
 

 

 

Spatial genomic heterogeneity within localized,
multifocal prostate cancer

Citation for published version (APA):

Boutros, P. C., Fraser, M., Harding, N. J., de Borja, R., Trudel, D., Lalonde, E., Meng, A., Hennings-
Yeomans, P. H., McPherson, A., Sabelnykova, V. Y., Zia, A., Fox, N. S., Livingstone, J., Shiah, Y-J.,
Wang, J., Beck, T. A., Have, C. L., Chong, T., Sam, M., ... Bristow, R. G. (2015). Spatial genomic
heterogeneity within localized, multifocal prostate cancer. Nature Genetics, 47(7), 736-+.
https://doi.org/10.1038/ng.3315

Document status and date:
Published: 01/07/2015

DOI:
10.1038/ng.3315

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 10 Aug. 2022

https://doi.org/10.1038/ng.3315
https://doi.org/10.1038/ng.3315
https://cris.maastrichtuniversity.nl/en/publications/33170fe2-c9f9-4261-a3ef-56df3cf8daf9


736 VOLUME 47 | NUMBER 7 | JULY 2015 NATURE GENETICS

Prostate cancer is the most commonly diagnosed male malignancy 
in developed countries1. Although the majority of prostate cancer  
is diagnosed as organ-confined disease, cancers with similar  
Gleason scores (for example, Gleason scores 7–10) show substan-
tial interpatient heterogeneity and differential prostate cancer– 
specific mortality rates2,3. A further complexity lies in intraglandular  
biological heterogeneity between individual cancer foci; indeed, 

~80% of prostate cancers contain >1 disease focus4. Local therapy 
fails in up to 30–40% of patients despite the presence of homogeneous 
clinical risk parameters (the same NCCN (National Comprehensive 
Cancer Network) risk category based on similar TNM stages, Gleason 
scores and pretreatment PSA (prostate-specific antigen) values)2,3,5. 
Therefore, the genomic interrogation of prostatic lesions within  
and between patients could identify different pathways of tumor  
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progression and lead to bespoke prognostic genomic information  
to use in stratified treatment protocols4.

Biomarkers based on CNAs or mRNA abundance in primary 
tumor6–10 or blood11,12 samples have not yet reached maximal  
clinical application owing to a lack of understanding of inherent  
intraglandular and multifocal heterogeneity13. Individual prostate 
cancer foci are believed to be clonal, but their molecular nature within 
a given patient remains largely uncharacterized at whole-genome  
resolution14. Moreover, the potential impact of intraprostatic hetero-
geneity with respect to known prognostic genomic aberrations has 
not been studied. This information would complement whole-genome 
and exome sequencing data on recurrent mutations in metastatic  
castration-resistant disease (mCRPC)15–21 by providing information 
on the relative aggressiveness of foci with similar Gleason scores. Thus 
far, the interfocal heterogeneity of localized prostate cancer within a 
given prostate gland has not been explored, despite such knowledge 
being critical in personalizing patient treatment with genome-based 
biomarkers. Herein we comprehensively annotate the unique genomic 
characteristics of 23 individual prostate cancer foci from 5 patients 
and describe, for the first time to our knowledge, a subset of MYCL-
associated cancers, suggesting unique pathways involved in prostate 
cancer progression. These studies provide genomic portraits of the 
intra- and intertumoral molecular landscape of multifocal, potentially 
curable localized prostate cancer in the context of developing bespoke 
treatment options.

RESULTS
Genomic landscape of potentially curable prostate cancer
To explore interpatient heterogeneity within a homogeneous prognos-
tic risk category (NCCN intermediate risk), we examined the genomic 
profiles of 74 prostate cancer specimens derived from patients with 
Gleason score 7 pathology (consisting of 57 pretreatment biopsies 
and 17 surgically resected prostates) (Fig. 1a). Samples with >70% 
tumor cellularity from the index lesion (defined as the largest focus 
of disease) underwent genome-wide copy number analysis using 
Affymetrix OncoScan. CNA analyses found extensively hetero-
geneous profiles (Fig. 1b and Supplementary Table 1) associated  
with highly variable percentages of genome alteration (PGA; median 
tumor PGA of 4.43%, encompassing 2,559 genes; range of 0–16.3%, 
encompassing 0–10,133 genes).

Gleason score 7 tumors (primary grade + secondary grade: 3 + 4 
and 4 + 3) showed similar diversity in genomic instability and spe-
cific CNAs (Fig. 1b), with statistically indistinguishable PGA values 
(median of 3.56% versus 4.77%; P = 0.69) and number of genes altered 
(median of 3,071 versus 2,438 genes; P = 0.55). Notably, no specific 
genes were altered at different frequencies between the Gleason  
score 3 + 4 and 4 + 3 subsets (Supplementary Fig. 1), and neither 
clinical T category (Supplementary Fig. 2) nor pretreatment PSA 
value (Supplementary Fig. 3) was associated with specific CNAs in 
these prostate cancers of similar pathology.

Recurrently altered genes in Gleason score 7 prostate cancer
Notably, we identified genomic abnormalities previously associated 
with locally aggressive cancer or mCRPC in a subset of the localized  
Gleason score 7 tumors. Chromosome 8p, harboring the tumor sup-
pressor NKX3-1, was deleted in 4 + 3 (8/28) and 3 + 4 (15/46) tumors. 
Similarly, chromosome 8q, containing the MYC oncogene, was ampli-
fied in 4 + 3 (6/28) and 3 + 4 (5/46) tumors. We identified 36 recurrent 
focal CNAs comprising 115 genes (q < 0.01; Supplementary Tables 2 
and 3), including several cancer-associated genes. The most significantly  
deleted locus was 17p13.1, containing TP53 (q = 6.56 × 10−10).  

EGFR was the only gene in a recurrently amplified locus at 7p11.2  
(q = 0.000127). However, we also identified aberrations in several 
genes not previously implicated in localized prostate cancer; most 
interesting of these was a CNA affecting the MYC family member 
L-MYC, encoded by MYCL at 1p34.2 (q = 1.22 × 10−31). This was 
a highly focal amplification, with a minimally amplified region of 
8.5 kb (median of 22 kb; range of 8.5 kb to 1 Mb) encompassing 
the MYCL 5′ UTR and coding region (Supplementary Fig. 4). We 
detected MYCL amplification in both Gleason score 3 + 4 (13/46) 
and 4 + 3 (7/28) tumors at similar frequencies (P = 0.86), and this 
amplification was more common than MYC amplification (Fig. 2a) in 
this cohort. MYCL gain in prostate cancer has only been reported in a 
mouse model of p53- and Rb-induced prostate cancer22 and at a low 
frequency in a small cohort of hormone-refractory patients23.

