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Abstract 

Subclonality is a universal feature of cancers yet how clones grow, are spatially 

organised, differ phenotypically or influence clinical outcome is unclear. To address this, 

we developed base specific in situ sequencing (BaSISS). In fixed tissues, transcripts 

harbouring clone-defining mutations are detected, converted into quantitative clone maps 

and characterised through multi-layered data integration. Applied to 8 samples from key 

stages of breast cancer progression BaSISS localised 1.42 million genotype informative 

transcripts across 4.9cm2 of tissue. Microscopic clonal topographies are shaped by 

resident tissue architectures. Distinct transcriptional, histological and immunological 

features distinguish coexistent genetic clones. Spatial lineage tracing temporally orders 

clone features associated with the emergence of aggressive clinical traits. These results 

highlight the pivotal role of spatial genomics in deciphering the mechanisms underlying 

cancer progression. 

 

Introduction 

Cancer growth is the result of mutation and selection of ever more proliferative clones 

analogous to Darwinian evolutionary theory(1–3). A consequence of this relentless 

process is that cancers are patchworks of genetically related but distinct groups of cells 

termed subclones(4, 5). While the somatic evolution model is well established due to the 

almost omnipresent existence of cancer subclones in bulk or multi-regional sequencing 

data(4–8), relatively little is currently known about the nature or causes of spatial patterns 

of cancer growth, phenotypic characteristics of distinct subclonal lineages or their 

interactions with the microenvironment. Still this information appears key because 

adverse cancer outcomes – growth, progression and recurrence – are properties of 

genetically distinct subclones (7, 9–11).  

  

While a range of spatial molecular profiling strategies based on spatial RNA barcoding(12, 

13), or fluorescence microscopy of single RNA molecules using different types of 

molecular probes exist(14–17), they do not perform the critical function of isolating genetic 

subclones in tissue context because gene expression profiles are highly plastic. 
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Evolutionary cancer genomics has demonstrated that lineage tracing using somatic 

mutations is a powerful and highly specific tool for tracing the subclonal origins of 

aggressive disease in earlier lesions(7, 18, 19). Histology driven sampling, such as laser 

capture microdissection(20) combined with low input nucleic acid library sequencing or 

even single cell sequencing goes some way towards resolving subclone spatial 

structure(21, 22). However, even the most exhaustive sampling strategy will struggle to 

provide an unbiased representation of the cancer landscape particularly across larger 

areas. Recently it has been demonstrated that molecular probes can be targeted to detect 

RNA in a sequence specific fashion, enabling detection of individual mutant transcripts in 

situ(15, 23). Still, these technologies have not been able to comprehensively map multiple 

clones, define spatial cancer evolution or subclone specific phenotypes. 

 

To overcome these limitations, we have developed a Base Specific In Situ Sequencing 

(BaSISS) methodology that extends the In Situ Sequencing (ISS) protocol by 

incorporating multiplexed detection of clone specific mutations in fixed tissue specimens 

(24, 25). A dedicated Bayesian model then allows the interpretation of multi-layered 

spatial data in genetic clone-specific context. By applying the method to eight tissues from 

two multifocal breast cancers we generate the first ever large scale quantitative maps of 

cancer clones and three key messages emerge. 1) Patterns of spatial genetic 

heterogeneity are profoundly influenced by resident tissue structures; 2) Coexistent 

genetic clones can have distinct transcriptional, histological and immunological 

characteristics; 3) In preinvasive, invasive and locally metastatic breast tumours, the 

emergence of aggressive disease features can be temporally ordered and localised in 

genetic and histological contexts providing insights into the biology underlying cancer 

progression.  

