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Abstract

We developed Distilled Graph Attention Policy Networks (DGAPNs), a curiosity-
driven reinforcement learning model to generate novel graph-structured chemical
representations that optimize user-defined objectives by efficiently navigating
a physically constrained domain. The framework is examined on the task of
generating molecules that are designed to bind, noncovalently, to functional sites
of SARS-CoV-2 proteins. We present a spatial Graph Attention Network (sGAT)
that leverages self-attention over both node and edge attributes as well as encoding
spatial structure — this capability is of considerable interest in areas such as
molecular and synthetic biology and drug discovery. An attentional policy network
is then introduced to learn decision rules for a dynamic, fragment-based chemical
environment, and state-of-the-art policy gradient techniques are employed to train
the network with enhanced stability. Exploration is efficiently encouraged by
incorporating innovation reward bonuses learned and proposed by random network
distillation. In experiments, our framework achieved outstanding results compared
to state-of-the-art algorithms, while increasing the diversity of proposed molecules
and reducing the complexity of paths to chemical synthesis.

† University of California, Berkeley, ‡ Lawrence Berkeley National Laboratory, § National Virtual
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1 Introduction

This work aims to address the challenge of establishing an automated process for the design of objects
with connected components, such as molecules, that optimize specific properties. Achieving this goal
is particularly desirable in drug development and materials science, where manual discovery remains
a time-consuming and expensive process [19, 46]. However, there are two major difficulties that have
long impeded rapid progress. Firstly, the chemical space is discrete and massive [41], presenting a
complicated environment for an Artificial Intelligence (AI) approach to efficiently and effectively
explore. Secondly, it is not trivial to compress such connected objects into feature representations
that preserve most of their information, while also being highly computable for Deep Learning (DL)
methods to exploit.

We introduce Distilled Graph Attention Policy Networks (DGAPN), a framework that advances
prior work in addressing both of these challenges. We present a Reinforcement Learning (RL)
architecture that is efficiently encouraged to take innovative actions and an environment that is
able to construct chemically valid fragment-based action space. We also propose a hybrid Graph
Neural Network (GNN) that encodes graph-structured objects’ spatial structure and edge attributes
in addition to adjacency structure and node attributes. The following paragraphs discuss how we
addressed limitations of prior work and its relevance to the discovery of antiviral drugs. For more
descriptions of key prior methodologies that we used as benchmarks in this paper, see Section 5.

Graph Representation Learning String representation of molecules acquired by the simplified
molecular-input line-entry system (SMILES) [55] have been widely used in attempts to generate
molecules of interest [15, 37, 42, 56, 28, 13, 7, 49, 23]. Despite being spatially efficient, string
representations suffer from significant information loss and poor robustness [31]. Graph represen-
tations have become predominant and preferable for their ability to efficiently encode an object’s
scaffold structure and attributes. Graph representations are particularly ideal for RL since intermediate
representations can be decoded and evaluated for reward assignments. While recent GNNs such
as Graph Convolutional Networks (GCNs, [26]) and Graph Attention Networks (GATs, [53]) have
demonstrated impressive performance on many DL tasks, further exploitation into richer information
contained in graph-structured data is needed to faithfully represent the complexity of chemical space
[34, 54, 4, 1]. Two key limitations of prior work are (1) information embedding is heavily node-
dominant and (2) graph’s spatial information, which may be informative, or essential, in molecular
biology, is largely discarded. Distinct from [8] and [5], we extended GATs to be edge-featured, while
still node-centric for efficiency, and perform weighted convolution with a sparsified distance matrix
to capture the spatial structure.

Reinforcement Learning A variety of graph generative models have been used in prior work, pre-
dominantly Variational Autoencoders (VAEs) [50, 44, 32, 33] and Generative Adversarial Networks
(GANs) [9]. While some of these have a recurrent structure [30, 59], RL algorithms excel in sequen-
tial generation due to their ability to interact dynamically with the environment and resist overfitting
on training data. Both policy learning [58] and value function learning [61] have been adopted for
molecule generation: however, the majority generate molecules node-by-node and edge-by-edge.
In comparison, an action space consisting of molecular fragments, i.e., a collection of chemically
valid components and realizable synthesis paths, is favorable since different atom types and bonds
are defined by the local molecular environment. Fragment-by-fragment sequential generation has
been used in VAE [21], but has not been utilized in a graph RL framework. In this work, we designed
our environment with the Chemically Reasonable Mutations (CReM, [40]) library to realize a valid
fragment-based action space. Furthermore, we addressed mode collapse which commonly occurs
in both policy gradient and Q-learning algorithms by employing an efficient exploration technique,
adapting Random Network Distillation (RND, [3]) to GNNs and thus encouraging curiosity-driven
policies through a surrogate innovation reward for each intermediate state.

