase randomization) in seven bands of one oc-
tave each (1–128 c/image). To limit the duration of each
run but to distribute observations evenly across condi-
tions, each run examined the effects of one spatial ma-
nipulation in one octave, with the ten images randomly
interleaved. The resulting 14 conditions (2 spatial-
frequency manipulations of 7 frequency bands) were run
in random order. We also tested the effects of inverting
the polarity of the images.

A. Contrast Detection Threshold
The target image (filtered) was presented on the left or
right of fixation, at random. The observer was required
to indicate its location with a button press. Auditory
feedback was provided following incorrect responses.
The contrast of the image was under computer control by

an independent QUEST staircase42 for each of the ten in-
terleaved images. Each staircase was initialized with a
random contrast and concentrated observations around a
contrast level producing 75% correct responses. There
were 32 trials for each image on every run, and each run
was completed a minimum of 4 times by each observer.

B. Contrast Matching
The target image (filtered) was presented on the left or
right of fixation, at random, and at a fixed Michelson con-
trast of 50% (but see Subsection 2.E above). The match
image was the unfiltered version (except for dc adjust-
ment and scaling) of the same image. The initial Mich-
elson contrast of the match image was random (1–99%),
but during the trial, its contrast was under the control of
the observer. The observer was required to adjust the
contrast of the match by pressing one of two buttons to
increase or decrease the contrast of the match image until
a satisfactory contrast match was achieved, indicated by
the press of a third button. Observers were required to
make at least one adjustment before accepting a match
(to preclude acceptance of a random value; if the random
starting point happened to match, an increase and a de-
crease adjustment would be required). There were five
matches for each image on every run, and each run was
completed a minimum of four times by each observer.

The first stimulus in each row of Fig. 1 is an example of
a match stimulus: Its physical contrast was adjusted by
the observer so that its apparent contrast matched that of
one of the stimuli on the right, depending on whether
phase randomization or notch filtering was being tested.
In the detection experiments the adaptive program,
rather than the observer, made the contrast adjustment
to bring the contrast of the image to the threshold for dis-
criminating the image from a homogeneous field.

An additional set of contrast matching data was col-
lected for 100 randomly selected target images whose con-
trast polarity was inverted. The negative image was pre-
sented at a fixed Michelson contrast of 50%. The
observer adjusted the contrast of an unfiltered match that
was the same image in positive polarity, as before, so that
the apparent contrasts of the two images were equal.

4. RESULTS

A. Contrast Distributions
Distributions of the contrasts and slopes of the 216 natu-
ral images are shown in Fig. 2. Figure 2(a) shows the
slopes. These are consistent with previous estimates of
the distribution of slopes in natural images, which peak
between 20.7 to –1.5.20–26 Figures 2(b) and 2(c) show
the distributions of Michelson and RMS contrasts, respec-
tively, for an image presented at maximum contrast after
dc adjustment and scaling as described above. While
Crms is normally distributed, CM is positively skewed.

B. Contrast Detection
As described in Section 4 above, a random subset of these
images was selected for psychophysical analysis. Owing
to its unique gray-scale distribution, each image has a
unique contrast value for a given luminance range that
also depends on the contrast metric employed [including
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CM because of the dc adjustment; see Subsection 2.B
above and Fig. 2(b)]. This means that each contrast met-
ric predicts a different relative threshold for each image.
We compared these relative contrasts with those of our
observers for CM , Crms , and Cbl . Table 1 shows the cor-
relation between the contrast sensitivities of the observ-
ers and the relative values of CM , Crms , and Cbl across
the images. Both CM and Crms were significantly corre-
lated with observers’ thresholds, and Crms was signifi-

cantly better than CM (Fisher’s transformation, z

5 1.964, p , 0.05, two-tailed). As Cbl for a given image
differs depending on the passband used to compute it, we
show in Table 1 the results for the bandpass octave with
peak frequency at 2.82 c/deg, where the contrast sensitiv-
ity function peaks for most observers. However, no mat-
ter what passband is used to compute Cbl , none of the
correlations of Cbl with contrast sensitivity were signifi-
cant: The highest correlation was 0.155, and four of the
six correlations were negative. As we failed to detect any
reliable correlation between Cbl and contrast sensitivity,
and because the value of Cbl for images in which the criti-
cal passband has been notch filtered is always zero, we
did not use the Cbl metric in the rest of the experiments.

