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Spatial growth of real-world networks
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Many real-world networks have properties of small-world networks, with clustered local neighborhoods and
low average-shortest path. They may also show a scale-free degree distribution, which can be generated by
growth and preferential attachment to highly connected nodes, or hubs. However, many real-world networks
consist of multiple, interconnected clusters not normally seen in systems grown by preferential attachment, and
there also exist real-world networks with a scale-free degree distribution that do not contain highly connected
hubs. We describe spatial-growth mechanisms, not using preferential attachment, that address both aspects.
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I. INTRODUCTION Such mechanisms, however, appear unsuited as a general
explanation for growing biological and artificial systems
Many real-world networks showmall-world properties  with newly forming nodes and connections.
[1]. Their average clustering coefficient, representing the
proportion of direct links between the neighbors of a node, is || spATIAL NETWORK DEVELOPMENT ALGORITHM
higher than in same-size random networks, while they main-
tain a comparable average-shortest pa&$P). The giant In an alternative approach, we employed a model of spa-
component of some of these networks has been shown féal growth in which the nodes, their positions, and connec-
consist of several clusters, which contain strongly interlinkedions were established during development. Starting with one
nodes and form only sporadic connections to other clusterglode at the central positiof®.5;0.5 of the square embed-
For instance, the cortical system networks in macaque morfling space(edge length one the following algorithm was
key and cat brains possess such a multicluster organizatid#sed.
[2]. Moreover, various complex linked systems have been (1) A new node position was chosen randomly in two-
described ascale-freenetworks[3,4], in which the probabil- ~dimensional space with coordinates in the inteif\al].
ity for a node possessirkjedges isP(k)«k?. It has been (2) Connections of the new node with each existing
suggested that this large class of networks may be generaté@dev were established with probability
by mechanisms of growth and preferential attachment, that
is, the preferred linking of new nodes to already highly con- P(u,v)=pBe i), (1)
nected network nodds]. An essential aspect of many real-
world networks is, however, that they exist and develop inwhered(u,v) was the spatialEuclidean distance between
metric space. Therefore, questions arise how nodes are altlee node positions, and and 8 were scaling coefficients
to identify highly connected distant hubs and why theyshaping the connection probabilify].
would attach to them, rather than to nearby ndddsMore- (3) If the new node did not manage to establish connec-
over, long-range connections to hubs violate optimal wiringtions, it was removed from the network. In that way, newly
principles[6]. For example, a city in New England would forming nodes could only be integrated within the vicinity of
normally consider constructing a new highway to nearbythe existing network, making the survival of new nodes de-
Boston, rather than to faraway Los Angeles, even if Los Anpendent on the spatial layout of the present nodes.
geles represents a larger hub in the US highway system. (4) The algorithm continued with the first step, until a
Previous spatial-growth algorithms, in which the prob-desired number of nodes was reached. Parangt¢den-
ability for edge formation decreased with node distance, presity”) served to adjust the general probability of edge forma-
determined the position of all nodes at the ouf3el]. Start-  tion and was chosen from the intervfD;1]. The non-
ing with the complete set of nodes, which were distributednegative coefficienta (“spatial range” exponentially
randomly on a spatial grid, connections were established deegulated the dependence of edge formation on the distance
pending on distancg9—-11]. Additionally, connected nodes to existing nodes. Such spatial constraints are present during
could be drawn together by a@nposterioripulling algorithm,  the development of many real networks. In biological sys-
which resulted in spatial clusters of connected nodes. tems, for instance, gradients of chemical concentrations, or
molecule interactions, decay exponentially with distance

[13].
*Corresponding author. The algorithm allowed some nodes to be established dis-
Electronic address: m.kaiser@iu-bremen.de tant to the existing network, although with low probability.
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Subsequent nodes placed near to such “pioneer” nodes(a) {b)

would establish connections with them and thereby generate 10° T
new highly connected regions away from the rest of the net- g ’
work. Through this mechanism multiple clusters were able to o107y .
arise, resulting in networks in which nodes were clustered 2

topologically as well as spatially. g 102} *

In a slightly modified approach the growth model could 3 ’,
employ a power law to describe the dependence of edge 10 c —
formation on the spatial distance of nodes: 10 ‘ 10

