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Abstract

Understanding the spatial distribution of urban forest ecosystem services is essential for

urban planners and managers to effectively manage cities and is an essential part of sus-

tainable urban development. Mapping the spatial distribution of urban forest ecosystem ser-

vices and improving the accuracy of its assessment scale will undoubtedly provide a more

accurate reference basis for later management. In this study, we used the i-Tree Eco model

and kriging interpolation to quantify and map urban forest ecosystem services and their spa-

tial distribution in Zhengzhou, a city along the lower reaches of the Yellow River in China;

analyzed the mapping errors and applicable conditions; and further explored the spatial dif-

ferences using geographic probes. The i-Tree Eco model estimation results showed that the

total carbon storage in the urban forest of Zhengzhou city was 75.7 tons, the annual carbon

sequestration was 14.66 tons, the trees and shrubs in the urban area of Zhengzhou city

could effectively avoid a total of 307.86 m3 of surface runoff per year, and trees and shrubs

removed 411.8 kg/year of air pollution (O3, CO, NO2, PM2.5, PM10, and SO2). The spatial

distribution of all urban forest ecosystem services showed significant heterogeneity, but the

spatial evaluation precision of different factors varied. GDP and population data showed a

negative correlation with ecosystem services, and ecosystem services were abundant in

watershed and woodland areas. This study differs from traditional assessments based on

regional data due to its improved spatial evaluation accuracy, and the results, discussion,

and analysis not only help Zhengzhou’s own urban development, but also provide a basis

for the future construction and management of other cities, the Central Plains urban agglom-

eration, and the surrounding larger regions. This will contribute to the enhancement of eco-

system services and thus improve the ecological conditions of the region. This will also have

a positive effect on the health of urban residents.

Introduction

Declining biodiversity, coupled with the degradation of ecosystem services, is a major environ-

mental crisis facing the world today. Ecosystem services are all the benefits that humans derive
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from ecosystems, including provisioning services, regulating services, cultural services, and

supporting services [1–3]. Green infrastructure within cities that can provide services to people

is an important part of the urban ecosystem [4]. The main body of urban forest includes trees,

various types of vegetation, and the natural environment; these areas are important for pro-

moting urban ecological protection and improving the relationship between humans and

nature. A growing number of studies have highlighted the contribution of ecosystem services

provided by urban forests to the quality of urban life [5].

Quantifying ecosystem services provides data to support a scientific understanding of the

tensions between ecosystem conservation and use. Conducting systematic research on ecosys-

tem services from different scales of ecosystems, regions, and countries and developing meth-

ods for assessing ecosystem services are important for developing theories and methods of

ecosystem service research and ensuring ecological security [6]. The application of assessment

models is a major breakthrough in the field of ecosystem service quality assessment research

[7–14]. Compared to traditional assessment methods, the current modeling approach is

adapted to assessing ecosystems with high levels of heterogeneity and diversity such as cities.

Therefore, many researchers have conducted studies on urban forests based on models [15–

18]. The i-Tree model provides urban and neighborhood forestry analysis and quantitative val-

uation of ecological benefits [19–25]. The model is based on field research data, and it also pro-

vides a foundation for spatial heterogeneity analysis.

The spatial distribution of quantified urban forest ecosystem services has been a focus of

academic discussion. The main purpose of spatial analysis is to solve geospatial problems and

to obtain derived information and new knowledge from the spatial relationships between tar-

gets [26]. There are quite a few methods for the spatial analysis of ecosystem service, and differ-

ent methods have their own characteristics. For example, the spatial distribution of the value

of ecosystem services is derived using the zonal statistics and correlation merging method of

ArcGIS [27]. Modeling methods, such as the SolVES model and the CA-Markov model, can

also be used based on the Public Participation Geographic Information System (PPGIS)

approach to collect survey data and spatially analyze a range of ecosystem values [28]. How-

ever, the reliability of the SolVES model’s evaluation results and transfer value prediction

results and the degree of influence of natural conditions and socio-economic development fac-

tors on social values need to be comparatively analyzed [29]. In contrast, the CA-Markov

model is used to simulate land use change and estimate the value of its ecosystem services [30].

However, how to integrate more efficiently and closely with ArcGIS to achieve other aspects

and larger scale application development is one of the challenges the CA-Markov model will

face in the near future [31]. Due to the difficulty in obtaining survey data, inaccurate data, and

missing data, most studies are based on the regional scale, up to the street scale, which makes it

more difficult for further more accurate spatial mapping of ecosystem services.

Geostatistics provides ecologists with an effective method for analyzing and interpreting

spatial data [32, 33]. Geostatistical data are sampled from the study area and are used to ana-

lyze the variability of various natural phenomena, and this has proven to be the most effective

method for studying spatial variability and spatial patterns [34]. With the development of

imaging and 3S technology, ArcGIS combined with geostatistical spatial analysis is also widely

used in ecosystem service mapping [35–38]. One of the difficulties of geostatistics-based spatial

analysis is the accuracy of spatial data, and previous studies have encountered many obstacles

due to data accuracy problems that may affect the success or failure of spatial analysis [39].

The i-Tree model provides a database that meets the scale requirements of geostatistical analy-

sis. The second difficulty is the spatial attributes of the evaluation factors. Some researchers

have applied geostatistics to the study of urban soil distribution patterns [40–43]. Our group

has also made a preliminary attempt and found that the woody plant diversity [44] and carbon
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sink functions [45] of urban forests have significant spatial correlations and can be spatially

analyzed by geostatistics. Since there are few relevant studies, and these are not yet comprehen-

sive, further clarification is needed on how this method differs in evaluating other types of eco-

logical services in urban forests.

In recent years, China has made great effort to develop urban forests and urban forest clus-

ters. Zhengzhou, the capital of Henan Province, is a typical city along the lower reaches of the

Yellow River and the "green core" of the Central Plains urban agglomeration. This has an obvi-

ous positive effect on the surrounding cities and shows a change in the same direction with dis-

tance [46]. Urban forest ecosystem services in Zhengzhou will not only have an impact on the

city itself and the region but also on the ecological landscape pattern of the Yellow River basin

and the ecological transition zones. An objective evaluation of urban ecosystem services and

spatial differences under the effect of rapid urbanization is not only important for raising peo-

ple’s environmental awareness and correctly handling the relationship between socio-eco-

nomic development and ecological environmental protection but also helps to make forestry

planning-related suggestions that will provide technological support for government depart-

ments to formulate relevant policies and implement ecological compensation [47, 48].

The objectives of this study were to (1) quantify urban forest urban ecosystem services in

the study area and map their spatial distribution, (2) explore the geostatistics used to spatially

analyze error differences in different urban forest ecosystem services, and (3) analyze the main

drivers of spatial heterogeneity. We expect that the spatial distribution of urban forest ecosys-

tem services in the study area is heterogeneous and may be influenced by both the degree of

urbanization and the urban forest.

Materials and methods

Study area

Zhengzhou is the capital of Henan Province, China, located in the North China Plain (112˚

42’–114˚14’E, 34˚16’–34˚58’N), and is known as the “Green City” and the “Mall.” To the north

is the Yellow River; to the southeast is the Yellow and Huai Plain, and to the west is the Zhon-

gyue Song Mountain. Zhengzhou is located in the transition zone from subtropical to temper-

ate and has a warm temperate continental climate. The temperature is generally 31˚C–38˚C in

summer and −10˚C to 10˚C in winter, with an average annual temperature of 14.4˚C and an

average annual rainfall of about 542 mm. Zhengzhou City belongs to the warm temperate

deciduous broad-leaved forest vegetation type in terms of floral classification and is very rich

in plant resources. After the survey, a total of 44 families, 73 genera, and 93 species of woody

plants with a total of 2083 plants were recorded in the urban forests of Zhengzhou. These

included 75 species of trees, including 22 evergreen and 53 deciduous species; 16 species of

shrubs, including 12 evergreen and 4 deciduous species; and 2 species of vines, including 1

evergreen and 1 deciduous species.

The most abundant tree species in the urban forests of Zhengzhou is Broussonetia papyri-
fera, which accounts for 17.38% of the total number of trees. The second most abundant spe-

cies is Celtis sinensis, accounting for 11.43% of the total. The third one is Juglans regia, which

accounts for 8.59% of the total. The fourth is Ligustrum lucidum, accounting for 5.42% of the

total. The fifth is Cedrus deodara, accounting for 5.33% of the total. These five species

accounted for 48.15% of the total number of trees. The tree with the largest leaf area was White
poplar. The average diameter at breast height of urban forest trees in Zhengzhou City was

13.26 cm, the average crown width was 3.95 m, and the average tree height was 5.93 m.

Zhengzhou Metropolitan Area is the core area of the Central Plains City Cluster that takes

Zhengzhou as the center and promotes deep integration and inter-city linkage with Kaifeng,
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Xinxiang, Jiaozuo and Xuchang [49]. In 2014, Zhengzhou was awarded the title of National

Forest City of China. In 2018, Zhengzhou was identified as the “green core” of China’s Central

Plains Forest City Cluster. In 2019, Zhengzhou City announced the “Zhengzhou National Cen-

tral City Forest Ecosystem Plan (2019–2025)” as an important special plan for the “Zhengzhou

National Central City Ecological Construction Plan (2016–2025),” aiming to implement the

Zhengzhou National Central City Ecological Construction Plan, build a healthy and safe forest

ecosystem in the city, effectively guide the city’s ecological construction, and promote the con-

struction of five major ecosystems (forest, wetland, watershed, farmland, and city) in an inte-

grated manner. In the future, Zhengzhou will focus on creating a forest isolation circle around

the suburbs of the city and vigorously promote tree planting and greening projects in the

periphery of the main city to create a multi-species, multi-level, and multi-color urban forest

landscape. According to the “Plan,” by 2025 the amount of green in the main urban area will

be enhanced; the urban green coverage rate will reach more than 41%; the urban green space

rate will reach more than 36%; the minimum value of green space rate in each urban area

should be greater than 28.5%; the structure of plant communities will be optimized, and the

green coverage of the built-up area will account for more than 75% of the trees and shrubs.

This study employed the main urban part of Zhengzhou City as the study area (Fig 1),

including five administrative districts of Jinshui District, Guancheng Huizu District, Huiji Dis-

trict, Zhongyuan District, and Erqi District, for a total study area of about 1017 km2. The year-

end population of the main city of Zhengzhou in 2021 was 4.635 million, with a population

density of 4,557 people/ km2. Due to its location at the intersection of the Beijing–Guangzhou

Line and the Longhai Line, Zhengzhou City is developing rapidly as a hub city that carries traf-

fic from east to west and north to south. According to the Zhengzhou Bureau of Statistics, the

built-up area of Zhengzhou within the study area from 1992 to 2019 increased from 93.1 km2

to 543.9 km2; the gross national product increased from 16.74 billion yuan to 115.8970 billion

yuan, an increase of about 69.2 times, and the industrial structure was gradually dominated by

tertiary industry. The urbanization rate rose from 45.2% to 74.6%, an increase of 29.4% [50].