We validated this unexpected finding by quantitative RT-PCR 
(qPCR) with probes within the 8.5-kb minimally amplified region, 
using the NCI-H510A non–small cell lung cancer cell line as a positive 
control; qPCR validated MYCL copy number status in >96% of the 
169 distinct specimens tested (59/64 with amplification and 105/105  
copy number neutral; Supplementary Table 4). We detected MYCL 
amplification in samples from 2 different hospitals in separate 
provinces (32/115 samples from Toronto and 27/54 samples from 
Quebec City) and in both biopsy specimens (16/70) and radical 
prostatectomies (48/169). We further validated the focal nature of 
the MYCL amplification using ten additional qPCR probes flanking 
(within ~1 Mb of) the minimally amplified region (Supplementary 

Fig. 5); no specimens with validated MYCL amplification showed 
concurrent amplification of flanking regions at 1p34.2-3, whereas 
a control cell line (NCI-H510A) showed amplification with all ten 
probes, as expected (Supplementary Table 5). Finally, FISH analysis 
(Supplementary Fig. 6) of 5 prostate cancers with PCR-validated  
MYCL amplification showed >2 copies of the gene in 8–20% of  
glands, supporting the hypothesis that MYCL amplification is  
heterogeneous within an individual prostate. In contrast, we observed 
no evidence of MYCL amplification in prostate cancers with PCR-
validated copy-neutral MYCL or in four benign prostates from men 
who underwent cystoprostatectomy (with no pathological evidence of 
prostate cancer). These data strongly support the presence of a focal 
amplification of MYCL in a subset of localized prostate cancers.

We then investigated the copy number status of all three MYC  
family members by microarray, including the MYCN isoform associ-
ated with neuroblastomas and retinoblastomas24,25. At least one MYC 
isoform was amplified in 39 of 75 patients, and these aberrations were 
largely mutually exclusive. We observed concurrent amplification of 
MYC and MYCL in only one patient (P = 0.066), consistent with MYC 
autorepression26. Amplification of any MYC isoform was associated 
with increased genomic instability (Fig. 2b and Supplementary 

Table 6). Whereas MYC-amplified tumors infrequently exhibited 
loss of TP53 (2/13 patients), MYCL-amplified tumors almost always 
did (19/21 patients; P = 5.93 × 10−5, Fisher’s exact test), indicating  
that dysregulation of different MYC family members leads to  
distinct molecular consequences. MYC-amplified tumors had margin-
ally higher PGA values than MYCL-amplified tumors (7.61% versus 
5.88%; P = 0.14; Fig. 2c), but MYCL-amplified tumors harbored a 
larger number of smaller aberrations (333 versus 7; P = 2.10 × 10−5). 
We compared the copy number profiles of MYC- and MYCL-amplified  
tumors and identified 1,438 genes that showed different copy number 
frequencies (q < 0.05) in these two groups (Supplementary Table 7). 
We confirmed these results at the mRNA level with mRNA abun-
dance profiling of 24 samples and demonstrated that these changes 
were not secondary to altered TP53, as tumors showing only TP53 
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deletion (but not concomitant MYCL amplification) had globally  
different CNA and mRNA abundance profiles than tumors also harbor-
ing MYCL amplification (Supplementary Fig. 7). In total, 294 genes 
(q < 0.05) showed different mRNA abundance in MYCL-amplified  

tumors than in tumors that did not harbor amplification of any MYC 
family member. MYCL-amplified tumors showed alterations of genes 
involved in desmosome assembly as well as ARF GTPase activation 
(Supplementary Table 8). Similarly, despite the small numbers of 
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replicates, MYCL-amplified tumors showed 
clear changes in gene transcription in com-
parison to tumors with only TP53 deletion 
(Supplementary Table 8). For example, the 
progression-associated immunoglobulin 
basigin (BSG) was downregulated (q = 0.029) 
whereas fibroblast growth factor 1 (FGF1) 
was significantly upregulated (q = 0.041)  
in MYCL-mutant tumors (Supplementary 

Fig. 7). Amplification of MYCL was not  
associated with pretreatment PSA levels 
or clinical T category but was significantly 
associated with lower age at time of treatment (P = 4.86 × 10−3) and 
was significantly more frequent in tumors harboring TMPRSS2-ERG 
fusions (ERG+; P = 1.64 × 10−2) (Supplementary Fig. 8).

We overexpressed MYCL (four separate isoforms) in two prostate 
cancer cell lines (22rv1 and LNCaP) and found substantial overlap  
in gene expression in these cells (relative to control-transfected  
cells) in comparison to expression in the primary tumors with MYCL 
amplification for which RNA was available (relative to tumors with 
copy-neutral MYCL; Supplementary Fig. 9). One such gene was 
KLK3, encoding PSA, the expression of which was significantly lower 
in cell lines overexpressing MYCL and in tumors harboring a MYCL 
amplification (P values ranging from 0.03 to 4.20 × 10−5 depending 
on the isoform). Moreover, we found that MYCL amplification was 
associated with increased proliferation in the absence of serum in 
both cell lines (data not shown).

Whole-genome sequencing of potentially curable prostate cancer
Recent studies have demonstrated genomic spatial heterogeneity 
within rapidly growing tumors27,28, and prostate cancers with both 
an SPOP mutation and a TMPRSS2-ERG fusion can comprise two 
distinct foci (one with each aberration)16. To resolve the extent of 
intrafocal heterogeneity in localized, non-indolent prostate cancer, we 
performed extensive spatial sampling of five of the surgically resected 
prostates analyzed. We subjected formalin-fixed, paraffin-embedded 
preserved surgical tissue from these cases to exhaustive pathological 
study to identify additional disease foci using anatomical location, 
ERG and p63 expression. In total, we subjected DNA from 23 tumor 
regions in 5 patients to whole-genome sequencing, with 2–9 distinct 
foci from each patient (1 frozen specimen and 1–8 formalin-fixed,  
paraffin-embedded specimens per patient). We comprehensively 
analyzed SNVs, CNAs and genomic rearrangements (clinical  
annotation shown in Supplementary Table 9) and compared them 

to the interpatient heterogeneity described above. These specimens 
covered a broad range of genomic instability (PGA of 0.04 to 17.1%). 
Pathologically estimated tumor cellularity of >70% was confirmed 
by qpure analysis29 (69–94%; Supplementary Table 10). To maxi-
mize potential translation into clinical practice (for example, using 
small amounts of tissue amenable to studies with biopsies), we gener-
ated whole-genome sequence data from low-input libraries of non-
amplified genomic DNA (50 ng of input DNA) for all sequencing 
(Supplementary Fig. 10), with tumors at ~60× coverage (median 
coverage of 60.7×) and blood samples at ~40× coverage (median  
coverage of 44.2×; Supplementary Table 11).

Extensive structural heterogeneity
We initially focused on possible structural variations, which can be 
extensive in late-stage disease21. The index lesions harbored a median 
of 43 intrachromosomal rearrangements, 52 interchromosomal rear-
rangements and 18 inversions, along with 40 CNAs and a PGA of 
0.33% (Supplementary Fig. 11). These numbers reflect higher 
genomic stability than in other solid tumors30, including higher-risk 
prostate cancer6. There was extensive intertumoral diversity, with the 
total number of genomic rearrangements ranging from 20 to 197.  
All balanced genomic rearrangements are listed in Supplementary 

Table 12. We observed large differences between regions from the 
same prostate (Fig. 3a). For example, the index lesion of tumor 
CPCG0184 harbored 112 amplifications and 20 deletions compris-
ing 1,262 genes (PGA = 1.71%). We analyzed four additional spatially  
separated tumor regions. These contained 1–177 regions of copy 
number gain and 2–194 regions of copy number loss (PGA = 0.2–3.7%).  
All 5 regions of CPCG0184 shared a small amplification on chro-
mosome 7 (containing LOC100506585, MIR595 and PTPRN2)  
and a large deletion on chromosome 8 containing 56 genes. By con-
trast, 2,144 genes had aberrant copy numbers in only one region. 
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These included the cancer-related genes CCND1 (cyclin D1) and 
CCNE2 (cyclin E2), 9 separate cytochrome P450 genes and the long 
noncoding RNA gene HOTAIR.

