
Convergence and Technologies

Spatial Heterogeneity and Evolutionary Dynamics

Modulate Time to Recurrence in Continuous and

Adaptive Cancer Therapies

Jill A. Gallaher1, Pedro M. Enriquez-Navas2, Kimberly A. Luddy2,

Robert A. Gatenby1, and Alexander R.A. Anderson1

Abstract

Treatment of advanced cancers has benefited from new agents

that supplement or bypass conventional therapies. However, even

effective therapies fail as cancer cells deploy a wide range of resis-

tance strategies. We propose that evolutionary dynamics ultimately

determine survival and proliferation of resistant cells. Therefore,

evolutionary strategies should be used with conventional therapies

to delay or prevent resistance. Using an agent-based framework to

model spatial competition among sensitive and resistant popula-

tions, we applied antiproliferative drug treatments to varying ratios

of sensitive and resistant cells. We compared a continuous maxi-

mum-tolerated dose schedule with an adaptive schedule aimed at

tumor control via competition between sensitive and resistant cells.

Continuous treatment cured mostly sensitive tumors, but with any

resistant cells, recurrence was inevitable. We identified two adaptive

strategies that control heterogeneous tumors: dose modulation

controlsmost tumorswith less drug,while amore vacation-oriented

schedule can control more invasive tumors. These findings offer

potential modifications to treatment regimens that may improve

outcomes and reduce resistance and recurrence.

Significance: By using drug dose modulation or treatment

vacations, adaptive therapy strategies control the emergence of

tumor drug resistance by spatially suppressing less fit resistant

populations in favor of treatment sensitive ones. Cancer Res; 78(8);

2127–39. �2018 AACR.

Introduction

Despite major advances in cancer therapies, most metastatic

cancers remain fatal because tumor cells havea remarkable capacity

to evolve drug resistance, both through genetic and nongenetic

mechanisms (1).Most investigations of cancer treatment resistance

have focused on identifying and targeting the molecular mechan-

isms that confer resistance. However, defeat of one resistance

strategy often results in the deployment of another (2).

An alternative approach focuses on the population-level

dynamics governed by Darwinian evolutionary principles that

define the fitness of each cell within the local environmental

context. For example, cancer cells often employ multidrug resis-

tance pumps, in which the synthesis, maintenance, and operation

require considerable investment of resources (up to 50% of

the cell's total energy budget; ref. 3). In the harsh tumor micro-

environment, this investment in survival will likely require diver-

sion of resources that would ordinarily be devoted to invasion

or proliferation. Thus, while tumor cells may possess the molec-

ular mechanisms necessary for therapy resistance, proliferation

of resistant cells is governed by complex interactions that

include the cost/benefit ratio of the resistance mechanism(s) and

competition with other tumor subpopulations.

A common maxim in cancer treatment is to "hit hard and fast"

through maximum dose-dense strategies that administer the

highest possible drug dose in the shortest possible time period.

The maximum-tolerated dose (MTD) principle has been the

standard of care for cancer treatment for several decades and is

the basis for clinical evaluation formost phase I cancer drug trials.

It has not, however, resulted in consistent cures in patients with

most disseminated cancers (4). An evolutionary flaw in this

strategy is the assumption that resistant populations are not

present prior to therapy. It is now clear that cancer cells can

be insensitive even to treatments that they have never "seen"

before. Therefore, MTD therapy designed to kill as many cancer

cells as possible, although intuitively appealing, may be evolu-

tionarily unwise. This is because of a well-recognized Darwinian

dynamic from ecology termed "competitive release," which is

observed, for example, when high doses of pesticide are applied
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Major Findings

Recurrence is inevitable when applying a continuous

treatment schedule for a tumor with any preexisting resis-

tance. However, adaptive strategies can control such het-

erogeneous tumors using either dose modulation or treat-

ment vacations. Further, a treatment vacation approach

seems to be the best strategy for dealing with more invasive

and evolving tumors.
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Quick Guide to Model and Major Assumptions

Off-lattice agent-based model

We used an off-lattice agent-based model to investigate the spatial evolutionary dynamics of different treatment schedules on

heterogeneous tumors. Space is the limiting factor, such that at carrying capacity, a cell will enter quiescence due to contact

inhibition. Space is deemed available if any contiguous set of integer angles is empty and is sufficient to allow a cell to fit without

overlap (described previously in ref. 5).When a cell is quiescent, we assume that it cannot proliferate and is not affected by the drug.