Establishing sample points and collecting data

In this study, the grid random sampling method was used to select the field research sample

points within the study area. This method involves placing equally divided grid frame points

throughout the study area, and then the sample area points for each component are randomly

selected. This method balances the randomness and uniformity of the distribution.

According to the expectation of the number of sample points being greater than 200, a ras-

ter net of 2500 m × 2500 m was created, and the study area was divided into 186 grid squares.

Three hundred sample points were randomly selected within the grid, and 240 sample points

were finally selected after excluding inaccessible, adjacent, and similar natural sample sites

(Fig 1). There were 39, 48, 43, 61, and 49 sample points distributed in Erqi, Huiji, Guancheng

Huizu, Jinshui, and Zhongyuan districts, respectively. In this study, the sample sites were

divided into seven categories according to land cover type as trees and shrubs, grass, buildings,

roads, impervious surfaces, water bodies, and others (bare soil, farmland, vegetable fields,

industrial and mining, and greenhouses) [51].

We conducted field research on the selected sample sites from June to August 2021. Each

sample plot was set up as a 20 m × 20 m standard sample square, and each tree and shrub in

the sample square was checked for size and photographed. The recorded data included sam-

ple plot information, vegetation information, ground cover information, and land use type.

The vegetation information included species name, diameter at breast height, height, east-

west crown width, north-south crown width, height under branches, missing crown rate,
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crown light transmission rate, building direction, distance of trees from buildings, and

standing conditions.

i-Tree Eco’s assessment of urban ecosystem services

Assessment items and methods. For international projects other than those in the US,

Canada, Australia, Mexico, and the UK, such as this study, the localization of model parame-

ters is required prior to using the i-Tree Eco model. This study assesses urban forest ecosystem

services, including carbon storage, carbon sequestration, surface runoff avoidance, and pollu-

tion removal, in urban areas of Zhengzhou City based on localized location information, data

related to annual hourly precipitation and annual hourly air quality, climate zones, species,

and field measurements. Although cultural services are one of the most critical components of

urban ecosystem services, i-Tree Eco currently does not include this in international projects

Fig 1. Study area map and sample point distribution (tianditu.gov.cn).

https://doi.org/10.1371/journal.pone.0286800.g001
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[52]. Specific methods for assessing the above ecosystem services can be found in the UFORE

method, which will be briefly described in this paper.

Carbon storage and sequestration. Carbon storage was estimated from biomass and carbon

content, and the total tree biomass was estimated from measurements of tree diameter and

height using the anisotropic equation [53, 54]. Radial growth increments, growing season

length, and growth adjustment factors for canopy health and canopy light were used to esti-

mate growth rates and thus annual carbon sequestration. The formula for calculating fresh

weight biomass from carbon storage in trees was multiplied by a species- or genus-specific

conversion factor to yield dry weight biomass. The difference in carbon storage estimates

between year x and year x+1 is the net carbon sequestration produced each year [55].

Avoided surface runoff. Annual avoided surface runoff was calculated using the interception

by vegetation. i-Tree Eco estimates this based on the difference between annual runoff with

and without vegetation [53]. Although leaves, branches, and bark can intercept precipitation

and thus mitigate surface runoff, only precipitation intercepted by leaves was considered in

this analysis [56].

Removal of pollution. Tree cover and leaf area index were used to estimate the amount of air

pollution removed. Estimated pollutants included nitrous oxide (NO2), ozone (O3), particulate

matter smaller than 2.5 microns (PM2.5), and sulfur oxide (SO2). In locations more fully sup-

ported by i-Tree Eco (e.g., cities in the U.S. and Canada), tree data are merged with local pre-

processed weather and air pollution concentration data to assess pollutant removal. However,

in this case, since there is no default official support for Zhengzhou, we manually entered the

pollution data from local monitoring stations. However, the i-Tree Eco model fails to capture

the differences in particulate matter (PM) removal between species, and the removal rate of

fine particulate matter (PM 2.5) is still calculated using a poorly evaluated deposition rate func-

tion. Therefore, Gaglio et al. [57] proposed an improvement to the standard model calculation

by introducing a leaf trait index to differentiate the effect of species on net PM removal, and

the authors also measured model results with deposited leaf PM via vacuum filtration.

Normalization of multiple urban forest ecosystem services. The greatest challenge in

assessing multiple urban forest ecosystem services is the difficulty of combining different

urban forest ecosystem service indicators based on different units (e.g., kg, t, m3) [58]; thus, in

this study, we converted the data into dimensionless values by standardizing the data and

removing unit constraints, thereby facilitating the ability to compare and weight indicators of

different units or magnitudes. Normalization of data is a typical method. Normalization serves

to make the features between different dimensions numerically comparable, a process that can

greatly improve the accuracy of classification. The normalization used in this study was the

Min-Max normalization that is calculated as:

X0i ¼ Xi � Xmin=Xmax � Xmin: ð1Þ

The Min-Max normalization method is a linear transformation of the original data. Let

MinA and MaxA be the minimum and maximum values of attribute A, respectively, and map

the original value of A into a value in the interval [0,1] by the Min-Max normalization [59]. In

this study, the amounts of carbon sequestration, surface runoff avoided, and pollution

removed were normalized, after which the three normalized values were combined and again

normalized with the aim of obtaining an integrated urban forest ecosystem service assessment.

Spatial mapping of ecosystem services

Geostatistics can be used in ecology to analyze, recognize, and explain complex phenomena

related to spatial heterogeneity, to build spatial predictive models, and to interpolate and
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estimate spatial data [60]. The Kriging method is a linear unbiased optimal estimation of the

sample point values to be estimated based on a number of measured sample point data in a

finite neighborhood of the sample point to be estimated, after careful consideration of the

shape, size and spatial interposition of the sample points and the structural information pro-

vided by the variation function, and is one of the two main elements of geostatistics [61]. This

method is more accurate and realistic than other traditional estimation methods, also avoids

systematic errors, and yields the estimation error and accuracy; this is a major advantage of the

Kriging method [62]. The spatial distribution pattern of urban forest ecosystem services was

mapped using Kriging based ArcGIS 10.2 (ESRI) in the following steps [44].

Exploring the data. The application of the Kriging method usually requires a normal dis-

tribution of the data and spatial correlations, and the measure of spatial correlation between

points in this method is the semivariance calculated as:

gðhÞ ¼
1

2NðhÞ

XNðhÞ

i¼1
xi � xiþh
� �2

: ð2Þ

Here, γ(h) is the semivariance of the distance interval; N(h) is the total number of sample

pairs of the distance interval; xi is the measured sample value of the location i, and xi+h is the

measured sample value of the first point.

The three important aspects of the semivariance function model are the nugget variance

(Co), Range (a), and Sill (C). “Co” is the semivariance value at the y-intercept that indicates

the non-spatially dependent variation within the data. It can be interpreted as a discontinuity

in the process across space, or as an experimental error. The parameter “a” is the distance at

which the data pairs remain spatially correlated; “C” is the semivariance value of the semivario-

gram. “Co/C,” expressed as a percentage, is used to classify the spatial correlation. A

value < 25% indicates strong spatial correlation; 25%–75% indicates moderate spatial correla-

tion, and a value > 75% indicates weak spatial correlation [63]. Regarding this method, a

clearer illustration is available in a study by Li et al. [44].

Modeling semivariogram. The data obeying the normal distribution were simulated as a

semi-covariance function, and the best semi-covariance function model for the study area was

derived by iterative comparison. The values were calculated by the following formula:

Z x0ð Þ ¼
Xn

i¼1
li Z xið Þ ð3Þ

where Z(x0) is the predicted value of the spatially located point x0; λi is the weight, and Z(xi) is

the observed value located at x0. The key to interpolation is to determine the values that opti-

mize λi. The semi-covariance function model can be used to establish the spatial relationships

of the data set and determine the weights of adjacent samples. After plotting the semivariance

function, we chose the spherical model to fit the semivariogram and predicted the unknown

values by iterative trials [64].

Accuracy inspection (fitting the optimal model). Ordinary Kriging fits the optimal theo-

retical model by calculating the variance function [65]. The grid spacing is usually a good indi-

cator of the Lag step value when the sample is located on a sampling grid. However, the

parameters Lag step and maximum step (maximum value of separation distance) should be set

if irregular or random sampling schemes are used to obtain the data. The Lag step value is then

multiplied by the number of step groups, which should be about half of the maximum step

length between all points. In the analysis of the variance function, the maximum distance of

the study area (about 43905 m) was taken as the maximum step value. In addition, if the range

of the fitted semi-variance function model is very small relative to the range of the empirical

semi-variance function, the Lag step value can be reduced. Conversely, if the range of the fitted
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semi-variance function model is large relative to the range of the empirical semi-variance func-

tion, the value of the Lag step can be increased. Another way to determine the Lag step value is

to use the average nearest neighbor tool to determine the average distance between a point and

its nearest neighbor. This provides a fairly good Lag step value, since each Lag step value has at

least a few pairs of points. This study determined the step values for each urban forest ecosys-

tem service based on the analysis of available data.

The accuracy of Kriging interpolation is mainly affected by the choice of the theoretical

model of the optimal variance function, the step size, and the number and range of neighbor-

ing points. The prediction accuracy of the model can be assessed by a cross-validation process,

in which each measurement is removed from the sample pool in turn and the remaining mea-

surements are used to estimate the error between the predicted and measured values. The

accuracy of the model is verified by the error values, and the optimal model should meet the

following conditions [66, 67]. The 240 samples were divided into interpolation (216, 90%) and

validation (24, 10%) sets. The mean error (ME) and root mean square error (RMSE) were used

to evaluate the results. ME is calculated to quantify the systematic deviation between the pre-

dicted and observed dates; RMSE can reflect the valuation sensitivity and extreme value effect

of the sample data. As ME approaches 0, the smaller the RMSE, the higher the prediction accu-

racy of the Kriging model.

ME ¼
1

n

Xn

i¼1
xi � x^i
� �

; ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
xi � x^i
� �

:

r

ð5Þ

Here, xi and x^i denote the measured and estimated values, respectively, and n is the number

of validation sets.