This extensive intrafocal heterogeneity was particularly evident 
at the level of genomic rearrangements (Fig. 3b). We performed a 

‘windowed’ analysis to quantitatively assess the presence of genomic 
rearrangement hotspots, separating the genome into 3,113 bins of  
1 Mb each (outside of chromosome ends). By assessing the frequency 
of rearrangement breakpoints within each bin, we identified numer-
ous hotspots, including several on chromosome 1 that were altered 
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in every tumor region studied. Interestingly, all genome sequences 
derived from formalin-fixed, paraffin-embedded tumors showed a 
marked reduction in the number of genomic rearrangements (likely 
attributable to the smaller insert sizes for these libraries). This sug-
gests that there are substantial false negative rates in sequencing 
such degraded DNA. We compared genomic rearrangements in our 
study to the genomic rearrangements detected in three publications 
of prostate cancer whole-genome sequencing20,21,31. There were no 
exact matches of breakpoints across any of the studies, suggesting a 
generalized genomic instability at the level of genomic rearrangement, 
akin to that outlined for copy number10. Of note, two recent prostate 
cancer sequencing studies21,31 did not call genomic rearrangements 
on chromosome X or Y, making the current study the largest one thus 

far of genomic rearrangements on the sex chromosomes, on which we 
identified 35 total structural variations across the 5 tumors, including 
1 inversion, 4 intrachromosomal rearrangements and 30 interchro-
mosomal rearrangements (Supplementary Table 12).

Quiet point mutation profiles
We validated SNVs against genotyping microarray data (median of 
91.3% accuracy; Supplementary Fig. 12a) and by deep resequencing 
of 1,743 SNVs detected in coding regions (Supplementary Fig. 13);  
SNVs that failed validation were excluded. The 5 index lesions har-
bored a median of 11,341 somatic SNVs (Fig. 4), with modest variation 
in the total number of somatic SNVs (9,375 to 15,512). By contrast, 
we observed dramatic differences in the number of protein-altering 
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somatic SNVs (8 to 49). The SNV profiles of each tumor differed 
substantially, with only five genes exhibiting functional mutations in 
more than one tumor (four of which were identified in previous pros-
tate cancer sequencing studies15,16). A recent study described SPOP, 
FOXA1 and MED12 as recurrently mutated genes in prostate cancer16. 
We observed nonsynonymous SPOP mutations in two patients (both 
ERG−), but we detected no functional mutations in either MED12 
or FOXA1. Similarly, we did not observe mutations in KMT2C (also 
known as MLL3)32, nor was the AR androgen receptor gene mutated 
or amplified in any samples.

We carefully validated our whole-genome sequencing data to 
ensure that formalin fixation and embedding in paraffin did not 
introduce artifacts relative to fresh-frozen tissues. Although somatic 
mutation rates in the fixed samples were elevated and showed a shift 
toward A>G/T>C transitions, we identified highly concordant sets of 
germline SNPs in each region (Supplementary Fig. 14), and median 
validation rates remained high (Supplementary Fig. 12b). To our 
knowledge, this represents the first report of whole-genome sequenc-
ing from routinely clinically achievable quantities (50 ng) of DNA 
from formalin-fixed, paraffin-embedded specimens.

We identified 26 genes mutated in at least 2 regions (Fig. 4) associ-
ated with extensive intrafocal heterogeneity. For example, VCAM1 
(vascular cell adhesion molecule 1) was mutated in three of five 
regions of CPCG0183. Similarly, SNAP47 showed nonsynonymous 

point mutations in three of nine regions of CPCG0103. Although  
this study is underpowered, we did not observe statistically sig-
nificant differences in mutation rates or specific mutations in the  
comparison of Gleason score 3 + 4 and 4 + 3 tumors at the SNV  
level, mirroring the well-powered findings at the CNA level out-
lined above. All functional coding SNVs identified are listed in 
Supplementary Table 13.

Clinical relevance of intraprostatic heterogeneity
We next investigated the potential clinical consequences of intrafocal 
heterogeneity using CPCG0103, a prostate with nine spatially distinct 
regions (Fig. 5a). Two Gleason score 3 + 4 regions (including the 
index lesion) exhibited mutations in PIK3CA encoding p.His1047Arg, 
the same mutation frequently found in breast, colon and other tumor 
types33,34 and which predicts sensitivity to AKT inhibitors35. Thus, an 
analysis of the index lesion of this tumor might indicate sensitivity to 
AKT inhibition, yet seven of nine sequenced regions did not harbor 
this mutation (including all four Gleason score 4 + 3 regions). We 
conclude that one subclone, present exclusively in two regions of the 
prostate, has an actionable mutation in PIK3CA. Interestingly, these 
regions also exhibited loss of TP53 (as did two others). Four regions 
from this individual showed loss of BRCA1, none of which had TP53 
loss. This heterogeneous mutational profile demonstrates the chal-
lenges in personalizing treatment for prostate cancer on the basis of 
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a single focus; we made similar observations 
for the other four prostates (Supplementary 

Figs. 15–18).
We also observed intrafocal heterogeneity 

of structural variation: in the nine sequenced 
regions of CPCG0103, PGA ranged from 
0.04 to 1.44% (~36-fold; similarly, the PGA 
in CPCG0184 varied by ~16-fold over the  
4 regions analyzed). PGA is an independent 
prognostic factor, with every 1% increase 
in PGA associated with a 5–6% increase in 
hazard of biochemical failure10. These dif-
ferences in intratumoral molecular profiles 
would change predictions of state-of-the-art 
prognostic biomarkers.

We exploited this large variability in struc-
tural variation to infer tumor phylogeny 
(outlined in Supplementary Fig. 19). We 
observed the same branched and complex 
phylogenetic relationships found in other 
tumor types27,28 for CPCG0103 (Fig. 5b) and for the other four tumors 
studied (Supplementary Figs. 20–23). We examined the intratumoral 
heterogeneity in a set of candidate prognostic biomarkers for inter-
mediate-risk prostate cancer (Fig. 5c), observing stark heterogeneity 
in the genomic profiles across tumor regions. For example, NKX3-1, 
a well-characterized tumor suppressor whose loss is highly prognos-
tic in Gleason score 7 tumors (hazards ratio (HR) = 2.74; P = 0.007,  
Wald test), was deleted in two of five regions of CPCG0184. Thus,  
CNA-based biomarkers would yield different predictions of patient 
prognoses depending on which tumor region was analyzed.