We also assume that there is no cell death due to regular turnover, and resources are abundant when cell densities are below carrying

capacity. Model flowchart and setup are shown in Supplementary Fig. S1A and S1B.

We initially seeded 100 cells in two configurations: randomly scattered throughout a 1.5-mm radius circular domain, representing

an in vitro cell culture distribution, and tightly clustered in the center, representing a dense tumor mass. We started with 100 cells to

keep the initial population small but also large enough to capture a sufficiently diverse preexisting distribution of phenotypes.

When these were grown with two distinct sensitive and resistant phenotypes, we used the average cell-cycle times for the sensitive

and resistant cells found at the beginning of the in vitro experiment (MCF7: 40 hours, MCF7Dox: 60 hours). With the

heterogeneous tumors, the initial distribution of phenotypes varied and was reported. The simulation was stopped when the

number of cells reached 15,000, which is around 1.5 mm in diameter when grown as a dense mass.

Treatment

For continuous therapy,we applied theMTD the entire duration, but only if a cell is capable of dividing does it become sensitive to

drug toxicity. For adaptive therapy, each dose was instantaneously effective, ignoring any short-term pharmacokinetics. Regardless

of the treatment schedule, a cell's response to drug exposure was defined as a probability of death, Pdeath, which depends on its

sensitivity, s, and the dose, D:

Pdeath T;Dð Þ ¼ s Tð Þ
Dn

Dn þ Kn
0:5

: ðAÞ

Here, D is a value from 0 to 1, where D ¼ 1 at the MTD. Due to the resistance cost, we assigned the cells with the shortest cycle

times, Tmin, 100% sensitivity, and in a linear fashion, the longest cycle times, Tmax, as completely resistant, i.e., s(T)¼ 1� (T� Tmin)/

(Tmax � Tmin). This provides a simple linear tradeoff between a cell's fitness in the absence and presence of drug (6–10). We

used a Hill function to describe the dose effect (11, 12), setting the Hill coefficient and half-maximal activity to n¼ 1.5 and K0.5 ¼
0.25. These values are not specific, but generically assume a response function that gives nearly 100% probability of death at the

highest drug concentrations, dropping off slowly at mid ranges and then quicker as it gets to lower concentrations. The dose

varies from its previous value D0 based on the relationship of the current number of cells N to the previous number of cells N0

according to the following equation:

D a; bð Þ ¼

0 if N <0:5N0
1þ að ÞD0 if N > 1þ bð ÞN0

1� að ÞD0 if N � 1� bð ÞN0

D0 otherwise

8

>

<

>

:

; ðBÞ

where a and b are fixed values that affect how much the dose changes due to population size changes. In Eq. (B), if the number

of cells is below half of the original, a treatment vacation occurs. If there is a fractional increase in the number of cells greater

than b, there will be a fractional increase in the dose by a, and if there is a fractional decrease in population size greater than b,

there is a fractional decrease in dose by a. Otherwise, the dose remains the same. The dose always began at the MTD, never

exceeds the MTD, and each new dose was determined every 3 days in accordance with the experiments reported in ref. 13. If

a cell was killed by the drug, there was a 15 to 30 hours delay, randomly chosen, before it was removed from the domain, to

account for the time it takes for apoptosis to occur (14, 15).

Treatment was stopped when either the tumor was cured (i.e., the number of current cells N ¼ 0), recurs (i.e., N ¼ 4/

3N0 ¼ 20,000 cells), or the tumor reached an age of 2 years after treatment. We assumed tumor control if the final number of

cells was below 10,000, which is half the value that determines recurrence and accounts for fluctuations during adaptive

treatments.

Cell migration

To examine cell migration, we assumed all cells move in a persistent random walk as follows. Each cell was given a random

angle of movement and a persistence time (randomly chosen from a normal distribution with 80 � 40 minutes) during which
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for pest eradication (16); competitive release allows rapid emer-

gence of resistant populations because of the combination of

intense selection pressure and elimination of all potential com-

petitors (17).Whenwell timed, lower drugdoses are also less toxic

and can normalize vasculature, whichmay improve drug delivery

and immune response (18–21).