Figures 3 and 4 show the effects on detection thresh-
olds of notch filtering (squares) all components within a
single octave of the image or of randomizing their phases
(circles). Figure 3 shows the data for the author, Fig. 4
for the naı̈ve observers. The center frequency of the
notch filter is shown on the x axis. Relative threshold
contrast, plotted on the y axis, is the threshold contrast

Fig. 2. (a) Frequency distribution of the slopes of the amplitude
spectra of 216 calibrated natural images selected at random from
http://hlab.phys.rug.nl/archive.html. Frequency distribution of
(b) the Michelson contrasts and (c) the RMS contrasts of these
images, when scaled to maximize contrast.

Fig. 3. Relative contrast detection thresholds for one of the au-
thors (PB). The data show the detection threshold contrast rela-
tive to that for an unfiltered image (dc removed), averaged over
the ten images. Relative contrast is obtained by dividing each
threshold by the threshold for the same image without filtering.
Squares show relative thresholds for notch filtered images (all
components within a single octave were removed); circles show
relative thresholds for phase-randomized images (the phases of
all components within a single octave were randomized). The x
axis shows the center frequency of the one-octave filter. Solid
symbols indicate data points that are significantly different from
unity (i.e., equal threshold contrast). Error bars show 61 stan-
dard error of the mean. Relative thresholds are shown for Mich-
elson contrast in the upper panel, RMS contrast in the middle
panel, and scaling contrast in the lower panel.

Table 1. Correlation of Observer Sensitivities and

Values of Contrast

Observer Sensitivities Correlation Coefficient

AS versus PB 0.985 ( p , 0.001)

Mean observers versus CM 0.520 ( p , 0.01)

Mean observers versus Crms 0.925 (p , 0.001)

Mean observers versus Cbl 20.04
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divided by the threshold for the same stimulus without
filtering. An additional set of observations with phase-
randomized images is shown for a second naı̈ve observer
by the triangles in Fig. 4. The three contrast metrics
CM , Crms , and CS , are shown in the upper, middle, and
lower panels respectively. Each data point shows the
mean, and the corresponding brackets show the standard
error, of the thresholds for the ten images (none of the im-
ages individually deviated significantly from this pat-
tern). The filtered-image thresholds that are signifi-
cantly different from unfiltered-image thresholds (one
sample t-test, p , 0.05, two-tailed) are identified by solid
symbols. The disconnected points at the extreme right of
the phase-randomized data (circles) are for images in
which the phases of all components were randomized, as
in Fig. 1k.

For notch filtering, contrast detection thresholds were
generally increased, and the effect was greatest when the
components between octaves spanning 0.5–2 c/deg were
removed from the image. This pattern was approxi-
mately the same for all contrast metrics, with a greater
effect manifest in Crms . Contrast detection thresholds
were also generally increased following phase randomiza-
tion, even though the images contained the same fre-
quency components. Both observers showed a slight re-
duction in threshold elevation at higher center
frequencies, while only observer PB showed a reduced ef-
fect of phase randomization at low frequencies. Because
of the difference between observers at low spatial fre-
quencies, we tested a second naı̈ve observer (Fig. 4, tri-

angles), whose detection thresholds, like those of PB,
were less affected by phase randomization of low spatial
frequencies. The pattern was approximately the same
for all contrast metrics, with the greatest effect manifest
in CM and Crms .

We were concerned that the lack of effect of high-
spatial-frequency structure in our images could be an ar-
tifact of local pixel interactions that effectively produce
horizontal low-pass filtering of CRT displays,43 and not a
property of the visual system. To address this problem,
we collected an additional set of detection thresholds for
notch-filtered images that were presented at twice the
size and were viewed at twice the distance. In this case,
each pixel was doubled horizontally and vertically; other-
wise all parameters were as before. The results are plot-
ted as the rightmost data (squares) for PB on Fig. 3 and
show that contrast thresholds for unfiltered images and
those from which components above 8 c/deg have been re-
moved are not significantly different. This means that
local pixel interactions are not responsible for the lack of
effect of high-spatial-frequency structure in these images.