Hot spot analysis. After mapping the spatial distribution of urban forest ecosystem ser-

vices, the ArcGIS spatial “hot spot” detection method (Hotspot Analysis-Getis-Ord Gi*) was

used to reveal the spatial variation of urban forest ecosystem services [68]. Analysis of spatial

clustering of high or low values of ecosystem services shows that fragmented and non-concen-

trated patches are continuously eliminated with increasing distance thresholds, and patches

that are close together and connected are clustered to form larger patches [69]. The formulae

are as follows:

GðdÞ ∗ ¼

Xn

j¼1
WijðdÞXj

,

Xn

j¼1
Xj
; ð6Þ

ZðGi∗Þ ¼ ðGi∗ � EðGi∗ÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðGi∗Þ

p
; ð7Þ

where G* is the test coefficient for general spatial agglomeration defined by the range of dis-

tances. Wij(d) is the spatial weight defined by the distance. Xi and Xj are the observed values

for region i and region j, respectively. Z(Gi *) is the normalization of G(d)*.E(Gi *) and var(Gi

*) are the expected value and variance of G(d) *.Z(Gi *) was used to determine whether G(d) *
satisfied a particular significant value and whether there was a positive or negative spatial cor-

relation. When G(d) * is positive and Z(Gi *) is statistically significant, the values around

region i are higher, indicating that region i is a “hot spot” for high-value clustering. When G

(d) * is negative and Z(Gi *) is statistically significant, the values around region i are low, indi-

cating that region i is a “cold spot” of low-value clustering.
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Analysis of influencing factors

Mechanistic approach using Geodetector. Regarding the analysis of the influencing fac-

tors, this study used Geodetector software developed based on Excel for quantitative analysis

[70]. This software is often used to detect the spatial anisotropy of a phenomenon and its driv-

ing mechanism [71–73]. Spatial heterogeneity is quantified by establishing statistical relation-

ships between variables and thus identifying possible causal relationships [74], i.e., detecting

the spatial heterogeneity of the dependent variable and the extent to which the independent

variable X reveals the heterogeneity of the dependent variable Y. Geodetector contains four

sub-detectors, a factor detector, an ecological detector, an interaction detector, and a risk

detector, and the metrics, core ideas, and main objectives of each sub-detector are quite differ-

ent [75]. Combined with the research objectives of this paper, we used a factor detector and an

interaction detector. The factor detector measures the degree of influence of different factors

on ecosystem services and is calculated as follows:

q ¼ 1 �
X

n
m¼1

Nms
2

m=Ns
2: ð8Þ

where q is the degree of influence of an influence factor on the spatial distribution of urban

forest ecosystem services; m is the classification of the influence factor; n is the classification of

the influence factor, Nm and N are the spatial distribution of urban forest ecosystem service in

sub-region m and the whole region, and s2
m and σ2 are the discrete variances of the spatial dis-

tribution of urban forest ecosystem services in sub-region m and the entire region. The value

of q reflects the degree of influence of each factor on the spatial distribution of urban forest

ecosystem services, and its value range is [0, 1]; a larger the value means a greater degree of

influence and vice versa. When the value is equal to 0 or 1, this means that the factor does not

influence or completely controls the spatial distribution characteristics of urban forest ecosys-

tem services.

The interaction detector identifies the interaction effects between different factors as a way to

determine the type of impact that the joint action of two factors A and B has on the spatial distri-

bution of urban forest ecosystem services. The evaluation criteria are shown in Table 1 [71].

Selection of driving factors. Urban forest ecosystem services are influenced by natural-

social factors [76], among which natural factors include temperature, precipitation, and topog-

raphy. However, since the five districts of Zhengzhou are located in the same plain, the latitude

span is small, and the temperature and precipitation are basically the same, the influence of

natural factors on urban forest ecosystem services was not considered. Moreover, in general

the impact of natural factors on urban forest ecosystem services takes a long time to unfold

and has little effect in the short term. In contrast, social factors have a rapid and dramatic

impact on urban forest ecosystem services. Based on the above reasons and the accessibility of

data and the meaning of each indicator, we comprehensively analyzed and selected representa-

tive indicators and finally selected six drivers: total population reflecting the demographic sta-

tus, construction land area reflecting the degree of construction, primary industry GDP,

Table 1. Interaction between A and B.

Judgment basis Interaction contribution

q(A\B)<Min(q(A),q(B)) Nonlinear weakening

Min(q(A),q(B))<q(A\B)<Max(q(A),q(B)) Single-factor nonlinear weakening

q(A\B)>Max(q(A),q(B)) Two-factor enhancement

q(A\B) = q(A),q(B) Independence

q(A\B)>q(A),q(B) Nonlinear enhancement

https://doi.org/10.1371/journal.pone.0286800.t001
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secondary industry GDP and tertiary industry GDP reflecting the economic status, and the

land use ratios of forest, garden, and grassland. Data on total population, construction land

area, and GDP of primary, secondary, and tertiary industries were obtained from the Zheng-

zhou Statistical Yearbook 2018, and data on land use ratio of forest, garden, and grassland

were obtained from the National Land Survey main data bulletin of each district’s government.

After the data of each area were organized, the natural fracture classification method in Arc-

GIS was used to classify the data into five categories, and then sampling points were established

within the study area. The points were assigned to different data, and finally the analysis was

performed according to the sampling points.

Results

Urban forest ecosystem service estimation results

In this study, the land cover type occupancy test was conducted on 240 sample squares from

the study area. A grid of 1000 m × 1000 m and 16305 sample points were created within the

range; each sample point was visually interpreted for land cover type, and the interpretation

results showed 20.4%, 7.1%, 15.1%, 11%, 8.2%, 4.1%, and 33.9% for trees and shrubs, grasses,

buildings, roads, impervious surfaces, water bodies, and others, respectively. The error of 9.3%

from the calibration sample points of the study area, a result that met the software application

conditions [77].

The i-Tree Eco model estimates showed that the canopy cover of the study area was 22.3%

and provided approximately 12.98 ha of leaf area. The average tree density was 214 trees/ha,

with the highest tree density being in Huiji District, followed by Erqi District and Jinshui Dis-

trict. Zhengzhou’s urban forest is a mixture of native and exotic tree species, with approxi-

mately 67% of the trees being native Asian species.

The total carbon storage in the urban forest of Zhengzhou city was 75.7 tons (Fig 2). Erqi

District had the most carbon storage, accounting for 26.2%; Guancheng Huizu District had

the least carbon storage, accounting for 8.3%. The highest value in each sample with trees was

10,987.1 kg associated with agricultural land, while the lowest value in the sample with trees

was 1.4 kg for unit green space. The average value of all samples with trees was 656.3 kg, and

the average value of all samples was 314.68 kg.

The annual carbon sequestration in urban forest of Zhengzhou city was 14.66 tons (Fig 3).

Erqi District contributed the most, accounting for 29.8% of the total; Guancheng Huizu Dis-

trict had the least annual carbon storage, accounting for 7.5%. The highest value of annual car-

bon sequestration was 1718.5 kg in each sample with trees in agricultural land, and the lowest

value was 1.4 kg in the sample with trees associated with water surfaces. The average value of

all the samples with trees was 126.1 kg, and the average value of all samples was 60.9 kg.

The trees and shrubs in the urban area of Zhengzhou City can effectively avoid a total of

307.86 m3 of surface runoff per year (Fig 4). The annual avoided surface runoff volume in

Huizu District was the highest, accounting for 36.9%; Guancheng Huizu District had the low-

est annual avoided surface runoff volume, accounting for 6.7%. The highest value of annual

avoided surface runoff was 34.4 m3for each tree sample in the study area for agricultural land,

and the lowest value of was 0.1 m3for 10 tree samples from road green space, unit green space,

and agricultural land. The average value of all samples with trees was 2.8 m3, and the average

value of all samples was 1.2 m3.

Trees and shrubs were estimated to remove 411.8 kg/year of air pollution (O3, CO, NO2,

PM2.5, PM10, and SO2), with the most pronounced seasonal variation in PM10 and O3,

although both showed an overall trend of increasing and then decreasing. PM10 removed the

highest amount of pollution in spring and autumn, while O3 removed the highest amount of
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pollution in summer; this may be related to the local monsoon climate (Fig 5). While removing

pollution, trees in Zhengzhou’s urban forest emitted about 155.5 kg/year of volatile organic

compounds (VOCs) (116.8 kg isoprene and 38.66 kg monoterpenes). Emissions varied

depending on species characteristics (e.g., some genera such as oak are high isoprene emitters)

and leaf biomass. Sixty-two percent of VOC emissions in urban forests were from poplar and

loblolly pine trees. These VOCs are precursors to ozone formation. The highest value of annual

pollution removal was 39447.5 g in each of the tree samples in the study area for agricultural

land; the lowest value was 7.6 g in the tree samples for land in the area to be developed, and the

average values were 3022.9 g for all tree samples and 1461.1 g for all samples.

Spatial patterns of urban forest ecosystem services

Data inspection results. After exploratory analysis of the data, carbon storage, carbon

sequestration, surface runoff avoidance, and pollution removal were all normally distributed

after logarithmic transformation. “Co/C” for carbon storage was 21.31%, indicating a strong

spatial correlation with a skewness/kurtosis of −0.69325/4.4995; “Co/C” for carbon

Fig 2. Carbon storage map of Zhengzhou urban districts.

https://doi.org/10.1371/journal.pone.0286800.g002
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sequestration was 21.27%, indicating a strong spatial correlation with a skewness/kurtosis of −-

0.10985/3.5564; “Co/C” for surface runoff avoidance was 30.48%, indicating moderate spatial

correlation, with skewness/kurtosis of −0.66629/2.6439; “Co/C” for pollution removal was

60.33%, with skewness/kurtosis of −0.66629/2.6439; “Co/C” was 60.33%, indicating medium

spatial correlation with a skewness/kurtosis of −0.4516/2.9347.

The average nearest neighbor tool was used to determine the Lag step value (1369 m) for

each urban forest ecosystem service; this was used to determine the number of step groups as

15, and the accuracy of the model fit was also high.

Fig 3. Annual carbon sequestration stock map of Zhengzhou urban districts.

https://doi.org/10.1371/journal.pone.0286800.g003

Fig 4. Annual avoided surface runoff map of Zhengzhou urban district.

https://doi.org/10.1371/journal.pone.0286800.g004
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The MEs for carbon storage, carbon sequestration, surface runoff avoidance, and decon-

tamination were 0.0785, 0.1230, 0.0103, and 0.0490, respectively, and the RMSEs were 0.7499,

1.0373, 0.2223, and 0.5849, respectively. The spatial model for surface runoff avoidance had

the lowest MEs and RMSEs, indicating that surface runoff avoidance yielded a higher predic-

tion accuracy.

Single ecosystem service assessment results. The spatial distribution of each ecosystem

service was significantly heterogeneous. In general, all ecosystem services showed the highest

values in the southwestern part of the study area and the lowest values in the southeastern part.