 

Results 

BaSISS detects bespoke panels of cancer-specific mutations in fixed tissues 

Cancer evolution produces multiple genetically related yet distinct clones each 

characterised by a unique combination of somatic mutations, known as the genotype, that 
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are related by the underlying phylogenetic tree (26). The spatial patterns created by 

coexisting cancer clones have not previously been directly observed. We established a 

pipeline to allow spatial mapping of cancer clones detected through standard bulk whole 

genome sequencing (WGS) and mutation clustering approaches (Fig. 1A, Supp. Fig. S1, 

Supp. Methods)(7, 9). Representative mutations from each cluster/branch of the 

phylogenetic tree were selected for spatial detection using BaSISS. The approach uses 

multiplexed highly sequence-specific padlock oligonucleotide probes with target 

recognition arms and 4-5 nucleotide reader barcodes to detect both mutant and wild-type 

alleles of each target (Table S1). Padlock probes bind to complementary DNA (cDNA), 

undergo rolling circle amplification and are read using sequencing by ligation with 

fluorophore-labelled interrogation probes (15, 27–29). 

 

To assess whether spatial mutation signals provide a meaningful representation of the 

bulk genomic data, we first applied it to three different regions of a breast tumour obtained 

from the same mastectomy (whole breast) specimen (case PD9694) with confirmed inter- 

and intra-sample genetic heterogeneity defined by WGS (Fig. 1B-E; Table S2-3)(7). We 

designed 51 BaSISS probes to target representative genetic variants from the 

phylogenetic tree trunk and branches (tree annotations; Fig. 1C, Table S1). BaSISS was 

applied to 10µm thick, fresh frozen tissue sections up to 1.75cm in diameter derived from 

the same tissue blocks used for WGS. On average, 96% of BaSISS reads were on target 

and the median number of signals reporting each target was 3,719 (combined mutant and 

wild-type) across the 3 samples (Table S4, Supp. Methods). Plotting BaSISS mutation 

signals coloured according to the relevant branch, reveals inter-sample differences and 

these are largely consistent with bulk genomic data derived variant allele frequencies 

(VAF) (R=0.48-0.61, Pearson’s) (Fig. 1D, Fig. S2A-B). Replicating the BaSISS 

experiment on serial tissue samples generates highly concordant sample-wise VAFs 

(R=0.76-0.93, Pearson’s) and similar spatial signal distribution patterns (Fig. S2C-D). 

Spatial mutation and wild-type signal segregation patterns allowed the most likely 

phylogenetic tree, as represented in Figure 1C, to be selected from two solutions 
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previously considered equally likely based solely on WGS data (Fig. S2D-E, Supp. 

Methods). 

 

Spatial genomics generates large scale cancer clone maps 

To generate continuous spatial subclone maps that quantify the local composition of 

cancer subclones and normal cells we developed a statistical algorithm that exploits 

BaSISS signals as well as local cell counts (derived from the DAPI channel during the 

fluorescence microscopy of BaSISS) using two dimensional Gaussian processes (Fig. 

S1; Supp. Methods). The variational Bayesian model also accounts for unspecific or 

wrongly decoded BaSISS signals and variable probe efficiency and is augmented by 

VAFs in bulk genomic sequencing data from serial tissue sections. The resulting maps of 

cancer (and normal) clones were reconstructed across a scale of up to 132mm2 and with 

resolution of approximately 109µm (Table S2).  

 

We applied the model to BaSISS data generated from eight tissue samples from 2 

mastectomy specimens that together constitute 4.9cm2 of breast tissue (Fig. 1B, Table 

S2). The cases were selected to chart the landmark stages of breast cancer progression. 

The first case, PD9694, consists of two discrete oestrogen receptor (ER) positive invasive 

primary breast cancers with ductal carcinoma in situ (DCIS). DCIS is a non-obligate 

precursor of invasive breast cancer consisting of neoplastic cells restricted to the duct 

lumen. Breach through the basement membrane into the breast stroma marks 

progression to invasive cancer. The second case, PD14780, includes two ER negative 

invasive breast cancers and a draining axillary lymph node that contains metastatic cells.  