Antiviral Drug Discovery — A Timely Challenge The severity of the COVID-19 pandemic
highlighted the major role of computational workflows to characterize the viral machinery and identify
druggable targets for the rapid development of novel antivirals. Particularly, the synergistic use of
DL methods and structural knowledge is at the cutting edge of molecular biology — consolidating
such integrative protocols to accelerate drug discovery is of paramount importance [57, 20]. Here we
experimentally examined our architecture on the task of discovering novel inhibitors targeting the
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SARS-CoV-2 non-structural protein endoribonuclease (NSP15), which is critical for viral evasion of
host defense systems [39]. Our framework combines AI with structure-based methods to enable a
broad and efficient search for drug-like inhibitors on the chemical space, without being restricted to
existing databases of compounds. Structural information about the putative protein-ligand complexes
was integrated into this framework with AutoDock-GPU [45], which leverages the GPU resources
from leadership-class computing facilities, including the Summit supercomputer, for high-throughput
molecular docking [29]. We show that our results outperformed state-of-the-art generation models in
finding a chemically diverse set of molecules with high affinity to the target and the best synthetic
accessibility score among state of the art models.

2 Problem Formulations

Our goal is to establish a set of decision rules to generate graph-structured data that maximizes a
compound objective under certain constraints. In the case of molecular graphs, we compose the
objective by weighing over multiple factors, including chemical properties, innovation, and entropy.
The constraints are the set of rules under which the chemical validity of generated molecules is
ensured. The process of generating each individual molecule is sequential and concludes after certain
user-defined criteria are met.

Similar to prior formulations, the generating process is defined as a time homogeneous Markov
Decision Process (MDP). We give a formal definition of this process in the Appendix. Under this
setting, the action policies and state transition dynamics at step t can be factorized according to the
Markov property:

P (at|s0, a0, s1, a1, . . . , st) = P (at|st) := π(at|st) (1)
P (st+1|s0, a0, s1, a1, . . . , st, at) = P (st+1|st, at) := ρ(st+1|st, at) (2)

where {st, at}t are state-action sequences. A reward function r(s, a) is used to assess an action
a taken at a given state s. The process terminates at an optional stopping time T and sT is then
proposed as the final product of the current generating cycle. We aim to estimate the optimal policy π
in terms of a specified objective to be defined in Section 2.2.

2.1 Environment Settings

Single-atom or single-bond additions are often not realizable by known biochemical reactions. Rather
than employing abstract architectures such as GANs to suggest synthetic accessibility or drug-
likeliness, which are known to be unstable and difficult to converge alongside policy training, we use
the chemical library CReM [40] to construct our environment such that all next possible molecules
can be obtained by one step of interchanging chemical fragments with our current molecule. This
approach is considerably more reliable and interpretable compared to DL approaches. A detailed
description of the CReM library can be found in the Appendix.

CReM Action At each time step t, we use CReM to enumerate the next set of valid molecules vt+1

based on current molecule st. Under this setting, the transition dynamics are fixed, the underlying set
A of the action space can be defined as equal to S of the state space, and action at is induced by the
direct selection of next state st+1.

2.2 Objective

The objective is to maximize the expected reward of generated molecules. The reward is composed
of two parts– a main reward assigned to the final product sT , and innovation rewards assigned to the
intermediate products {st}1≤t≤T . The relative importance between them can be specified based on
individual interests. Below are the details of these two rewards in our experiments.

Docking Score Docking scores are computed by docking programs that use the three-dimensional
structure of the protein to predict the most stable bound conformations of the small molecules of
interest, targeting a pre-defined functional site. An efficient GPU implementation of an automated
docking tool is used in the experiments, see the Appendix for more details.

3



Figure 1: Spatial Graph Attention.

Curiosity Score Curiosity scores are generated by assessing the similarity of a given molecule to
all the previously explored molecules (including intermediates) with two deep neural networks. The
lower the similarity is, the higher the curiosity score. See Section 3.3 for details.