Despite the growing recognition that heterogeneity and

evolution play a significant role in driving treatment failure,

explicit inclusion of Darwinian principles in clinical trial design

is rare (22–25). However, both clinical and preclinical studies

have shown promising results. Enriquez-Navas and colleagues

used an evolution-guided treatment strategy to control breast

cancer tumors in mice (13). They found that progression-free

survival can be prolonged when paclitaxel treatment schedules

incorporate dose modulations and treatment holidays such

that less drug is given to a responding tumor and more to a

rebounding tumor (Fig. 1A). An ongoing clinical trial at the

Moffitt Cancer Center (NCT02415621) tests these evolutionary

principles in patients with metastatic castration-resistant pros-

tate cancer to try to prevent the evolution of resistance to

abiraterone therapy (26, 27). In this trial, abiraterone is dis-

continued when the blood prostate-specific antigen (PSA)

concentration falls below 50% of the initial value and does

not resume until the PSA returns to the pretreatment level

(Fig. 1B). It is important to note that: (i) each patient serves

as their own control to calibrate the PSA as a relative value

and (ii) the adaptive schedules effectively personalize the treat-

ment to patient response so that while one patient has only

2 courses of treatment in a year, another gets 3 in 10 months.

Yet both remain under control.

Two important questions emerge from these results: (i) For

which cancers is continuous (MTD) treatment the best strategy,

and when is adaptive better? (ii) For adaptive treatments, when

should a patient receive treatment holidays instead of dose

modulation? While selection for resistance through application

of continuous cytotoxic therapy seems inevitable, proliferation of

those cells may be controlled using evolutionary principles.

Importantly, multiple experimental models have shown that

drug-resistant cancer cells proliferate slower than sensitive cells

in the absence of drug (6–10). This is because resistant tumor cells,

like most drug-resistant bacteria, incur a fitness cost due to the

energy costs involved (28). Here, we demonstrated that fitness

it moved in a straight line at 5 mm/hour. After this time, it turned at a random angle and started again with a new persistence

time. All cells migrated in this way as long as they were not in the quiescent state and did not contact another cell. Upon

contact, the cells turned by a random angle and started again with a new persistence time.

Phenotypic drift

We examined phenotypic drift by allowing daughter cells to inherit a slightly different proliferation rate upon division. At each

division, there was a 10%probability that the cell's proliferation rate could change by randomly choosing 1 of 3 options: increase its

cycle time by 1 hour, decrease its cycle time by 1 hour, or stay the same (while keeping the cell cycle bounded within the range of

10–50 hours). The other 90% of the time, the proliferation rate stayed the same. Daughter cells had the possibility of inheriting

different proliferation rates.

Figure 1.

Adaptive therapy in the laboratory

and the clinic. A, Mice implanted with

triple-negative human breast cancer

were treated with adaptive paclitaxel

treatment. If the volume dips below

150mm3, a treatment vacation occurs;

if there is a 20% tumor volume

decrease (or increase), there is a 50%

dose decrease (or increase) and

otherwise the dose remains the same

(see ref. 14 for details). B, Patients

with metastatic castrate-resistant

prostate cancer are treated with

abiraterone such that treatment is

stopped if PSA falls below 50% of the

original and resumes when the PSA

exceeds the original value.

Continuous versus Adaptive Cancer Therapies
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costs can be observed in vitro and computationally investigated

these questions under the hypothesis that these costs can be

exploited to delay or prevent proliferation of resistant cells in

the tumor.

Materials and Methods

In vitro coculture experiment

The MCF7 human breast cancer cells were acquired from the

Physical Sciences in Oncology Network cell library. Prior to

beginning the study and after completion, the cells were authen-

ticated by the Moffitt Cancer Center Molecular Genomics Core

using short tandem repeat DNA typing according to ATCC's

guidelines in Reid and colleagues (29) and tested forMycoplasma

using the MycoAlert Mycoplasma Detection Kit. At all times, the

cells tested negative for Mycoplasma and were determined to be

greater than 90% identical to MCF7 human breast adenocarci-

noma cells (ATCC HTB-22). Cells were used in the described

experiments within 5 passages from thawing. MCF7 doxorubicin

(Dox) resistance was selected and maintained by collecting the

survivors of high-doseDox treatments (1mmol/L). ParentalMCF7

and MCF7 Dox were tagged with green fluorescent and red

fluorescent protein, respectively. Cells (5 � 105) were plated in

complete growth media at 1:0, 1:1, and 0:1 ratios. Cells were

harvested every 3 to 4 days and counted. Cells (5 � 105) were

replated each time, and the remaining cells were analyzed by flow

cytometry for viability, GFP, and RFP expression. Fraction of

population in mixed cultures was measured as percent positive

of all viable cells.