Scattered fragmented high value areas were also found in the central northern part of the study

area near the Yellow River. Statistically significant high value areas were primarily located in

Erqi District, and individual items such as total carbon sequestration were also partially repre-

sented in Zhongyuan District. The statistically significant low value areas were mainly located

in Guancheng Huizu District and Huiji District, with Guancheng Huizu District having a

larger area (Fig 6).

The spatial distributions of total carbon stock and annual carbon sequestration values were

similar, both showing a wedge-shaped high value area extending from the southwest to the

northwest of the city. The low values were all concentrated in the southeast and scattered in

the north and east of the city (Fig 6A and 6C). Both had statistically significant high value areas

concentrated in Erqi and Zhongyuan districts, with Erqi being the most numerous (Fig 6B and

6D). The difference between the two was that the total area of the high value area of the annual

carbon sequestration value was significantly smaller, and correspondingly the area of the low

value area was larger; the high value area was larger than the total carbon sequestration only in

Huiji District, a result that may be related to the age of the trees. In addition, the total carbon

storage also had a small distribution of high values in Jinshui District.

Fig 5. Change chart of annual pollution removal amount in Zhengzhou urban area (i-Tree Eco model out of the map).

https://doi.org/10.1371/journal.pone.0286800.g005
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Fig 6. (A) Kriging interpolation of total carbon storage. (B) Analysis of hot spots of total carbon storage. (C) Kriging

interpolation of annual carbon storage. (D) Analysis of hot spots of annual carbon storage. (E) Kriging interpolation of

annual surface runoff avoidance. (F) Analysis of hot spots of annual surface runoff avoidance. (G) Kriging

interpolation of annual pollution removal. (H) Analysis of hot spots of annual pollution removal (mnr.gov.cn).

https://doi.org/10.1371/journal.pone.0286800.g006
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The high value areas of annual avoided surface runoff values and annual pollution removal

were similarly clustered in the northern and southwestern parts of the city, and the low value

areas were mostly distributed in the southeast (Fig 6E and 6G). Unlike the carbon sequestra-

tion function, the annual avoided surface runoff values were point-like and distributed in a

fragmented state across the study area, while the annual pollution removal was not significant

for either the highest or lowest values, with the median value occupying the widest area across

the region, suggesting that there is little variation in pollution removal across the region. The

statistically significant high values of annual avoided surface runoff values were concentrated

in Erqi and Huiji districts, where the high values in Huiji district were more apparent than

those in other ecosystem service items, while the area of high values in Erqi district was signifi-

cantly smaller than others, and no statistically significant high values were found in Zhon-

gyuan district, where all other ecosystem service items had high values (Fig 6F). The

statistically significant high value area for the amount of decontamination was concentrated in

the Erqi and Huiji districts and had a small distribution in Zhongyuan district, while the high-

est value area was the largest in Jinshui district (Fig 6H).

Results of integrated ecosystem service assessment. The assessment of integrated ecosys-

tem services is to regard the three types of ecosystem services of annual carbon sequestration,

annual avoided surface runoff, and annual pollution removal as having the same weight [58],

and the results of integrated ecosystem service assessment were obtained by normalizing and

superimposing the above three ecosystem services [78]. Integrated ecosystem services had sig-

nificant spatial variability, with the major high-value aggregation area in the southwest of the

city and two smaller high-value aggregation areas in the north near the Yellow River. The south-

east was a low-value aggregation area with a scattered distribution in the northern and eastern

parts of the city (Fig 7A). The high and low values formed an “X” shaped cross distribution in

the study area. The statistically significant high value areas were located in Erqi and Huiji dis-

tricts and had a small distribution in Zhongyuan district, with the largest area in Erqi district;

the statistically significant low value areas were located in Guancheng Huizu district (Fig 7B),

consistent with the spatial distribution results of each ecosystem service mentioned above.

Factors influencing the spatial distribution of ecosystem services

The GeoDetector factor detector showed that all factors were significantly associated with the

spatial distribution of ecosystem services (Table 2). The effect intensity (i.e., q-value) of each

factor was ranked in descending order: primary industry GDP = secondary industry

GDP = tertiary industry GDP> total population > land area share of forest, garden, and

grassland > built-up area. The q-values of primary, secondary, and tertiary GDP were consis-

tent and had the most significant impact. The p-value corresponding to the q-value of each

indicator represents the significance of this indicator; a value less than 0.1 means significant,

and the p-values of all six indicators in this study were 0, indicating that the selected indicators

were all very significant.

The GeoDetector interaction detector results showed a non-linear enhancement of the

interactions between the factors (Table 3). Although the effect of these individual factors on

the spatial distribution of ecosystem services was not significant, the effect was enhanced when

two factors interacted; for example, the intensity of the effect increased significantly when total

population and primary, secondary, and tertiary GDP interacted with other factors, the reason

being that the interaction of any two variables on the spreading degree is greater than the effect

of the first variable alone [71]. This also indicates that the spatial distribution of ecosystem ser-

vices in urban areas of Zhengzhou is complex and is influenced by a combination of factors.
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Discussion

i-Tree Eco

There are many methods used to assess ecosystem services. However, the model simulation

method is not only a convenient tool for urban decision makers and managers but also is an

important development direction for future urban ecosystem service evaluation [79].

Compared to other models, the i-Tree Eco model has several advantages in assessing urban

ecosystem services: (1) the assessment of ecological benefits is made not only for tall trees but

also for shrubs and grasses; (2) based on field surveys, the ecological benefits can be assessed

over a large study area by the sampling method, and the results obtained are more accurate;

(3) graphs and reports can be automatically generated for the study results [80]. However, this

model has unavoidable limitations for international projects: (1) international users need to

adjust field parameters before calculating the results, and this can lead to errors in the results.

(2) The processing time for international projects is 2–6 months from the uploading of field

data, so sufficient time needs to be allowed for the results to be generated.

The i-Tree Eco model uses standardized field data from randomly located plots as well as

local hourly air pollution and meteorological data to quantify urban forest structure and assess

its many impacts [77]. The size of the research effort will lead to different errors. In general, a

stratified random sample of 200 samples will produce a standard error of about 10% in the

Fig 7. (A) Normalized map of integrated ecosystem service. (B) hot spot analysis map of integrated ecosystem service (mnr.gov.cn).

https://doi.org/10.1371/journal.pone.0286800.g007

Table 2. Impact indicators and results of GeoDetector on spatial distribution of ecosystem services.

Influencing Factors q value p value

Total Population (TP) 0.360270197 0.000

Primary Industry GDP (PIG) 0.36101386 0.000

Secondary Industry GDP (SIG) 0.36101386 0.000

Tertiary Sector GDP (TSG) 0.36101386 0.000

Built-up Area (BA) 0.110182208 0.000

Percentage of Land in Forests, Gardens and Grasslands (PFGG) 0.319068129 0.000

https://doi.org/10.1371/journal.pone.0286800.t002
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overall urban estimates, and this decreases as the sample size increases [81]. In this study, 240

sample sites were surveyed in combination with available resources and coordinated time and

manpower support, of which 118 sample sites were treeless. Although the error between the

surveyed sample sites and the actual tree canopy cover in the study area was not significant,

the limited nature of the research data was indeed the main reason for the error. Ma used sam-

pling in the canopy cover area and estimated ES as the total area with canopy cover in the

study area, an approach that may be able to reduce error [45].

Since fewer relevant studies have been conducted in the same region, our results are diffi-

cult to compare cross-sectionally. There are no fully locally appropriate parameters when

using the i-Tree Eco model, but the software is able to account for point benefits, which facili-

tates spatial analysis, and thus the model is recommended more for spatial analysis rather than

for specific quantitative presentation when used in international projects. In addition, we need

further research on the error of i-Tree Eco estimation for international projects.

Kriging

Geostatistics consists of two main components: the variance function and its parameters for

analyzing spatial variation and structure, and Kriging interpolation for local spatial estimation.

Using Kriging it should be noted that 1) the accuracy is affected by the sample point data; the

more sampling points, the higher the accuracy [82]; 2) The ecological aspect of the study con-

tent itself needs to be determined before use, i.e., the spatial correlation.

Spatial variability in the type and intensity of ecosystem services is determined by the diver-

sity of ecosystems themselves and the diversity of environmental conditions, both at macro-

and micro-spatial scales [83]. Therefore, the theory of geostatistics and the corresponding

methods can be applied whenever the structural and stochastic nature of spatially distributed

data, spatial correlations and dependencies, or spatial patterns and variances are to be studied,

when optimal unbiased interpolation estimates of these data are to be made, or when the dis-

crete and fluctuating nature of these data are to be modeled [84]. This statement has yet to be

further substantiated. The application of attempts to apply geostatistics for spatial analysis in

cities is mostly seen in studies on soils [85–89]. Given the direct influence of soil on vegetation,

Li et al. [44] applied geostatistical analysis in an innovative attempt to explore the distribution

patterns of urban plant diversity in built-up areas of Beijing. Ma et al. [45] provided a new per-

spective to explore the distribution patterns of carbon storage and sequestration in urban for-

est vegetation using scattered data investigated in built-up areas of Beijing as an example.

Based on the above study, this paper further investigated the spatial differences of urban forest

ecosystem services in the Zhengzhou urban area using this method and compared the spatial

correlations and errors when interpolating the four spatial values of carbon storage, carbon

Table 3. Effects of GeoDetector interaction detectors on spatial distribution of ecosystem services and research results.

TP PIG SIG TSG BA PFGG

TP 0.360270197

PIG 0.361037593 0.36101386

SIG 0.361037593 0.361037593 0.36101386

TSG 0.361037593 0.361037593 0.361037593 0.36101386

BA 0.361037593 0.361037593 0.361037593 0.361037593 0.110182208

PFGG 0.361037593 0.361037593 0.361037593 0.361037593 0.361037593 0.319068129

TP: Total Population; PIG: Primary Industry GDP; SIG: Secondary Industry GDP; TSG: Tertiary Sector GDP; BA: Built-up Area; PFGG: Percentage of Land in Forests,

Gardens and Grasslands.

https://doi.org/10.1371/journal.pone.0286800.t003
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sequestration, surface runoff avoidance, and pollution removal. The spatial correlations of car-

bon storage and carbon sequestration were strong, and the spatial correlations of surface run-

off avoidance and pollution removal were moderate. The MEs for the spatial interpolation of

carbon storage were 0.1230, and the RMSEs were 1.0373; the MEs for the spatial interpolation

of surface runoff avoidance were 0.0103, and the RMSEs were 0.2223. There were large differ-

ences in spatial correlations among different macroecological data; these have a significant

impact on the accuracy of Kriging simulations, indicating that not all data could be applied to

the theory and methods of geostatistics.