Multiclonality of prostate cancer
The interfocal genomic diversity of prostate cancer was most  
evident in CPCG0183, from which four spatially separate regions 
were sequenced. This patient presented at age 64 years with elevated 
PSA levels (7.39 ng/ml). He was diagnosed with a Gleason score 6, 
T2a, ERG− adenocarcinoma. After radical prostatectomy, the patient 
was upstaged to a Gleason score 7 (4 + 3) tumor on the basis of the 
index lesion (CPCG0183-F0). The other three regions sequenced 
(CPCG0183-P1, CPCG0183-P2 and CPCG0183-P3) were ERG−and 
Gleason score 3 + 4. All regions were highly cellular, with estimated 
tumor content from 67–80%.

The index lesion had a relatively stable genome, with a PGA of only 
0.19%: 75 genes exhibited copy number loss (mostly in large deletions 
on chromosomes 8 and 16) and 13 genes showed copy number gain 
(including MYCL). The large deletions on chromosomes 8 and 16 
were shared by the index lesion and the P2 region, although MYCL 
gain was not. By contrast, the other two tumor regions sequenced, P1 
and P3, contained neither of these deletions. Instead, the region of 
chromosome 19 containing XRCC1 was deleted in regions P1 and P3 
but not in regions F0 and P2. Upon closer investigation, the F0/P2 and 
P1/P3 regions showed mutually exclusive CNA profiles (Fig. 6a).

Similarly, the index lesion contained ten nonsynonymous muta-
tions, validated by either Sanger sequencing or deep resequencing 
studies (Fig. 6b). Of these, two were shared by the P2 region: HAO1 

and SPOP (chr. 17, g.47696425A>G; p.Phe133Ser). By contrast, SPOP 
mutations were completely absent in the P1 and P3 regions, which  
instead shared seven validated mutations, including gain of a stop 
codon in AHCTF1. We confirmed this pattern at the level of genomic 
rearrangements, where F0 and P2 showed extensive similarity,  
including inversion of NOTCH2, and no overlap with the P1 and P3 
regions. These data strongly suggest that this individual harbored  
two separate prostate cancers, which have no underlying genetic  
etiology in common.

DISCUSSION
We performed the first systematic evaluation—at the level of  
whole-genome sequencing—of the genomic heterogeneity associated 
with localized, potentially curable multifocal prostate cancers, which 
were treated as non-indolent cancers. The vast majority of prostate 
cancer is diagnosed as localized disease36; however, many Gleason 
score 7 cancers are non-indolent and classified as intermediate-risk 
cancers requiring treatment. In up to one-third of these patients, local 
therapies fail to cure patients a priori37. Our studies provide insight 
into both the observed interpatient heterogeneity in clinical outcome 
and the potential complexity of intraglandular heterogeneity within 
an individual patient with prostate cancer. Previous studies of prostate 
cancer genomes have focused on aggressive and/or incurable can-
cers15 or have evaluated a wide spectrum of clinical risk groups16,31. 
We previously observed that recurrent CNAs in genes such as MYC, 
NKX3-1 and/or PTEN are heterogeneous and that genomic instabil-
ity in low- and intermediate-risk prostate cancers is prognostic for 
biochemical recurrence following surgery or radiotherapy10,37–39.  
Recently, Cooper et al. described the genomic heterogeneity  
associated with atypical prostate cancers and adjacent non-malignant 
prostate epithelium40. Together, these studies represent a comprehen-
sive assessment of the genomic heterogeneity associated with non-
indolent, localized prostate cancer.

In assessing intraprostatic heterogeneity, we discovered and  
validated a new recurrent amplification of MYCL. Gain of MYCL  
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(but not of MYC) was nearly universally associated with TP53 loss, 
suggesting cooperative dysregulation of these genes. Moreover, the  
transcriptome and unique biology of tumors harboring MYCL  
amplification (relative to those with MYC amplification) suggest that 
these tumors represent a new disease subtype. MYCL gains had not 
been observed in previous genome-wide studies, possibly owing to 
decreased probe densities on the older array or SNP chip assays used 
to generate CNA data. Our finding provides one of the first clear func-
tional distinctions between MYC family members in human prostate 
cancer, although the functional relevance of MYCL amplification in 
prostate cancer remains to be fully defined. However, our data sug-
gest that MYCL is associated with a unique CNA and gene expression 
profile in comparison to tumors harboring a MYC amplification, and 
overexpression of MYCL in two prostate cancer cell lines enhanced 
cell proliferation rates in serum-free medium (data not shown). MYCL 
amplification showed extensive intraprostatic heterogeneity by FISH 
analysis and was absent in adjacent tumor regions in two cases in 
which amplification was validated in the index lesion. Although much 
larger numbers of samples will be required to validate this hypothesis, 
this finding suggests that MYCL amplification may be preferentially 
localized to the index lesion. Moreover, the observation that MYCL 
amplification is inversely correlated with age at the time of treat-
ment suggests that MYCL aberrations may potentially be a marker 
of earlier-onset prostate cancer; substantially larger data sets will be 
required to validate this hypothesis.

Although previous reports have hinted at multiclonality in prostate 
cancer14,16, a robust evaluation of tumor phylogeny across a broad 
range of genomic aberrations has not been reported. We observed no 
shared CNAs and very few shared SNVs between disease foci, strongly 
suggesting the existence of multiclonal disease. This has important 
ramifications for the development of genetic prognostic and predic-
tive biomarkers: (i) it must be clarified how specific individual malig-
nant clones contribute to disease progression and (ii) biopsy-based 
diagnostic assays that miss genetically independent lesions could mis-
classify prostate cancer aggression and preclude optimal treatment 
with current therapies or newer targeted agents.

In conclusion, we believe our results provide a way forward to increase 
precision in prostate cancer prognosis and treatment. Although whole-
genome and whole-exome sequencing have revolutionized the study 
of human tumor evolution and heterogeneity, these studies required 
microgram quantities of DNA for adequate sequencing complexity 
and depth. We have now shown that whole-genome sequencing can 
be completed on routine formalin-fixed, paraffin-embedded biopsies 
with an optimized low-input library protocol that allows for whole-
genome sequencing (with at least 50× coverage). This may assist in 
the development of prognostic biomarkers based on sequencing of 
pretreatment materials, which could in turn be used to stratify patients 
before potentially curative treatments and/or direct patients to novel 
neoadjuvant or adjuvant therapies to prevent progression and prostate 
cancer lethality. Furthermore, although it is appreciated that diagnostic 
biopsy protocols can miss regions of more aggressive cancer (thereby 
understaging the patient), the genomic heterogeneity of pathologically 
identical regions of cancer must also be taken into consideration to 
achieve personalized prostate cancer medicine.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. mRNA microarray data are available at the Gene 
Expression Omnibus (GEO) under accession GSE64619; next-generation  

sequencing data are available at the European Genome-phenome 
Archive (EGA) under accession EGAS00001000549.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Samples. All patients underwent either image-guided radiotherapy (IGRT) 
or radical prostatectomy for intermediate-risk prostate cancer, as defined by 
the NCCN (Gleason score = 6, PSA concentration >10 and <20 ng/ml, cT1 or 
T2; Gleason score = 7, PSA concentration <20, cT1 or T2). The collection of  
fresh-frozen pretreatment research biopsies from patients receiving radio-
therapy has been described previously41. Fresh-frozen radical prostatectomy 
specimens were obtained from the University Health Network BioBank. 
Formalin-fixed, paraffin-embedded tissue blocks were obtained from the 
Department of Pathology, University Health Network. Whole blood was 
collected, and informed consent, consistent with local research ethics board 
(REB) and International Cancer Genome Consortium (ICGC) guidelines, was 
obtained at the time of clinical follow-up. Previously collected tumor tissue was 
used according to University Health Network REB-approved study protocols 
(UHN 06-0822-CE and UHN 11-0024-CE).

