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Plant reflectance spectra – the profile of light reflected by leaves
across different wavelengths - supply the spectral signature for a
species at a spatial location to enable estimation of functional and
taxonomic diversity for plants. We consider leaf spectra as “responses”
to be explained spatially. These spectra/reflectances are functions
over a wavelength band that respond to the environment.

Our motivating data are gathered for several families from the
Cape Floristic Region (CFR) in South Africa and lead us to develop
rich novel spatial models that can explain spectra for genera within
families. Wavelength responses for an individual leaf are viewed as
a function of wavelength, leading to functional data modeling. Local
environmental features become covariates. We introduce wavelength
- covariate interaction since the response to environmental regressors
may vary with wavelength, so may variance. Formal spatial modeling
enables prediction of reflectances for genera at unobserved locations
with known environmental features. We incorporate spatial depen-
dence, wavelength dependence, and space-wavelength interaction (in
the spirit of space-time interaction). We implement out-of-sample val-
idation to select a best model, discovering that the model features
listed above are all informative for the functional data analysis. We
then supply interpretation of the results under the selected model.

1. Introduction. The reflectance of the surface of a material is the frac-
tion of incident electromagnetic radiation reflected at the surface. It is a func-
tion of the wavelength (or frequency) of the light, its polarization, and the
angle of incidence. The reflectance as a function of wavelength is called a re-
flectance spectrum. The literature on reflectances is substantial, with a large
portion focused on the interaction of electromagnetic energy with the atmo-
sphere and terrestrial objects, e.g., reflectances associated with different land
cover/vegetation types. Typically, they are gathered by satellites, aircraft, and
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2 P. WHITE ET AL.

ground-level sensors. The focus of this manuscript is on plant reflectances, i.e.,
data gathered for plants at leaf level.

The importance of leaf level reflectance modeling arises because the scales at
which remote sensing devices detect reflectance spectra often do not match those
relevant to ecological scales (Gamon et al., 2020). For example, a satellite imager
can measure the reflectance signal for an entire 30m2 pixel; the reflectance
signal of this pixel would be a composite of all the different spectral signatures
of the plant species within that area. To disentangle what plants are on the
ground, remote sensing scientists use spectral unmixing techniques which rely
on spectral libraries (Quintano et al., 2012; Shi and Wang, 2014). These libraries
are collections of pure endmembers, i.e., the pure reflectance spectra of leaf
surfaces, which serve as representative spectra for different plant functional
types, plant taxonomic groups, and/or individual plant species. Use of such
leaf spectral libraries in ecology or biodiversity science has been termed as a
“spectranomic” approach (Asner and Martin, 2016). Being able to statistically
predict leaf reflectance spectra across environmental gradients constitutes a
major advancement because it enables prediction-based spectral libraries that
could be used in the validation and inference of remote sensing data at large
spatial extents. Large hyperspectral remote sensing efforts are already under
way, e.g., NASA’s Surface Biology Geology satellite mission (Cawse-Nicholson,
2021), making pressing the need to predict spectral signals of plants.

Furthermore, leaf-level spectra have become an invaluable tool to capture the
diversity in leaf traits that have accumulated over the course of seed plant evolu-
tion (Reich et al., 2003; Cornwell et al., 2014) enabling estimation of functional
diversity (Kokaly et al., 2009; Schneider et al., 2017) and taxonomic diversity
(Clark, Roberts and Clark, 2005; Cavender-Bares et al., 2016a). They provide
drivers for ecosystem processes (Schweiger et al., 2018) and guide conservation
(Asner et al., 2017).

Statistical analyses of plant reflectance spectra have been limited to treat-
ing spectra as functional predictors of scalar variables such as plant traits.
That is, we are in the realm of functional linear regression modeling. Model-
ing approaches rely on dimension reduction, e.g., spline basis representation
(Ordoñez et al., 2010), partial least squares regression (Doughty, 2017), par-
tial least squares-discriminant analysis (Cavender-Bares et al., 2016b), or some
form of machine learning (Féret, 2019).

Some approaches generate hypothetical leaf reflectance spectra from physical
first principles, i.e., radiative transfer models (Jacquemoud and Baret, 1990;
Jacquemoud and Ustin, 2019a). However, these are not functional response
models driven by environment. That is, our contribution is to model plant re-
flectance curves (as a function of wavelength) as a functional response variable,
in particular, at genus level within family. We incorporate local spatial environ-
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mental covariates as regressors.
We introduce the following innovations, motivated by careful exploratory

data analysis. We specify a functional data model incorporating spatial ran-
dom effects to predict reflectance curves at genera level, at locations without
collected plant samples. We also capture wavelength dependence through ran-
dom effects. For further enrichment, we add space-wavelength interaction (in
the spirit of space-time interaction) by constructing a space-wavelength random
effect through wavelength kernel convolutions of spatial Gaussian processes.
In general, this random effect has nonseparable covariance and is wavelength
nonstationary. Additionally, we model the variance to be heterogeneous across
wavelengths. Also, expecting that the reflectance response to environmental re-
gressors may vary with wavelength, we include wavelength - covariate interac-
tions. Lastly, because the rich space-wavelength modeling essentially annihilates
the significance of the covariate/wavelength effects, we present a novel orthogo-
nalization to remove spatial and functional confounding between random effects
and environmental regressors.

Functional data analysis (FDA) is well established for analyzing data rep-
resenting curves/surfaces varying over a continuum. The physical continuum
over which these functions are defined is often time but here, it is wavelength.
Pioneering work for FDA is attributed to Ramsey and Silverman (e.g., Ram-
say, 2005; Ramsay and Silverman, 2007). The field has undergone rapid growth,
and numerous applications have been found in areas such as imaging (Locan-
tore et al., 1999) (including MRI brain imaging (Tian et al., 2010)), finance
(Laukaitis, 2008), climatic variation (Besse, Cardot and Stephenson, 2000),
spectrometry data (Reiss and Ogden, 2007), and time-course gene expression
data (Leng and Müller, 2006). For a more comprehensive overview of applica-
tions, see Ullah and Finch (2013).

Explicit modeling of functional data is usually carried out by specifying func-
tions in one of two ways: (i) as finite linear combinations of some set of basis
functions or (ii) as realizations of some stochastic process. A key feature of
functional data analysis implementation is some version of dimension reduction
to specify functions. Here, we have random functions over a wavelength span
as well as over a spatial region. We combine both approaches, using basis func-
tions over wavelength with process realizations over space to build space by
wavelength regressions over environment.

We work with plant reflectances gathered from the Cape Floristic Region
(CFR) in South Africa. We present an extensive cross-validation study for
model selection across a rich collection of models to demonstrate the ability
of our space-wavelength modeling to predict reflectances well for genera within
a family at unobserved locations. We present and discuss our findings for three
plant families found within the CFR.
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The format of the paper is as follows. Section 2 describes the collected data.
Section 3 undertakes a broad exploratory data analysis to motivate the fea-
tures we incorporate in our modeling. Section 4 explains our modeling, model
comparison, and presents a novel orthogonalization for functional regression co-
efficients. Section 5 presents the analysis of the CFR data while a brief Section
6 offers a summary and suggestion for future work. Substantial detail of our
exploratory analysis, as well as model sensitivity analysis, has been placed in
the Supplemental Material.

2. The Dataset. We work with plant reflectances gathered from the Cape
Floristic Region (CFR) in South Africa, see Figure 1. Reflectances were mea-
sured with a USB-4000 Spectrometer (manufactured by Ocean Optics) using
a leaf clip attachment. Sun leaves from the top of each selected canopy were
measured. The spectrometer has a range of 450-950 nanometers (nm) with a
total of 500 reflectance measurements. We study plant reflectance viewed as a
function of wavelength t, across the window t ∈ [450, 950), typically referred to
as a spectral signature.

With interest in a spatial model for plant reflectance that enables prediction
of reflectance for genera within a family at unobserved locations, we work with
adjacent subregions of the CFR characterized by a fynbos landscape, known as
the Hantam-Tanqua-Rogeveld (HTR) and Cederberg. Three prevalent families
that often characterize landscapes in this area are Aizoaceae, Asteraceae, and
Restionaceae (Slingsby and Wistow, 2014). These families have broad overlap
in their reflectances (Figure 2). However, a linear discriminant analysis (LDA)
to predict these families based on their reflectances yields clear separation of
the groups, demonstrating that reflectances can be used to effectively predict
taxonomic differences. More precisely, a structured classification by family us-
ing plant samples was conducted employing LDA and reveals the separation
between families (See Supplemental Material for full details).

Much of the observed variation across the three families is likely due to
differences in composite leaf traits though isolating the relative impact of each
trait on the reflectances is beyond our intentions here. However, it is established
that reflectance variation is a signal of leaf trait variation (e.g., anatomical,
physiological, and structural traits (Jacquemoud and Ustin, 2019b)) and can
be influenced by the environmental factors (e.g., climate and soil) that the
plants inhabit.

