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Spatial growth of real-world networks
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Many real-world networks have properties of small-world networks, with clustered local neighborhoods and
low average-shortest path. They may also show a scale-free degree distribution, which can be generated by
growth and preferential attachment to highly connected nodes, or hubs. However, many real-world networks
consist of multiple, interconnected clusters not normally seen in systems grown by preferential attachment, and
there also exist real-world networks with a scale-free degree distribution that do not contain highly connected
hubs. We describe spatial-growth mechanisms, not using preferential attachment, that address both aspects.
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I. INTRODUCTION

Many real-world networks showsmall-world properties
@1#. Their average clustering coefficient, representing
proportion of direct links between the neighbors of a node
higher than in same-size random networks, while they ma
tain a comparable average-shortest path~ASP!. The giant
component of some of these networks has been show
consist of several clusters, which contain strongly interlink
nodes and form only sporadic connections to other clust
For instance, the cortical system networks in macaque m
key and cat brains possess such a multicluster organiza
@2#. Moreover, various complex linked systems have be
described asscale-freenetworks@3,4#, in which the probabil-
ity for a node possessingk edges isP(k)}k2g. It has been
suggested that this large class of networks may be gene
by mechanisms of growth and preferential attachment,
is, the preferred linking of new nodes to already highly co
nected network nodes@3#. An essential aspect of many rea
world networks is, however, that they exist and develop
metric space. Therefore, questions arise how nodes are
to identify highly connected distant hubs and why th
would attach to them, rather than to nearby nodes@5#. More-
over, long-range connections to hubs violate optimal wir
principles @6#. For example, a city in New England woul
normally consider constructing a new highway to nea
Boston, rather than to faraway Los Angeles, even if Los A
geles represents a larger hub in the US highway system

Previous spatial-growth algorithms, in which the pro
ability for edge formation decreased with node distance, p
determined the position of all nodes at the outset@7,8#. Start-
ing with the complete set of nodes, which were distribu
randomly on a spatial grid, connections were established
pending on distance@9–11#. Additionally, connected node
could be drawn together by ana posterioripulling algorithm,
which resulted in spatial clusters of connected nodes@12#.
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Such mechanisms, however, appear unsuited as a ge
explanation for growing biological and artificial system
with newly forming nodes and connections.

II. SPATIAL NETWORK DEVELOPMENT ALGORITHM

In an alternative approach, we employed a model of s
tial growth in which the nodes, their positions, and conn
tions were established during development. Starting with
node at the central position~0.5;0.5! of the square embed
ding space~edge length one!, the following algorithm was
used.

~1! A new node position was chosen randomly in tw
dimensional space with coordinates in the interval@0;1#.

~2! Connections of the new nodeu with each existing
nodev were established with probability

P~u,v !5be2ad(u,v), ~1!

whered(u,v) was the spatial~Euclidean! distance between
the node positions, anda and b were scaling coefficients
shaping the connection probability@7#.

~3! If the new node did not manage to establish conn
tions, it was removed from the network. In that way, new
forming nodes could only be integrated within the vicinity
the existing network, making the survival of new nodes d
pendent on the spatial layout of the present nodes.

~4! The algorithm continued with the first step, until
desired number of nodes was reached. Parameterb ~‘‘den-
sity’’ ! served to adjust the general probability of edge form
tion and was chosen from the interval@0;1#. The non-
negative coefficient a ~‘‘spatial range’’! exponentially
regulated the dependence of edge formation on the dista
to existing nodes. Such spatial constraints are present du
the development of many real networks. In biological sy
tems, for instance, gradients of chemical concentrations
molecule interactions, decay exponentially with distan
@13#.

The algorithm allowed some nodes to be established
tant to the existing network, although with low probabilit
©2004 The American Physical Society03-1
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Subsequent nodes placed near to such ‘‘pioneer’’ no
would establish connections with them and thereby gene
new highly connected regions away from the rest of the n
work. Through this mechanism multiple clusters were able
arise, resulting in networks in which nodes were cluste
topologically as well as spatially.

In a slightly modified approach the growth model cou
employ a power law to describe the dependence of e
formation on the spatial distance of nodes:

P~u,v !5sd~u,v !2t. ~2!

By this mechanism the probability of establishing dista
nodes would be increased even further. For example, si
lating networks of similar size~50 networks; n5100;
density50.04; square embedding space edge length 100! for
both types of distance dependencies, the power law@Eq. ~2!,
s51, t51] resulted in higher total wiring length~6303!
compared to networks generated by exponential edge p
ability @Eq. ~1!, a50.35, b51, total wiring length 1077
units#. In the following investigations, however, we conce
trated on the exponential approach outlined above, since
simulations indicated that power-law edge probability w
unable to yield small-world networks~tested paramete
rangessP@0.004;2# andtP@0.125;64#).