3 Proposed Method

3.1 Spatial Graph Attention

We introduce a hybrid GNN called Spatial Graph Attention (sGAT) to acquire feature vectors
ht ∈ R

dh representing states. Two different types of information graphs extracted from a connected
object are heterogeneous and thus handled differently in forward passes as described in the following
sections. The two hidden representations acquired respectively are aggregated at the end of each
layer. See Figure 1 for an overview.

3.1.1 Graph Attention on an Attribution Graph

The attribution graph of a molecule with n atoms and e bonds is given by the triple (A,N ,E),
where A ∈ {0, 1}n×n is the node adjacency matrix, N is the node attribution matrix of dimension
n× dn and E is the edge attribution matrix of dimension e× de. Each entry Aij of A is 1 if a bond
exists between atom i and j, and 0 otherwise. Each row vector ni of N is a concatenation of the
properties of atom i, including its atomic number, mass, etc., with the categorical properties being
one-hot encoded. E is formed similarly with the bond attributes. We denote a row vector of E as eij
when it corresponds to the bond between atom i and j.

We then define a multi-head forward propagation that handles richer graph information than the
attention layers used in GATs [53]. Let hnk

∈ R
1×dhn denote a given representation for nk,

heij
∈ R

1×dhe denote a given representation for eij , then the m-th head attention αmij from node j
to node i (i 6= j) is given by

αmij = softmax j

(
n

k: aik=1

{
σ([hni

Wn,m ‖ heik
We,m ‖ hnk

Wn,m] · attmT )
}
)

(3)

where ‖ stands for concatenation (here column-wise); σ is some non-linear activation; Wn,m ∈
R
dhn×dwn , We,m ∈ R

dhe×dwe are the m-th head weight matrices for nodes and edges respectively;
attm ∈ R

1×(2dwn+dwe ) is the m-th head attention weight. The representations after a feed-forward
operation are consequently given as follow:

h′
ni

= aggr1≤m≤nm



σ






∑

j:Aij=1

αmij · hnj
+ hni


Wn,m






 (4)

h′
eij

= aggr1≤m≤nm

{
σ
(
heij

We,m

)}
(5)

where nm is the total number of attention heads and aggr denotes an aggregation method, most
commonly mean , sum , or concat [16]. In principle, a single-head operation on nodes is essentially
graph convolution with the adjacency matrix Â = Ã+ I where Ã is attention-regularized according
to (3). This approach sufficiently encodes edge attributes while still being a node-centric convolution
mechanism, for which efficient frameworks like Pytorch-Geometric [11] have been well established.
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Figure 2: An overview of the Distilled Graph Attention Policy Network during a single step of the
generating process.

Hypergraph Attention We also extended our attention mechanism to hypergraphs and provided
support for the exploitation of molecular hyperstructure (e.g. [22]) if required. In this case, instead of
an adjacency matrix we have a hyperedge index matrix H ∈ {0, 1}e×n where each entry hij is 1 if
hyperbond i connects atom j. A detailed description of the original hypergraph attention formulation
can be found in [1]. While we anticipate that this feature will be useful in future design challenges,
we do not bench mark it here, and leave this for future work.

3.1.2 Weighted Graph Convolution on Geometric Graphs

In addition to attributions and logical adjacency, one might also wish to make the most of molecule’s
spatial structure, as it informs the molecular volume and the spatial distribution of interaction sites
— shape and chemical complementarity to the receptor binding site is essential for an effective
association. On such structure, the convolution of feature vectors can be conducted by weighing over
the Euclidean distance between atoms. Taking computational complexity into account, the following
paragraph provides the details.

Spatial Convolution Let G =
(
dij

−1
)
i,j≤n

be the inverse distance matrix where dij is the

Euclidean distance between node i and j for ∀i 6= j, and dii
−1 := 0. G can then be seen as

an adjacency matrix with weighted "edge"s indicating nodes’ spatial relations, and the forward
propagation is thus given by

H ′′
n = σ

((
D̃− 1

2 G̃D̃− 1
2 + I

)
HnWn

)
(6)

where G̃ is optionally sparsified and attention-regularized from G to be described below; D̃ =

diag1≤i≤n

{∑n
j=1 G̃ij

}
; Hn is the row concatenation of {hni

}1≤i≤n; Wn ∈ R
dhn×dwn is the

weight matrix; the identity matrix I is added after regularization since diagonal entries and the rest
are heterogeneous. In reality, G induces O(n) of convolution operations on each node and can
drastically increase training time when the number of nodes is high. Therefore, one might want
to derive G̃ by enforcing a cut-off around each node’s neighborhood [38], or preserving an O(n)
number of largest entries in G and dropping out the rest. Depending on how abstract the spatial
information is in real-world cases, G should be regularized by attention as described in the previous
section. If attention is applied, spatial convolution is principally fully-connected graph attention with
the Euclidean distance as a one-dimensional edge attribution.