3. Exploratory Data Analysis and Modeling. We explore the char-
acteristics of plant reflectances for the three families given above (Aizoaceae,
Asteraceae, Restionaceae) in the HTR and Cederberg areas. We retain the en-
tire dataset because it is somewhat small from a spatial perspective. Note that
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the domains for the three families do not overlap well (Figure 1) so we will fit
each family separately when implementing our spatial modeling.

The number of genera with observed reflectances within each family is: Aizoaceae
- 16, Asteraceae - 38, and Restionaceae - 10. The Supplemental Material pro-
vides: (i) the proportion of sites where each family is present, (ii) the number
of sites with one, two, or three families, and (iii) a more detailed breakdown
of family co-occurrence. To summarize, Aizoaceae and Restionaceae rarely co-
occur; in fact, Restionaceae is mostly limited to the Cederberg region apart
from a few HTR observations. Replication at the genus level is uncommon and
even more uncommon at the species level.

3.1. Data Locations. In Figure 1, we show all locations, where reflectances
are observed with sites coded by region (shape) and family (color). We also
plot locations coded by the number of families observed at that site. In the
HTR and Cederberg regions, only 22 of the 133 sites have more than one re-
flectance spectrum for a given species; only 27 of the 183 total species (across
all families) are observed at more than one site. This suggests that species-level
modeling is infeasible. The Supplemental Material offers more commentary on
data locations and duplication.
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Fig 1. Locations (Left) colored by family with region-specific shapes and (Right) colored by the
number of families observed at the site.

3.2. Reflectance spectra and Environmental Variables. To visualize the form
and variability in reflectance spectra, we plot all of the curves by family in
Figure 2 along with plots of the genus-specific means. We can see that the
family-specific means do not capture the spread of the variability seen in all the
curves while the genus-specific means show nearly the same variability for all
of the curves.

To assess within reflectance function variability as well as between-function
variability, we calculate binned standard deviations for every curve. For these
binned standard deviations, we estimate a smooth family-specific average stan-
dard deviation. Additionally, we calculate the family-specific between-curve
standard deviation. These are plotted in Figure 3 and show that variability
within reflectance spectrum changes with wavelength and, perhaps, with family.
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Fig 2. Log reflectances for Aizoaceae (Top-Left) All Curves, (Top-Right) Genus-specific means;
Asteraceae (Middle-Left) All Curves, (Middle-Right) Genus-specific means; Restionaceae
(Bottom-Left) All Curves, (Bottom-Right) Genus-specific means.

In addition, the variability between curves changes as a function of wavelength
and differs by family. These findings lead us to impose heterogeneity in variance
across wavelength, adopting wavelength varying variance curve models on the
log scale.

Given these plots, we are led to four modeling needs: (i) to allow for fam-
ily and genus differences, (ii) to model heterogeneity for the reflectance spec-
trum because within-curve variability changes across wavelength (iii) to cap-
ture between-curve variability through spatial modeling and/or environmental
variables, and (iv) to adopt heteroscedastic errors since reflectances at lower
wavelengths (< 500 nm) appear to be more volatile.

For each family, we calculate the correlations between the environmental
variables (see Supplemental Material) and the observed log-reflectances, using
wavelength bins (See Figure 4), to assess whether this relationship changes
with wavelength. We find consequential changes in correlation as a function of
wavelength. The strongest correlations are of magnitude 0.3 to 0.4.

3.3. Environmental Variables and Reflectance Spectra.

4. Spatial Wavelength Modeling. Functional data modeling for our
spatial reflectance spectra was motivated by the foregoing exploratory analyses.
Families are modeled separately, at genus level, treating species within genus as
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Fig 3. (Left) 25-nm binned standard deviations for each reflectance spectrum with smoothed
family-specific curves. (Right) Family-specific between-spectrum standard deviation as a func-
tion of wavelength.
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Fig 4. (Top-Left to Bottom-Right) elevation, mean annual precipitation, average minimum
temperature in January, rainfall concentration.

replicates. We utilize the following environmental predictors: elevation, annual
precipitation, rainfall concentration, and minimum January temperature. We
introduce wavelength dependent variances to account for evident heterogeneity.
Model choice focuses on four issues: (i) Do we need wavelength dependent re-
gression coefficients? (ii) Do we need genus specific wavelength random effects?
(iii) Do we need genus specific spatial random effects? (iv) How do we specify
space-wavelength interaction?

In Sections 4.1 and 4.2, we elaborate the models, while Section 4.3 takes up
model comparison yielding the model for which results are presented.

4.1. Model development. For a given family, let i denote genera within the
particular family, let j denote replicates/species within genus. Let s denote
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spatial location and t denote wavelength. There is severe imbalance in the data.
The genera observed vary across locations and the number of replicates observed
within a genus varies considerably across the locations. Altogether, our most
general model for log reflectance takes the form:

(1) Yij(s, t) = µi(s, t) + γi(t) + αi(s) + η(s, t) + εij(s, t)

Specifically, with regard to the site level covariates, X(s), we write the mean
µi(s, t) = αi + XT (s)β(t), where, hierarchically, αi|α ∼ N (α, σ2α). We have
family level regression coefficients, β(t), which vary with wavelength. So, a
first model choice clarification is whether constant coefficients are adequate
or whether wavelength varying coefficients are needed. Our EDA (Figure 4)
suggests the latter, and there is also supporting evidence/suggestion in the
literature (Jacquemoud and Ustin, 2019c). We do not consider these coefficients
at genus level; with the very irregular observation (including absence) of genera
across locations, we cannot learn about coefficients at genus scale. However, we
can learn about genus specific intercepts, the αi.

Further, we introduce genus level spatial (αi(s)) and wavelength (γi(t)) ran-
dom effects but family level space-wavelength interaction effects, η(s, t). In the
Supplemental Material, we note different spatial patterns for different wave-
length bins, as well as residual dependence by genus and wavelength. Thus, an
additive model (removing η(s, t)) seems inadequate; the η’s allow the functional
model for the reflectances to vary more adaptively over space. However, η(s, t)
is not genus specific. While we have enough data to examine additivity in wave-
length and spatial random effects at genus scale, we are unable to find genus
level explanation for the interaction. Then, two model choice comparisons are
whether the γ’s and whether the α’s should still be genus specific?

As is customary, heterogeneity in the variance arises through the εij(s, t)
terms where we would have var(εij(s, t)) = σ2(t). We can accommodate this
using a log GP for σ2(t), or perhaps just binned variances over suitable wave-
length bins. For simplicity and flexibility, we specify log(σ2(t)) to be piecewise
linear with knots every 20 nm from 440 - 960 nm. For all knot selections, we
use boundary knots slightly beyond the wavelength range.

4.2. Explicit Specifications. The specification for each αi(s) is a genus-level
mean 0 Gaussian process with mean of 0 and exponential covariance function.
The GPs are conditionally independent across genera given a shared decay and
shared scale parameter. We specify γi(t) using process convolution of normal
random variables (Higdon, 1998, 2002). We adopt process convolutions because
of their simple connection to GPs; the kernels of the process convolution connect
the low-rank process to the GP covariance (Higdon, 1998). We adopt wavelength
knots tγ1 , ..., t

γ
Jγ

, spaced every 25 nm from 437.5-962.5 nm (22 in total).
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Specifically, we let γi(t) =
∑Jγ

j=1 ktγj (t − tγj ; θ
(γ)

tγj
)γ∗i (tγj ), where γ∗i (tγj ) are in-

dependent, normally distributed, and centered on a common γ∗(tγj ). We use

Gaussian kernels for ktj (·; θ
(γ)
tj

) with bandwidths θ
(γ)
tj

(standard deviation of the
Gaussian pdf) varying over wavelength. We assume that the log-bandwidths
follow a multivariate normal distribution with global log-bandwidth and

Cov
[
log
(
θ
(γ)
tj

)
, log

(
θ
(γ)
tj′

)]
= v2γ exp

(
−|tj − tj′ |/φγ

)
, yielding a non-stationary

process because of the heterogeneous bandwidth. We found that this nonsta-
tionary specification outperformed a full-rank stationary GP with squared-
exponential covariance (See Supplemental Material).

We specify β(t) using kernel convolutions, where β(t) = BKβ(t). With p
covariates, B supplies a p×q matrix representation of the p regression coefficient
functions β(t). Here, the kernel convolution has knots every 25 nm from 437.5
- 962.5 nm. As with γi(t), we use Gaussian kernels to specify Kβ(t); however,
unlike γi(t), we assume common bandwidths for all kernels, for all wavelengths,
and for each coefficient function.