 

Mapping the dominant clone across each tissue reveals striking genetic variation within 

and between samples from the same case (Fig. 2-4). Comparison with histological 

appearances confirms that the model correctly differentiates between neoplastic regions 

(coloured fields) and normal tissues (white DAPI nuclei revealed; Fig. 1E, frequency 

plots reach zero; Fig. 2A). Applying the model to the validation BaSISS data generates 

highly consistent results (Fig. S3A).  
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Fig. 1. Spatial Genomics generates maps of cancer clones (A) The Spatial Genomics workflow detects 

whole genome sequencing (WGS) defined subclonal mutations within serial tissue sections using base 

specific in-situ sequencing (BaSISS). For mathematical aspects see Fig. S1. (B) To develop the spatial 

genomics approach we selected two cases where multiple samples (PD*, shaded boxes) chart the distinct 

stages of primary breast cancer progression. Asterisk indicates no WGS data. (C) For case PD9694 most 

likely phylogenetic tree derived from WGS (samples PD9694a,c,d) and BaSISS data are presented with 

padlock probe targets named on each branch (driver mutations in bold). The barplot reveals the bulk 

genomic data (WGS plus targeted capture) derived variant allele frequency (VAF) of selected branch 

mutations in genes denoted in correspondingly coloured text (error bars report CIs = 5 - 95%). (D) BaSISS 

mutation signal plots – each dot represents the location of a mutation specific barcode, relating to the 

mutations reported in barplot (C). (E) Maps of the most prevalent clone projected on the DAPI image 

(reported if cancer cell fraction > 25% and inferred local cell density > 300 cells/mm2). Annotated pan-

cytokeratin (pan-CK) IHC images of sequenced sections (bottom row, epithelial cells brown). Focus images 

show DCIS structure with coloured lines depicting approximate clone borders. DCIS = Ductal carcinoma in 

situ, ISS = gene expression in situ sequencing; IHC = immunohistochemistry, ER = oestrogen receptor, 

HER2 = Human epidermal growth factor receptor-2, cDNA = complementary DNA; mRNA = messenger 

RNA; H&E = haematoxylin and eosin. 

 

 

Resident tissue structure influences subclonal growth patterns 

Examining the samples from the three stages of cancer progression together, it is evident 

that the resident tissue structure plays a fundamental role in defining the observed 

patterns of intratumoral heterogeneity. One consequence is the intimate juxtaposition of 

genetically distant clones. For example, the lymph node sample (PD14780e) that is 

examined in detail in relation to Figure 4, contains multiple clones but the sinus spaces 

are monopolised by a single clone. Similarly, the purple, invasive primary cancer 

PD9694c, is studded by evolutionarily distant orange clones but these are intraductal 

populations of neoplastic cells that are physically separated from the main cancer mass 

by the duct membrane (inset box, PD9694c; Fig. 1E). Similarly, in the three ‘pure’ DCIS 

samples, the microscopic structure of ducts and lobules underlies the striking, seemingly 

random mosaic of green and orange clones that are predicted to have diverged decades 

before (inset box, PD9694d; Fig. 1E, Fig. 2A-B). 
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The quantitative nature of these spatial genomics data allows us to further investigate the 

growth patterns in relation to tissue structure. In the pure DCIS samples (PD9694d,l,m), 

individual acinar and ductal ‘spaces’, defined by a myoepithelial cell layer and/or 

intervening stroma, are typically occupied by a complete clonal sweep (frequency plots; 

Fig. 2A, Fig. S3B). We deduce that this appearance is not simply a consequence of 

colonisation of distinct arms of the ductal system because we also observe distinct clonal 

fronts within several lobules that are corroborated by BaSISS mutation data, histological 

features and spatial transcriptomic data (Fig. 2C-E). These appearances might arise due 

to mutual tolerance or equal fitness, but in this case, as discussed below, the ability to 

spatially characterise co-existent clones provides evidence that we are more likely to be 

observing an incomplete clonal sweep by a fitter clone.  