To confirm Gleason score and tumor cellularity, all tumor specimens were 
independently evaluated by three genitourinary pathologists (T.v.d.K., B.T. and 
D.T.) using scanned slides stained with hematoxylin and eosin. Formalin-fixed, 
paraffin-embedded tumor regions were located in the prostate and selected 
for macrodissection according to gross description and ERG overexpression 
status (immunohistochemistry; clone 9FY, Biocare Medical). Median follow-
up time was calculated on the basis of surviving patients.

Sample processing. Selected samples were cut into sections of 60 × 10 µm, 
with a 4-µm section for hematoxylin and eosin staining generated every ten 
cuts and alternate sections taken for DNA and RNA extraction. Sections 
stained with hematoxylin and eosin were marked by a genitourinary patholo-
gist (T.v.d.K. or D.T.) to indicate areas suitable for macrodissection (with 
>70% tumor cellularity). Manual macrodissection was performed using sterile  
scalpel blades, and DNA was obtained by phenol-chloroform extraction, 
as previously reported41. DNA was extracted from whole blood using an 
ArchivePure DNA Blood kit (5 PRIME) at the Applied Molecular Profiling 
Laboratory at the Princess Margaret Cancer Centre. All DNA samples were 
quantified using a Qubit 2.0 Fluorometer (Life Technologies). For frozen 
biopsy samples from patients undergoing IGRT, 100 ng of genomic DNA was 
used as a template for whole-genome amplification with the GenomePlex 
Complete WGA2 kit (Sigma-Aldrich). Whole genome–amplified DNA  
was used for OncoScan SNP microarrays; all whole-genome sequencing was 
carried out using non-amplified genomic DNA.

SNP microarrays. SNP microarrays were performed using 200 ng of whole 
genome–amplified (IGRT biopsy) or genomic (radical prostatectomy) DNA 
on Affymetrix OncoScan FFPE Express 2.0 SNP arrays. We confirmed that 
whole-genome amplification did not markedly affect CNA and SNP profiles 
by comparing genomic and whole genome–amplified DNA samples from three 
independent specimens (Supplementary Table 14). We similarly compared 
duplicate genomic and whole genome–amplified DNA samples to evaluate 
interassay variability (data not shown). We analyzed SNP probe assays from 
Affymetrix to call CNAs using BioDiscovery Nexus Copy Number software 
with default parameters. The data from Affymetrix assays were processed in 
batches, and in some cases liftOver was used to map aberrations from the 
genome reference hg18 to the hg19 reference sequence. When the liftOver 
process deleted a portion of the CNA, the CNA was removed from the analy-
sis. We then used the CNAs detected in tumor samples to identify genes with 
altered copy number using GENCODE (v17) reference gene annotation42. 
PGA was calculated for each sample by dividing the number of base pairs that 
were involved in a copy number change in each sample by the total length  
of the genome.

To estimate the cellularity and purity of our tumor samples, we used the 
qpure algorithm29. Notably, qpure requires the log R ratio (LRR) and B allele 
frequency (BAF) for SNP array probes. These values were computed for the 
OncoScan array platform using the two intensity values provided for each probe, 
corresponding to the hybridization of two alleles, using the following equations: 
LRR = log2 (X + Y) and BAF = Y/(X + Y), where Y and X are intensity values 
corresponding to the minor and major alleles, respectively. We used qpure to 
compute the cellularity of our samples with default parameters and selected the 
output (tumorpurity.mixture.gam.adjust) as our cellularity estimate.

Given a set of copy number profiles for each sample, as well as copy number 
intensities for all the probes on our SNP array platform, we used GISTIC2.0 
to study the recurrence of gene copy number variations in our sample set43. 
As input, GISTIC2.0 requires a file for each tumor sample that contains the 
average copy number intensities for each segmented region along the chromo-
somes. Therefore, for each sample, we created a ‘somatic’ copy number profile 
along the chromosomes. We refer to any copy number change as somatic if 
we did not observe the same event in the corresponding blood sample. Each 
profile segmented the chromosomes into regions with neutral events, copy 
number loss or copy number gain. For each segmented region, we computed 
the corresponding copy number intensity by averaging the copy number inten-
sities of the probes in that segment obtained from the SNP array. We used 
this input file along with the SNP array probe assay reference file to run a 
GISTIC2.0 MATLAB script with default parameters (-genegistic 1 -smallmem 1  
-broad 1 -brlen 0.5 -conf 0.90, q = 0.25). We used GISTIC2.0 output to identify 
significantly recurrent gene amplifications and deletions and to study these 
genes in more detail. Specifically, we identified gene copy number changes  
in all 75 samples in the cohort of fresh-frozen tumors (Fig. 1a). Statistical  
comparisons between PGA and the number of genes with CNAs in Gleason 
score 3 + 4 and 4 + 3 tumors employed the Wilcoxon rank-sum test, as  
implemented in R (v3.0.1). Comparisons of CNA number and size between 
tumor groups were performed using the Wilcoxon rank-sum test. Specific 
genes showing different CNA frequencies were identified using Fisher’s exact 
test. Six tumors with mutations in both MYCL and MYCN and one tumor  
with mutations in both MYC and MYCL were excluded from intergroup  
comparisons to avoid confounding.

Quantitative PCR. Amplifications of MYCL and MYC were verified  
using TaqMan Copy Number assays (Life Technologies), according to the 
manufacturer’s instructions and using RPPH1 (RNase P) as a copy-neutral 
gene for comparison; we verified the absence of RPPH1 CNAs in our OncoScan 
data sets. The following probes were used: MYCL, Hs02582452_cn; MYC, 
Hs02758348_cn.

To verify the size of the MYCL amplification, we performed qPCR using ten 
custom-designed probes flanking the MYCL gene, encompassing an approxi-
mately 2-Mb region (1 Mb on each side of the gene). The relative positions of 
these probes are shown in Supplementary Figure 5.

FISH analysis. FISH analysis was conducted as previously described37. MYCL 
was detected using probe RP1-118J21 (chr. 1: 40,225,143–40,391,639). CEP1 
probe (encompassing chr. 1: 119,400,971–119,941,816) was from Agilent 
Technologies. FISH conditions were optimized on metaphase spreads  
of human lymphocytes, as previously described37. The tissues used were as 
follows: four benign prostates, taken from men who underwent cystoprosta-
tectomy and had no pathological evidence of prostate cancer, and six prostate  
cancer specimens, using formalin-fixed, paraffin-embedded tissue taken from 
the dominant lesion of disease, immediately adjacent to the frozen tissue  
used in the corresponding molecular analysis. Four of the six prostate cancer 
specimens had PCR-validated MYCL amplification, whereas the remaining 
two were PCR validated as copy neutral for MYCL.