3.2 Graph Attention Policy Network

In this section we introduce Graph Attention Policy Network (GAPN) that is tailored to environments
that possess a dynamic range of actions. Note that ρ(·|st, at) is a degenerate distribution for fixed
transition dynamics and the future trajectory τ ∼ p(St+1, St+2, . . . |St = st) is strictly equal in
distribution to a ∼ π(At, At+1, . . . |St = st), hence simplified as the latter in the following sections.
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To learn the policy more effectively and efficiently, we tested pre-training an sGAT with an expert
dataset and sharing its first ng layers with the Graph Attention Policy Network (GAPN) in the later
experiments. These shared layers are not updated during the training of RL. See Figure 2 for an
overview.

3.2.1 Action Selection

At each time step t, we sample the next state st+1 from a random variable St+1 constructed by
applying a retrieval-system-inspired attention mechanism [52]. In our experiments, the scaled dot-
product attention behaved more unstable and achieved worse results than the final layer approach.
Further, we are not convinced that the minimal efficiency improvement makes it worth replacing the
latter. Thus, the construction of St+1 is given by:

St+1 ∼ OHC



softmax




n

g∈gt+1

{Lfinal(EQ(gt) ‖ EK(g)}






 · vt+1 (7)

where OHC{p1, . . . , pnv
} is a one-hot categorical distribution with nv categories; ‖ is column

concatenation here; gt, gt+1 are the embeddings for st and vt+1 acquired by graph pre-training; EQ,
EK are two sGAT+MLP graph encoders with output feature dimension dk; Lfinal : Rb×2dk → R

b

is the final feed-forward layer.

There could be a number of ways to determine stopping time T for the generating process. One of
the most intuitive ways is to append st itself to vt+1, and terminate the generation if st is selected
as st+1. In experiments, we let every trajectory to reach a threshold for maximum time step (i.e.
T is constant) for the following two reasons. Firstly, it encourages the process to navigate more
effectively through the state/action space instead of taking meaningless steps or getting stuck in a
cycle. Secondly, with parallelization (further described in Section 3.4), it enables sparse reward
evaluations, which addresses a major performance bottleneck. Note that constant trajectory length is
feasible because a threshold for the maximum time step can be significantly lower for fragment-based
action space compared to node-by-node and edge-by-edge action spaces.

3.2.2 Actor-Critic Algorithm

For the purpose of obeying causal logic and reducing variance, advantages are frequently used instead
of raw rewards in policy iterations. Applying an actor-critic algorithm on reward-to-go yields the
following Q-function and value function:

Qπ(st, at) = Eπ

[
T∑

t′=t

γt
′−t · r(St′ , At′)

∣∣∣∣∣st, at

]
(8)

V π(st) = Eπ [Q
π(st, At)|st] (9)

the advantage at time step t is then given by:

Aπ(st, at) = Qπ(st, at)− V π(st) (10)

For a more detailed description of actor-critic algorithm in RL, see [14].

3.2.3 Proximal Policy Optimization

We use Proximal Policy Optimization (PPO, [47]), a state-of-the-art policy gradient technique, to
train our network. PPO holds a leash on policy updates whose necessity is elaborated in trust region
policy optimization (TRPO, [48]), yet much simplified compared to the latter. Furthermore, it enables
multiple epochs of minibatch updates within one episode. The objective function is given as follow:

J∗(θ) = max
θ

J(θ)

= max
θ

Eµ,πold
θ

[
T∑

t=1

min
{
rt(θ)A

πold
θ (st, at), clipǫ(rt(θ))A

πold
θ (st, at)

}]
(11)

where rt(θ) = πnewθ (at
∣∣st)
/
πoldθ (at

∣∣st) and clipǫ(x) = min {max {1− ǫ, x} , 1 + ǫ}. During
policy iterations, πnew is updated each epoch and πold is cloned from πnew each episode.
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3.3 Exploration with Random Network Distillation

Previous sequential graph generating frameworks often suffer from mode collapse [37, 58, 61]. To
establish a curiosity-driven policy, we seek to employ a simple and efficient exploration approach that
can be naturally incorporated into our architecture. We perform Random Network Distillation (RND,
[3]) on graphs or pre-trained feature graphs to fulfill this need. We initialize two random functions
f̂ψ, f