Results

Fitness differences and space limitations affect competition

and selection

The cost of resistance and the selection force imposed by

competition and space limitations can be demonstrated through

a combination of in vitro and in silico models. For the in vitro

experiment, the MCF7Dox cell line was used, which is highly

resistant tomany chemotherapy agents due to upregulation of the

membrane efflux pump P-glycoprotein or multiple drug resis-

tance (MDR1) proteins. When plated in the absence of chemo-

therapy (doxorubicin) in the media, the MCF7Dox cell line was

observed to grow much slower than the parental MCF7 line

(initial doubling times were MCF7:40 hours and MCF7Dox:60

hours). When cocultured, the sensitive MCF7 cells rapidly out-

competed the resistantMCF7Dox line after only a few generations

(Fig. 2, top left). This clearly illustrates the cost to resistance. We

then investigated these evolutionary dynamics through our

computational model system using the same initial cell cycle

times for the sensitive (40 hours) and resistant cells (60 hours)

from the in vitro experiment using both a scattered distribution

analogous to the in vitro setting and a more clustered distribution

analogous to a more in vivo setting, e.g., a solid tumor. With the

scattered distribution,weobserved selection for the faster growing

sensitive cells, but there was ample space for most cells to grow

unimpeded due to the low density (Fig. 2, middle left). In

contrast, when cells were clustered closely together, they were

less free tomove andproliferate (Fig. 2, bottom left). Proliferation

was thus confined to a very narrow advancing edge, so the

population grew much slower than when each separated colony

had its own "edge." This added additional selection pressure,

causing sensitive cells to quickly take over the expanding front,

trapping the resistant cells within.

Sensitivity to drugs is often viewed as binary, where a cell

that is exposed to drug simply dies if sensitive or survives if

resistant. However, in reality tumors have a more nuanced mix

of phenotypes. We investigated how various mixtures of sen-

sitive and resistant cells compete to form a solid tumor mass,

starting with cell cycle times randomly drawn from a normal

distribution characterized by a mean, s, and a standard devi-

ation, ss. Figure 2A to D shows the final spatial configuration

of some tumors grown from different initial populations. In

each case, the more resistant cells got trapped in the interior of

the tumor by the more sensitive cells, which took over the

invading edge. Coexistence between different phenotypes

was seen, but given enough time the more proliferative pheno-

types should take over the invading edge. Similar changes in

phenotype distributions are seen over a variety initial condi-

tions (Supplementary Fig. S2). Overall, the trend shows that for

a heterogeneous distribution of phenotypes, the faster prolife-

rators will dominate the population, but the timing depends

on the relative fitness differences.

Continuous treatments can cure some tumors; adaptive

treatments can control most tumors

We compared a conventional continuous MTD treatment

strategy (CT) with an "adaptive therapy" (AT), wherein we

adapted the next treatment based upon the tumor's previous

response to treatment in terms of change in population size. We

used an adaptive scheme that changes the dose by 25% (a ¼
0.25) if the population size changes by 5% (b ¼ 0.05), further

we apply a treatment vacation if the population is below half

the original, otherwise the dose stays the same (see Eq. B).

Treatment was applied to the tumors from Fig. 2A to D until

either the tumor was cured, recurred, or the tumor reached an

age of 2 years after treatment.

In general,we found that therewas not one therapy strategy that

works best for all tumors, but the response to the treatment

depended on the tumor composition (Fig. 3). For the most

sensitive and homogeneous tumor (Fig. 3A), CT killed the tumor

completely while AT kept the tumor under control by using an

average dose of 34% of the MTD. While the total dose for AT was

�2 times that of CT, it was distributed over a time period�6 times

as long. The tumor consisting primarily of sensitive cells, but with

some treatment-resistant phenotypes (Fig. 3B), initially

responded very well to CT, but this was followed by recurrence

of a completely resistant population after �1 year. The same

tumor under the AT could be controlled with an average of only

35%of theMTDwith a total dose thatwas 70%of that given using

CT. The more resistant tumor (Fig. 3C) should yield a slight net

negative growth rate with the MTD applied. However, after a

modest initial response to CT treatment, resistant cells took over

enough to yield a positive net growth rate, which led to tumor

progression. Using the AT strategy, the change in the population

was too slow to induce dose modulation; however, when the

population halved at around 1 year, a treatment vacation was

applied. At this point, most of the sensitive cells had already been

eliminated and the tumor was spatially diffuse. Consequently, a

large portion of actively proliferating cells quickly expanded, and

the tumor recurred1monthprior thanwhenusing theCT strategy.