The use of geostatistics for spatial analysis of urban forests is not yet able to give accurate

information in terms of actual quantification, but it does have the advantage of greater accu-

racy in the study of spatial heterogeneity and its graphical methods than previous analysis

based on regional data. This provides a basis for studying spatial differences in ecosystem ser-

vice flows, ecosystem supply and demand balance, and also provides a reliable basis for future

urban forest planning. In addition, it can accurately show the spatial distribution pattern of

ecosystem services in a larger scale, an attribute that is important for the factors affecting the

spatial distribution of ecosystem service [44].

Spatial distribution of urban forest ecosystem services and influencing

factors

At present, studies on the assessment of ecosystem services in China have largely focused on

mega-cities, resource-based cities, and ecologically fragile areas such as the northwest region

[90]. There are few studies concerned with regional characteristics in the central region. Some

researchers have studied the assessment of ecosystem services in Zhengzhou city, and the

results showed that its forest ecosystem provides the greatest value of ecological services and

has the strongest impact on the overall ecosystem service value [90–92]. Others have assessed

the forest ecosystem services in Zhengzhou city, and the results showed that the value of forest

ecosystem services is primarily related to forest area and forest structure [92–94]. Guo esti-

mated the ecological service function of park green space in Zhengzhou city according to the

theory and methods of urban forest ecosystem service assessment, and the result was also that

the larger the unit area of park green space, the higher the value of its ecosystem service and

the greater the ecological benefit [95]. Thus, studies on the ecosystem services of Zhengzhou

City have shown the importance of urban forests. At the same time, the special locational char-

acteristics of Zhengzhou also determine its importance. Henan Province formulated the Devel-

opment Plan Outline of the Central Plains City Cluster (2006–2020) in 2005, and Zhengzhou,

as the core of Zhengzhou Metropolitan Area and a typical city along the lower reaches of the

Yellow River, has played an active leading role in the regional development of the Central

Plains City Cluster. The results and analysis of this study may have some influence on the

urban planning and development of the Central Plains City Cluster in the future.

By analyzing the influencing factors of urban forest ecosystem services in Zhengzhou, we

found that the causes of typical high and low values of urban forest ecosystem services vary.

From the typical low value plots, two factors representing urbanization, namely GDP and total

population, are significantly and negatively correlated with urban forest ecosystem services. As

shown in Fig 8A, the lowest values of urban forest ecosystem services were largely distributed

in Jinshui District and Guancheng Huizu District, and most of these were located in industrial

parks. This conclusion is consistent with Li et al. [96]: the value of ecosystem services in

municipal and county administrative center sites, economic development zones and industrial

parks is more impaired. This also confirms that the urban area of Zhengzhou City has focused

on the Jinshui District and Guancheng Hui District in recent years. The most important
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feature of urbanization is the concentration of population, industries, and properties in cities.

An increase in the urban population, changes in land use properties, an increase in the number

of buildings, an increase in road pavement and impervious area, and an increase in the GDP

and population are inevitable factors in the development of urbanization [97]. Measures are

needed to ameliorate the degradation of ecosystem services it causes, and regional human

well-being and ecological security are threatened [98]. As part of urban development planning,

urban forests play a leading role in improving the urban environment and regulating the eco-

logical balance of cities and are an important indicator of urban ecological civilization [95].

These urban green spaces—mainly urban forests—are both ecological resources that are cru-

cial to improving people’s urban quality of life and solving socio-ecological problems, and are

central to urban areas supporting biodiversity conservation and ecosystem service [99]. The

vegetation growth in the urban area of Zhengzhou City showed a certain degree of positive

change between 2006 and 2020, which shows that the urban forest construction in Zhengzhou

City has shown a good development trend. In addition, the urban heat island in the study area

also showed a trend of improvement, indicating that urban forest construction has a signifi-

cant effect on mitigating urban heat islands [100].

In the typical high value plots, water, tree age, and diversity were important factors affecting

the high values. According to the planning of the greening project in Zhengzhou City, it is

known that the planning will focus on promoting the construction of green areas in Huiji Dis-

trict and Erqi District. As shown in Fig 8B, the maximum values of urban forest ecosystem ser-

vices are indeed spatially distributed in the Huiji and Erqi districts, where the two high value

areas are Jiangang Reservoir and Gangli Reservoir, respectively, indicating that watershed loca-

tions are beneficial for tree growth, which also makes the ecosystem service values higher in the

watershed locations. This conclusion is in agreement with many research results: the shape of

the high and very high ecosystem service value areas is consistent with the distribution of water-

sheds, and the ecosystem service value is proportional to the area of watersheds; the change in

the area of woodlands has a large impact on the change in the value of ecosystem services in the

study area with an amplifying effect [101, 102]. From the assessment results, another area with

the highest value in Huiji District was the neighborhood near Yingbin Road, where the tree

Fig 8. (A) Spatial distribution of the lowest value of urban forest ecosystem service. (B) spatial distribution of the highest value of urban forest ecosystem service (mnr.gov.

cn).

https://doi.org/10.1371/journal.pone.0286800.g008
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canopy coverage is extremely high, and the canopy width of individual trees is greater. The total

carbon stock in this area had the highest value, but the annual carbon sequestration value was

not outstanding; this may also be due to the high number of older trees. The situation is similar

in the Central Plains, where the carbon sequestration function was quite high in some parts of

the area, and the reduction of surface runoff was not reflected by high values. The planning of

urban forests should not only consider the planting area but also include a comprehensive

assessment of tree species, age, and other factors. Different tree species have different functions

of ecosystem services, and urban forest planning should consider species diversity in addition to

choosing high ecosystem service species as much as possible. Species diversity strategies are a

key component of urban forest management [103], and maintaining high levels of biodiversity

is important for the resilience of urban systems [104]. Tree age is another important factor

affecting ecosystem services. The carbon sequestration and oxygen release capacity of tree spe-

cies with short growth cycles are higher than those of older trees, and the uptake and release of

carbon of older trees are balanced because their biomass has basically stopped increasing [105,

106]. When comparing the carbon storage capacity of individual trees, the carbon sequestration

capacity of younger trees is usually not as high as that of older trees [107]. In urban greening for

the purpose of pursuing ecological benefits, having more senior trees is a normal phenomenon,

but the upper limit of senior trees cannot cross into the “overripe period” [108]. If there are too

many old-growth trees in the “over-maturity” period, the ecological indicators of the trees will

decline, resulting in a decline in ecological functions and the formation of degraded forests

[109]. For urban forests, a homogeneous age structure is necessary to form a stable community

and a continuous canopy cover [110, 111].

Impact on urban planning

Fig 7 shows that the cold spot value of the built-up land area in the urban master plan is high,

while the ES value is low. To improve the ecological conditions of the area and increase the ES

value, the urban green space planning strategy should focus on areas such as grasslands and

unbuilt land, rather than focusing on the green space area in the built land. In countries where

urban forest research and practice had been carried out earlier, such as Europe and the United

States, urban tree canopy cover (UTC) is the most common urban forest construction and

evaluation index, and is generally divided into existing UTC and possible UTC [112]. There-

fore, in future urban green space planning, the concept of potential canopy cover, i.e., land

areas suitable for tree planting but that are not currently utilized for planting, can be applied,

and this indicator provides a preliminary reference for industry managers and governmental

decision-making departments to quantify the scale of ecological engineering from the perspec-

tive of future ecological construction. Potential tree canopy cover is of great significance for

establishing ecological goals, formulating policies, and implementing concrete ecological con-

struction in cities and their different regions; currently, it is considered a priority area for

urban forest construction in countries outside of China.

Impacts on other case studies

The research features of this paper are as follows: (1) The utilization of the i-Tree Eco model to

assess and analyze the tree species characteristics of urban forests and their ES values in urban

areas of Zhengzhou City. (2) A graphical analysis of the spatial heterogeneity of ES in urban

forests using geostatistics, and an evaluation of the error differences in this method for differ-

ent ES spatial analyses. (3) In-depth analysis of the driving mechanism of ES spatial heteroge-

neity with a geographic probe, as well as exploration and analysis of the typical extreme value

areas of ES in urban forests in Zhengzhou City. The method of this study can be used for other
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cases, such as conducting multi-scale analysis. Certainly, considering the contradictory nature

of urban forest and urban construction in terms of land use, urban forest ES should be assessed

from a macroscopic perspective, and the regional total should be paid attention to when con-

structing urban forests. However, compared with previous studies conducted on large scales,

fine-scale research methods make it possible to identify the problem in a more targeted way,

especially in determining the contradiction between supply and demand. This approach also

provides a multi-scale perspective for other future research cases, with large-scale areas for

assessment and small-scale areas for planning.

Conclusions

This study assessed urban forest ecosystem services and their spatial variation in urban areas

of Zhengzhou, China, and used a Geodetector model to determine the factors affecting their

spatial variation. The study showed that the spatial heterogeneity of various ecosystem services

in Zhengzhou urban forest was very clear, with the highest values in the southwestern part of

the study area and the lowest values in the southeastern part. In the central north of the study

area near the Yellow River, fragmented areas of high values were also found. GDP and popula-

tion data, which indicate the degree of urbanization, show a clear competition with urban for-

est construction in terms of land use; urban forestry ecosystem services are lower in urban

areas with high GDP and population data. However, the urban forest ecosystem services are

higher in woodland areas combined with water areas compared to pure woodlands. This will

provide some referable urban construction strategies to improve both the quantity and quality

of urban forest ecosystem services in the urban areas of Zhengzhou.

This paper is a further exploration of the i-Tree Eco model and Kriging interpolation based

on the previous study. This is a useful attempt for spatial studies of urban forests. From the

spatial correlation of the four urban forest ecosystem service indicators themselves, two indica-

tors, carbon storage and carbon sequestration, are more suitable for the method, while surface

runoff avoidance and pollution removal need to be further discussed or optimized by combin-

ing more influencing factors. Although the application of geostatistics to spatial analysis of

ecology in cities has not yet achieved numerically accurate spatial quantification, improving

the accuracy of spatial gradient analysis is certainly a worthwhile goal. The i-Tree Eco model

and Kriging interpolation can be combined to make the evaluation of space from macroscopic

to local different scales possible, effectively solving the problems of insufficient data and coarse

spatial evaluation. However, it is also important to pay attention to its limitations and its high

requirements for applicable data conditions, so it cannot be used blindly and requires pre-

exploration of the data.
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22. Kiss M.; Takács Á.; Pogácsás R.; Gulyás Á. The Role of Ecosystem Services in Climate and Air Qual-

ity in Urban Areas: Evaluating Carbon Sequestration and Air Pollution Removal by Street and Park

Trees in Szeged (Hungary). Moravian Geographical Reports. 2015, 23, 36–46. https://doi.org/10.

1515/mgr-2015-0016.

23. Pace R.; Biber P.; Pretzsch H.; Grote R.Modeling ecosystem services for park trees: sensitivity of i-

tree eco simulations to light exposure and tree species classification. Forests. 2018, 9(2), 89. https://

doi.org/10.3390/f9020089.