Another essential network feature investigated in
model was the presence or absence of hard spatial bo
that limit network growth. Borders occur in many compa
mentalized systems, be it mountains or water surround
geographical regions, cellular membranes separating
chemical reaction spaces, or the skull limiting expansion
the brain. Depending on coefficienta and the network size
our simulated networks never reached a hard border~‘‘virtu-
ally unlimited growth’’!, or quickly arrived at the spatial lim
its, so that new nodes could then only be established in
the existing networks. Naturally, virtually unlimited growt
would eventually also arrive at the hard borders, after su
ciently sustained network growth. However, in the context
our simulations, growth could be considered virtually unlim
ited if for a chosen network size at the end of the algorit
all nodes were still far away from the borders~by at least
0.25 units!.

In the following, we describe different types of spatial
grown networks resulting from low or high settings for p
rametersa and b, and present examples of real-world ne
works corresponding to the generated types.

For the generated networks, two network properties
shown, which have been used previously to characte
complex networks@1#. The ASP~or l, similar, though not
identical, to characteristic path length, @9#! of a network
with N nodes is the average number of edges that has t
crossed on the shortest path from any one node to anot

l5
1

N~N21! (
i , j

d~ i , j ! with iÞ j , ~3!

whered( i , j ) is the length of the shortest path between no
i and j. The clustering coefficient of one nodev with kv
neighbors is
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Cv5
uE~Gv!u

S kv

2 D , ~4!

where uE(Gv)u is the number of edges in the neighborho

of v and (2
kv) is the number of possible edges@9#. In the

following analyses we use the term clustering coefficient
the average clustering coefficient for all nodes of a netwo

Algorithms for network generation, calculation of ne
work parameters, and visualization were developed
MATLAB ~Release 12, MathWorks Inc., Natick! and also
implemented in C for larger networks. For each parame
set and network size, 50 simulated networks were gener
and analyzed~20 in the case of virtually unlimited growth
due to computational constraints!.

III. MODELED TYPES OF NETWORKS

A. Sparse networks„limited and virtually unlimited growth …

For very smallb (,0.01), sparse networks were gene
ated@Fig. 1~a!# in which only a small proportion of all pos
sible edges was established. The resulting networks w
highly linear, that is, exhibiting one-dimensional chains
nodes, independent of limited or virtually unlimited grow
~parametera). The histograms of chain lengths found
these networks, indicating the number of nodes in the cha
were similar to those of random networks with the sa
density. Unlike in random networks, however, the cluster
coefficient was lower than the network density, and desp
lacking clusters and hubs with large degreek, these networks
possessed a power-law degree distribution, with high A
@Fig. 1~b!, to avoid systematic errors known to occur f
linearly histogrammed data plotted on logarithmic scales,
plot uses data bins of uniform width#. The power-law expo-
nent was small, in the range of@1.7;2.1#; and in the simulated
networks of 100 nodes the cutoff for the maximum degree
the scale-free networks was 16. Given their low maximu
degree, these networks with low clustering and long lin
chains of nodes could be called linear scale-free.

Example.German highway system: We identified a line
scale-free organization in the German highway~‘‘Auto-

FIG. 1. ~a! Sparse network~density 0.42 %! with 500 nodes
obtained by limited growth ~a52, b50.001!. ~b! Double-
logarithmic plot of the cumulative degree probabilityP(k) that a
node possessk edges for the network shown in~a!. The plot is
based on uniform bins of data. A power law of the degree distri
tion (g52.43) can be observed.
3-2
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bahn’’! system. The highway network of 1168 nodes w
compiled from data of the ‘‘Autobahn-Informations-System
@14#. The ratio of clustering coefficient and density of th
highway system, which can be seen as a linearity coeffici
was 0.64. This system is also an example for a scale-
~exponentg52.8), yet not small-world, network, as its AS
was twice as large as for comparable random networks.

A similar type of organization was also found for sca
free protein-protein interaction networks@15# (kmax'20).

B. Dense networks„limited and virtually unlimited growth …

For higher edge probability (b→1), a noteworthy differ-
ence between limited and virtually unlimited growth beca
apparent. While it was impossible to generate high netw
density under virtually unlimited growth conditions, the i
troduction of spatial limits resulted in high density and clu
tering, as well as low ASP. This was due to the fact that
the virtually unlimited case, new nodes at the borders of
existing network were surrounded by fewer nodes and th
fore formed fewer edges than central nodes within the n
work. In the limited case, however, the network occupied
whole area of accessible positions. Therefore, new no
could only be established within a region already dense w
nodes and would form many connections.