Co-occurrence of alterations for MYC family members. To calculate the 
probability of observing no overlap between MYC family CNAs, we simulated 
(n = 1,000,000) the observed mutation rates of the 3 MYC family isoforms 
under the null distribution of independence and applied the resulting propor-
tions as estimates of the probability of observing n overlaps.

RNA sample preparation. For RNA extractions, ice-cold tumor tissue  
maintained on RNase-free microscope slides was macrodissected from 10-µm 
sections and transferred to an Eppendorf tube on ice. Tissue was digested in 
lysis buffer, and total RNA was extracted using the mirVana miRNA Isolation 
kit (Life Technologies), according to the manufacturer’s instrucitons.

mRNA array analysis. For the analysis of expression data, a total of 24 frozen 
prostate cancer tissue samples were available. These comprised ten samples 
that were assayed using the HuGene 2.0 Affymetrix array (Centre for Applied 
Genomics; batch 1). The remaining 14 samples (batch 2) were assayed using 
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the Human Transcriptome Array (HTA), also from Affymetrix, processed at 
the London Regional Genomics Centre (Ontario, Canada). CNA calls were 
made using the OncoScan array on the same tissue samples.

Quantified intensity files (CEL files) for each array were loaded into the 
R statistical environment (v3.0.2). Files generated for batch 1 (HuGene2.0 
arrays) were loaded and normalized using the robust multichip average (RMA) 
algorithm available in the oligo package for R (v1.26.2), using the default plat-
form design information (pd.hugene.2.0.st v3.8.0). Similarly, files generated  
for batch 2 (HTA) were loaded and normalized by RMA using the affy package 
(v1.40.0) with a custom chip definition file (CDF; hta20hsentrezgcdf v18.0.0)44. 
Each batch was examined for spatial and distributional homogeneity;  
no outliers were identified.

Normalized batch 1 transcript clusters were mapped to Entrez Gene IDs and 
gene symbols using hugene20sttranscriptcluster.db (v2.12.1), available from 
Bioconductor. As these arrays provide coverage of both coding and noncoding 
transcripts, not all probe sets were annotated; unannotated probe sets were 
labeled as ‘other’ and remain uniquely identifiable using the probe set IDs.

After mapping of probes to gene annotations, we took the mean signal 
intensity where multiple probes mapped to the same gene and included only 
genes present on both arrays. To correct for batch effects, we used the ComBat 
algorithm as implemented in the sva R package (v3.8.0). Before and after 
heat maps (Supplementary Fig. 24) highlight the successful removal of batch 
effects. Copy number measures for MYC, MYCL, MYCN and TP53 were used 
as covariates in the empirical Bayes model.

Pairwise t tests were carried out to calculate P values and fold changes for 
all mRNA abundances between groups, where groups were defined by CNA 
status. P values were corrected for multiple testing using the false discover 
rate (FDR) method implemented in the base R function, p.adjust. After iden-
tification of significant genes, gene ontology analysis was carried out using 
GOEAST (Gene Ontology Enrichment Analysis Software Toolkit). The raw 
text data are available as Supplementary Table 15. All analyses were carried 
out using R (v3.0.2). Tumors with aberrations in multiple MYC family genes 
were excluded from statistical analyses.

Cell line mRNA analyses. All preprocessing was performed using R (v3.0.3). 
Background correction and normalization algorithms were implemented in 
the affy package (v1.40.0) for the Bioconductor (v2.14) open source project45. 
The RMA algorithm was applied to the raw intensity data46. Quality con-
trol was conducted using R (v3.0.3). Density and heat map plots with default 
parameterization were created using lattice (v0.20-29). Interarray correla-
tion was calculated using the stats package. No outliers were detected in the 
LNCaP and 22RV1 cell lines. Data annotation was performed in R (v3.0.3) 
via the hta20hsentrezg.db (v18.0.0) package. Probe IDs were mapped to both 
Entrez Gene IDs and HUGO Gene Nomenclature Committee gene symbols. 
Unsupervised machine learning was performed in R (v3.0.3). DIANA was 
used as the clustering method, and 1-Pearson’s correlation was used as the 
distance metric between columns and between rows (genes and samples, 
respectively). Heat maps were generated using lattice (v0.20-29). Statistical 
analysis was performed in R (v3.1.1) using the limma package47 (v3.20.9) 
of the Bioconductor (v2.14) open source project45. After preprocessing, we 
modeled mRNA expression in each cellular compartment as a univariate 
linear model of effects from differential experimental conditions (untreated, 
overexpression of the complete coding sequence of MYCL, overexpression 
of transcript variant 1 of MYCL, overexpression of transcript variant 2 of 
MYCL, overexpression of transcript variant 3 of MYCL). All model-based  
t tests were corrected using an empirical Bayes moderation of standard error 
followed by an FDR adjustment for multiple testing. Model-based t tests cou-
pled with Bayesian moderation of the standard error were implemented in 
the limma package. FDR was used to adjust for multiple testing using the 
function p.adjust from the core R stats package (limma and t-test analysis). 
Genes showing significant differential expression were filtered on the basis of 
q value < 0.1 and absolute log2 |fold change| > 1. Once significant genes were 
identified in the cell line samples, we then compared these genes with those 
associated with MYCL-amplified primary tumors. All comparisons were made 
in R (v3.1.2). The top 19 genes were selected on the basis of q value < 0.1 and 
absolute log2 |fold change| >1.5 in both cell lines (22RV1 and LNCaP). These 
genes were then mapped to the genes in the primary tumor samples. We next 

conducted an unpaired two-tailed t test on these genes from MYCL-amplified  
and MYCL–wild type primary tumors. LNCaP cells were obtained from the 
American Type Culture Collection. 22rv1 cells were a generous gift from  
Y. Pinthus (McMaster University). The absence of mycoplasma contamination 
was routinely confirmed by Hoechst 33258 staining and/or PCR.

Genome sequencing. Qubit-quantified genomic DNA (50 ng; non-amplified) 
was sheared to 300-bp fragments using the Covaris S2 Ultrasonicator, and  
3× volume AMPure XP SPRI bead (Beckman Coulter Genomics, A63881) 
clean-up was performed. The bead-DNA mixture was transferred to a 96-well 
PCR plate (Eppendorf, 0030133404) for the remainder of library construction 
and all subsequent SPRI bead clean-up steps. Libraries were constructed using 
enzymatic reagents from KAPA Library Preparation kits (KAPA Biosciences, 
KK8201) according to protocols for end repair, A-tailing and adaptor ligation48. 
Adaptor-ligated libraries were enriched using optimized PCR conditions by 
adding 3 µl of 25 µM Illumina forward and revers paired-end enrichment 
primers (Integrated DNA Technologies), 75 µl of 2× KAPA HiFi HotStart 
ReadyMix (KAPA Biosciences, KK2602) and 33 µl of nuclease-free water (Life 
Technologies, AM993) to 36 µl of eluted DNA and amplified across three 
individual PCR tubes. Libraries were incubated in a Verti 96-well Thermal 
Cyclers (Life Technologies) for 45 s at 98 °C and cycled ten times for 15 s at 
98 °C, 30 s at 65 °C and 30 s at 72 °C. After a 0.6× SPRI bead clean-up step, 
post-PCR enriched libraries were eluted in 40 µl of elution buffer (Qiagen, 
19086) and validated using the Agilent Bioanalyzer High-Sensitivity DNA kit 
(Agilent Technologies, 5067-4626).