P(u,v)=od(u,v)"". 2 FIG. 1. (a) Sparse networkdensity 0.42 % with 500 nodes

obtained by limited growth(a=2, 3=0.001). (b) Double-
By this mechanism the probability of establishing distantjogarithmic plot of the cumulative degree probabil(k) that a
nodes would be increased even further. For example, simihode possesk edges for the network shown i@). The plot is
lating networks of similar size(50 networks; n=100;  based on uniform bins of data. A power law of the degree distribu-
density=0.04; square embedding space edge length 0 tion (y=2.43) can be observed.
both types of distance dependencies, the power Egv(2),

o=1, =1] resulted in higher total wiring lengtf6303 |E(T,)|
compared to networks generated by exponential edge prob- I (4)
ability [Eq. (1), «=0.35, =1, total wiring length 1077 2”)

units]. In the following investigations, however, we concen-
trated on the exponential approach outlined above, since our . . .
simulations indicated that power-law edge probability Waswhere|E(Fku)| is the number of edges in the neighborhood
unable to yield small-world networkstested parameter of v and (;%) is the number of possible edggg]. In the
rangeso €[0.004;2] and7<[0.125;64). following analyses we use the term clustering coefficient as
Another essential network feature investigated in thethe average clustering coefficient for all nodes of a network.
model was the presence or absence of hard spatial borders Algorithms for network generation, calculation of net-
that limit network growth. Borders occur in many compart-work parameters, and visualization were developed in
mentalized systems, be it mountains or water surroundingaTLAB (Release 12, MathWorks Inc., Naticlkand also
geographical regions, cellular membranes separating biamplemented in C for larger networks. For each parameter
chemical reaction spaces, or the skull limiting expansion oket and network size, 50 simulated networks were generated
the brain. Depending on coefficieatand the network size, and analyzed20 in the case of virtually unlimited growth,
our simulated networks never reached a hard boftlntu- due to computational constraits
ally unlimited growth”), or quickly arrived at the spatial lim-
its, so that new nodes could then only be established inside
the existing networks. Naturally, virtually unlimited growth
would eventually also arrive at the hard borders, after suffi- A. Sparse networks(limited and virtually unlimited growth )
cientl_y sust_ained network growth. Hovv_ever, in _the context of  Eor very smallg (<0.01), sparse networks were gener-
our simulations, growth could be considered virtually U”I'm'ated[Fig. 1(2)] in which only a small proportion of all pos-

ited if for a chosen network size at the end of the algorithmgjp|e” edges was established. The resulting networks were
all nodes were still far away from the bordeltsy at least  pighy linear, that is, exhibiting one-dimensional chains of

0.25 unit3. . ) . ) nodes, independent of limited or virtually unlimited growth
In the following, we describe dlfferen_t types_of spatially (parametera). The histograms of chain lengths found in
grown networks resulting from low or high settings for pa- \hese networks, indicating the number of nodes in the chains,
rametersa and 8, and present examples of real-world net-yere similar to those of random networks with the same
works corresponding to the generated types. _ density. Unlike in random networks, however, the clustering

For the generated networks, two network properties ar@oetficient was lower than the network density, and despite
shown, which have been used previously to characterizg, ying clusters and hubs with large degke¢hese networks
complex networkg1]. The ASP(or A, similar, though not  possessed a power-law degree distribution, with high ASP
identical, to characteristic path length[9]) of a network [Fig. 1(b), to avoid systematic errors known to occur for

with N nodes is the average number of edges that has to Bg\early histogrammed data plotted on logarithmic scales, the
crossed on the shortest path from any one node to anothermot uses data bins of uniform widthThe power-law expo-

nent was small, in the range [df.7;2.1; and in the simulated
A= 1 2 di,j) with i#]j, 3) networks of 100 nodes the cutoff for_ the ma>_(imum deg_ree of
N(N—-1) 75 the scale-free networks was 16. Given their low maximum
degree, these networks with low clustering and long linear
whered(i, ) is the length of the shortest path between nodeghains of nodes could be called linear scale-free.
i andj. The clustering coefficient of one node with k, Example. German highway system: We identified a linear
neighbors is scale-free organization in the German highwéyuto-

IIl. MODELED TYPES OF NETWORKS
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(a) (b)
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FIG. 2. (Color onling Comparison of small-world properties of o o
spatial and random networks fdf=100 nodes. Each data point ] )
represents the average for 50 networ(g.Ratio of the clustering FIG. 3. (Color onling Exploration of model parameter space.

coefficientC of the generated networks to the clustering coefficient(® For dense networksd=1, N=100 nodej an increased depen-
for comparable random networks. A large ratio is one feature ofeénce of edge formation on distanqearametera) led to an in-
small-world networks(b) Ratio of the average-shortest pathSP) crease of ASRdiamond$ and a decrease in clusterllng coefflc@wt
of spatial-growth and comparable random networks. (triangles. (b) Overview of network types for different spatial-
growth parametersN=100 nodes Low values ofe made edge

bahn”) system. The highway network of 1168 nodes wasformation independent of distance and resulted in random networks.
compiled from data of the “Autobahn-Informations-System” For Ialrge values sz only nodes near the existing network could
[14]. The ratio of clustering coefficient and density of the eStablish connections, and the hard borders were not redufred
highway system, which can be seen as a linearity Coefﬁcienﬂja_"y unlimited. The area labeled I|_near s_cale free was a region in
was 0.64. This system is also an example for a scale—fre}ﬁ(h'Ch networks were sparse and highly linear and showed a scale-
(exponenty=2.8), yet not small-world, network, as its ASP ree deg_ree distribution qccurred. Only a small part of the parameter
was twice as Iarg,e as for comparable random networks. space displayed properties of small-world networks.