24. Morani A.; Nowak D.; Hirabayashi S.; Guidolotti G.; Medori M.; Muzzini V.; et al. Comparing I-Tree

Modeled Ozone Deposition with Field Measurements in a Periurban Mediterranean Forest. Environ-

mental Pollution. 2014, 195, 202–209. https://doi.org/10.1016/j.envpol.2014.08.031. PMID: 25247877

25. Song P.; Kim G.; Mayer A.; He R; Tian G. Assessing the Ecosystem Services of Various Types of

Urban Green Spaces Based on I-Tree Eco. Sustainability. 2020, 12, 1630. https://doi.org/10.3390/

su12041630.

26. Chen L. The Research on the Spatial Differentiation of Traditional Villages in Hunan Province. PHD

thesis. Central South University of Forestry & Technology. 2021, 1–117.

27. Xiao X.; Mu Z.; Zhao X.; Li J.; Xue B. RS /GIS-based evaluation of forest ecosystem service value in

Northeast China. Chinese Journal of Ecology. 2017, 36(11), 3298–3304. https://doi.org/10.13292/j.

1000-4890.201711.015.

28. Van Riper C.; Kyle G. Capturing multiple values of ecosystem services shaped by environmental

worldviews: A spatial analysis. Journal of Environmental Management. 2014, 145, 374–384. https://

doi.org/10.1016/j.jenvman.2014.06.014. PMID: 25124790

29. Yang Q.; Guan D.; Liu X.; Li Y.; Wang L.; Zhong W. Social Value Assessment of Ecosystem Services

in Chongqing Wetland Parks—An Example from Xihu Wetland Park. Journal of Chongqing University

of Education. 2020, 33, 20–23. http://dx.chinadoi.cn/10.3969/j.issn.1008-6390.2020.05.004.

30. Gao X.; Wang J.; Li C.; Shen W.; Song Z.; Nie C.; et al. Land use change simulation and spatial analy-

sis of ecosystem service value in Shijiazhuang under multi-scenarios. Environmental Science and Pol-

lution Research. 2016, 1–16. https://doi.org/10.1007/s11356-021-12826-9. https://doi.org/10.1007/

s11356-015-5714-x PMID: 26728290

31. Fan Q. Urban Spatial Expansion and Simulation Research of Linyi City, Shandong Province. MA the-

sis. 2015. https://doi.org/CNKI:CDMD:2.1015.313083.

32. Robertson G.P. Geostatistics in Ecology: Interpolating With Known Variance. Ecology. 1987, 68(3),

744–748. https://doi.org/10.2307/1938482.

33. Rossi R.E.; Mulla D.J.; Journel A.G.; Franz E.H. Geostatistical Tools for Modeling and Interpreting

Ecological Spatial Dependence. Ecological Monographs. 1992, 62, 277–314. https://doi.org/10.2307/

2937096.

34. Li H.; Wang Z.; Wang Q. Theory and methodology of spatial heterogeneity quantification. Chinese

Journal of Applied Ecology. 1998, 9, 651–657. https://doi.org/CNKI:SUN:YYSB.0.1998-06-017.

PLOS ONE Spatial Heterogeneity Analysis of Urban Forest Ecosystem Services in Zhengzhou City

PLOS ONE | https://doi.org/10.1371/journal.pone.0286800 June 8, 2023 23 / 27

https://doi.org/10.1016/j.ufug.2017.09.013
https://doi.org/10.1016/j.ecoser.2014.05.002
https://doi.org/10.1016/j.envpol.2011.01.010
https://doi.org/10.1016/j.envpol.2011.01.010
http://www.ncbi.nlm.nih.gov/pubmed/21316130
https://doi.org/10.5846/stxb202010102575
https://doi.org/10.5846/stxb202010102575
https://doi.org/10.3390/su14031684
https://doi.org/10.3390/su132413624
https://doi.org/10.1016/j.ufug.2020.126859
https://doi.org/10.1016/j.ufug.2020.126859
https://doi.org/10.1515/mgr-2015-0016
https://doi.org/10.1515/mgr-2015-0016
https://doi.org/10.3390/f9020089
https://doi.org/10.3390/f9020089
https://doi.org/10.1016/j.envpol.2014.08.031
http://www.ncbi.nlm.nih.gov/pubmed/25247877
https://doi.org/10.3390/su12041630
https://doi.org/10.3390/su12041630
https://doi.org/10.13292/j.1000-4890.201711.015
https://doi.org/10.13292/j.1000-4890.201711.015
https://doi.org/10.1016/j.jenvman.2014.06.014
https://doi.org/10.1016/j.jenvman.2014.06.014
http://www.ncbi.nlm.nih.gov/pubmed/25124790
http://dx.chinadoi.cn/10.3969/j.issn.1008-6390.2020.05.004
https://doi.org/10.1007/s11356-021-12826-9
https://doi.org/10.1007/s11356-015-5714-x
https://doi.org/10.1007/s11356-015-5714-x
http://www.ncbi.nlm.nih.gov/pubmed/26728290
https://doi.org/CNKI:CDMD:2.1015.313083
https://doi.org/10.2307/1938482
https://doi.org/10.2307/2937096
https://doi.org/10.2307/2937096
https://doi.org/CNKI:SUN:YYSB.0.1998-06-017
https://doi.org/10.1371/journal.pone.0286800


35. Wang H. Quantification and Justice Analysis of Spatial Distribution of Urban Green Space Ecosystem

Services: A Case Study of Qiulin Region in Harbin, China. PHD thesis. Harbin Institute of Technology.

2017, 1–97.

36. Ji R. Study on Spatial Adaptability Planning of Rural Water Area in Southern Jiangsu Province Based

on the Relationship Between Supply and Demand of Ecosystem Services. PHD thesis. Suzhou Uni-

versity of Science and Technology College. 2020, 1–109.

37. He Y.; Kabiri M. In-Situ Characterization of Moisture Absorption and Hygroscopic Swelling of an Epoxy

Molding Compound for Electronic Packaging. J Therm Anal Calorim. 2022, 147, 5667–5675. https://

doi.org/10.1007/s10973-021-10941-w.

38. Dai X.; Johnson B.A.; Luo P.; Yang K.; Dong L.; Wang Q.; et al. Estimation of Urban Ecosystem Ser-

vices Value: A Case Study of Chengdu, Southwestern China. Remote Sensing. 2021, 13, 207. https://

doi.org/10.3390/rs13020207.

39. Fu H.; Wen J.; Ge P.; Bian S. Research on Blind-Watermarking Algorithm in Transform Domain for

Raster Geo-data Based on Synchronous Function. Geography and Geo-Information Science. 2016,

32, 35–70. https://doi.org/10.3969/j.issn.1672-0504.2016.05.010.

40. Chen G. Impacts of Urbanization on Plant Diversity: Methods, Patterns and Mechanisms. MD Thesis.

East China Normal University. 2014.

41. Nesslage G.M.; Porter W.F. Geostatistical analysis of deer harvest in the Adirondack Park, 1954–

1997. Wildl. Soc. Bull. 2001, 29 (3), 787–794.

42. Guo C.; Zhang Y.; Xia W.; Xin W.; Chen Y.; Li Z. Mapping spatiotemporal trends in the abundance and

distribution of macrophytes in hongze lake. Acta Hydrobiol. Sin. 2018, 42 (6). 1153–1161. https://doi.

org/10.7541/2018.141.

43. Li X.; Lv L.; Hu X.; Cao R.; Wu C.; Hou C. Prediction of woody plant species richness of Zhejiang Iland

based on GIS. J. Sichuan Agric. Univ. 2019, 37 (4), 511–516. https://doi.org/10.16036/j.issn.1000-

2650.2019.04.012.

44. Li X.; Jia B.; Zhang W.; Ma J.; Liu X. Woody Plant Diversity Spatial Patterns and the Effects of Urbani-

zation in Beijing, China. Urban Forestry & Urban Greening. 2020, 56, 126873. https://doi.org/10.1016/

j.ufug.2020.126873.

45. Ma J.; Li X.; Baoquan J.; Liu X.; Li T.; Zhang W.; et al. Spatial Variation Analysis of Urban Forest Vege-

tation Carbon Storage and Sequestration in Built-up Areas of Beijing Based on i-Tree Eco and Kriging.

Urban Forestry & Urban Greening. 2021, 66, 127413. https://doi.org/10.1016/j.ufug.2021.127413.

46. Liu L.; Mu G. Analysis of the Structure and Spatial Relation of Zhongyuan City Agglomeration. Areal

Research and Development. 2011, 30, 164–168. https://doi.org/10.3969/j.issn.1003-2363.2011.06.

035.

47. Wang Y.; Guo W.; Liu J.; Wang S.; Wang Q.; Wang R. Value of Ecosystem Services of Kunyu Moun-

tain Natural Reserve. Acta Ecologica Sinica. 2009, 29(1), 0523–0531. https://doi.org/10.3321/j.

issn:1000-0933.2009.01.062.

48. Zhang G. Valuation and Analysis of Urban Forest Ecological Services in Shanghai. Journal of Chinese

Urban Forestry. 2016, 14, 33–38. https://doi.org/10.3969/j.issn.1672-4925.2016.03.007.

49. Wu H. Study on Urban Comprehensive Carrying Capacity of Zhengzhou Metropolitan Area. Henan

Polytechnic University. 2018, 1–78.

50. Wang Y. The Impact of Development Intensity o the Urban and Rural Green Space Landscape Pattern

in Zhengzhou, China. PHD thesis. Henan Agricultural University. 2021, 1–65.

51. Ma J. The Study on Urban Forest Structure and Eco-service in the Sixth Ring Road of Beijing. PHD

thesis. Chinese Academy of Forestry. 2019, 1–157.

52. Kang J.; Hirabayashi S.; Shibata S. Urban Forest Ecosystem Services Vary with Land Use and Spe-

cies: A Case Study of Kyoto City. Forests. 2022, 13, 67. https://doi.org/10.3390/f13010067.

53. Nowak D.J. The effects of urban trees on air quality. USDA Forest Service. 1984, 1–4.

54. Nowak D.J.; Crane D.E. Carbon Storage and Sequestration by Urban Trees in the USA. Environmen-

tal Pollution. 2002, 116, 381–389. https://doi.org/10.1016/S0269-7491(01)00214-7. PMID: 11822716

55. Nowak D.; Hoehn R.; Crane D. Oxygen Production by Urban Trees in the United States. AUF. 2007,

33, 220–226. https://doi.org/10.48044/jauf.2007.026.