Turning to η(s, t), we use wavelength kernel convolutions of spatially-varying
variables. That is, we consider low-rank but heterogeneous and nonstationary
(in the wavelength domain) specifications. We select a set of wavelength knots
tη1, ..., t

η
Jη

, spaced every 25 nm from 437.5-962.5 nm (22, in total). We define the
space-wavelength function as

(2) η(s, t) = K(t)T z(s) =

Jη∑

j=1

ktηj (t− tηj ; θ(η))ztηj (s),

where ztηj (s) are spatially-varying random variables associated with Gaussian

wavelength kernels ktηj (·; θtηj ). Unlike the kernel structure for γ(t), we use a com-

mon bandwidth θ(η) for all knots. The construction in (2) allows heterogeneity
and nonstationarity in wavelength space, where the heterogeneity is introduced
through ztηj (s) (See White, Keeler and Rupper, 2021, for a similar construction

in the context of spatial monotone regression).
As an aside, we remark on choosing the form η(s, t) = KT (t)z(s) vs. η(s, t) =

KT (s)z(t). With n sites, the former introduces Jηn random effects, the latter
500n random effects. With Jη relatively small, the former is preferred compu-
tationally. More importantly, it yields much better fits to the data (see the
Supplemental Material).

While we may want dependence between components in z(s) at s, that de-
pendence should have nothing to do with the tηj ’s. We are capturing association
with regard to the distances between wavelength knots through the K’s and
our objective for the z’s is to obtain perhaps nonseparable and nonstationary
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covariance structure for η(s, t). So, we write z(s) = Aw(s) where A is Jη × r
and the components of w(s) are independent mean 0 GP’s with variance 1 and
correlation functions, ρr(s− s′).

When r = Jη, we have the familiar linear model of coregionalization (Wack-
ernagel, 1998). We consider using A = I and Ap×r, for various r, as well as
a separable specification for z(s), where, with V a positive definite matrix,
Cov (z(s), z(s′)) = exp (−φz‖s− s′‖) V. With Ap×r, we constrain the decay pa-
rameters of the (w1(s), ..., wr(s))T to be increasing (see White and Gelfand,
2020), so that the latent GPs have different spatial decays (φz). The resulting
processes for z(s) are very flexible. We compare the various choices through
out-of-sample prediction in Section 4.3.

Under the general form η(s, t) = KT (t)(s)Aw(s), cov(η(s, t), η(s′, t′)) =
KT (t)AΣw(s),w(s′)A

TK(t′). If A = I, we have Σw(s),w(s′) = D(s − s′), a Jη ×
Jη diagonal matrix with entry djj = ρj(s − s′). Thus, cov(η(s, t), η(s′, t′)) =
KT (t)D(s − s′)K(t′) =

∑
j ktηj (t − tj)ktηj (t′ − tηj )ρj(s − s′). The covariance is

always nonseparable and, if A is unconstrained it is nonstationary.

As an illustration, if we takeA to be Jη×2, we have Σw(s),w(s′) =

(
ρ1(s− s′) 0

0 ρ2(s− s′)

)
.

Now, with a1 and a2 the two columns ofA, cov(η(s, t), η(s′, t′)) = (KT (t)a1)(K
T (t′)a1)ρ1(s−

s′) + (KT (t)a2)(K
T (t′)a2)

ρ2(s− s′). We achieve both dimension reduction and space-wavelength interac-
tion. Further, we have nonseparability and nonstationarity (in the wavelengths)
if there are different bandwidths for the different tj . If we set r = 1, we have
separability but still nonstationarity in the wavelengths.

4.3. Model Comparison. We carry out model comparison for Asteraceae,
the most abundant family, using 10-fold cross-validation (described below). In
the Supplemental Material, we present cross-validation results examining var-
ious specifications of the spatial process in η(s, t). When comparing models
with different specifications of η(s, t), all models include spatially-varying genus-
specific intercepts αi + αi(s), a global (not genus-specific) wavelength random
effect γ(t), and functional regression coefficients β(t). For η(s, t), we compare
separable, independent, and latent factor models. We find that the latent factor
specification of η(s, t) with r = 10 has the best out-of-sample predictive per-
formance and use this for η(s, t) in the remainder of the manuscript. For this
specification of η(s, t), we focus our model comparison on eight special cases of
(1) arising by (i) including or excluding αi(s), (ii) using γi(t) or only γ(t), and
(iii) having functional coefficients β(t) or scalar coefficients β.

We hold out reflectances imagining the setting where researchers visited a site
but failed to measure reflectances for some genus at that site. So, at random, we
leave out spectra that have (i) at least one other observed reflectance spectrum
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at the same site and (ii) at least one other observed spectrum of the same
genus located elsewhere. For Asteraceae, this yields 117 candidates out of the
185 in total. Holding out a subset, we fit the model using Markov chain Monte
Carlo, and, with each posterior sample, we predict the hold-out reflectance
spectra. We compare models by averaging across the wavelengths to obtain
the predicted mean squared error (MSE), mean absolute error (MAE), and the
mean continuous ranked probability score (MRCPS), see Gneiting and Raftery
(2007). The results are summarized in Tables 1 and in the Supplement.

αi/αi(s) γ(t)/γi(t) β/β(t) MSE MAE MCRPS Relative MCRPS

αi γ(t) β 0.148 0.301 0.241 1.229
αi γ(t) β(t) 0.141 0.293 0.234 1.196
αi γi(t) β 0.175 0.320 0.265 1.355
αi γi(t) β(t) 0.169 0.318 0.262 1.340
αi(s) γ(t) β 0.102 0.244 0.200 1.023
αi(s) γ(t) β(t) 0.097 0.237 0.196 1.000
αi(s) γi(t) β 0.348 0.435 0.393 2.009
αi(s) γi(t) β(t) 0.290 0.420 0.380 1.940

Table 1
Out-of-sample predictive performance model comparison. Models vary by including or

excluding genus-specific terms, as well as comparing scalar and functional coefficients. All
models use r = 10 spatial factors to construct η(s, t).

Following the results in Table 1 and the Supplemental Material, we adopt
a model with (1) a global wavelength random effect, (2) a spatially-varying
genus-specific intercept, (3) functional regression coefficients, and (4) a space-
wavelength random effect specified through the wavelength kernel convolution
of a multivariate spatial process with 10 latent spatial GPs having different
decay parameters. We use this model to analyze the CFR data.

For the sensitivity of model fit to change in other specifications (e.g., knot
spacing and GP/process convolution), we use average deviance, the deviance
information criterion, and estimated model complexity (Spiegelhalter et al.,
2002), as supplied in the Supplemental Material. To summarize, we employ a
heterogeneous process convolution specification of γ(t) because it gave a better
fit than a full-rank homogeneous GP with squared-exponential covariance and
a process convolution with a common bandwidth for all wavelength knots. We
also specify β(t) using kernel convolutions where β(t) = BKβ(t), where we
space knots every 25 nm from 437.5 - 962.5 nm. We also find that the Gaussian
kernel, which corresponds to the Gaussian covariance function, was preferred
to using double-exponential kernels for γ(t), β(t), and η(s, t). For γ(t), the

model fit was improved when bandwidths θ
(γ)
tj

varied over wavelength; however,
a common bandwidth for the kernels was prefered for η(s, t). The knot spacing,
discussed in Section 4.2, was also determined through sensitivity analysis.
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4.4. Confounding and Orthogonalization. The flexibility of the residual spec-
ification in our best performing model results in annihilation of the significance
of the spatial regressors. This is a well-documented problem in the literature
(see, e.g., Hodges and Reich, 2010; Khan and Calder, 2020). A solution in the
literature is orthogonalization; that is, projection of the random effects (the
spatial residuals) onto the orthogonal complement of the manifold spanned
by the spatial covariates. This yields revised regression coefficients with direct
interpretation in the presence of the random effects. The coefficients are more
aligned with those that arise from model fitting ignoring spatial random effects.

We propose a similar orthogonalization approach here but our setting is more
demanding because we have both space and wavelengths in our residuals. We
have to introduce orthogonalization with regard to the manifold spanned by the
spatial covariates as well as with regard to the manifold spanned through the
use of kernel functions with knots. We present the details below for the sim-
pler case where we have no replicates at locations. However, in our application,
we have replicates associated with the spatial locations and also with different
genera. So, formally, the orthogonalization requires us to introduce a location
by genus matrix to align the number of observed sites with the number of ob-
served reflectances. We present the more detailed argument in the Supplemental
Material.

With n sites and 500 wavelengths, we can express (1) in matrix form as

(3) Y = α1 +XBKT
β + η∗ + ε

where Y is the n × 500 matrix of log-reflectance spectra data by sites, 1 is a
n×500 matrix of ones, α is the global mean, X is the n×p spatial design matrix
(with p covariates), B is p×Jβ with Jβ knots, Kβ is the 500×Jβ kernel design
matrix with Jβ knots. η∗ is also n × 500 summing the corresponding matrix
forms for the mean-zero random effects (γ(t), αi(s), αi − α, and η(s, t)). Then,
using standard results, we can vectorize (3) to

(4) vec(Y ) = α1 + (X ⊗Kβ)vec(B) + vec(η∗) + vec(ε)

where vec(Y ) is an n500× 1 vector with X ⊗Kβ an n500× pJ matrix.
Now, define the joint projection matrix,

(5)
PXKβ ≡ (X ⊗Kβ)((X ⊗Kβ)T (X ⊗Kβ))−1(X ⊗Kβ)T

= (X(XTX)−1XT )⊗ (Kβ(KT
βKβ)−1KT

β ) = PX ⊗ PKβ ,

and write vec(η∗) = PXKβvec(η
∗) + (I − PXKβ )vec(η∗). Then, we can write

vec(Y ) = (X ⊗Kβ)vec(B∗) + (I − PXKβ )vec(η∗) + vec(ε), where the updated
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unconfounded coefficients are (in vec and block form)

(6)
vec(B∗) = vec(B) + ((X ⊗Kβ)T (X ⊗Kβ))−1(X ⊗Kβ)T vec(η∗),

B∗ = B + (XTX)−1XT η∗Kβ(KT
βKβ)−1.