Figure 2 shows the relation between small-world gra
properties and growth parametersa andb for networks con-
sisting of 100 nodes. The ratio of the clustering coefficien
spatial growth compared to random networks was larger t
one ~indicating small-world graphs!, if the values fora and
b were high@Fig. 2~a!#. The ASP in the generated network
normalized by the ASP in random networks with similar de
sity was similar for low values ofa and high values ofb.
For these networks the likelihood of edge formation w
high and—because of the low value ofa—independent of
spatial distance. Such networks resembled random gro
with the clustering coefficient possessing the same valu
the density (C/Crandom'1).

In a small interval of intermediate values fora (a'4,b
51), networks exhibited properties of small-world networ
@ASP and clustering coefficient shown in Fig. 3~a!#. Here, the
ASP was comparable to that in random networks of the sa
size (l'l random), while the clustering coefficient was 39%

FIG. 2. ~Color online! Comparison of small-world properties o
spatial and random networks forN5100 nodes. Each data poin
represents the average for 50 networks.~a! Ratio of the clustering
coefficientC of the generated networks to the clustering coeffici
for comparable random networks. A large ratio is one feature
small-world networks.~b! Ratio of the average-shortest paths~ASP!
of spatial-growth and comparable random networks.
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higher than in random networks~Ref. @9#, p. 114!. An over-
view of the parameter space and the resulting random, sm
world, virtually unlimited or linear scale-free networks
given in Fig. 3~b!.

Example.Cortical connectivity: One biological exampl
for small-world spatial networks with high clustering coef
cient and high density is the well-studied clustered syste
of long-range cortical connectivity in the cat and macaq
monkey brains@2,16,17#. We employed the model in order t
generate networks with identical number of nodes and ed
and comparable small-world properties. While small-wo
networks could be generated in the appropriate param
range of the model@Fig. 3~b!#, the biological networks fea-
tured even stronger clustering. We found, however, that s
networks could be produced by extending the local range
high connection probability, so thatP51 for Euclidean dis-
tances ofdcat,0.18 anddmacaque,0.11, P decaying expo-
nentially as before for larger distances~this was implemented
by settingacat55, amacaque58 and for both networksb
52.5 and thresholding probabilities larger than one to on!.
The modified approach therefore combined specific featu
of the biological networks with the general model of limite
spatial growth. This yielded networks with distributed, mu
tiple clusters, and average densities of around 30%~for simu-
lated cat brain connectivity! and 16%~monkey connectivity!.
Moreover, these networks had clustering coefficients of 5
and 40%, respectively, very similar to the biological bra
networks@2#, as shown in Table I.

Comparison of the biological and simulated degree dis
butions, moreover, showed a significant correlation~Spear-
man’s rank correlationr50.77 for the cat network,P,3
31023; and r50.9 for the macaque network,P,2
31025). On the other hand, the Barabasi-Albert~BA! model
@3#, using growth and preferential attachment, yielded sim
densities and clustering coefficients~with clustering coeffi-

t
f

FIG. 3. ~Color online! Exploration of model parameter spac
~a! For dense networks (b51, N5100 nodes!, an increased depen
dence of edge formation on distance~parametera) led to an in-
crease of ASP~diamonds! and a decrease in clustering coefficientC
~triangles!. ~b! Overview of network types for different spatia
growth parameters (N5100 nodes!. Low values ofa made edge
formation independent of distance and resulted in random netwo
For large values ofa only nodes near the existing network cou
establish connections, and the hard borders were not reached~vir-
tually unlimited!. The area labeled linear scale free was a region
which networks were sparse and highly linear and showed a sc
free degree distribution occurred. Only a small part of the param
space displayed properties of small-world networks.
3-3
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cients being much larger than network densities, cf. R
@18#!. However, the BA model was unable to generate m
tiple clusters as found in the real cortical networks.