∗ with neural networks that map input graphs to feature vectors in R
dr . f̂ψ is trained to match

the output of f∗:

ψ∗ = argmin
ψ

Es∼p̂next
‖f̂ψ(s)− f∗(s)‖ (12)

where p̂next is the empirical distribution of all the previously selected next states, i.e. the states that
have been explored. Thus, when a new state s′ is generated and given to the networks, ‖f̂ψ(s′) −
f∗(s′)‖ is designed to be small if s′ has high similarity to previous states and large if it is outside
the domain they have covered. We record running errors in a buffer and construct the surrogate
innovation reward as:

ri(s
′) = clipδ

((
‖f̂ψ(s′)− f∗(s′)‖ −mb

)/√
vb

)
(13)

where mb and vb are the first and second central moment inferred from the running buffer, clipδ(x) =
min {max {−δ, x} , δ}. Similar to imposing relative weight between the main reward and the
innovation reward, δ is customized based on how ambitious the curiosity is intended to be.

3.4 Parallelization and Synchronized Evaluation

Interacting with the environment and obtaining rewards through external software programs are the
two major performance bottlenecks in ours as well as RL problems in general. An advantage of
our environment settings, as stated in Section 3.2.1, is that a constant trajectory length is feasible.
Moreover, the costs for environmental interactions are about the same for different input states. To
take advantage of this, we parallelize environments on subprocesses and execute batched operations
on one GPU process, which enables synchronized and sparse reward evaluations that reduces the
the number of calls to the docking program. For future experiments where such conditions might
be unrealistic, we also provided options for asynchronous Parallel-GPU and Parallel-CPU samplers
(described in [51]) in addition to the Parallel-GPU sampler used in our experiment.

4 Experiments

We evaluated our model against state-of-the-art generative models with the objective of discovering
novel inhibitors targeting SARS-CoV-2 NSP15. The implementation can be found in our GitHub
repository †.

4.1 Setup

Dataset The atomic coordinates of an apo form of the receptor were derived from the crystal
structure of NSP15 (PDB ID 6W01) [24]. To train all our models on the task of optimizing docking
scores, we used a dataset of SMILES IDs taken from a set of more than six million compounds from
the MCULE molecular library - a publicly available dataset of purchasable molecules [27].

Docking Reward Using AutoDockTools [36], the search space for docking on NSP15 was defined
as a box with dimensions 30x30x26 Å, encompassing the amino acid side chains that form the
catalytic and binding site of uridine in NSP15 endoribonuclease. Ligands that bind in this region
with high affinity will likely impair protein function. See the figure in Appendix B for a visualization.
Maximizing docking scores is a challenging task, and thus far deep generative models have had little
success under this objective [6].

†https://github.com/njchoma/DGAPN
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Figure 3: Demonstrations for two of our key features: spatial convolution on 3D graph and training
with surrogate curiosity scores as innovation rewards. Left plot shows training and validation MSE
in sGAT pre-training with and without 3D graph. Right plot shows DGAPN training with different
relative weights on innovation rewards, with 0 being no innovation reward, i.e. GAPN.

Environment Each call to the environment with the current molecular state returns a variable-sized
list of next possible states. In this case, next states consist of candidate molecules that are fragment-
based modifications of the current molecule by the CReM package, which can be additive, subtractive,
or both. For training efficiency, we limit the number of candidate molecules to 15-20, while during
evaluation we expand this number to 128.

Starting distribution Our framework is provided with a ‘warm start’ by instantiating with a
random sample of molecules from a set of existing ‘expert’ molecules from the dataset (though it can
also start from a single atom). Together with pre-trained sGAT, it is expected to partially make up for
the lack of imitation learning.

Model We experimented on several configurations and found the following network configurations
to provide consistent results: 2 GNN layers with 256 hidden neurons, 4 MLP layers with 256 hidden
neurons for actor and critic, 3 MLP layers with 128 hidden neurons for RND. In our case, although
sparsifying the 3D graph G is not necessary since the average number of nodes is low enough for the
gather and scatter operations (GS) used by Pytorch-Geometric to experience no noticeable difference
in runtime [11], it was still carried out because we discovered that proper cutoffs improved the
validation loss.