Here, vec(B∗) and B∗ provide the vector and matrix of regression coefficients,
respectively, under the orthogonalization. The model is fitted using (1). Then,
with the posterior samples of the β’s, γ’s, α’s, and η’s along with the X(s) and
Kβ(t), the unconfounded B∗’s can be obtained using (6).

5. Analysis of the CFR Reflectance Spectra Data. We focus discus-
sion on a comparison between families but give specific attention to the results
on Asteraceae, the most abundant family. We compare and discuss results from
the orthogonalized coefficients using the approach in Section 4.4. In addition,
we summarize covariate importance on log-reflectance. Again using the orthog-
onalized random effects and unconfounded regression functions, we discuss the
proportion of variance explained by each model term.

The confounding between random effects (genus, wavelength, and spatial)
and covariates pushes β(t) to zero, obliterating any significant inference with re-
gard to the effect of environmental variables on log-reflectance. For each MCMC
posterior sample, we calculate the proportion of the variance in each random
effect (αi(s), γ(t), η(s, t)) explained by X and Kβ. We orthogonalize our ran-
dom effects with respect to X and Kβ as described in Section 4.4 to remove the
diminishing of the effect of the regressors.

For the Asteraceae family, we explore the proportion of the variance explained
by each of the mean-zero model terms. For every posterior sample, we calculate
the empirical variance of all nonorthogonalized and orthogonalized terms (See
Figure 5 to the 95% credible regions): εij(s, t), x(s)Tβ(t), αi(s)+αi−α, γ(t), and
η(s, t). We take αi(s) + αi to capture both genus-specific terms and subtract α
to make αi(s)+αi−α a mean-zero random effect. For orthogonalized terms, γ(t)
explains slightly under 25% of the variability of the data, while both η(s, t) and
x(s)Tβ(t) explain over 30% of the total variance. Without orthogonalization of
the random effects, the environmental regression explains almost no variance.
The genus-specific spatially-varying intercept (αi(s)+αi)−α explains over 10%
of the total variance while εij(s, t) accounts for about 5% of variance in the data.

In Figure 5, we plot the proportion of between-spectrum variability explained
by all orthogonalized mean-zero terms as a function of wavelength (posterior
mean and 95% credible interval). Even though γ(t) is common to all spec-
tra, after orthogonalization, it is no longer a constant term for all spectra. For
wavelengths less than 700 nm, we find that unconfounded environmental re-
gression and space-wavelength random effects are most important in explaining
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between-spectrum variance. For higher wavelengths (> 750 nm), where there
is little variation in the wavelength functions; the orthogonalized global wave-
length random effects γ(t) and the unconfounded environmental regression ex-
plain the most between-spectrum variance. The spatially-varying genus-specific
offset, (αi(s) + αi) − α explains between 10-20% of between-spectrum vari-
ance for most wavelengths but appears particularly influential for wavelengths
between (675-725 nm). The εij(s, t) account for the 0 to 10% of unexplained
between-spectrum variance in log-reflectance, depending on wavelength.
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Fig 5. (Left) Proportion of variance explained by each model term and (Right) Proportion of
between-site variance explained by model terms.

After updating β(t) in the presence of orthogonalization, we present inference
on covariates for all families. Figure 6 shows the posterior mean, 95% credible
interval for each element of β(t). All coefficient functions are significantly non-
zero for most wavelengths (around 99% for all wavelengths). With covariates
centered and scaled, (i) we can interpret effects as the expected change in log-
reflectance for a one standard deviation change in the covariate, holding the
other covariates constant, and (ii) we can compare the scales of the coefficient
functions among covariates.

The four covariates have positive effects for some wavelengths, negative ef-
fects for others, with a transition around 700 nm, a threshold/boundary be-
tween visible (450-700nm) and near-infrared regions (NIR, 700-1400nm) of the
spectrum. The visible region is most strongly affected by differences in plant
pigment composition/concentration while the NIR is most affected by structural
properties related to the cell wall, to air interface within the leaf (Jacquemoud
and Ustin, 2019c). Traits can exhibit uniform effects across multiple parts of
the spectrum (e.g., often in water content) or can cause increased reflectance
in parts of the spectrum and decreased reflectance in others (Feng et al., 2008;
Jacquemoud and Ustin, 2019b). Different sets of traits acting in concert in re-
sponse to environment likely drive the positive and negative shifts across the
700 nm threshold in Figure 6.

For Asteraceae, we estimate that higher elevations are associated with lower
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reflectance levels at wavelengths less than 700 nm but higher reflectance at
wavelengths above 700 nm. The relationships of precipitation and temperature
with reflectance are similar. On the other hand, rainfall concentration is pos-
itively correlated with reflectance at low wavelengths and becomes negatively
correlated with reflectance as wavelength increases. We note that rainfall con-
centration, the environmental feature that reflectance responds differently to,
is largely longitudinally driven in comparison to the other features. Specifically,
the extreme western and to some extent the extreme eastern sample sites have
significantly higher rainfall concentrations than more central locations. Because
there is between-covariate correlation, the coefficient functions must be inter-
preted as partial slopes, i.e., holding all other covariates constant.

To compare covariate importance, we calculate the mean integrated absolute
coefficient over the wavelength domain, |βj | = 1

500

∫ 950
450 |βj(t)|dt ≈ 1

500

∑500
i=1 |βj(ti)|,

for each covariate. This metric weights the contribution of the coefficient equally
regardless of sign or wavelength. We calculate |βj | for every posterior sample

and plot these in Figure 7. In terms of |βj |, elevation and temperature are more
influential on reflectance than precipitation and rainfall concentration.

5.1. Comparison across families. We compare the regression coefficient func-
tions for the three families in this study (posterior mean and 95% credible in-
terval): Aizoaceae, Asteraceae, and Restionaceae (See Figure 6). The regression
coefficient functions are clearly distinct across the families. However, between-
covariate correlation or different spatial sites covered by each family may ac-
count for some of these differences.

The estimated effects of elevation, annual precipitation, and temperature are
opposite in direction for all wavelengths between Asteraceae and Aizoaceae.
For these covariates, we see positive effects on Aizoaceae log-Reflectance for
wavelengths < 700 nm and negative effects for wavelengths > 700 nm, with
opposite patterns for Asteraceae. For Asteraceae, the estimated effects of rain-
fall concentration are positive for lower wavelengths and negative for higher
wavelengths, while they are nearly zero for Aizoaceae. Restionaceae has very
small estimated temperature effects. For elevation and rainfall concentration,
Restionaceae shows significant effects on log-reflectance for wavelengths < 700
nm, but essentially no effect for higher wavelengths. The estimated effect of
precipitation for Restionaceae is similar to Aizoaceae in pattern but is smaller
in magnitude.

In Figure 6, we also plot the variance function for εij(s, t) for each family
(posterior mean and 95% credible interval). Asteraceae has the highest esti-
mated variance for most low wavelengths (450 - 700 nm), a trend that matches
the between spectrum variance patterns in Figure 3. Restionaceae has the low-
est estimated variance for (450 - 700 nm). All families have very low estimated
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variance for most high wavelengths (700 - 950 nm).
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Fig 6. Between family comparison of (Top-Left to Middle-Right) environmental regression
coefficient functions (Elevation, Annual Precipitation, Rainfall Concentration, and Average
Minimum January Temperature) and (Bottom) wavelength-varying variance σ2(t).

The differing responses in visible and near-infrared reflectance to environ-
ment between Aizoaceae and Asteraceae 6 likely indicate that genera within
the two families employ different adaptive strategies in response to their local
environments across the landscape. The Aizoaceae family consists of small suc-
culent stemmed and leafed plants while the Asteraceae family largely consists
of non-succulent leafed herbs and shrubs. Both plant families adapt via other
traits tied to aridity tolerance (e.g., water storage for periods of drought) and
avoidance (e.g., leaf hairs, wax, and anthocyanin pigmentation that block UV
radiation). The adaptive traits in the respective ”evolutionary toolboxes” of
Aizoaceae and Asteraceae are constrained by their phylogenetic ancestry, re-
sulting in differing strategic responses to environment in their traits and thus,
reflectances. In contrast, the Restionaceae consist of grass-like plants with tough
fibrous photosynthetic stems that vary less than the other two families in adap-
tation to drought.