C. Contrast Matching
Figures 5 and 6 show, respectively, the effects on suprath-
reshold apparent contrast of notch filtering all compo-
nents within a single octave of the image, or randomizing
their phases, for two observers. The data are plotted in
the same format as Figs. 3 and 4, except that the y axis
shows the match contrast relative to an unfiltered image
at a CM of 50%. Note that the actual value of CM for the
standard image was usually slightly less than this [see
Subsection 2.B above and Fig. 2(b)]. To facilitate com-
parison between the data for contrast matching and con-
trast detection, we have plotted the inverse of the relative
matching contrasts. For both notch-filtered and phase-
randomized images, the removal or phase randomization
of components in the vicinity of 2–4 c/deg reduced the ap-
parent contrast of the image.

Table 2 shows the relative contrast required to match
the contrast of a positive image to that of a negative one,
averaged over 100 randomly selected images. The re-
sults show that, overall, negative images are slightly but
significantly (t 5 5.84, p , 0.05) lower in apparent con-
trast than positive images. No difference in the apparent
contrast of these images is expected from Crms . A mean
increase (not the decrease we actually observed) of 44% is
predicted by CM because specularities in natural images
mean that inverting the contrast polarity tends to reduce
the denominators Lmax and Lmin , with a constant differ-
ence in the numerator. Cbl can predict an increase or a
decrease in apparent contrast, depending on the spatial
frequencies of the low-pass and bandpass image selected.
For the bandpass octave with peak frequency at 2.82
c/deg, it predicts a mean increase of 92%.

Several previous studies have reported that inverted
contrast images are difficult to recognize44–47; here we
show that their apparent contrast is also affected. Al-
though the mean luminance and the power spectrum of
each pair of test and match images were equal, observers
found this a remarkably difficult task to perform, and the
results were quite variable. We therefore urge caution in
interpreting these results.

Fig. 4. Same as Fig. 3, for a naı̈ve observer (AS). Triangles
show relative thresholds for phase-randomized images for an ad-
ditional naı̈ve observer.
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5. DISCUSSION

Numerous investigations have examined the apparent
contrast of spectrally simple sine-wave-grating images.
The classic finding is that human observers are most sen-
sitive to sine gratings with a spatial frequency in the vi-
cinity of 2–4 c/deg, but at suprathreshold contrasts, ap-
parent contrast is approximately independent of spatial
frequency. We measured the contribution of structure at
different spatial frequencies to the threshold and su-
prathreshold apparent contrast of a random selection of a
set of natural images whose spatial-frequency spectrum is
complex. The spatial-frequency components within one-
octave bands of the images were manipulated either by
notch filtering (all components were removed) or phase
randomization (the phases of the components were ran-
domized). Contrast sensitivity and apparent contrast
above threshold were most affected by manipulations of
the spatial structure at 0.5–4 c/deg, and phase random-
ization had approximately the same effect as notch filter-
ing.

A. Contrast Metrics
At least three metrics for the contrast of complex images
are in common use, as described in Section 1. As part of
experiment 1, we collected contrast detection thresholds
for ten natural images with a mean luminance fixed at 50
cd/m2. Owing to the unique luminance distributions of
these images, each image has a unique contrast for each
of the three metrics described here. On the assumption
that the image with the highest contrast would be most
easily seen, we calculated CM , Crms , and Cbl for the ten
images and compared them with the relative contrast
sensitivities of our observers. The best agreement was
with Crms , and there was no noticeable agreement with
Cbl . Our results therefore support the use of RMS con-
trast as the most reliable indicator of the visibility of
broadband images, in line with previous studies of com-
pound gratings36 and noise images.37

According to channel models of visual processing1,48,49

any image can be detected when any one of the channels
responding to the image exceeds its threshold. As Cbl ,
CM , and Crms do not correspond to the responses of chan-
nels, but are simply indices of the relative image con-

Fig. 5. Relative contrast matches for one of the authors (PB).
The data show the inverse of the relative contrast of an unfil-
tered image (dc removed) that matched that of a filtered image of
50% Michelson contrast, averaged over the ten images. The in-
verse facilitates comparison with Figs. 3 and 4. Squares show
relative apparent contrast of notch-filtered images; circles show
relative apparent contrast of phase-randomized images. The x
axis shows the center frequency of the one-octave filter. Solid
symbols indicate data points that are significantly different from
unity (i.e., equal apparent contrast). Error bars show 61 stan-
dard error of the mean. Relative apparent contrasts are shown
for Michelson contrast in the upper panel, RMS contrast in the
middle panel, and scaling contrast in the lower panel.