For the more resistant and heterogeneous tumor (Fig. 3D), both

treatments led to eventual recurrence, but the total number of cells

Gallaher et al.
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waskept stable for awhile usingAT.Notably, AT gave�2 times the

dose but over a time period that was �2.4 times longer. Recur-

rence was delayed using an average of 79% of the MTD. Pheno-

typic dynamics during CT and AT schedules for more initial

conditions are compared in Supplementary Fig. S3.

A more vacation-oriented strategy can control the tumor at the

expense of higher doses

The AT schedule used so far, which we now refer to as AT1

(a ¼ 0.25, b ¼ 0.05), was chosen somewhat arbitrarily.

Changing a and b changes the amount the dose is modulated

(a) if the population changes by a threshold amount (b);

therefore, these values can have a direct impact on AT control.

We tested another schedule that boosts both values, requiring

a larger change in population size (10%) to produce a larger

change in the dose modulation (50%), which we call AT2

(a ¼ 0.50, b ¼ 0.10).

We compared all treatment strategies (CT, AT1, and AT2)

in Fig. 4 using a tumor with a pregrowth distribution that

centered around a sensitive phenotype with a large degree of

heterogeneity (s ¼ 100% and ss ¼ 25%). At the start of

treatment, the resistant cells were trapped in the interior by

Figure 2.

Competition between sensitive and resistant cells using in vitro and in silico models. Binary sensitive and resistant populations (left) and populations

with a spectrum of sensitivity (right) are considered. Top left, cells sensitive (MCF7) and resistant (MCF7Dox) to doxorubicin are cocultured in vitro

and replated every 3–4 days. Bottom left, an in silico coculture of sensitive (40 hours cell cycle) and resistant (60 hours cell cycle) cells seeded

randomly throughout the domain or clustered in the center. The spatial distributions of cells are shown at several time points. Right, in silico

simulations were initialized with different phenotypic distributions, characterized by a mean sensitivity s and SD ss: s ¼ 100%, ss ¼ 5% (A); s ¼ 100%,

ss ¼ 25% (B); s ¼ 60%, ss ¼ 5% (C); and s ¼ 60%, ss ¼ 25% (D). The initial distributions are shown as histograms in the plot inset; the final spatial

layout is shown on the right.

Continuous versus Adaptive Cancer Therapies
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sensitive cells. The tumor recurred with the CT strategy after

a year while both AT strategies controlled the tumor for the

full 2 years (Fig. 4A). We found that the AT1 dose lowered

initally then incorporated both vacations and dose adjust-

ments to control the tumor using an average of 35% of the

MTD. In the AT2 schedule, however, we found that the

population did not change sufficiently fast to invoke a dose

change, so control was achieved solely by having treatment

vacations using an average of 76% of the MTD. However,

because the proliferating cells are very sensitive to the drug, a

large dose was not needed to control the tumor, so the more

modulating AT1 dose schedule gave less drug to the patient

while achieving a similar effect. The average sensitivity versus

the average dose for each schedule is plotted in Fig. 4B

against a background heat map of the expected net prolif-

eration rate of the tumor: Texpected ¼ ln 2
T
ð1�

PdeathðT;DÞ
0:5 Þ. With

CT, the mean sensitivity decreased over time as the most

sensitive cells were eliminated and the more resistant cells

took over. AT schedules, however, keep the cells, on average,

in the sensitive region. The AT1 strategy shifted to the lowest

dose that still kills the most sensitive phenotypes while the

AT2 dose remained high.

We compared these 3 strategies over a range of different tumor

compositions to determine which is most efficacious in each case.