We show the posterior distribution (box plots) for |βj | across all covariates

and families (See Figure 7). Since |βj | represents the relative importance of
covariates for log-reflectance, we see that the covariates are more important in
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describing log-reflectances for Asteraceae than Aizoaceae and more important
for Aizoaceae than for Restionaceae, except for rainfall concentration. Perhaps
the relative importance |βj | may be higher for Aizoaceae and Asteraceae be-
cause these have more expansive spatial distributions and thus experience higher
variability in environmental variables.
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Fig 7. Covariate importance |β| for all families.

Despite the differences in spatial ranges, the families differ in terms of which
environmental variables have the highest relative importance to their reflectance
signals. The most important variable for Asteraceae is elevation, likely a proxy
for several environmental factors; prominent among them is the biome shift
from the higher elevation Fynbos biome within the Cederberg mountains to
the lower elevated Succulent Karoo biome. These biomes differ widely in their
environments, the Fynbos biome having nutrient-poor soils and a regular fire
cycle while the Succulent Karoo is largely arid with low levels of rainfall. Aster-
aceae is the only family to fully span both biomes in large numbers and these
biomes feature a wide difference in environments. The most important variable
for Aizoaceae is the minimum average temperate in January (the peak austral
summer month), a strong indicator of the maximum temperature a plant can
tolerate. This suggests that the major driver of Aizoaceae reflectances are un-
derlying adaptations related to heat tolerance/avoidance. While more limited
in its spatial extent, the Restionaceae reflectance spectra responded most to
rainfall concentration. Under the notion that higher concentrations of rainfall
in fewer months out of the year would lead to more dramatic periods without
water, much of the differences in Restionanceae reflectance may be in response
to underlying traits managing water during times of drought.

6. Summary and Future Work. We have offered plant reflectance mod-
eling to capture variation over space between reflectance across genera within a
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family. We incorporate wavelength heterogeneity, spatial dependence, and also
wavelength - covariate interaction as well as space - wavelength interaction. We
have fitted these models to reflectances from the Cape Floristic Region in South
Africa, demonstrating successful model performance and revealing a range of
novel inference as well as successful spatial prediction.

This work has several future applications and opportunities for further devel-
opment. Our current data only included the visible and near-infrared reflectance
spectra of leaves. These data could be expanded to include the reflectance of
plant canopies across a broader spectral range to make predictions relevant
to the reflectance spectra collected by broader band sensors aboard aerial and
satellite remote sensing platforms. Our spatially explicit predictions of plant
reflectance would be highly relevant for spectral unmixing analyses which seek
to predict the abundances of spectral end members, i.e., individual species, in a
canopy of vegetation. Future modeling efforts include exploring reflectance sig-
natures following evolutionary history, explicitly taking into account phylogeny
among different groups of plants.

Our space-wavelength model could also be adapted for space-time applica-
tions. For suitable spatiotemporal settings, it may be useful to construct spatial
kernel convolutions of wavelength/temporal GPs. Also, our approach to spatial
orthogonalization for functional regression coefficients could be applied to dy-
namic regression in spatiotemporal settings.
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In the Supplemental Material, we present extended data explo-
ration and preliminary analysis in Section 1. Specifically, we explore
family differences in occurrence, co-occurrence, and location. We also
provide detailed residual analysis to motivate our modeling. In Sec-
tion 2, we present additional model development. In Section 2.1, we
present the results of the cross-validation for the Asteraceae used to
select the form of η(s, t). We provide an extended sensitivity analysis
in Section 2.2. For the model with the best out-of-sample prediction,
we present prior distributions, model fitting, and prediction details
in Section 3. Section 4 provides expanded discussion on the orthogo-
nalization approach presented in the manuscript. Lastly, we present
additional results about the regression coefficient functions for all
three families in Section 5.

1. Extended Exploratory Analysis. Here, we extend and elaborate
on the exploratory analysis in the manuscript. In particular, we summarize
simple aspects of the data in Section 1.1, specifically discussing the number
of genera in each family and family/genus duplication and co-occurrence.
We also explore family and genus-level occurrence by location, as well as
some assessment of family differences. In Section 1.2, we provide visual ex-
aminations of the family, genus, and species distributions over the CFR
region (the region of analysis discussed in the manuscript). In Section 1.3,
we include extended residual analysis to motivate the space-wavelength hi-
erarchical model proposed in the manuscript.

1.1. Data Summaries. To better understand the within family diversity
present in this dataset, we look at the number of genera with an observed
reflectance curve within each family: Aizoaceae - 16, Asteraceae - 38, and
Restionaceae - 10. Importantly, many genera are found only once in the data
set, and most are observed only a few times. To illustrate this, we plot the
histogram of the number of observed reflectance curves by genus for each
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family in Figure 1. We note that for all families most genera are observed
fewer than five times.
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Fig 1. Number of observed curves for each genus for (Left) Aizoaceae, (Center) Asteraceae,
and (Right) Restionaceae.

In addition, we provide the following summaries: (i) the proportion of sites
where each family is present (see Table 1), (ii) the number of sites with one,
two, or three families (see Table 2) and (iii) a more detailed breakdown of
family co-occurrence (see Table 3). Asteraceae has the widest spatial spread
in the CFR region. Aizoaceae and Restionaceae rarely co-occur, suggest-
ing that joint modeling will not be successful. Importantly, Restionaceae is
mostly limited to the Cederberg region with the exception of a couple of
HTR observations.

Proportion of Sites With Family Present

AIZOACEAE 0.31
ASTERACEAE 0.77

RESTIONACEAE 0.21
Table 1

Proportion of sites where each family was present.

Number of Families Number of Sites

1 96
2 35
3 2

Table 2
Number of unique families at each site.

As Table 3 shows, duplication at the family level occurs at approximately
30% of sites. Moreover, it appears that the between-family relationships at
common sites are relatively weak. In Figure 2, we plot the between-family
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correlation at sites where families co-occur. We calculate the correlations for
reflectances over 10 wavelength bins. With the exception of three bins, all
correlations are less than 0.2 in magnitude. The combination of low between-
family correlations and low family co-occurrence motivate our decision to
model the reflectances for each family separately.

In this dataset, it is not common to observe the same genus more than
once at the same site (see Table 4). Duplication is quite rare at the species
level; thus, most sites have at most family-level or no duplication. This point
is explored in more detail in Section 1.2.

n100 n010 n001 n110 n101 n011 n111 Total

counts nijk 14.000 69.000 13.000 22.000 3.000 10.000 2.000 133.000
proportion nijk/ns 0.105 0.519 0.098 0.165 0.023 0.075 0.015 1.000

Table 3
Letting i, j, and k be binary, where i = 1, j = 1, and k = 1 indicate the presence of

Aizoaceae, Asteraceae, and Restionaceae, respectively. nijk here represents the number of
sites with all possible configurations of sites.
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Fig 2. The between-family correlation for reflectances at the same site, averaged over 10
wavelength bins. In this plot “AS” refers to Asteraceae, “AI” refers to Aizoaceae, “RE”
refers to Restionaceae.

Duplicated genera by site Counts

1 224
2 31
3 3

Table 4
Level of genus duplication by site.



4 P. WHITE ET AL.

Although these families have broad overlap in their reflectance curves, as
seen in the main manuscript, we find that we can identify families effectively
from their reflectance curves using linear discriminant analysis (LDA) (See
Figure 3). Although this is not the goal of our analysis, the clear separation
of the groups indicates that reflectances can be used to effectively predict
taxonomic differences. In other words, this effectively demonstrates that
reflectance is an “uber” trait. We emphasize, however, that this analysis is
exploratory to demonstrate that family differences are clearly present in the
reflectance curves.

Fig 3. Linear Discriminant Analysis of family using reflectance curves to predict family.

1.2. Data Locations. In this section, we examine the locations where
we have observed plant reflectance curves. This is useful as it motivates
decisions about joint modeling and model hierarchy structure. In Figures 4
and 5, we show all locations coded by the region they belong to and by the
number of families observed at that site. To visualize the spatial distribution
of each family, we plot the locations where each family is observed in Figure
4; the observed curve locations differ by family. Because of the significant
differences between their spatial ranges, joint spatial modeling of the three
families does not seem appropriate. Joint modeling may also be discouraged
based on the weak between-family correlations presented in Section 1.1.

Figure 5 plots the locations of the curves colored by genus for each fam-
ily. (The plot is limited to those genera that have at least five reflectance
curves). Although somewhat difficult to see, this shows that most genera are
very concentrated, while others are spread out. This suggests that spatial
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modeling at a genus-level may be difficult or limited. In our final model
presented in the manuscript (selected through cross-validation), we use a
spatially-varying genus-specific offset but do not have functional modeling
at the genus level. In the HTR and Cederberg regions, there is little species
duplication at these study sites. In Figure 6, for each site, we plot the lowest
classification level of duplication observed. For example, if we observe two
reflectance curves for the same genus at the same site, we note that as genus
duplication.
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Fig 5. Locations colored by genus for genera observed at least five times.
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1.3. Variance, Covariance, and Residual Analysis. To motivate the hi-
erarchical analyses in the manuscript, we fit the functional coefficient model
described in the manuscript without any random effects and analyze residual
patterns from this simple model. We carry out this analysis for the Aster-
aceae family; however, similar patterns are also present in the Aizoaceae and
Restionaceae families.