Fig. 6. Same as Fig. 5, for a naı̈ve observer.

Table 2. Comparison of Positive and Negative

Image Contrast

Observer Mean Standard Error

PB 0.465 0.011

AS 0.468 0.016

SD 0.481 0.014
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trasts calculated on a global level, they are difficult to re-
late to the predictions of channel models.

B. Threshold Contrast
The results in Figs. 3 and 4 show that the contrast detec-
tion thresholds (by any contrast metric) of natural images
are increased by notch filtering and by phase randomiza-
tion. The magnitude of the increase depends on the spa-
tial frequencies that are manipulated, peaking at the fre-
quencies to which the visual system is most sensitive for
images of this size (1–2 c/deg).50–54 It is not surprising
that removal of the frequencies to which the visual sys-
tem is most sensitive raises thresholds, but it may be sur-
prising that the effect of randomizing the phases of those
frequencies is just as great as removing them altogether,
because randomizing phase has no effect on the ampli-
tude spectrum. As the excitation of channels in most
models depends only on the frequency spectrum within
their sensitive band, such models predict that phase ran-
domization would have no effect at all.

Cs is a direct measure of the effects of band filtering or
phase randomization on threshold and apparent contrast
that does not depend on any particular measure of con-
trast. It simply tells how much overall contrast has to be
increased to reach threshold or the criterion matching
contrast after notch filtering or phase randomization,
compared with what it was before the band filtering or
phase randomization. It is not obvious a priori that it
should correlate with other measures of threshold and ap-
parent contrast, such as CM or Crms . One might rather
expect that CM would be constant at threshold, but these
results show that even after rescaling the contrast to com-
pensate for losses of contrast produced by band filtering
or phase randomization, the contrast has to be increased
even more to reach threshold or the criterion matching
contrast.

It is well established that the relative phase of frequen-
cies that excite separate channels has no effect on
thresholds.49 To reconcile the effects of phase random-
ization with the evidence of phase independence, the
phase randomization must act through its effects on the
frequency components within individual channels. Oth-
ers have made the point that there is higher-order struc-
ture in natural scenes that produces such features as
edges and specular reflections.35 Images with the spec-
trum of natural scenes and random phase lack those fea-
tures. Our results show that the visual system is sensi-
tive to the phase structure of natural images, such as the
phase structure produced by edges and specular reflec-
tions, because disrupting the structure affects both
thresholds and apparent contrast (discussed below).

The fact that phase randomization raises thresholds as
much as filtering does may be a ceiling effect and there-
fore misleading. Once excitation of a channel that par-
ticipates in detection is reduced significantly below
threshold, other channels mediate detection. Any fur-
ther reduction in excitation of the first channel has no af-
fect on detection because it is now mediated by another
channel. So phase randomization merely needs to reduce
excitation of the most sensitive channel below threshold
and need not have as great an effect on that channel as
filtering does in order to have equal effects on threshold.

The range of frequencies affected by these manipula-
tions may be broadened beyond the range of individual
channels by probability summation among nearly equally
excited channels. Moreover, the range of frequencies af-
fected may also be extended by variation among images,
which may bring different channels to threshold in differ-
ent trials.

C. Suprathreshold Contrast
The results of experiment 2 show that the effects of notch
filtering and phase randomization on the apparent con-
trast of natural images are analogous to the effects on
sensitivity. The apparent contrasts (by any metric) of
natural images are decreased, the magnitude depending
on the spatial frequencies that are manipulated, peaking
at the frequencies to which the visual system is most sen-
sitive. Here again the magnitude of the effect of phase
randomization is comparable to that of filtering, although
filtering has a slightly greater effect for PB when mea-
sured by Cs and Crms , and phase randomization has a
slightly greater effect for AS when measured by CM .

While the threshold contrast of gratings is highly de-
pendent on spatial frequency, many studies have reported
contrast constancy above threshold, where apparent grat-
ing contrast is relatively independent of spatial
frequency.6–14 A leading explanation9 of contrast con-
stancy attributes it to frequency-specific differences in
gain that compensate for frequency-selective attenuation
by the optics of the eye. If the apparent contrasts of all
frequencies are equal, zeroing or eliminating the input at
different frequencies should have identical effects on ap-
parent contrast, contrary to our findings. For spatial
manipulations between 0.5 and 3 c/deg, the mean relative
increase in detection threshold is 1.54 and the mean rela-
tive change in suprathreshold apparent contrast is 1.46.
This suggests that for natural images, at least, any
frequency-selective differences in gain are too small to
compensate entirely for the differences in contrast on the
retina, and other explanations must be sought for the dif-
ference.