4.2 Results

On the task of generating ligands that present high estimated binding affinity for the SARS-CoV-2
Nsp15 target, DGAPN outperformed all state-of-the-art models in terms of the average score and
diversity of generated molecules, and achieved the best synthetic accessibility score. As for highest
scores being discovered, our model also outperformed all other models except for the one outlier
GCPN generated. See Table 1 for a summary of the results. More descriptions of the models we
compared to can be found in section 5. Detailed definitions of the metrics as well as snapshots and
scatter plots of the generated molecules can be found in the Appendix.

In the table, GAPN w/ pre-train has 4 embedding layers shared from a pre-trained sGAT with
supervised learning. DGAPN is GAPN with additional curiosity scores learned by RND with a
relative weight of 0.1. The curiosity scores were incorporated as innovation rewards after a 100
episode delay and cut off after 2000 episodes. QED [2] is an indicator of drug-likeness, SA [10] is
the synthetic accessibility of molecules, FCD [43] is the Fréchet ChemNet Distance that measures if
generated molecules are similar to ground truth molecules by comparing neural network activations.
QED is better when the score is higher, while SA and FCD are the opposite. Of these three metrics
that aim to measure the realism of molecules, although ours did not achieved the best QED, another
generative model with fragment-based action space, JTVAE, reached the highest score 0.70 among
these methods. Furthermore, our models achieved the best SAs 2.89, 3.14 and 3.22, followed by
JTVAE’s 3.34, showing on an experimental level that fragment-based action space is beneficial for
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realism to a certain degree. As for FCD, MolDQN attained the best result. Note that all models have
achieved almost perfect chemical validity, while all RL algorithms achieved 100% validity. Thus, we
did not include it as a metric in the table.

Table 1: Top docking scores and overall metrics in evaluations

Dock Score

mean 1st 2nd 3rd QED SA FCD Diversity

REINVENT -5.6 -10.22 -9.76 -9.50 0.57 7.8 7e-3 0.11
JTVAE -5.6 -8.56 -8.39 -8.39 0.70 3.34 2e-1 0.13
GCPN⋆ -4.8 -16.53 -10.72 -10.6 0.45 7.64 6e-5 0.04
MolDQN -6.7 -10.88 -10.51 -10.36 0.16 6.47 3e-5 0.01
GAPN -7.5 -10.80 -10.75 -10.44 0.39 3.14 4e-2 0.13
GAPN w/ pre-train -7.1 -10.24 -10.19 -10.12 0.47 2.89 3e-2 0.13
DGAPN -8.3 -12.78 -12.12 -11.72 0.36 3.22 9e-3 0.15

Regarding our primary objectives, which are optimizing docking scores and diversity, our final
architecture achieved significantly better results than state-of-the-art models. With exploration,
DGAPN is able to acquire a mean that is 24% higher than the best state-of-the-art model and discover
the 2nd, 3rd and 4th best scores −12.78, −12.12 and −11.72. None of the other models are able to
pass −11 with the exception of an outlier score from GCPN of −16.53. Interestingly enough, GCPN
also has the worst average among all RL algorithms. In experiments, we did not find pre-training
sGAT layers to be much helpful with the molecular docking task, although it did improved SA. As for
spatial convolution and innovation rewards, we did find them to be particularly helpful in training, but
the latter needs to be properly weighted (See Figure 3). As for diversity, it is clearly observed that our
framework addressed the mode collapse problems of state-of-the-art RL algorithms to a great extent,
achieving a score of 0.15. While the largest influence on diversity seems to come from our design
of the starting distribution and action space, the distilled model with curiosity score has offered an
additional positive impact on discovery.

5 Related Work

REINVENT The REINVENT architecture consists of two recurrent neural network (RNN) archi-
tectures, generating molecules as tokenized SMILE strings. In this setting, the “Prior network” is
trained with maximum likelihood estimation on a set of canonical SMILE strings, while the “Agent
network” is trained with a policy gradient and rewarded using a combination of task scores and Prior
network estimations [37].

JTVAE The Junction Tree Variational Autoencoder (JT-VAE) trains two encoder / decoder networks
in building a fixed-dimension latent space representation of molecules, where one network captures
junction tree structure of each molecule, while the other is responsible for fine grain connectivity.
Novel molecules with desired properties are then generated using Bayesian optimization on the latent
space, while the decoder networks stochastically reconstruct the associated molecules [21].

GCPN Graph Convolutional Policy Network (GCPN) is a policy gradient RL architecture for de
novo molecular generation. The network defines domain-specific modifications on molecular graphs
so that chemical validity is maintained at each episode. Additionally, the model optimizes for realism
with adversarial training and expert-pretraining using trajectories generated from known molecules in
the ZINC library [58].