In Figure 7, we plot the mean of residuals for each genus. These patterns
demonstrate that the overall log-reflectance level is strongly related to the
genus.
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Fig 7. Mean of residuals by genus for the Asteraceae family.
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In Figure 8 and 9, we plot the mean residuals as a function of wavelength
by genus and by location, respectively. We group these two residual anal-
yses because the patterns observed are similar and because genus-specific
patterns are strongly related to spatial patterns due to the limited spatial
range of genera. Although the patterns in Figures 8 and 9 are both strong
and motivate wavelength functions for genus and location, we find that hav-
ing genus-specific wavelength functions makes predictive performance worse
when a spatial-wavelength random effect is included. Thus, we argue that
much of the structure in Figure 8 is implicit in the patterns seen in Figure
9.
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Fig 8. Mean of residuals by genus and wavelength (in nm) for the Asteraceae family.
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Fig 9. Mean of residuals by unique location and wavelength (in nm) for the Asteraceae
family.
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Lastly, we examine the spatial autocorrelation of residuals overall and over
various wavelength bins by computing empirical binned semivariograms. Al-
though our models are explicitly functional and not binned, this is intended
to show that these patterns vary over the wavelength domain. These semi-
variograms are plotted in Figure 10. Overall, there is a clear pattern in the
semivariance as a function of distance. Additionally, most wavelength bins
show some spatial autocorrelation, but most of these spatial patterns are
weak relative to the “nugget” effect. Importantly, the autocorrelation pat-
terns appear to be wavelength (bin) dependent in that the scales of semi-
variance are wavelength dependent and the spatial ranges appear to vary
for different wavelengths. Specifically, lower wavelengths (< 700 nm) seem
to have a rapid rise in semivariance of the first 75 km, while, for higher
wavelengths, there are increases in semivariance at greater distances.
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Fig 10. Empirical binned semivariograms of residuals overall and for 14 wavelength bins
(indicated in the plot) for the Asteraceae family.

We also point out that the covariates used in our analysis are collinear.
That is, they have some between-covariate correlation (Figure 11). Thus,
the proposed regression functions must be interpreted with this between-
covariate covariance in mind.
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Fig 11. Between-covariate correlation.

2. Model Development and Sensitivity Analysis.

2.1. Cross-validation for specifying η(s, t). As written in the manuscript,
we define the space-wavelength function as

(1) η(s, t) = K(t)T z(s) =

Jη∑

j=1

ktηj (t− tηj ; θ(η))ztηj (s),

where ztηj (s) are spatially-varying random variables associated with Gaus-

sian wavelength kernels ktηj (·; θtηj ). We select the structure of z(s) through

cross-validation as described in the manuscript. In particular, we compare
separable, independent, and various latent factor models, including the linear
model of coregionalization (LMC). We present the results of these analyses
in Table 5. We find that including r = 10 factors to construct z(s) led to the
best out-of-sample prediction. The models in Table 5 all include spatially-
varying genus-specific intercepts αi + αi(s), a global (not genus-specific)
wavelength random effect γ(t), and functional regression coefficients β(t).

Although this does not consider all possible combinations of mean terms
and specifications of η(s, t), we emphasize the degree to which the models
with spatially-varying genus-specific intercepts αi + αi(s) and a global (not
genus-specific) wavelength random effect γ(t) outperform other specifica-
tions by about 20%.
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z(s) Specification Latent Components MSE MAE MCRPS Relative MCRPS

Separable — 0.104 0.252 0.208 1.060
Independent r = Jη 0.125 0.271 0.225 1.147
Factor r = 2 0.156 0.307 0.258 1.316
Factor r = 3 0.125 0.279 0.231 1.180
Factor r = 5 0.115 0.262 0.217 1.110
Factor r = 8 0.105 0.249 0.208 1.064
Factor r = 10 0.097 0.237 0.196 1.000
Factor r = 12 0.108 0.254 0.211 1.077
LMC r = Jη 0.105 0.251 0.207 1.059

Table 5
Out-of-sample predictive performance for various specifications of z(s). All these models
use the best configuration in Table 1 of the Manuscript. As discussed in the manuscript,

Jη = 22.

2.2. Sensitivity Analysis. We use our MCMC model fitting to obtain
M posterior samples. Let l(θ(m)) be the log-likelihood evaluated at the
mth posterior sample θ(m), m = 1, ..,M . Additionally, we define the pos-

terior mean to be θ = 1
M

M∑
m=1

θ(m). For simplicity, we use various quan-

tities related to deviance, D(θ(m)) = −2l(θ(m)), for preliminary model
comparison and sensitivity analysis. Specifically, we use the mean deviance
(D = 1

M

∑M
m=1D(θ(m))), estimated model complexity (PD = D − D(θ)),

and deviance information criterion (DIC = D + PD) to make some pre-
liminary model selections (Spiegelhalter et al., 2002). For these quantities,
smaller is better. For each comparison, we look at the relative D, PD, and
DIC, where the lowest (best) model is set to 0. For most comparisons, we
are interested in selecting the simplest specification that gives approximately
the same performance. The exception is for β(t); in this case, we desire the
richest specification that gives approximately the same performance in terms
of DIC. For all comparisons, we fix other model specifications on the other
“best” settings while changing only one component of the model.

Although not carried out for every model, we fit one model ten times to
roughly estimate the standard error of D and DIC to get a sense of the scale
of differences that may arise by randomness. We found that the standard
errors (SE) of D, PD, and DIC to be about 70, 100, and 120, respectively.
Treating D, PD, and DIC for the models of independent, the standard error
of the differences in D, PD, and DIC is (roughly)

√
2SE2 =

√
2SE. We

consider differences of roughly two standard errors “significantly” different in
model performance data (200 inD, 280 in PD, and 340 in DIC). Again, this is
only a sensitivity analysis, so these comparisons are somewhat informal and
intended only to discriminate models whose fits are significantly different
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(better or worse) than others. Primary model questions are answered by
out-of-sample prediction in the manuscript and in Section 2.1.

In the first case, we consider variations on the form of η(s, t) discussed
in the manuscript (Table 6). We find that the asymmetric specification of
η(s, t) = k(t)T z(s) is best here. This is expected based on our exploratory
analyses where (1) spatial autocorrelation decays rapidly and (2) the wave-
length function is evidently heterogeneous. The spatial convolution model
k(s)T z(t) assumes a low-rank spatial model which fails to capture short-
range spatial relationships. We determine the form of z(s) in the manuscript
through out-of-sample predictive performance.

η(s, t) D PD DIC

k(t)T z(s) 0 655 0
k(s)T z(t) 84064 1198 85752

α(s) 47120 154 47765
None 97711 0 98202

Table 6
Comparison of models with different structural forms of η(s, t).

As a follow-up, we also consider four specifications of the decay parameters
of the independent GPs w(s) used to construct z(s). In the first case, we
fixed all φj to be the same value before model fitting. In the second case,
we fixed φj to be a sequence of increasing values to allow more flexibility in
z(s). Third, we include a single decay parameter in the model fitting. Lastly,
we learn φj and include a prior ordering constraint. Recalling the roughly
estimated standard errors, we find that these specifications have almost the
same performance (See Table 7). We use the second case, a fixed sequence of
φj , because it excludes φj from model fitting but allows appealing flexibility.

φj D PD DIC

Fixed Single 67 156 223
Fixed Sequence 73 155 230
Random Single 69 62 132

Random Sequence 0 0 0
Table 7

Comparison of models with different specifications of the range parameters of w(s).

For γ(t), we consider two specifications: one using a process convolution
with wavelength-dependent bandwidths and one with a full GP with a single
decay parameter. The process convolution specification is nonstationary but
low-rank, while the GP is full-rank but stationary. Table 8 shows that the
nonstationary process convolution is better in terms of all measures.
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γ(t) D PD DIC

Non-stationary Process Convolution 0 0 0
Full (stationary) GP 283 462 746

Table 8
Comparison of models with different forms for γ(t).

In Tables 9 and 10, we consider specifications of the the wavelength ker-
nels. Interestingly, we find that the model with a single kernel bandwidth
is competitive with the model with a wavelength-dependent bandwidth. We
found that the Gaussian kernel was significantly better than the double ex-
ponential kernel. The Gaussian kernel approximates a Gaussian covariance,
meaning that the better model is very smooth. Given the smoothness of the
observed reflectance curves, this result is not surprising. Ultimately, we use
Gaussian kernels with a common bandwidth for all wavelengths.

Because we use low-rank specifications for β(t), we wish to examine the
sensitivity of the fit to the spacing of knots. We find that the fit is quite
robust to the specification of β(t); therefore, we use one of the richest speci-
fications that does not make DIC “significantly” worse (25 nm). We specify
log(σ2(t)) as a piecewise linear function and explore the sensitivity of this to
the spacing of the knots (See Table 12). The fit appears best when knots for
log(σ2(t)) are spaced every 20 nm, but the fit is comparable when spacing
is 10 nm or 25 nm. For the spacing of knots for η(s, t), we find that knots
spacing of 25 nm or less yields comparable model fits, so we use 25 nm as
the spacing for wavelength knots (See Table 12). Lastly, for the spacing of
knots for γ(t), we find that knot spacing of 25 nm or less yields comparable
model fits (See Table 11), so we use 25 nm as the spacing for wavelength
knots for γ(t).