All the studies of contrast matching that show contrast
constancy have required subjects to match the contrast of
two gratings of obviously different spatial frequency. In-
stead, Metha et al.15 recently measured suprathreshold
contrast-matching functions for a long series of grating
pairs that were not discriminably different in spatial fre-
quency. Subjects matched the contrast of multiple pairs
of gratings that differed in spatial frequency by less than
one just-noticeable difference, a procedure that required
40 contrast matches between 1 and 16 c/deg. The result-
ing contrast matching functions deviated toward the con-
trast sensitivity function (inverted U-shaped). These re-
sults suggest that contrast constancy requires discrim-
inable differences in spatial frequency. Gratings that
can be discriminated excite different channels, and the
different channels can have different gains that produce
equal apparent contrast from unequal retinal contrasts.
Gratings that cannot be discriminated excite the same
channel (or the distribution of channel excitation is
nearly identical—not discriminably different), so the
channels cannot undergo different gains. The spectrum
of natural images is much broader than that of sine-wave
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gratings, so the presence or absence of a small number of
components cannot effectively modulate the gain in indi-
vidual channels as may be required to produce contrast
constancy.

D. Contrast Reversal
Contrast reversal turns a bright spot caused by specular
reflection into a dark spot. If specular reflections are an
important cause of differences between natural images
and such images as gratings, the lower apparent contrast
of negative images implies that dark spots are of less ap-
parent contrast than bright spots. This implies an ex-
pansive luminance nonlinearity.

E. Spatial Frequency and Phase
Several studies have examined how the appearance of an
image is determined by its phase and amplitude
spectrum.34,55–60 Exchanging the amplitude or phase
spectrum of two images tends to produce a hybrid image
that more closely resembles the image that contributed
the phase spectrum. This result is perhaps unsurpris-
ing, given the similarity in the amplitude spectra of natu-
ral images,19 and given that full specification of the image
of course requires both amplitude and phase.59,60 In
one-dimensional images, the relative phases of compo-
nents determine the appearance and location of edges.61

Several investigators have reported that observers are
sensitive to the relative phases of one-dimensional62–66

and two-dimensional67,68 periodic patterns. Changes in
the luminance profile following phase manipulation pro-
duce local contrast changes in the image that can account
for spatial discrimination without invoking phase-
sensitive mechanisms per se.64,65 Previous studies have
concentrated on the high-level global image statistics that
support image identification and discrimination.21,22,31–35

Although the suprathreshold images used in our match-
ing experiments have sufficiently high contrast to allow
analysis of the relative phases across spatial scales, these
global image statistics are not available to the observer in
our threshold experiments, and yet we still find that
phase counts.

These results extend the previous findings of others
that image identification and discrimination depend on
the phase structure of the image and show that detection
and apparent contrast do as well. Indeed, changing the
phase of a component can affect the contrast threshold
and perceived contrast of an image as much as removing
it altogether. Our results show that the nonrandom
phase structure of natural images, such as those associ-
ated with edges, specular reflections, and other features,
makes the images more visible and of higher contrast.
Phase randomization destroys this structure as effec-
tively as removal of the components altogether. This, of
course, means not that phase randomization obliterates
modulation within the passband but only that it reduces
it enough that detection is mediated by the power in other
bands.

It is widely accepted that the sensitivity of elements of
spatial-frequency channels is somewhat localized in space
as well as in spatial frequency. We suggest that within a

given spatial frequency channel, the presence of edges
and specularities in natural scenes produces large re-
sponses in some areas of the scene, where the in-phase
components happen to sum constructively, and weak re-
sponses in other parts, where they happen to sum de-
structively, and that those elements sensitive in the re-
gion of summation subserve the detection of threshold
stimuli and enhance the apparent contrast of suprath-
reshold stimuli. In this way, the occasional convergence
of phase in natural scenes may facilitate detection and in-
crease apparent contrast at a local level rather than
through global analysis of the higher-order statistics of
natural images.
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