MOLDQN Molecule Deep Q-Networks (MolDQN) is a Q-learning model using Morgan fingerprint
as representations of molecules. To achieve molecular validity, chemical modifications e.g. atom
additions, bond additions, and bond removals are directly defined for each episode. To enhance
exploration of chemical space, MolDQN learns H independent Q-functions, each of which is trained

⋆The GCPN we are using is our re-implementation of the original framework in PyTorch, excluding the
adversarial training.
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on separate sub-samples of the training data, and samples uniformly from these Q-functions during
each episode [61].

6 Conclusions

In this work, we introduced a spatial graph attention mechanism and a curiosity-driven policy network
to discover novel molecules optimized for targeted objectives. We identified candidate antiviral
compounds designed to inhibit the SARS-CoV-2 protein NSP15, leveraging extensive molecular
docking simulations. Our framework advances the state of the art in the optimization of molecules
with antiviral potential, as measured by molecular docking scores. We note that a valuable extension
of our work would be to focus on lead-optimization — the refinement of molecules already known
to bind the protein of interest through position-constrained modification. Such knowledge-based
and iterative refinements may help to work around limitations of the accuracy of molecular docking
predictions.

The pipeline we developed was optimized for molecular design in the context of molecules targeted
to proteins. This task is of widespread interest in drug discovery, and, more broadly, synthetic
biology. Future work will focus on generalizing the framework we present for other design tasks
where targets are amenable to graph-based representations, particularly when training data can be
generated through simulation or high-throughput experimentation. Using such models for AI-guided
experimental design has potential to automate the process of scientific discovery — permitting the
fitted model to optimize experimentation.
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A Appendix

A. Measure Theory Construction of Markov Decision Process

Let (S,S) and (A,A) be two measurable spaces called the state space and action space; functions
Π : S × A → R and T : S × A × S → R are said to be a policy and a transition probability
respectively if

1. For each s ∈ S, E → Π(s, E) is a probability measure on (A,A); for each (s, a) ∈ S ×A,
F → T (s, a, F ) is a probability measure on (S,S).

2. For each E ∈ A, s → Π(s, E) is a measurable function from (S,S) → (R,B); for each
F ∈ S , (s, a) → T (s, a, F ) is a measurable function from (S ×A,S ⊗A) → (R,B).

We say a sequence of random variable duples (St, At) defined on the two measurable spaces is a
Markov decision chain if

P (At ∈ E | σ(S0, A0, S1, A1, . . . , St)) = Π(St, E) (14)
P (St+1 ∈ F | σ(S0, A0, S1, A1, . . . , St, At)) = T (St, At, F ) (15)

A function r : S × A → R is said to be the reward function w.r.t. the Markov decision chain if
r(st, Et) = EΠ,T [R(st+1) | St = st, At ∈ Et] where R : S → R is its underlying reward function.

With an abuse of notation, we define π(a|s) := Π(s, {a}), ρ(s′|s, a) := T (s, a, {s′}) and let r(s, a)
denote r(s, {a}).

B. Reinforcement Learning Environment and Reward Evaluation Details

B. 1. Environment - CReM

Chemically Reasonable Mutations (CReM) is an open-source fragment-based framework for chemical
structure modification. Compared to atom-by-atom structure modification frameworks, CReM
explores less of chemical space but guarantees chemical validity for each modification, because
only fragments that are in the same chemical context are interchangeable. Compared to reaction-
based frameworks, CReM enables a larger exploration of chemical space but may explore chemical
modifications that are less synthetically feasible. Fragments are generated from the ChEMBL database
[12] and for each fragment, the chemical context is encoded for several context radius sizes in a
SMILES string and stored along with the fragment in a separate database. For each query molecule,
mutations are enumerated by matching the context of its fragments with those that are found in
the CReM fragment-context database [40]. In this work, we use the mutate function to enumerate
possible modifications and use the default context radius size of 3 to find replacements.