A similar type of organization was also found for scale-

free protein-protein interaction networkss] (Kma,~ 20). higher than in random network&ef. [9], p. 114. An over-

view of the parameter space and the resulting random, small-
world, virtually unlimited or linear scale-free networks is
given in Fig. 3b).

For higher edge probability3— 1), a noteworthy differ- Example.Cortical connectivity: One biological example
ence between limited and virtually unlimited growth becamefor small-world spatial networks with high clustering coeffi-
apparent. While it was impossible to generate high networlcient and high density is the well-studied clustered systems
density under virtually unlimited growth conditions, the in- of long-range cortical connectivity in the cat and macaque
troduction of spatial limits resulted in high density and clus-monkey brain$2,16,17. We employed the model in order to
tering, as well as low ASP. This was due to the fact that, ingenerate networks with identical number of nodes and edges
the virtually unlimited case, new nodes at the borders of theand comparable small-world properties. While small-world
existing network were surrounded by fewer nodes and therasetworks could be generated in the appropriate parameter
fore formed fewer edges than central nodes within the netrange of the mod€lFig. 3(b)], the biological networks fea-
work. In the limited case, however, the network occupied theured even stronger clustering. We found, however, that such
whole area of accessible positions. Therefore, new nodesetworks could be produced by extending the local range of
could only be established within a region already dense witthigh connection probability, so th&=1 for Euclidean dis-
nodes and would form many connections. tances ofd,;<0.18 anddyacaques<0.11, P decaying expo-

Figure 2 shows the relation between small-world grapmentially as before for larger distancoghkis was implemented
properties and growth parametersand 8 for networks con- by setting ac=5, @macaque8 and for both networkg
sisting of 100 nodes. The ratio of the clustering coefficient in=2.5 and thresholding probabilities larger than one to)one
spatial growth compared to random networks was larger thafhe modified approach therefore combined specific features
one (indicating small-world graphsif the values fora and  of the biological networks with the general model of limited
B were high[Fig. 2@)]. The ASP in the generated networks spatial growth. This yielded networks with distributed, mul-
normalized by the ASP in random networks with similar den-tiple clusters, and average densities of around 8@¥simu-
sity was similar for low values of and high values of3. lated cat brain connectivifyand 16%(monkey connectivity.

For these networks the likelihood of edge formation wasMoreover, these networks had clustering coefficients of 50%
high and—because of the low value @f—independent of and 40%, respectively, very similar to the biological brain
spatial distance. Such networks resembled random growtmetworks[2], as shown in Table I.

with the clustering coefficient possessing the same value as Comparison of the biological and simulated degree distri-
the density C/C,andom™=1). butions, moreover, showed a significant correlatiSpear-

In a small interval of intermediate values far(a~4,8 man’s rank correlatiorp=0.77 for the cat networkP<3
=1), networks exhibited properties of small-world networks x10™3; and p=0.9 for the macaque networkP<2
[ASP and clustering coefficient shown in Figag. Here, the X 10 °). On the other hand, the Barabasi-Alb@#®) model
ASP was comparable to that in random networks of the sami8], using growth and preferential attachment, yielded similar
size (\~\;andom,» While the clustering coefficient was 39% densities and clustering coefficienisith clustering coeffi-

B. Dense networkg(limited and virtually unlimited growth )
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TABLE I. Comparison of cortical and simulated networks. (g) (b)
Shown are the clustering coefficieBt,icas Of cortical networks of .
cat and macaque with a given number of nodesd densityd as 04 ‘é 1 A A a
well as the clustering coefficier@spaial growtn Of generated net- = . . N g .
works with identical node number and similar density. 5 02 s m g 05 .
* — :
0+ . 2 o .
n d Ceortical Cspatial growth 100 1000 100 N 1000
N
Cat 55 0.30 0.55 0.5 © @
Macaque 73 0.16 0.46 0.4
. . - > 0.03 4000 R
cients being much larger than network densities, cf. Ref. g 4o ’.& @ -
c ¥ ~ &
[18]). However, the BA model was unable to generate mul- & 0.01 - = 2000 o
X X . o 0. \ O U d
tiple clusters as found in the real cortical networks. 0 - 0 *»
In contrast to limited growth, virtually unlimited growth 100 1000 100 500 900