Libraries were quantified on the Illumina Eco Real-Time PCR instrument 
using KAPA Illumina Library Quantification kits (KAPA Biosciences, KK4835) 
according to the standard protocols from the manufacturer. Paired-end 
sequencing of 2 × 101 cycles was carried out for all libraries on the Illumina 
HiSeq 2000 platform, and samples were sequenced with the number of lanes 
predicted to yield an uncollapsed coverage of 50× and 30× for tumor and 
normal samples, respectively.

Sequence alignment and variant calling. Next-generation sequence data 
were processed using several third-party and custom tools. To automate  
the analysis, SeqWare49 workflows were used for initial data processing, and 
Perl and R scripts were developed for downstream automation. Files with raw 
base call and intensity data were transferred from the Illumina HiSeq 2000 
sequencing instruments to the network storage system during the course 
of the sequencing run. These files were converted to FASTQ format using 
Illumina’s CASAVA (v1.8.2) software and managed using a SeqWare work-
flow. The FASTQ files were then aligned to the UCSC GRCh37/hg19 human 
reference (with no repeat masking) using Novocraft’s Novoalign short-read 
aligner (v2.07.14). Reads that aligned to multiple locations in the reference 
genome were retained and recorded in the aligned data file to a maximum of 
five alignment positions. Novoalign produced output in SAM format (v1.4) 
with properly configured read groups generated by Picard (v1.56). Reads 
were converted to BAM format, sorted by coordinates and indexed using 
Picard (v1.56). All BAM files generated from a single library were merged, and  
PCR duplicate reads for each library were removed using Picard (v1.56).  
The final library BAM files were then merged to a single sample and  
tissue BAM file using Picard (v1.56). SAMtools (v0.1.18) was used to filter out  
unaligned reads (SAMFlag = 4) and reads aligning to multiple locations  
(mapping quality < 30)50.

SNVs were identified using the Genome Analysis Toolkit (GATK; 
v1.3.16)51,52 as outlined in GATK Best-Practices for Variant Detection v2. 
BAM files for both blood and tumor samples were analyzed together for each 
sample. For tumors with multiple sampled formalin-fixed, paraffin-embedded 
regions, each tumor region was analyzed with its corresponding blood sample 
as a pair. Each sample BAM file was locally realigned around known insertion 
and deletion events as identified in the dbSNP 135 reference53. The locally 
realigned BAM files were then processed for base quality recalibration to adjust 
the error profile to represent the alignment error profile. SNVs were identi-
fied for each matched sample (consisting of both the tumor and blood locally 
realigned and quality-recalibrated BAM files) using the UnifiedGenotyper 
walker within GATK, which generated a Variant Call Format (VCF) file. 
The VCF file was then compressed and indexed using Tabix54. To parallelize  

n
p
g

©
 2

0
1
5 

N
a

tu
re

 A
m

e
ri

c
a

, 
In

c
. 
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.



NATURE GENETICS doi:10.1038/ng.3315

the variant calling pipeline, each chromosome in the GRCh37/hg19 reference 
was used to create regions for GATK indel realignment, recalibrating base 
qualities and calling SNVs.

Somatic mutations were identified using the SNV file containing both 
tumor and blood variants for each matched set of samples in the VCF file. 
A custom tool was developed to identify base call differences between the 
tumor and blood samples at each VCF file locus, and resulting variants were 
identified as somatic mutations and annotated in the final VCF file. Bases that 
were common to the tumor and blood samples but differed from the UCSC 
GRCh37/hg19 reference were identified as germline mutations.

SNV filtering and identification of recurrent somatic SNVs. After somatic 
SNV and indel calling, identified variants were passed through an annotation 
pipeline. Variants were functionally annotated by ANNOVAR (v2012-10-23)55, 
using the RefGene database. Nonsynonymous, stop-loss, stop-gain, frameshift 
and splice-site SNVs (based on RefGene annotations) were considered func-
tional. Variants were filtered using the Perl implementation of tabix (v0.2.6)54, 
removing variants found in any of the following databases: dbSNP137 (modi-
fied to remove somatic and clinical variants, with variants with the following 
flags excluded: SAO = 2/3, PM, CDA, TPA, MUT and OM), 1000 Genomes 
Project (v3), Complete Genomics 69 whole genomes, NHLBI exome sequenc-
ing study (Exome Variant Server, NHLBI GO Exome Sequencing Project; 
accessed March 2013), duplicate gene database (v68)56, ENCODE DAC and 
Duke Mapability Consensus Excludable databases (comprising poorly map-
ping reads, repeat regions, and mitochondrial and ribosomal DNA)57 and the 
Fuentes database of likely false positive variants58. Variants were whitelisted 
(and retained, independently of the presence on other filters) if they were 
contained within the Catalogue of Somatic Mutations in Cancer (COSMIC) 
database (v62)59. Plots of recurrence and functional annotations were created 
in the R statistical environment (v2.15.3) using the lattice (v0.20-15), lattice-
Extra (v0.6-24) and RColorBrewer (v1.0-5) packages.

The mutation rate per megabase was calculated by dividing the number  
of somatic point mutations after validation by the count of callable loci × 
10−6. A callable locus was defined as a genomic position where the aligned 
read depth in both the tumor and corresponding normal samples was eight  
or greater. This count was calculated for each filtered, deduplicated tumor- 
normal pair of BAM files using the SAMtools (v0.1.18) depth utility and 
straightforward use of the standard Linux command line utilities awk (v1.3.3) 
and wc (v8.5) within a custom Perl wrapper script.

Data from a previous study of prostate cancer genomics were incorporated 
to provide a baseline for our analysis21. Somatic SNVs in exons were obtained 
from Supplementary Table S3A (file mmc3_Somatic_DNA_alterations.xlsx). 
Variants were passed through the same in-house processing pipeline for  
annotation and filtering via blacklists for potential germline variants 
(dbSNP137 and 1000 Genomes Project) or false positives (Fuentes, dupli-
cate gene, in-house validation failures) as used for our own data. Variants 
appearing in COSMIC v82 were whitelisted. Variants were reannotated  
using ANNOVAR with the RefGene hg19 database. Functional variants are 
displayed in Figure 4.