Kernel D PD DIC

One Bandwidth 10 149 160
Wavelength-Dependent 0 0 0

Table 9
Comparison of models with different wavelength bandwidths for η(s, t).

Kernel D PD DIC

Gaussian 0 0 0
Double-Exponential 1497 69 1566

Table 10
Comparison of models with different kernel functions for γ(t) and η(s, t).
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β(t) Knot spacing D PD DIC

20 nm 0 167 148
25 nm 66 23 69
50 nm 50 94 124
100 nm 20 0 0

γ(t) - Knot spacing D PD DIC

10 nm 0 82 16
20 nm 151 49 135
25 nm 65 0 0
50 nm 277 31 243

Table 11
Knot spacing of process convolution used in β(t) and γ(t).

log
[
σ2(t)

]
knot spacing D PD DIC

10 nm 22 91 57
20 nm 0 57 0
25 nm 160 0 103
50 nm 2466 33 2443

100 nm 9572 0 9515

η(s, t) - Knot spacing D PD DIC

10 nm 0 161 0
20 nm 129 79 47
25 nm 167 127 133
50 nm 3561 45 3444

100 nm 11701 0 11540
Table 12

Knot spacing of the piecewise linear specification of log
[
σ2(t)

]
and η(s, t).

3. Prior Distributions, Model Fitting, and Prediction. We present
the relevant fitting details for the model with the best out-of-sample predic-
tive performance:

Yij(s, t) = αi + αi(s) + x(s)β(t) + γ(t) + η(s, t) + εij(s, t),

where the variance of the error is piecewise linear on the log-scale, log(σ2(t)) =
Kσ(t)Tβσ, as discussed in the manuscript. To present the model completely,
we define assumptions and terms mathematically that were described in
words in the manuscript and discuss the prior distributions.

We use finite variance inverse gamma prior distributions for variance pa-
rameters that, given the scale of our data, are only weakly informative.
As discussed, the decay parameters φwj are fixed and ordered to provide

flexibility to the latent factor representation of z(s). ~B and γ∗ are the low-
rank representations of the regression coefficients and the global wavelength
random effect discussed in the manuscript. The correlation matrix Rγ is
specified through an exponential correlation function with φγ = 1/50 and
imposed correlation between the bandwidths of the nonstationary kernel
convolution γ(t).
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(2)

αi
ind∼ N

(
α, σ2

α

)

α ∼ N
(
0, 102

)

αi(s) ∼ GP
(

0, σ2
α(s)e

−φαd(s,s′)
)

vec(B) ∼ N
(
0, σ2

βI
)

γ∗ ∼ N
(
0, σ2

γI
)

wj(s) ∼ GP
(

0, e−φwj d(s,s′)
)

σ2
α ∼ IG (3, 0.2)

σ2
α(s) ∼ IG (3, 2)

σ2
β ∼ IG (3, 2)

φα ∼ Unif (1/100, 1)

θ(β) ∼ Gamma (5, 1/10)

log
(
θ

(γ)

tγ1
, ..., θ

(γ)

tγJ

)
∼ N

(
µθγ , σ

2
θγRγ

)

Aik
iid∼ N

(
0, σ2

A

)

θ(η) ∼ Gamma (5, 1/10)

βσ ∼ N
(
0, 102I

)

µθγ ∼ N
(
3, 32

)

σ2
γ ∼ IG (3, 2)

σ2
A ∼ IG (11, 10)

σ2
θγ ∼ IG (5, 2)

We fit our model using Markov chain Monte Carlo (MCMC) through a
Gibbs sampler when closed-form posterior conditional distribution are avail-
able and using Metropolis-Hastings within Gibbs when these conditional
distributions are not available in closed form. The spatial GP parameter φα,

bandwidth parameters (θ(β), θ
(γ)

tγ1
,..., θ

(γ)

tγJ
), and variance regression param-

eters βσ are all updated using Metropolis-Hastings. We sample from the
posterior distribution 200,000 times. We discard the first 150,000 samples
and thin the remaining 50,000 samples to 10,000 posterior samples. We base
our inference on these 10,000 posterior samples.

After model fitting, when of interest, we sample from the posterior pre-
dictive distribution, ∫

Ψ
f(ynew|ψ)π(ψ|Y)dψ,

using composition sampling (see Tanner, 1996, for early reference), where
ψ denotes all model parameters and Y represents all data. For model com-
parison, this predictive approach allows us to compare the entire empirical
predictive distribution to hold-out reflectance curves. When interpolating
reflectances to a new site, this involves sampling spatially-varying intercepts
αi(s) and latent GP parameters wj(s) from the appropriate conditional nor-
mal distribution conditional on sampled values.

We use ·| · · · the conditional distribution given all other parameters,
as well as the data. For computational speed, we sample all w(s) for a
given site jointly, effectively updating the whole space-wavelength func-
tion η(s, t) site-wise. We also considered updating wj(s) for all sites; how-
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ever, this did not mix as effectively. For simplicity, we define µi(s, t)−αi ,
µi(s, t)−αi(s), µi(s, t)−β, µi(s, t)−γ , µi(s, t)−η to the mean term excluding αi,
αi(s), x(s)β(t), γ(t), and η(s, t), respectively. When an index is excluded,
it indicates that we are looking at all terms. For example, Yij(s) represents
all log-reflectances for genus i, replicate j, and at the location s. The matrix
Dσ is a diagonal matrix with all σ2(t) on the diagonal.

Let Ni be the number of curves in the dataset for the ith genus, N(s) be
the number of curves at site s, while Ni(s) is the number of curves for the
ith genus at site s. We refer to some definitions introduced in Section 4. The
full conditional distributions are as follows:

(3)

αi| · · · ∼ N
(
v∗αim

∗
αi , v

∗
αi

)

αi(s)| · · · ∼ N
(
v∗αi(s)m

∗
αi(s), v

∗
αi(s)

)

α| · · · ∼ N (v∗αm
∗
α, v
∗
α)

vec(B)| · · · ∼ N
(
v∗βm

∗
β , v
∗
β

)

γ∗| · · · ∼ N
(
v∗γm

∗
γ , v
∗
γ

)

w(s)| · · · ∼ N
(
v∗w(s)m

∗
w(s), v

∗
w(s)

)

µθγ | · · · ∼ N
(
v∗θγm

∗
θγ , v

∗
θγ

)

Ak| · · · ∼ N
(
v∗Ajm

∗
Aj , v

∗
Aj

)

σ2
α| · · · ∼ IG (a∗α, b

∗
α)

σ2
α(s)| · · · ∼ IG

(
a∗α(bs), b

∗
α(s)

)

σ2
β | · · · ∼ IG

(
a∗β , b

∗
β

)

σ2
γ | · · · ∼ IG

(
a∗γ , b

∗
γ

)

σ2
A| · · · ∼ IG (a∗A, b

∗
A)

σ2
θγ | · · · ∼ IG

(
a∗θγ , b

∗
θγ

)
, where

m
∗
αi

=
∑

s

∑

j

∑

t

(
Yij(s, t)− µi(s, t)−αi

)
/σ

2
(t) + α/σ

2
α

m
∗
αi(s)

=
∑

j

∑

t

(
Yij(s, t)− µi(s, t)−αi(s)

)
/σ

2
(t)

m
∗
α =

1

σ2
α

∑

i

αi

m
∗
β = vec

[
K
T
βD

−1
σ

(
Y− µ−β

)]

m
∗
γ = K

T
γ

∑

s

∑

i

∑

j

D
−1
σ

(
Yij(s)− µi(s)−γ

)

m
∗
w(s) = A

T
K
T
η

∑

i

∑

j

D
−1
σ (Yij(s)− µi(s)−w(s))

+




Cov[w1(s), w1(−s)]Cov−1[w1(−s)]w1(−s)

.

.

.