 

Spatial genomics reveals characteristic differences between DCIS clones with 

different fates 

Why some, but not all DCIS lesions progress to a potentially lethal invasive cancer is 

poorly understood. This question is usually addressed by comparing cohorts of DCIS 

samples with different clinical outcomes but this approach is inherently difficult due to the 

heterogeneity of breast cancer as a disease(30, 31). Here, we demonstrate that spatial 

genomics provides a novel approach to the problem, by allowing the comparison of 

related DCIS clones that share many genetic and all host features yet manifest different 

clinical outcomes. In case PD9694, an invasive cancer arose from the orange clone but 

the green clone, despite predating orange by several years, never progressed (Fig. 2B).  

 

Consistent with a more aggressive phenotype the orange clone cells have larger, more 

pleomorphic and more intensely stained nuclei as confirmed by digital pathology (Fig. 

2C-D). Clone-specific histological features are remarkably stable, being recapitulated 

within virtually every distinct space and are also appreciated at the single nucleus level 

where clones meet, adding weight to BaSISS model inferences (Fig. 2C-D, Fig. S3C).  
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To derive clone-specific expression patterns, spatial transcriptomic data were generated 

on serial tissues sections using two bespoke ISS targeted panels: An immune marker 

panel (n=63 genes) and an oncology panel (n=91 genes) composed of a variety of breast 

epithelial markers and cancer pathway related genes including those derived from a 

clinical breast cancer recurrence assay (higher risk genes = proliferation, invasion, HER2 

group; lower risk genes = oestrogen group)(32, 33) (Fig. 2F, Table S1, Table S5). The 

per nucleus signal density was determined in regions dominated by either the orange or 

green subclone and significant differences determined (probability of positive log-ratio 

(PPLR) after Bonferroni correction < 0.01) (Table S6, Supp. Methods). Relative to green, 

the ill-fated orange clone expresses higher levels of cell cycle regulatory oncogenes 

CCND1, CCNB1, the cell survival factor Survivin and the proliferative marker Ki67 (1.8-

4.4 fold) (Fig. 2E-F, Fig. S3D). Proliferative markers have demonstrated prognostic and 

predictive value in various clinical studies of DCIS progression risk (33–35).  

 

Given the barrier between DCIS and the surrounding stroma, we were surprised to also 

observe that the majority of immune panel signals are enriched within the bounds of the 

orange clone fields. The most significantly enriched immune marker genes include those 

associated with T-regulatory cells (TNFRSF18, ITGAM), macrophages (CD68) and 

immune checkpoint inhibition (PD-L1, LAG3) (1.5-4.4 fold). The fibroblast marker (CD34) 

and fibroblast activation protein, FAP, signals are also denser in these areas (Fig. 2F, 

Fig. S3E). These findings are consistent with various studies that propose that the stromal 

environment plays an active role in driving DCIS progression but provides new evidence 

that this mechanism is clone specific (36–40). 

 

Raw ISS signals overlaid on the histological image provide visual confirmation of the 

highly clone-specific nature of some signals and furthermore, the within clone variation in 

spatial localisation (Fig. 2E). It is remarkable that many of the features that differentiate 

between precancerous clones with different evolutionary trajectories foreshadow, albeit 

at lower amplitude, many of the changes that distinguish invasive cancers from 

preinvasive cancers in general (Fig. 3) (36, 41, 42).  
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Fig. 2. Histological, transcriptional and immunological differences between DCIS clones with 

different fates (A) Maps of pure DCIS clones (as for Fig. 1E) and frequency plots of local, mean cancer 

(coloured areas) and non-cancer (white) composition, corresponding to horizontal dashed lines. (B) WGS 

derived phylogenetic tree reports relative timing of emergence (arrows) and evolutionary fates of DCIS 

clones in case PD9694. Timing estimates are derived from branch mutation burdens and patient age and 

assume steady mutation rates. (C) Pure DCIS clone growth patterns: Cartoon illustrates anatomical 

organisation of breast duct and lobule system and possible green/orange clone locations. Other images 

provide detailed views of segregated clone growth within a distended lobule in PD9694d (see A): clone 

fields (left) and select BaSISS mutation signals (middle) on DAPI image (coloured by clone: FGFR1 is an 

expression probe so is more highly expressed but not exclusive to the orange subclone, other probes are 

mutation specific); annotated H&E stained serial section with focus image demonstrating different 

appearances across clone interface. (D) Histological appearances (H&E stained serial sections) of select 

areas corresponding to letters a-d in (A) reveal larger, more pleomorphic and intensely stained nuclei in 

orange clone. Violin plots report nuclear morphological features of green (11,365 nuclei) and orange 