simulations with highg resulted in inhomogeneous networks N N
with dense cores and sparser periphery. It is difficult to imag-
ine realistic examples for strictly unlimited development, as FIG. 4. (Color onling Comparison of the dependence of clus-
all spatial networks eventually face internal or external con+tering coefficientC(N) and density on network sizéumber of
straints that confine growth, may it be geographical bordersodesN). (a) For the simulated networks the clustering coefficient
or limits of their energetic and material resources. Howeverremained constant for limitedriangles,a=5, g=1) and virtually
virtually unlimited growth may be a good approximation for unlimited (boxes,a=200, 8=1) spatial growth, but decreased for
the early development of networks before reaching bordersgrowth with preferential attachmertiamonds. (b) Density was
independent of network size only for limited spatial growtb)
IV. CLASSIEYING TYPES OF NETWORK Density depending on network sizl) for the metabolic networks
DEVELOPMENT of 43 different organism¢15). (d) A critical measure for network
development was the dependence of network size on the number of
Different network growth types can be distinguished by|inks. For metabolic networks, this relationship was strongly linear.
assessing the evolution of network density and clustering
gggg;:lleg]rr]gw?r:()l\g;g \t'\gtrc]lS;tegﬁ:]egngile;}é?g&jﬁ?ttﬁ; v(\j/zl_l ASited growth, that can produc_e a variety of _metrlc real-worlq
pend on the current size of the network, that is, the numbe?hemqus' The metric Is not limited to Euclidean space as n
of nodes N [Fig. 4@)]. While C(N) decreases with network t e dlscusse_d examp_les, but may also use measures of simi-
size for networks generated by the BA Modal, it remains larity to define the link probability(e.g., social relations
constant for spatial-growth networks. Virtually unlimited or [21)). i i i
limited spatial growth can thus be distinguished, since den- [N contrast to previously studied spatial gra83 net-
sity decreases with network size for unlimited growth, whileWorks generated by our model were always connected.
remaining constant for limited growifFig. 4(b)]. Moreover, the approach was able to generate small-world
Example.Evolution of metabolic networks: We applied graphs, which is thought not to be possible in the spatial
this concept to classifying the development of real-worldgraph model in which positions are chosen randobgjore
biological networks. The evolution of metabolic systems, foredge formatiori9]. Finally, the model was also able to pro-
instance, can be seen as an incorporation of new substanadigce scale-free networks with relatively low maximum de-
and their metabolic interactions into an existing reaction netgree, similar to, for example, the German highway system.
work. Reviewing 43 metabolic networks in species of differ- A systematic evaluation of model parameter space was
ent organizational leve[19], the clustering coefficient of carried out at the specific network size of 100 nodes, which
these systems remained constant across the @8l  was feasible computationally. It would be interesting to also
whereas their densityFig. 4(c)] decreased with network evaluate larger or smaller network sizes and to investigate
size. This indicated features of virtually unlimited network for them, if small-world networks can be generated in a
growth. The relation between the number of links and nodegyrger range of parameters and g.
in these systems was lineldfig. 4(d)], with a slope 0f 5.2, 50 geyeral algorithms have been proposed for the generation
that the number of interactions of a metabolite was not in¢ yitterent types of topological networks, in which links do
creasing with network size. Such linear growth may ensure,o yeflect physical distances, but merely the connectivity of
that the metabolic systems remain connedteith the num- e systenf1,3,29. Examples for such networks include the
ber of reactions larger than substances, as a necessary CQfjprj \wide Web, financial transaction networks, and, to
dition for connectednegswhile not becoming too complex gome extent, networks of airline transportation. The present
too qwckl_y (as, for instance, with exponential addition of ., 4a| extends previous approaches to the development of
new reactions spatial networks, such as cellular and brain connectivity net-
works, or food webs and many systems of social interactions.
Spatial as well as temporal constraints shape network
We have proposed a different kind of spatial-growthgrowth, and intrinsic or external spatial limits may determine
mechanism, incorporating both limited and virtually unlim- essential features of the structural organization of linked sys-

V. CONCLUSIONS
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tems, such as clustering and scaling properties. Borders, faher investigation. They may be of additional interest, as lo-
instance, appear to have been critical for early chemical evazal spatial-growth  mechanisms also imply global
lution, ensuring clustering of good replicators and preventingptimization of path lengths in connected systd2i).
the spreading of short templates with limited replication
function [23]. The same applies to cortical networks where
elimination of growth limits results in a distorted network ACKNOWLEDGMENTS
topology[24].
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