56. Hirabayashi S. i-Tree Eco Precipitation Interception Model Descriptions. 2013, 21.

57. Gaglio M, Pace R, Muresan AN, Grote R, Castaldelli G, Calfapietra C, et al. Species-specific efficiency

in PM2.5 removal by urban trees: From leaf measurements to improved modeling estimates. Science

of The Total Environment. 2022; 844: 157131. https://doi.org/10.1016/j.scitotenv.2022.157131 PMID:

35798105

PLOS ONE Spatial Heterogeneity Analysis of Urban Forest Ecosystem Services in Zhengzhou City

PLOS ONE | https://doi.org/10.1371/journal.pone.0286800 June 8, 2023 24 / 27

https://doi.org/10.1007/s10973-021-10941-w
https://doi.org/10.1007/s10973-021-10941-w
https://doi.org/10.3390/rs13020207
https://doi.org/10.3390/rs13020207
https://doi.org/10.3969/j.issn.1672-0504.2016.05.010
https://doi.org/10.7541/2018.141
https://doi.org/10.7541/2018.141
https://doi.org/10.16036/j.issn.1000-2650.2019.04.012
https://doi.org/10.16036/j.issn.1000-2650.2019.04.012
https://doi.org/10.1016/j.ufug.2020.126873
https://doi.org/10.1016/j.ufug.2020.126873
https://doi.org/10.1016/j.ufug.2021.127413
https://doi.org/10.3969/j.issn.1003-2363.2011.06.035
https://doi.org/10.3969/j.issn.1003-2363.2011.06.035
https://doi.org/10.3321/j.issn:1000-0933.2009.01.062
https://doi.org/10.3321/j.issn:1000-0933.2009.01.062
https://doi.org/10.3969/j.issn.1672-4925.2016.03.007
https://doi.org/10.3390/f13010067
https://doi.org/10.1016/S0269-7491(01)00214-7
http://www.ncbi.nlm.nih.gov/pubmed/11822716
https://doi.org/10.48044/jauf.2007.026
https://doi.org/10.1016/j.scitotenv.2022.157131
http://www.ncbi.nlm.nih.gov/pubmed/35798105
https://doi.org/10.1371/journal.pone.0286800


58. Larondelle N.; Lauf S. Balancing Demand and Supply of Multiple Urban Ecosystem Services on Differ-

ent Spatial Scales. Ecosystem Services. 2016, 22, 18–31. https://doi.org/10.1016/j.ecoser.2016.09.

008.

59. Hu X.; Shen Q.; Xu G. Evaluation and Analysis on the Coordination Degree Between Urbanization and

Agricultural Modernization-A Case Study of Five Functional Zones in Chongqing. Chinese Journal of

Agricultural Resources and Regional Planning. 2015, 36, 16–22. https://doi.org/10.7621/cjarrp.1005-

9121.20150403.

60. Wang Z. Geostatistics and Its Application in Ecology. Beijing: Science Press. (in Chinese), Science

Publishers. 1999.

61. Vieira S.R.; Hatfield J.L.; Nielsen D.R.; Biggar J.W.; Geostatistical theory and application to variability

of some agronomical properties. Hilgardia. 1983, 51(3), 1–75. https://doi.org/10.3733/hilg.

v51n03p075.

62. Ripley B.D. Spatial statistics. Journal of Marketing Research. 1983, 19(2), 255 p. https://doi.org/10.

2307/3151630.

63. Cambardella C.A.; Moorman T.B.; Novak J.M.; Parkin T.B.; Karlen D.L.; Turco R.F.; et al. Field-Scale

Variability of Soil Properties in Central Iowa Soils. Soil Science Society of America Journal. 1994, 58,

1501–1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x.

64. Johnston K.; Hoef J.M.V.; Krivoruchko K.; Lucas N. Using ArcGIS™Geostatistical Analyst. 2004, 1–

307.

65. Zhong R. Analysis of regional distribution of soil resistance index to erosion in Jiangxi Province. MA

thesis, Changjiang River Scientific Research Institute. 2010.

66. Wang X.; Zhang H. Spatial variability of soil organic matter. 1995, 85–89. https://doi.org/CNKI:SUN:

TURA.0.1995-02-007.

67. Zhang J.; Bi R.; Ding H.; Xu Y.; Wen W. Interpolation method of soil organic matter in loess hilly areas

based on topographic classification. Jiangsu Agricultural Science. 2021, 49, 182–189. https://doi.org/

10.15889/j.issn.1002-1302.2021.08.033.

68. Qu Y.; Jiang G.; Yang Y.; Zheng Q.; Li Y.; Ma W. Multi-Scale Analysis on Spatial Morphology Differen-

tiation and Formation Mechanism of Rural Residential Land: A Case Study in Shandong Province,

China. Habitat International. 2018, 71, 135–146. https://doi.org/10.1016/j.habitatint.2017.11.011.

69. He J.; Shi X.; Fu Y. Optimization of ecological security pattern in the source area of Fenhe River Basin

based on ecosystem services. Journal of Natural Resources. 2020, 35, 814–825. https://doi.org/10.

31497/zrzyxb.20200406.

70. Wang J.; Li X.; Christakos G.; Liao Y.; Zhang T.; Gu X.; et al. Geographical Detectors-Based Health

Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China.

International Journal of Geographical Information Science. 2010, 24, 107–127. https://doi.org/10.

1080/13658810802443457.

71. Wang J.; Xu C. Geodetector: Principle and prospective. Acta Ggraphica Sinica. 2017, 72, 116–134.

https://doi.org/10.11821/dlxb201701010.

72. Zhu L.; Meng J.; Zhu L. Applying Geodetector to Disentangle the Contributions of Natural and Anthro-

pogenic Factors to NDVI Variations in the Middle Reaches of the Heihe River Basin. Ecological Indica-

tors. 2020, 117, 106545. https://doi.org/10.1016/j.ecolind.2020.106545.

73. Chen T.; Feng Z.; Zhao H.; Wu K. Identification of Ecosystem Service Bundles and Driving Factors in

Beijing and Its Surrounding Areas. Science of The Total Environment. 2020, 711, 134687. https://doi.

org/10.1016/j.scitotenv.2019.134687. PMID: 31812415

74. Jiang L.; Chen X.; Zhu H. The spatial heterogeneity distribution of Chinese urban nursing homes and

socio-economic driving factors. Acta Ggraphica Sinica. 2021, 76, 1951–1964. https://doi.org/10.

11821/dlxb202108010.

75. Yang S. Spatial-temporal Distribution Difference and Influence Mechanism of Ecosystem Service

Value in Wuhan Urban Agglomeration. PHD thesis. China University of Geosciences Wuhan. 2018, 1–

83.

76. Zhang L.; Fu B. The progress in ecosystem services mapping: a review. Acta Ecologica Sinica. 2014,

34(2), 316–325. https://doi.org/10.5846/stxb201303110391.

77. Nowak, D.J.; Hoehn, R.E.; III, Crane, D.E.; Stevens, J.C.; Walton, J.T. Assessing Urban Forest Effects

and Values, San Francisco’s Urban Forest, U.S. Department of Agriculture, Forest Service, Northern

Research Station: Newtown Square, PA, p. 2007. NRS-RB-8.

78. Qu B.; Li X. Study on Ecological Safety Pattern of Haitan Island Based on Ecological Service Function.

Journal of Fujian Normal University (Natural Science Edition). 2019, 35, 28–45. https://doi.org/10.

12046/j.issn.1000–5277.2019.01.004 .

PLOS ONE Spatial Heterogeneity Analysis of Urban Forest Ecosystem Services in Zhengzhou City

PLOS ONE | https://doi.org/10.1371/journal.pone.0286800 June 8, 2023 25 / 27

https://doi.org/10.1016/j.ecoser.2016.09.008
https://doi.org/10.1016/j.ecoser.2016.09.008
https://doi.org/10.7621/cjarrp.1005-9121.20150403
https://doi.org/10.7621/cjarrp.1005-9121.20150403
https://doi.org/10.3733/hilg.v51n03p075
https://doi.org/10.3733/hilg.v51n03p075
https://doi.org/10.2307/3151630
https://doi.org/10.2307/3151630
https://doi.org/10.2136/sssaj1994.03615995005800050033x
https://doi.org/CNKI:SUN:TURA.0.1995-02-007
https://doi.org/CNKI:SUN:TURA.0.1995-02-007
https://doi.org/10.15889/j.issn.1002-1302.2021.08.033
https://doi.org/10.15889/j.issn.1002-1302.2021.08.033
https://doi.org/10.1016/j.habitatint.2017.11.011
https://doi.org/10.31497/zrzyxb.20200406
https://doi.org/10.31497/zrzyxb.20200406
https://doi.org/10.1080/13658810802443457
https://doi.org/10.1080/13658810802443457
https://doi.org/10.11821/dlxb201701010
https://doi.org/10.1016/j.ecolind.2020.106545
https://doi.org/10.1016/j.scitotenv.2019.134687
https://doi.org/10.1016/j.scitotenv.2019.134687
http://www.ncbi.nlm.nih.gov/pubmed/31812415
https://doi.org/10.11821/dlxb202108010
https://doi.org/10.11821/dlxb202108010
https://doi.org/10.5846/stxb201303110391
https://doi.org/10.12046/j.issn.10005277.2019.01.004
https://doi.org/10.12046/j.issn.10005277.2019.01.004
https://doi.org/10.1371/journal.pone.0286800


79. Mao Q.; Huang G.; Wu J. Urban Ecosystem Services: A Review. Chinese Journal of Applied Ecology.

2015, 26(4), 1023–1033. https://doi.org/10.13287/j.1001-9332.2015.0016. PMID: 26259442

80. Ma N.; He X.; Shi X.; Chen W. Assessment of Urban Forest Economic Benefits Based on i-Tree Model

Research Progress. Chinese Journal of Ecology. 2011, 30(4), 810–817. https://doi.org/10.13292/j.

1000-4890.2011.0107.

81. I-Tree Eco User’s Manual (v4.1.0). Washington, DC: United States Forest Service. USFS. 2014.

82. Xu Y.; Zhang J.; Han S.; Wang S.; Wang C.; Wang S. Spatial heterogeneity of soil inorganic nitrogen

in the broadleaved-Korean pine forests in Changbai Mountain of northeast China. Chinese Journal of

Applied Ecology. 2010, 21, 1627–1634. https://doi.org/0.13287/j.1001-9332.2010.0263. PMID:

20879516

83. Xie G.; Zhen L.; Lu C.; Xiao Y.; Chen C. Expert Knowledge Based Valuation Method of Ecosystem

Services in China. Journal of Natural Resources. 2008, 23, 911–919. https://doi.org/10.11849/zrzyxb.

2008.05.019.

84. Hou J. Geostatistics and its Application in China’s Mining Industry. China Mining Magazine. 1993, 2,

24–40.