(11,699 nuclei) regions (all differences significant, p < 0.0001, Mann-Whitney U). (E) BaSISS and ISS data 

projected on the DAPI image reveal orange clone specific characteristics in a selected area of PD9694l(A). 

(F) Barplots report fold changes in ISS gene panel expression signals between orange (1,515 tiles) and 

green clone regions (2,583 tiles) (predominant clone defines the location). Annotated genes have significant 

expression differences (probability of positive log-ratio (PPLR) after Bonferroni correction < 0.01). Genes 

are ordered by combined PPLR and direction of change (fine lines report CIs = 5 - 95%).  

 

Temporal ordering of genetic, transcriptional and immunological changes during 

the development of invasive cancer  

How DCIS progresses to an invasive cancer is poorly understood. In the previous section 

we observed characteristic differences between competing clones in pure DCIS samples 

and here we extend this by tracing the changes accompanying the progression to invasive 

cancer – a potentially fatal condition (Fig. 3A). The two separate invasive cancers 

(PD9694a and PD9694c) arose from a common precursor clone along divergent lineages 

– orange to red and blue to purple – with parallel loss of PTEN through distinct damaging 

mutations (Fig. 3A-B). PTEN loss is the only invasion specific driver mutation identified 

within each lineage and was evidently under strong selection during progression as has 

been demonstrated in other breast cancers (43). In both lineages, the PTEN mutant clone 
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dominates the invasive cancer but unexpectedly, also accounts for sizable areas of DCIS 

consistent with an intraductal onset (Fig. 3B-C). The terminal purple lineage clone is 

differentiated by 8 private mutations and these are all present at similar levels in the DCIS 

and invasive compartments supporting previous reports of genetic similarity between the 

two disease states (21, 30) (Fig. S4A). Histological appearances are more consistent 

with this reflecting genetic evolution within the ducts rather than widespread 

recolonisation by the invasive cancer and is referred to herein as ‘late DCIS’ to 

differentiate it from the ancestral DCIS clone (early DCIS). By comparing the targeted ISS 

gene expression data in early DCIS, late DCIS (with PTEN mutations), and invasive 

cancer clones along each lineage we sought to temporally order when the non-genetic 

features associated with an invasive cancer emerge (Fig. 3A). Here, we investigate to 

which extent transcriptional changes are replicated by the two lineages that display 

convergent genetic evolution in the same host and same genetic background. 

 

For each lineage, gene expression profiles were determined for the early DCIS, late DCIS 

and invasive cancer regions using targeted ISS. For 53 immune panel and 58 oncology 

panel genes, a significant difference in expression is evident between early DCIS and 

invasive cancer regions (PPLR after Bonferroni correction < 0.01) (Fig. 2D-E, Table S6). 

For most genes the expression level is higher in the invasive cancer (Fig. S4B). The 

expression signal density in late DCIS is usually somewhere between early DCIS and 

invasive cancer, although differences exist between genes. Most immune panel genes 

behave in a similar fashion, exhibiting less than 25% of the signal enrichment detected in 

the invasive cancer (Fig. 3D-E). This is consistent with the picture whereby immune cells, 

by and large, remain outside of the ducts irrespective of genetic features of the clone 

inside (Fig. 3A, box b; Fig. S4C). In late DCIS, some immune cell signals appear 

clustered close to ‘microbreaches’ in the mesenchymal cell layer (arrowheads, box c; Fig. 