Specifically, we grow and test treatments on an array of tumors

with different starting distributions with unique sensitivity and

standard deviation (s ¼ 50%–100% and ss ¼ 5%–25%). Presum-

ing that the descending order of desired outcomes is to cure,

maintain, and then gain the most time before recurrence, we

obtained the best choice of treatment using 3 trials for each tumor

composition in the array (Fig. 4C).When several strategies gave the

same results, preference went to the lowest average dose. We found

that the most sensitive and homogeneous tumors were cured by

CT, but AT strategies worked better for heterogeneous tumors. The

AT1 schedule provided a lower dose when the cells are more

sensitive and controllable, the AT2 schedule extended the time to

recurrence when recurrence was inevitable, and the more resistant,

less heterogeneous tumors recurred similarly regardless of treat-

ment strategy. The time to recurrence using each treatment sched-

ule over the array of tumors is plotted in Supplementary Fig. S4A.

Figure 3.

CT and AT schedules applied to tumors with a variety of phenotypes. Tumor phenotypes were initialized by normal distributions with mean sensitivity s

and SD ss: s ¼ 100% and ss ¼ 5% (A); s ¼ 100% and ss ¼ 25% (B); s ¼ 60% and ss ¼ 5% (C); and s ¼ 60% and ss ¼ 25% (D). Top, the dose schedules

for each treatment strategy; middle, the population dynamics; bottom, the spatial configurations at several time points.

Gallaher et al.
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The average doses over the array of tumor compositions are given

in Fig. 4D for each treatment.We found that we can control tumors

bounded by drug-sensitive cells either by shifting to lower doses

(AT1) or applying vacations between high doses (AT2). They both

work because very sensitive proliferating cells do not need a full

dose to be killed. However, when the tumor contains more

resistant phenotypes, not all cells will respond to lower doses, so

high doses and vacations grant better control.

More treatment vacations are needed to control

heterogeneous invasive tumors

For the adaptive schedules to work, the sensitive cells must

impede the proliferation of the resistant cells by competing for

space and trapping the resistant cells inside the tumor. However,

if the cells can move, the spatial structure that keeps the cells

quiescent and hidden from the drug, is disturbed. We next

examined the effect of cell migration by allowing cells to move

in a persistent random walk at a modest speed of 5 mm/hour (see

Materials and Methods for details).

Figure 5A shows an example with the same initial conditions

as the previous example (s ¼ 100% and ss ¼ 25%), but with

migrating cells. The tumor composition appears similar to the

previous example, but the cells are more spatially mixed. In

this case, both the CT and AT1 schedules led to recurrence

while the AT2 schedule maintained control for the full 2 years

(not fully shown). We found that for the CT case, compared

Figure 4.

Comparing CT, AT1 (a ¼ 0.25, b ¼ 0.05), and AT2 (a ¼ 0.50, b ¼ 0.10) treatment schedules. A, Dose schedules, population dynamics, and spatial layout

at various time points are shown for the treatment of a tumor with a pregrowth normal distribution of s ¼ 100% and ss ¼ 25%. See Supplementary

Movies S1–S4 for animations comparing treatment strategies for several tumor compositions. B, Trajectories for average sensitivity vs. average dose

plotted every month with increasing point size. The background color indicates the expected growth rate of a tumor with a given cell cycle time, T, receiving a

drug dose D (see text). The dashed line indicates where net growth is expected to be zero. C, Heat map indicates the strategy that gives the best

outcome averaged from three simulations for different tumor compositions. Outcomes are favored in following order: cure, control, and longest time to

recurrence. If recurrence is most likely, color indicates the average time gained by the winning strategy. D, Average dose given for each treatment strategy.
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with the case without migration (Fig. 4A), a quicker decline in

the population was followed by faster relapse at 153 days. Due

to the spatial spreading from migration, less cells were quies-

cent so the drug was able to affect more cells. This also allowed

resistant cells to escape confinement sooner, leading to a faster

recurrence. For AT1, dose modulation occurred, but the tumor

population did not get small enough to trigger a vacation. The

dose reduced substantially, and then rose again when resistant,

unresponsive cells took over. The AT2 dose schedule incorpo-

rated treatment vacations, but also modulated because the

larger proliferating fraction of cells (that are susceptible to the

drug) caused larger fluctuations in the population size during

both growth and treatment phases, triggering dose changes.