Detection of genomic rearrangements. Sequenced genomes were pre-
processed using the same pipeline for quality control and alignment as for  
variant calling. To detect genomic rearrangements, we used deStruct (v.0.1.0; 
A. McPherson, C.S. and S.P.S., unpublished data), a modification of nFuse60. 
In particular, deStruct uses high-throughput DNA sequencing data without 
requiring RNA input, in contrast to nFuse. With deStruct, we are able to  
obtain breakpoints and calls for rearrangements such as deletions, insertions, 
inversions, and intra- and interchromosomal translocations. Intrachromosomal 
translocations herein are defined as two breakpoints from a single chro-
mosome that have been joined, as described by others61. In this version of 
deStruct, rearrangements with lengths from 1,000 bp to megabases can be 
detected. Analysis of calls recurring across samples was performed in part 
using BEDTools (v2.17.0)62, as well as R (v3.0.1), with the lattice package 
(v0.20-15) for visualization.

Characterization of the median tumor. For structural rearrangements 
(genomic rearrangements, CNAs and PGA) and the total number of somatic 

SNVs, the median was the median of the values for all tumors. For specific 
SNV classes, the fraction of each tumor’s SNVs that were classified as exonic 
by ANNOVAR was calculated. The median of these proportions was then 
used to calculate the expected number of exonic SNVs by multiplying by the 
median count of somatic SNVs. A similar procedure was used to determine 
the expected number of nonsynonymous and other functional mutations  
in the median tumor.

Phylogenetic dendrogram construction. The entire process for dendrogram 
creation was performed in the R statistical environment (v2.15.2), using the 
ape (v3.0-6) and phangorn (v1.7-1) packages. For each SNV data dendrogram, 
a preliminary tree was created using neighbor joining, which was used as a 
starting point to run maximum-likelihood analysis. The resulting unrooted 
tree was rooted using the patient’s blood reference sample as an outlier. Finally, 
the external branches were extended to artificially force the tree to be ultramet-
ric (a requirement of a dendrogram). Dendrograms for CNA data were created 
using neighbor joining with pairwise distances defined as the proportion of 
CNA values (no change, addition or deletion) that were different for the two 
samples. As with the SNV data, the blood reference was used as an outlier to 
root the tree and external branch lengths were artificially extended to force 
the tree into dendrogram form. Bootstrapping was performed on phylogenetic 
trees with more than three leaves. At each iteration of the bootstrapping proce-
dure, the data points within the CNA profile were sampled with replacement 
until there was the same number of data points as for the original CNA profiles. 
Each resampled set of data points was used to create a tree by neighbor joining 
with the distance between each pair of CNA profiles being the percentage of 
the CNAs that did not match for the two profiles. A total of 100,000 bootstrap 
iterations were used for each tree, and the bootstrap values on each branch 
point are the percentage of times out of the 100,000 repetitions that that the 
branch point was in the tree. Bootstrapping was carried out in R (v3.0.3) using 
the phangorn (v1.99-7) and ape (v3.1-1) packages.

Deep sequencing–based SNV validation. The overall SNV matrix was  
processed to filter variants and rank somatic mutations on the basis of their 
recurrence in the 28 tumor-normal matched samples. A union of the predicted 
somatic mutations was then used for validation on an orthogonal platform. 
The final somatic mutation list included 1,037 SNVs that were annotated as 
functional across all 23 tumor regions analyzed, including 951 nonsynony-
mous, 27 stop-gain and 5 stop-loss mutations, 29 of unknown function and 
25 in splicing regions. We added to these ~1,000 mutations seen in other 
prostate cancer whole-genome sequencing data. Predicted somatic mutations 
were prepared for validation using a custom Life Technologies AmpliSeq 
panel (AmpliSeq Primer Design Pipeline v2.0) and sequenced using the Life 
Technologies Ion Torrent Personal Genome Machine (PGM). Primers for the 
custom panel were designed using the AmpliSeq online primer design pipeline 
(v2.0). The primer design pipeline was able to generate 1,614 primer pairs, 
encompassing 1,743 mutations, to cover 10 blood, 9 frozen tumor and 15 
formalin-fixed, paraffin-embedded tumor samples in total (4 samples had 
insufficient material to perform validation). The amplicon size was designed 
to be 150 bp as recommended in the AmpliSeq documentation for formalin-
fixed, paraffin-embedded samples. To identify both false positive and false 
negative somatic mutations, the primers for the 1,743 mutations were applied 
to the blood and prostate tumor samples.

Library preparation and sequencing were performed by EdgeBio. A read 
depth of 500× was targeted across all 1,614 amplicons using Ion Torrent  
PGM 318 chips. At the completion of the sequencing run, FASTQ files were 
provided by EdgeBio and downloaded using their web portal. A custom align-
ment reference was created based on each specifically targeted amplicon with 
a flanking region of ±10 bp. The FASTQ files were then aligned to the target 
reference using Novoalign (v3.00.03), sorted by coordinates and converted 
to BAM format using Picard (v1.90). Read groups were added to the BAM 
files using Picard. A modified pileup file was generated using the predicted 
SNVs and the amplicon-aligned BAM file to identify the base counts at each 
SNV position.

A statistical model was developed to classify and filter mutations for each 
tumor-normal matched sample. A χ2 test between each tumor and normal 
sample was applied to determine a P value at each SNV. To compensate for 
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multiple testing, the Bonferroni correction method was applied to the P values. 
We then calculated the Euclidean distance between the vectors of propor-
tions between the tumor and matched normal samples. To account for uneven  
coverage across the samples, a standard deviation based on the total sample  
base count at each SNV position and the mean base coverage across all  
positions was calculated. For normal tissues, a ternary allele proportion was 
calculated and analyzed to quantify potential false positive variants in blood 
samples. Mutations were classified as somatic if the adjusted P value was less 
than 0.25, the Euclidean distance was greater than 0.15, coverage was no more 
than 1 s.d. from the mean of all samples and the ternary allele proportion for 
normal tissue was less than 0.05.

PCR and Sanger sequencing verification. Genomic DNA (10 ng) was  
amplified using the primer pairs shown in Supplementary Table 16. The pres-
ence of a single PCR product was verified by electrophoresis on a 1.5% agarose 
gel, and 50 ng of PCR product was sequenced from both the 5′ and 3′ ends 
by Sanger sequencing using the original PCR primers. Trace files (AB1 files) 
were converted to a multi-FASTA format using phredPhrap from the CONSED 
(v17.0) suite of tools63. Each line in the FASTA file represented a single  
amplicon sequence. These sequences were then aligned to the UCSC GRCh37/hg19  
human reference using the bwa-sw algorithm from BWA (v0.7.0)64 in SAM 
format. The SAM file was converted to BAM format, sorted by coordinate 
order and indexed using SAMtools (v0.1.18)50. An inspection of each SNV 
position of interest was performed using the SAMtools pileup algorithm. For 
sequences with base calls showing differences between the normal and tumor 
samples, manual inspection of the trace files was performed using FinchTV 
(v1.3.1; Geospiza), and a call was made for the given position.

Visualization. All visualizations were generated in the R statistical  
environment (v3.0.1) using the lattice (v0.20-15), latticeExtra (v0.6-24) and 
VennDiagram (v1.6.4)65 packages, along with pdfTeX (v3.1415926-1.40.10). 
Schematics were created in Inkscape (v0.48) for Ubuntu.
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