S4C). Interestingly, in one region, immune signals cluster specifically with a group of 

purple clone cells in a duct that is otherwise occupied by an evolutionarily distant orange 

clone – a picture that, in the absence of the precursor DCIS clone, might support a pattern 

of cancer reinvasion (far right box; Fig. 3C, Fig. S4D). A smaller group of immune marker 
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genes including T-regulatory cell marker (TNFRSF18) and the mainly cancer cell derived 

MHC class I chain related-proteins A and B (MICA, MICB) do not exhibit clustering but 

are diffusely scattered throughout the purple DCIS. This pattern is also apparent in the 

pure DCIS comparisons (orange versus green) in the previous section, it is therefore 

conceivable that these more diffuse immune changes might gradually emerge during 

waves of clonal progression (Fig. 2E-F). 

 

The oncology panel genes are more heterogeneous in their expression behaviour and 

this undoubtedly reflects the more diverse composition of the panel. For around half of 

the genes, at least 50% of the increase in expression level seen in the invasive cancer is 

evident within the late DCIS (left box; Fig. 3A, Fig. 3D-E). A range of genes, including 

prognostic genes linked to both proliferation (Ki67) and invasion (CTSL2), have similar 

expression levels in late DCIS and invasive clones (Fig. 3E)(32). These gene signals are 

diffusely distributed throughout the purple clone regions without clustering indicating they 

are a general property of the DCIS cells. It therefore appears that at the DCIS stage, 

neoplastic cells can be armed with both the genetic and many of the transcriptional 

changes needed for life as an invasive cancer. It is perhaps remarkable that these cells 

form extensive expansions within intact ducts rather than invading immediately. While 

these data support the model of intraductal clonal progression they also indicate that the 

ultimate invasive transition could well be driven by the tumour microenvironment or rapid 

expansion of one clone could physically rupture the ductal basement membrane, spilling 

multiple clones into the breast stroma (21, 30).  
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Fig. 3. Temporal ordering of genetic, transcriptional and immunological changes during the 

development of invasive cancer. (A) Cartoon illustrates parallel lineages of progression from DCIS to 

invasive cancer. Potential driver mutations annotate relevant branches of the phylogenetic tree. DCIS onset 

changes (left box) include PTEN driver mutations and expression of genes typically associated with 

epithelial/cancer origin. Invasive onset changes (right box) include expression of genes associated with the 
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tumour microenvironment (TME). (B) Clone maps (as per Fig. 1E) and frequency plots of invasive cancers 

with DCIS regions marked in white: PTEN mutant clones (red/purple) occupy several mm2 of histologically 

confirmed DCIS (A and C). (D) Boxplots report, for the genes upregulated between early DCIS and invasive 

cancer, the extent to which this is acquired within late DCIS. Significantly altered genes are defined as 

having PPLR after Bonferroni correction < 0.01. (E) A dot plot showing the relative expression of the same 

genes from (D) at the different progression stages in the 2 lineages. Dot area = (transcript/nucleus) divided 

by maximum value for each gene. Boxplots report transcripts/ nucleus (left) for genes shown and fold 

change between indicated comparisons (right). For all boxplots we report median, lower and upper quartiles 

(box) and 5-95 percentiles (whiskers). Expression per clone was defined on 136 - 3262 tiles, see Table S6 

for details. 

 

 

Tracing the emergence of aggressive cancer characteristics in a lymph node 

metastasis  

Lymph node metastasis predicts distant metastasis and death, but whether it plays an 

active role in facilitating cancer progression or simply reflects more aggressive primary 

cancer biology is unknown. To assess whether the lymph node might drive clinically 

meaningful evolutionary progression, we selected a case where the clinically targetable 

breast cancer oncogene HER2 was found to be amplified in the lymph node but not 

primary tumours by WGS (9) (Fig. 4A, Fig. S5A). As in case 1, we designed BaSISS 

padlock probes to mutations from the branches of the WGS inferred tree (stars; Fig. 4A). 

Targets included a passenger mutation in HER2 and a novel internal ‘fusion’ in CACNB1 

(a gene 5 prime to HER2). These mutations are predicted to have occurred prior to and 

during the breakage fusion bridge event that generated the HER2 amplification event 

respectively, and were included to aid evolutionary timing (Fig. 4A, Fig. S5A, Table S1).  