85. Hengl T.; Heuvelink G.; Stein A. A generic framework for spatial prediction of soil variables based on

regression-kriging. Geoderma. 2004, 120 (2004), 75–93. https://doi.org/10.1016/j.geoderma.2003.

08.018

86. Keskin H.; Grunwald S. Regression kriging as a workhorse in the digital soil mapper’s toolbox. Geo-

derma. 2018, 326, 22–41. https://doi.org/10.1016/j.geoderma.2018.04.004.

87. Qiao P.; Lei M.; Yang S.; Yang J.; Guo G.; Zhou X. Comparing ordinary kriging and inverse distance

weighting for soil as pollution in Beijing. Environmental Science and Pollution Research. 2018, 1–12,

https://doi.org/10.1007/s11356-018-1552-y. PMID: 29572743

88. Pouladi N.; Møller A.; Tabatabai S.; Greve M. Mapping soil organic matter contents at field level with

Cubist, Random Forest and kriging. Geoderma. 2019, 342, 85–92. https://doi.org/10.1016/j.

geoderma.2019.02.019.

89. Wang Y.; Xiao Z.; Aurangzeib M.; et al. Effects of freeze-thaw cycles on the spatial distribution of soil

total nitrogen using a geographically weighted regression kriging method, Science of the Total Environ-

ment. 2020. https://doi.org/10.1016/j.scitotenv.2020.142993 PMID: 33129536

90. Liu P.; Zhou Z.; Zhang P. Responses of Ecosystem Service Value to Land Use Change: A Case Study

in Zhengzhou City, China. Journal of Henan University (Natural Science). 2013, 43, 643–649. https://

doi.org/10.15991/j.cnki.411100.2013.06.005.

91. Zhang S.; Zhao X.; Wang Y. Evaluation of ecological service value and spatial pattern analysis of

Zhengzhou City. Ecological Science. 2022, 41(1): 129–137. https://doi.org/10.14108/j.cnki.1008-

8873.2022.01.015.

92. Duan Y.; Lei Y.; Wu B.; Peng D.; Tian G. Evaluation and dynamic study on the ecological service value

for urban green space system in Zhengzhou. Ecological Science. 2016, 35(2), 81–88. https://doi.org/

10.14108/j.cnki.1008-8873.2016.02.013.

93. Zhang Y.; Zhang S.; He R.; Xing L.; Wang Y.; Zhao X.; et al. Research on Urban Forest Ecosystem

Evaluation and Management Based on the Coordination of "Ecological-production-living space".

Shanghai Urban Planning. 2020, 1, 48–54. https://doi.org/10.11982/j.supr.20200109.

94. Zhang G.; Zhang Y. Analysis of Forest Ecosystem Service Value Assessment in Zhengzhou City.

Shanghai Agricultural Science and Technology. 2020, 6, 100–101.

95. Guo H.; Yang Z.; Fu X.; Zhao J.; Song L.; Chen X. Dynamic Analysis of Ecological Service Value of

Green Space of the City Park in Zhengzhou. Henan Science. 2020, 38, 435–440. https://doi.org/

CNKI:SUN:HNKX.0.2020-03-014.

96. Li D.; Zhang X.; Wang Y.; Zhang X.; Li L.; Lu L. Evolution Process of Ecosystem Services and the

Trade-off Synergy in Xin’an River Basin. Acta Ecologica Sinica. 2021, 41(17), 6981–6993. https://doi.

org/10.5846/stxb202010102575.

97. Liu D. Impact of urbanization on stormwater runoff—A case study of Wuhan City. Pioneering with Sci-

ence & Technology Monthly. 2009, 1, 66–71. https://doi.org/10.3969/j.issn.1672-2272.2009.01.031 .

98. Jin P. Spatial and Temporal Characteristics of Ecosystem Service Trade-offs and Synergistic Relation-

ships in Shaanxi Province. Agriculture & Technology. 2022, 42(07), 28–31. https://doi.org/10.19754/j.

nyyjs.20220415007.

99. Jia B.; Wang C.; Qiu E.; Qie E. The status and trend on the urban tree canopy research. Acta Ecolo-

gica Sinica. 2013, 33, 0023–0032. https://doi.org/10.5846/stxb201204220577.

100. Yang Y.; Song F.; Ma J.; Wei Z.; Song L.; Cao W. Spatial and temporal variation of heat islands in the

main urban area of Zhengzhou under the two-way influence of urbanization and urban forestry. PLoS

ONE. 2022, 17(8): e0272626. https://doi.org/10.1371/journal.pone.0272626. PMID: 35947622

PLOS ONE Spatial Heterogeneity Analysis of Urban Forest Ecosystem Services in Zhengzhou City

PLOS ONE | https://doi.org/10.1371/journal.pone.0286800 June 8, 2023 26 / 27

https://doi.org/10.13287/j.1001-9332.2015.0016
http://www.ncbi.nlm.nih.gov/pubmed/26259442
https://doi.org/10.13292/j.1000-4890.2011.0107
https://doi.org/10.13292/j.1000-4890.2011.0107
https://doi.org/0.13287/j.1001-9332.2010.0263
http://www.ncbi.nlm.nih.gov/pubmed/20879516
https://doi.org/10.11849/zrzyxb.2008.05.019
https://doi.org/10.11849/zrzyxb.2008.05.019
https://doi.org/10.1016/j.geoderma.2003.08.018
https://doi.org/10.1016/j.geoderma.2003.08.018
https://doi.org/10.1016/j.geoderma.2018.04.004
https://doi.org/10.1007/s11356-018-1552-y
http://www.ncbi.nlm.nih.gov/pubmed/29572743
https://doi.org/10.1016/j.geoderma.2019.02.019
https://doi.org/10.1016/j.geoderma.2019.02.019
https://doi.org/10.1016/j.scitotenv.2020.142993
http://www.ncbi.nlm.nih.gov/pubmed/33129536
https://doi.org/10.15991/j.cnki.411100.2013.06.005
https://doi.org/10.15991/j.cnki.411100.2013.06.005
https://doi.org/10.14108/j.cnki.1008-8873.2022.01.015
https://doi.org/10.14108/j.cnki.1008-8873.2022.01.015
https://doi.org/10.14108/j.cnki.1008-8873.2016.02.013
https://doi.org/10.14108/j.cnki.1008-8873.2016.02.013
https://doi.org/10.11982/j.supr.20200109
https://doi.org/CNKI:SUN:HNKX.0.2020-03-014
https://doi.org/CNKI:SUN:HNKX.0.2020-03-014
https://doi.org/10.5846/stxb202010102575
https://doi.org/10.5846/stxb202010102575
https://doi.org/10.3969/j.issn.1672-2272.2009.01.031
https://doi.org/10.19754/j.nyyjs.20220415007
https://doi.org/10.19754/j.nyyjs.20220415007
https://doi.org/10.5846/stxb201204220577
https://doi.org/10.1371/journal.pone.0272626
http://www.ncbi.nlm.nih.gov/pubmed/35947622
https://doi.org/10.1371/journal.pone.0286800


101. Peng W.; Zhou J.; Yang C.; Zhao J.; Luo H. Research on Ecosystem Service Values Based on Land

Use Change in Sichun Province. Resources and Environment in the Yangtze Basin. 2014, 23, 1053–

1062. https://doi.org/10.11870/cjlyzyyhj201407017.

102. Liu G.; Zhang L.; Zhang Q. Spatial and temporal dynamics of land use and its influence on ecosystem

service value in Yangtze River Delta. Acta Ecologica Sinica. 2014, 34(12), 3311–3319. https://doi.org/

10.5846/stxb201306121679.

103. Kenney W.A. Criteria Arid Indicators for Strategic Urban Forest Pianning and Management. Arboricul-

ture & Urban Forestry. 2011, 37(3), 108–117.

104. Kremen C. Managing Ecosystem Services: What Do We Need to Know about Their Ecology?: Ecology

of Ecosystem Services. Ecology Letters. 2005, 8, 468–479. https://doi.org/10.1111/j.1461-0248.2005.

00751.x. PMID: 21352450

105. Zhao X. Study on Application of Low-carbon Concept in Urban Plant Landscape Design. PHD thesis.

Chinese Academy of Forestry. 2014, 1–73.

106. Wang X.; Liu W. Factors affecting carbon sequestration in forests. Forestry and Ecology. 2019, 40–41.

107. Chen J. How to permeate low-carbon environmental awareness in landscape design. Modern Horticul-

ture. 2014, 2, 81, https://doi.org/10.14051/j.cnki.xdyy.2014.04.015.

108. Yu R. Urban and rural greening should pursue "green volume". The Matic Exposition. 2015. 8, 16–17.

https://doi.org/CNKI:SUN:GTLH.0.2015-08-007.

109. Duan H.; Zhang J.; Zhang Z. Status Analysis and Restoration Suggestions of Degraded Forest in

Three-North Engineering Area of Inner Mongolia. Forest Resources Management. 2022, 1, 174–179.

https://doi.org/10.13466/j.cnki.lyzygl.2022.01.021.

110. McPherson E.G.; Kotow L. A Municipal Forest Report Card: Results for California, USA. Urban For-

estry & Urban Greening. 2013, 12, 134–143. https://doi.org/10.1016/j.ufug.2013.01.003.

111. McPherson E.G.; Rowntree R.A. Using Structural Measures to Compare Twenty-Two U.S. Street

Tree Populations. Landscape Jrnl. 1989, 8, 13–23. https://doi.org/10.3368/lj.8.1.13.

112. Jia B.; Zhang W.; Li X.; Li T. The regional distribution, dynamic change and assessment research of

possible urban tree canopy in Beijing. Acta Ecologica Sinica. 2020, 40(3), 874–887. https://doi.org/

110.5846/stxb201811012355.

PLOS ONE Spatial Heterogeneity Analysis of Urban Forest Ecosystem Services in Zhengzhou City

PLOS ONE | https://doi.org/10.1371/journal.pone.0286800 June 8, 2023 27 / 27

https://doi.org/10.11870/cjlyzyyhj201407017
https://doi.org/10.5846/stxb201306121679
https://doi.org/10.5846/stxb201306121679
https://doi.org/10.1111/j.1461-0248.2005.00751.x
https://doi.org/10.1111/j.1461-0248.2005.00751.x
http://www.ncbi.nlm.nih.gov/pubmed/21352450
https://doi.org/10.14051/j.cnki.xdyy.2014.04.015
https://doi.org/CNKI:SUN:GTLH.0.2015-08-007
https://doi.org/10.13466/j.cnki.lyzygl.2022.01.021
https://doi.org/10.1016/j.ufug.2013.01.003
https://doi.org/10.3368/lj.8.1.13
https://doi.org/110.5846/stxb201811012355
https://doi.org/110.5846/stxb201811012355
https://doi.org/10.1371/journal.pone.0286800