In contrast to limited growth, virtually unlimited growth
simulations with highb resulted in inhomogeneous networ
with dense cores and sparser periphery. It is difficult to im
ine realistic examples for strictly unlimited development,
all spatial networks eventually face internal or external c
straints that confine growth, may it be geographical bord
or limits of their energetic and material resources. Howev
virtually unlimited growth may be a good approximation f
the early development of networks before reaching bord

IV. CLASSIFYING TYPES OF NETWORK
DEVELOPMENT

Different network growth types can be distinguished
assessing the evolution of network density and cluste
coefficient. Growth with preferential attachment as well
spatial growth lead to clustering coefficientsC(N) that de-
pend on the current size of the network, that is, the num
of nodes,N @Fig. 4~a!#. While C(N) decreases with networ
size for networks generated by the BA Model@3#, it remains
constant for spatial-growth networks. Virtually unlimited
limited spatial growth can thus be distinguished, since d
sity decreases with network size for unlimited growth, wh
remaining constant for limited growth@Fig. 4~b!#.

Example.Evolution of metabolic networks: We applie
this concept to classifying the development of real-wo
biological networks. The evolution of metabolic systems,
instance, can be seen as an incorporation of new substa
and their metabolic interactions into an existing reaction n
work. Reviewing 43 metabolic networks in species of diffe
ent organizational level@19#, the clustering coefficient o
these systems remained constant across the scale@20#,
whereas their density@Fig. 4~c!# decreased with network
size. This indicated features of virtually unlimited netwo
growth. The relation between the number of links and no
in these systems was linear@Fig. 4~d!#, with a slope of 5.2, so
that the number of interactions of a metabolite was not
creasing with network size. Such linear growth may ens
that the metabolic systems remain connected~with the num-
ber of reactions larger than substances, as a necessary
dition for connectedness!, while not becoming too complex
too quickly ~as, for instance, with exponential addition
new reactions!.

V. CONCLUSIONS

We have proposed a different kind of spatial-grow
mechanism, incorporating both limited and virtually unlim

TABLE I. Comparison of cortical and simulated network
Shown are the clustering coefficientCcortical of cortical networks of
cat and macaque with a given number of nodesn and densityd as
well as the clustering coefficientCspatial growth of generated net-
works with identical node number and similar density.

n d Ccortical Cspatial growth

Cat 55 0.30 0.55 0.5
Macaque 73 0.16 0.46 0.4
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ited growth, that can produce a variety of metric real-wo
networks. The metric is not limited to Euclidean space as
the discussed examples, but may also use measures of
larity to define the link probability~e.g., social relations
@21#!.

In contrast to previously studied spatial graphs@9#, net-
works generated by our model were always connec
Moreover, the approach was able to generate small-w
graphs, which is thought not to be possible in the spa
graph model in which positions are chosen randomlybefore
edge formation@9#. Finally, the model was also able to pro
duce scale-free networks with relatively low maximum d
gree, similar to, for example, the German highway syste

A systematic evaluation of model parameter space w
carried out at the specific network size of 100 nodes, wh
was feasible computationally. It would be interesting to a
evaluate larger or smaller network sizes and to investig
for them, if small-world networks can be generated in
larger range of parametersa andb.

Several algorithms have been proposed for the genera
of different types of topological networks, in which links d
not reflect physical distances, but merely the connectivity
the system@1,3,22#. Examples for such networks include th
World Wide Web, financial transaction networks, and,
some extent, networks of airline transportation. The pres
model extends previous approaches to the developmen
spatial networks, such as cellular and brain connectivity n
works, or food webs and many systems of social interactio
Spatial as well as temporal constraints shape netw
growth, and intrinsic or external spatial limits may determi
essential features of the structural organization of linked s

FIG. 4. ~Color online! Comparison of the dependence of clu
tering coefficientC(N) and density on network size~number of
nodes,N). ~a! For the simulated networks the clustering coefficie
remained constant for limited~triangles,a55, b51) and virtually
unlimited ~boxes,a5200, b51) spatial growth, but decreased fo
growth with preferential attachment~diamonds!. ~b! Density was
independent of network size only for limited spatial growth.~c!
Density depending on network size~N! for the metabolic networks
of 43 different organisms~15!. ~d! A critical measure for network
development was the dependence of network size on the numb
links. For metabolic networks, this relationship was strongly line
3-4
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SPATIAL GROWTH OF REAL-WORLD NETWORKS PHYSICAL REVIEW E69, 036103 ~2004!
tems, such as clustering and scaling properties. Borders
instance, appear to have been critical for early chemical e
lution, ensuring clustering of good replicators and prevent
the spreading of short templates with limited replicati
function @23#. The same applies to cortical networks whe
elimination of growth limits results in a distorted netwo
topology @24#.

The specific spatio-temporal conditions for the develo
ment of different types of real-world networks warrant fu
d

z,

,

th

.A

hy

ss
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ther investigation. They may be of additional interest, as
cal spatial-growth mechanisms also imply glob
optimization of path lengths in connected systems@25#.
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