Cov[wr(s), wr(−s)]Cov−1[wr(−s)]wr(−s)




m
∗
θγ

= 1
T
R

−1
γ log

(
θ
(γ)

t
γ
1

, ..., θ
(γ)

t
γ
J

)
1/σ

2
θγ

+ 3/9

m
∗
Ak

= K
T
η D

−1
σ

(
Y− µ−Ajwj(s)

)
Mswj

a
∗
α = 3 +Ng/2

a
∗
α(s) = 3 +Ni(s)/2

a
∗
β = 3 + JβP/2

a
∗
γ = 3 + Jγ/2

a
∗
A = 11 + rJη/2

b
∗
A = 10 +

1

2

∑

i

∑

k

A
2
ik

v
∗
αi

=

(
Ni
∑

t

1/σ
2
(t) + 1/σ

2
α

)−1

v
∗
αi(s)

=

(
R

−1
si
/σ

2
α(s) + INi(s)

∑

t

1/σ
2
(t)

)−1

v
∗
α =

(
1/100 +Ni/σ

2
α

)−1

v
∗
β =

(
I/σ2

β + X
T
M
T
s MsX⊗K

T
βKβ}

)−1

v
∗
γ =

(
I/σ2

γ + K
T
γKγ}

)−1

v
∗
w(s) =

(
diag

(
var(wj(s)|wj(−s)

−1
)
+N(s)A

T
K
T
η D

−1
σ KηA

)−1

v
∗
θγ

=
(
1
T
R

−1
γ 1/σ

2
θγ

+ 1/9
)−1

v
∗
Ak

=
(
K
T
η D

−1
σ Kη + Iσ2

A

)−1

b
∗
α = 0.2 +

1

2

∑

i

(αi − α)2

b
∗
α(s) = 2 +

1

2
αi(s)

T
R

−1
si

αi(s)

b
∗
β = 2 + 1

T
vec(B)/2

b
∗
γ = 2 + 1

T
γ
∗
/2

a
∗
θγ

= 5 + Jγ/2

b
∗
θγ

= 2+

1

2

[
log

(
θ
(γ)

t
γ
1

, ..., θ
(γ)

t
γ
J

)
− 1µθγ

]T
R

−1
γ

[
log

(
θ
(γ)

t
γ
1

, ..., θ
(γ)

t
γ
J

)
− 1µθγ

]

4. Extended Discussion on Orthogonalization. Because we have
the dual goal of using this model for prediction and estimation, we discuss
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how to preserve informative inference on the regression coefficient functions.
In this section, we expand our discussion in the main manuscript to explicitly
address the imbalance in our data. Specifically, we do not have a unique
location for each reflectance curve; genera are observed at some sites and
not others.

We resolve issues of spatial and functional basis confounding between
η(s, t) + γ(t) + αi + αi(s) and x(s)Tβ(t). To illustrate how the functional
basis confounding contributes to this problem, we rewrite the model. To
do this, we define several terms. Let Nwave = 500 be the number of log-
reflectances measured in each reflectance curve, Nrep be the number of ob-
served reflectance curves, and Ns be the number of unique spatial sites, and
Ng be the number of unique genera. In addition, we define a variety of other
terms, including several index matrices that map random effects to the cor-
rect genus, location, or both Our primary goal here is to demonstrate that
the form of η∗ is complicated because our dataset is not balanced. We let:

• Y be a Nwave ×Nrep matrix of log-reflectances.
• Ms be a Nrep × Ns matrix that indexes the spatial site of the ith

specturm.
• Msg be a Nrep × (NsNg) matrix that indexes the spatial site/genus

combination of the ith specturm.
• X be a Ns × P covariate matrix, where we have centered and scaled

each variable such that MsgX has mean of 0 and variance of 1.
• Kβ be the Nwave ×Nβ,knot matrix of wavelegnth kernel/basis weights

associated with the coefficient functions.
• Kη be the Nwave ×Ns,knot matrix of wavelength kernel/basis weights

associated with the space-wavelength random effect η(s, t)
• γ = (γ(t1), ..., γ(tNwave)

T be the vector of all global wavelength ran-
dom effects.

• w = (w1, ...,wr)
T be a Ns× r matrix with r independent spatial GPs.

• αs be an Ns×Ng matrix of mean-zero genus-specific spatially-varying
random intercepts (αi +αi(s)−α). In practice, we only sample terms
of this matrix that appear in our dataset. However, given the model
we have proposed, the genus-specific terms can be estimated at any
location.

With these terms defined, we more carefully specify the block model dis-
cussed in the manuscript to explicitly show the form of η∗ while accounting
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for the data imbalance:
(4)

Y = α1 + KβB(MsX)T + η∗ + ε

= α1 + KβB(MsX)T + KηA(Msw)T + γ1T + 1(Msgαs)
T + ε,

vec(Y) = α1 + (MsX⊗Kβ) vec(B) + (I⊗KηA) vec(Msw) + 1T ⊗ γ + Msgαs ⊗ 1 + vec(ε).

However, as previously discussed, we do not have the same inference on
B, the low-rank coefficients, as we do if we exclude the residual terms:
η(s, t)+γ(t)+αi+αi(s). To preserve inference on B, the low-rank functional
coefficients, we project the random effects of our model into the orthogo-
nal column space of MsX⊗Kβ. We define P to be the projection into the
column space of MsX⊗Kβ,

(5)

P = (MsX⊗Kβ)
(

(MsX⊗Kβ)T (MsX⊗Kβ)
)−1

(MsX⊗Kβ)T ,

=
(

(MsX)
(
(MsX)T (MsX)

)−1
(MsX)T

)
⊗
(
Kβ

(
KT
βKβ

)−1
KT
β

)
,

= PX ⊗PK ,

where PX and PK are projections into the column space of MsX and Kβ,
respectively. We define the orthogonal transformation,

(6) P⊥ = I−P.

Using this, (4) can be rewritten as
(7)

vec(Y) = α1 + (MsX⊗Kβ) vec(B) + P (I⊗KηA) vec(Msw) + P⊥ (I⊗KηA) vec(Msw)+

P(1⊗ γ) + P⊥(1⊗ γ) + P(Msgαs ⊗ 1) + P⊥(Msgαs ⊗ 1) + vec(ε)

= α1 + (MsX⊗Kβ) vec(B∗) + P⊥ (I⊗KηA) vec(Msw) + P⊥(1⊗ γ)+

P⊥(Msgαs ⊗ 1) + vec(ε).

Importantly, as in the manuscript, (7) illustrates the correspondence between
B and B∗, the unconfounded and confounded regression coefficients. In fact,
if the model in (4) is fit using MCMC initially, as we do, posterior samples of
B∗, as well as orthogonalized random effects, can be recovered after model
fitting.

As a final comment, we treat γ(t) as a heterogeneous random effect rather
than a fixed effect in this analysis. However, we acknowledge that viewing
γ(t) as a fixed effect is a reasonable choice. Specifically, if the global wave-
length function is treated as a fixed effect, we would include a column of ones
in the design matrix X defining the projection. We would also update γ(t) as
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we do with the functional coefficients β(t). Because this selection represents
a different base model, this would change the inference on “unconfounded”
coefficients.

5. Extended Analysis of Results. To illustrate the degree of con-
founding, we show that the confounded coefficients are near zero for all
wavelengths for Asteraceae. This is similar for all three families. For all fam-
ilies, we plot the functional regression coefficients (after orthogonalization)
with the regression coefficient functions found through least-squares using a
model without any random effects.

5.1. Asteraceae. To demonstrate the degree of confounding between the
random effects (genus, wavelength, and spatial) and covariates, we plot the
posterior mean and credible interval for regression coefficients without or-
thogonalization. The confounding pushes β(t) to zero (See Figure 12), oblit-
erating any significant inference with regard to the effect of environmen-
tal variables on log-reflectance. Although we only present these results for
the Asteraceae family, similar patterns are present for the Aizoaceae and
Restionaceae families.

After updating β(t) using the projection of the random effects onto the
column spaces of X and Kβ, we present our inference on covariates. In Fig-
ure 13, we present the posterior mean, 95% credible interval for each β(t), as
well as the least-squares estimate of β(t) with no random effects. Thus, we
demonstrate that we effectively recover the unconfounded coefficient func-
tions.

5.2. Aizoaceae. In the manuscript, we compared the unconfounded func-
tional regression coefficients for Asteraceae (the most prevalent family in our
dataset) to the coefficients with not random effects. Here, we present the pos-
terior mean and pointwise 95% credible intervals for the function regression
coefficients for the effects of environmental variables on log-reflectance for
Aizoaceae (See Figure 14). The coefficient functions for elevation, precipita-
tion, and temperature all show a similar relationship to log-reflectance curves
and appear to have a pattern similar to an inverted log-reflectance specturm.
In general, increases in elevation, precipitation, and temperature correspond
to higher log-reflectance at low-wavelengths and lower log-reflectance at
higher wavelengths. The effect of rainfall concentration is quite small over
the wavelength domain.

5.3. Restionaceae. As we did with Aizoaceae, we present the posterior
mean and pointwise 95% credible intervals for the function regression co-
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efficients for the effects of environmental variables on log-reflectance for
Restionaceae (See Figure 15). Unlike both Asteraceae and Aizoaceae, the
coefficient functions follow less closely the form of the reflectance curve. The
coefficient functions for elevation are negative for low wavelengths but near
0 for higher wavelengths. The coefficent functions for precipitation and rain-
fall concentrations are positive for most (or all) wavelengths less than 700
nm but negative or near 0 for wavelengths greater than 750 nm. The effect
of temperature is week for all wavelengths.
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Fig 12. Confounded coefficient functions for Asteraceae.
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Fig 13. Unconfounded coefficient functions for Asteraceae.
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Fig 14. Posterior mean and 95% credible intervals for functional regression coefficients
for Aizoaceae.
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Fig 15. Posterior mean and 95% credible intervals for functional regression coefficients
for Restionaceae.
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