 

The BaSISS signal data exhibit spatial patterns that support the existence of at least 2 

lymph node clones: A post-amplification clone with high HER2 mutation density and 

CACNB1 signals and at least one pre-amplification clone with low level HER2 mutation 

signals but similar trunk mutation density (BaSISS plots; Fig. 4B-C). This supports WGS 

subclonal copy number data (Fig. S5A). We therefore provided the model with a genotype 
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matrix for the 4 clones indicated in Figure 4A (Table S1), generating the clone maps of 

primary cancers and the lymph node in Figures 4D-E. 

 

A subclonal population (purple) is detected in one of the primary cancers and this exhibits 

histological and expression features of more aggressive disease compared to the more 

ancestral (blue) clone (Fig. S4B-D). However, we did not find any evidence to support 

the emergence of the HER2 amplified (orange) clone or the HER2 mutation bearing, pre-

amplification (green) clone within the primary cancers here or on a serial tissue section. 

Nonetheless, the existence of multiple clones in the lymph node confirms that HER2 

amplification was not necessary to establish metastasis in this cancer. Although we 

cannot exclude the possibility that HER2 amplification occurred in an unsampled region 

of the primary tumour, the presence of the green HER2 mutant, pre-amplification clone in 

the lymph node is consistent with emergence at this site (Fig. 4B-C). 

 

The lymph node contains more than one pattern of cancer growth and these patterns are 

associated with different genetic subclones. The first, a solid growth pattern composed of 

pure cancer cells with no obvious stromal component and a paucity of immune cells is 

entirely formed by the orange clone (Fig. 4C, Fig. 4E). Orange deposits are surrounded 

by endothelial cell layers and neat lines of CD34 and PDGFRB ISS signals that are 

expressed by lymph node sinuses and potentially microvessels (Fig. 4G, Fig. S5E). The 

remainder of the node is heavily infiltrated by cancer cells that exhibit a diffuse infiltrative 

pattern, intermingling with immune cells and frequently forming perifollicular aggregates 

(Fig. 4C, Fig. S5F). Most of these cells are assigned to one or other pre-HER2-

amplification clone, although confidence of exact clone assignment is low due to low 

cancer purity in these areas. We therefore observe that the lymph node offers a distinct 

environment that permits segregated growth of genetically distinct subclones. 

 

Consistent with a more aggressive emerging subclone, the orange subclone expresses 

higher levels of invasion and proliferation related genes, relative to the green and blue 

subclones (32) (Fig. 4F; Supp. Methods). Interestingly, three of the most highly enriched 
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genes – Vascular endothelial growth factor A (VEGFA) (2.4 fold), carbonic anhydrase IX 

(CA9)(236 fold) and C-X-C motif chemokine ligand 8 (CXCL8)(384 fold) – are implicated 

in hypoxia and angiogenesis and their ISS signals follow striking patterns (PPLR =0.001) 

(44-46) (Fig. 4G-H). The signals are highly specific to the orange subclone and their 

acquisition is cumulative, following metastatic deposit size. For each gene, density within 

a deposit is inversely related to the distance from the endothelium and presumably the 

inverse oxygen gradient (Fig. 4G). While CA9 and VEGFA seem to be mainly cancer cell 

derived, CXCL8 co-localises with CD45+ immune/lymphoid cells (by IHC) and 

CD68/CD163 signals (by ISS) consistent with a macrophage origin in this scenario (Fig. 

S4G). Both HER2 amplification and hypoxic signatures are associated with adverse 

clinical outcomes in breast cancer (47). This case provides another powerful example of 

how spatial genomics can uncover the interplay of genetics and tumour microenvironment 

in contributing towards the subclonal diversification that underpins the emergence of 

clinically aggressive cancers.  