B. 2. Evaluation - AutoDock-GPU

Docking programs use the three-dimensional structure of the protein (i.e., the receptor) to predict
the most stable bound conformations of the small molecules (i.e., its putative ligands) of interest,
often targeting a pre-defined functional site, such as the catalytic site. An optimization algorithm
within a scoring function is employed towards finding the ligand conformations that likely correspond
to binding free energy minima. The scoring function is conformation-dependent and typically
comprises physics-based empirical or semi-empirical potentials that describe pair-wise atomic terms,
such as dispersion, hydrogen bonding, electrostatics, and desolvation [17, 18]. AutoDock is a
computational simulated docking program that uses a Lamarckian genetic algorithm to predict native-
like conformations of protein-ligand complexes and a semi-empirical scoring function to estimate
the corresponding binding affinities. Lower values of docking scores (i.e., more negative) indicate
stronger predicted interactions [45]. The opposite value of the lowest estimated binding affinity
energy obtained for each molecule forms the reward.

AutoDock-GPU is an extension of AutoDock to leverage the highly-parallel architecture of GPUs
and was implemented in our framework. Within AutoDock-GPU, ADADELTA, a gradient-based
method, is used for local refinement [60]. The structural information of the receptor (here, the NSP15
protein) used by AutoDock-GPU is processed prior to running the framework. In this preparatory
step, AutoDockTools [36] was used to define the search space for docking on NSP15 (PDB ID 6W01;
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Figure 4: The search space in NSP15 defined for molecular docking (green box). An NSP15 protomer,
which was used as the receptor in the calculations, is shown (cartoon backbone representation, in
pink/magenta). The nucleotide density located at the catalytic site is depicted (blue surface). Other
protomers forming the homo-hexamer are shown as grey surfaces. PDB IDs 6WLC and 6WXC were
used in this illustration [25]. Abbreviations: EndoU, Poly-U specific endonuclease domain; MD,
Middle domain; ND, N-terminal domain.

Figure 4) and to generate the PDBQT file of the receptor, which contains the atomic coordinates,
partial charges, and AutoDock atom types. AutoGrid4 [35] was used to pre-calculate grid maps of
interaction energy at the binding site for the different atom types defined in CReM.

C. QED, SA, and FCD

C. 1. Quantitative Estimate of Druglikeness

(QED) is defined as

QED = exp

(
1

n

n∑

i=1

ln di

)
,

where di are eight widely used molecular properties. Specifically, they are molecular weight (MW),
octanol-water partition coefficient (ALOGP), number of hydrogen bond donors (HBD), number of
hydrogen bond acceptors (HBA), molecular polar surface area (PSA), number of rotatable bonds
(ROTB), the number of aromatic rings (AROM), and number of structural alerts. For each di,

di(x) = ai +
bi

1 + exp

(
−x−ci+

di
2

ei

) ·


1−

1

1 + exp

(
−x−ci+

di
2

fi

)


 ,

each ai, . . . , fi are given by a supplementary table in [2].

C. 2. Synthetic Accessibility

(SA) is defined as

SA = fragmentScore− complexityPenalty

The fragment score is calculated as a sum of contributions from fragments of 934,046 PubChem
already-synthesized chemicals. The complexity penalty is computed from a combination of ring-
ComplexityScore, stereoComplexityScore, macroCyclePenalty, and the sizePenalty, which are as
follows:
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ringComplexityScore = log(nRingBridgeAtoms+ 1) + log(nSprioAtoms+ 1)

stereoComplexityScore = log(nStereoCenters+ 1)

macroCyclePenalty = log(nMacroCycles+ 1)

sizePenalty = nAtoms1.005 − nAtoms

C. 3. Fréchet ChemNet Distance

(FCD) is defined as the distance between a Gaussian distribution pw(.) of real-world molecules with
mean and covariance (mw,Cw), and a Gaussian distribution pw(.) of molecules from a generative
model with mean and covariance (m,C). FCD is given by

d2((m,C), (mw,Cw)) = ‖m−mw‖22 +Tr (C +Cw − 2(CCw)
1/2).

D. Snapshots and Scatter plots of generated molecules

See Figure 5 and Figure 6.

(a) Reinvent: -10.2, -9.8, -9.5 (b) JTVAE: -8.6, -8.4, -8.4

(c) GCPN: -16.5, -10.7, -10.6 (d) MolDQN: -10.9, -10.5, -10.3

(e) CReM Greedy: -11.6, -10.6, -10.5 (f) DGAPN: -12.8, -12.1, -11.7

Figure 5: Top 3 molecules found by each algorithm and greedy strategy with CReM environment.
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(a) Reinvent (b) JTVAE

(c) GCPN (d) MolDQN

(e) CReM Greedy

Figure 6: Comparison of top 100 molecules found by each algorithm and greedy strategy with CReM
environment to DGAPN in terms of docking score (lower the better) and synthetic accessibility (lower
the better).
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