 

While the eight samples interrogated with BaSISS revealed a wealth of information 

related to their individual patterns of subclonal growth, subclone-specific phenotypes and 

successive transcriptomic changes acquired during progression, some overarching 

patterns also emerge. Evaluating the clinical recurrence assay gene groups based on the 

prognostic ISS marker panel, we observe that proliferative and invasive group gene 

scores steadily increase along seven predicted clonal succession episodes spanning 

three cancer stages from DCIS to lymph node metastasis (Fig. S6). This would be 

consistent with the notion that major clonal succession events in a cancer reflect the 

emergence of increasingly proliferative clones (48). Larger spatial genomics studies may 

guide the development of precise biomarkers and molecular staging systems by 

exploiting the sequential nature of subclone specific changes. 
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Fig. 4. Tracing aggressive disease in a lymph node metastasis. (A) Case PD14780 samples, 

phylogenetic tree and genotypes (ovals represent a cell) inferred from WGS data and BaSISS signals. (B) 

Barplot of BaSISS signals extracted from 939 and 894 tiles in solid and diffuse growth pattern regions 

provide evidence of at least two genotypes: One with amplified HER2 mutation signals and CACNB1 fusion 

signals, the other with low level/ absent HER2 mutation signals but similar trunk mutation signal density 

(CIs = 5-95%). ‘Trunk’ comprises 3 different mutations. (C) Sample PD14780e, BaSISS/ ISS sequenced 
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lymph node sections stained by IHC with pan-cytokeratin (pan-CK, stains cancer cells brown) and CD45 

(stains immune cells brown). Whole section (top row), focus area (middle row) and focus area (pan-CK 

stained) with overlaid BaSISS signals. (D-E) BaSISS subclone fields (top row) (DAPI projected, colour 

reflects the most prevalent subclone, reported if cancer cell fraction > 15% (D) and > 25% (E)) and (bottom 

row) annotated H&E stained serial sections (D) or subclone frequency plots (E). (F) Barplots of subclone 

specific gene expression fold changes in PD14780e (orange versus blue/green aggregated signals) for 

immune and oncology panels ordered by PPLR and direction of change. Genes with significant expression 

difference (PPLR after Bonferroni correction < 0.01) are annotated. (G) Spatial patterns of PDGFRB, CD34 

and hypoxia related ISS signals in PD14780e overlaid on HER2 (left) and CD45 IHC stained sections(right). 

(H) Spatial patterns of 3 hypoxia related genes show spatial patterns and are cumulative. 

 

 

Discussion 

Here we present BaSISS, a highly multiplexed fluorescence microscopy based protocol 

to map and phenotypically characterise cancer clones. The BaSISS technology supports 

a tailored approach according to each cancer’s unique complement of mutations. In this 

proof of principle study we map relatively broad subclone populations identified through 

multi-region WGS but the spatial genomics approach could equally be applied to more 

detailed phylogenies. A particular advantage of the technology is that it is capable of 

interrogating very large tissue sections and that it is comparably cheap, unlike solely 

relying on sequencing based methods (49). In theory, the approach holds the potential to 

create three dimensional genomic tomographs by aligning consecutive tissue sections. A 

limitation of the approach is relatively low sensitivity, which currently precludes single cell 

genotyping. For standard ISS, additional sensitivity can be achieved by tiling transcripts 

with more probes; unfortunately, this is not feasible for point mutations at a defined 

genomic location. A switch to hybridisation based sequencing and direct RNA binding 

probes, which eliminate the requirement for reverse transcription are currently limited to 

gene expression, but with further development should also improve base specific 

detection several fold (50, 51). 

 

BaSISS’ ability to spatially locate and molecularly characterise different cancer subclones 

adds essential features to the spatial genomics tool kit. It provides a robust evolutionary 
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framework that is necessary to interpret the biological relevance of many of the more 

plastic spatial characteristics of a cancer. Future widespread application of spatial 

genomics approaches will uncover how cancers grow in different tissues and allow us to 

track, trace and characterise the ill-fated clones that are responsible for adverse clinical 

outcomes.  
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