Importantly, by using the quicker switching between fast

growth (during the vacations) and fast death (many cells

susceptible and higher doses), AT2 kept the sensitive popula-

tion at the invasive edge and the resistant cells suppressed. The

AT2 schedule gave a larger average dose (67% of the MTD

compared with 30% of the MTD for AT1), but did not recur

over the monitored 2-year time period. Average sensitivity

versus average dose for each schedule is plotted in Fig. 5B. The

CT strategy, again, resulted in selection for resistant cells over

time, but the AT1 strategy, on the other hand, shifted to the

lowest dose that still kills the most sensitive phenotypes. After

the most sensitive cells were killed, the next most proliferative

cells had a net positive proliferation rate and outgrew due to

the low dose. This increased growth then caused a dose increase

to keep proliferation in check. So sensitive phenotypes were

essentially killed off sequentially with ever increasing doses

until the resistant cells took ahold of the invasive edge. At that

point, the resistant cells had a small (albeit positive) growth

rate with limited chance of control. With the AT2 strategy, there

Figure 5.

Comparing treatments when tumor cells migrate. A, Comparing CT, AT1, and AT2 treatments using a tumor from a pregrowth normal distribution of s ¼ 100%

and ss ¼ 25%. Dose schedules, population dynamics, and spatial layout at various time points are shown for each treatment. See Supplementary

Movie S5 for animation. B, Trajectories for average sensitivity vs. average dose over time. C and D, Winning strategies (C) and average dose (D) for different

initial tumor compositions. See Fig. 4 caption for more details on each panel.
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is a sharp transition between quick drug-free expansions and

MTD-induced contractions. Because mostly sensitive cells

remained on the outer rim, the net decline during treatment

was approximately equal to the net increase when the dose was

zero, and the tumor was controlled.

A full sweep comparing CT, AT1, and A2 over many tumor

compositions is shown in Fig. 5C. We found that while most of

the original region cured by CT remains, allowing migration

has destroyed the control by AT1 while the regions previously

controlled with AT2 are somewhat preserved. The average doses

for each strategy are shown in Fig. 5D. The doses were lower for

both AT1 and AT2 in the sensitive region, which was previously

controlled (in nonmigrating tumors) by both adaptive strate-

gies. However, control was only achieved with the AT2 strategy.

As we increased the migration rate further to 10 mm/hour,

neither adaptive schedule successfully controlled tumors. The

time to recurrence using each treatment schedule over the array

of tumors is plotted in Supplementary Fig. S4B and S4C for

migration rates of 5 and 10 mm/hour. A more extensive explo-

ration of intermediate migration speeds and their outcomes is

shown in Supplementary Fig. S5 and is consistent with the

result that AT2 is the best strategy for heterogeneous tumors

with higher migration speeds.

Treatment vacations help delay recurrence of heterogeneous

tumors with phenotypic drift

We have considered treatment responses to tumors that have

preexisting heterogeneity but assumed that progeny directly

inherit the same phenotypes as the parental cell. However, this

ignores the potential impact of subsequent mutations or epige-

netic changes that may alter the cell phenotype over generations.

Here, we tested how phenotypic drift affects the response to

treatment strategy, i.e., we allowed a cell the opportunity to

increase or decrease its proliferation rate upon division (see

Materials and Methods for details).

Starting with a population that is slightly less sensitive but

heterogeneous (s ¼ 80% and ss ¼ 25%), we grew and treated a

tumor that can change its proliferation rate (and therefore

sensitivity) upon division (Fig. 6A). We found that each treat-

ment strategy eventually failed because sensitive cells eventually

became more resistant over generations. However, while CT and

AT1 recurred at nearly the same time, AT2 was able to control the

tumor for around 3 months longer. For the adaptive strategies,

resistant regions started to emerge on the tumor's edge, but

under the AT2 schedule, the most sensitive cells could regrow

during vacation periods and suppress the outgrowth of resistant

cells. The cells eventually drifted toward more resistant pheno-

types, while the sensitive cells were killed, causing the mass to

separate into individual clumps where the resistant regions

existed. We plot the average sensitivity versus the average dose

for each schedule in Fig. 6B, where movement along the y-axis

occurs not just due to selection but also due to inheritance of

evolving traits. Like all treatment strategies, the drug killed off

the most sensitive cells, so the phenotypes eventually ended up

further into the resistant region, but for CT the recurrent tumor

returned almost completely resistant. For AT1, the resistant

phenotype emerged faster than the dose modulations can keep

up with, but the AT2 schedule, that shifts between extreme

doses, better controlled both the faster proliferators during

treatment and selected against the more resistant cells during

vacations. The effect was not sustained for very long.

The array of different tumor compositions was evaluated to

compare CT, AT1, and AT2 (Fig. 6C). The region originally cured

by CT was significantly reduced, and the ability to control the

tumor through adaptive means was completely eliminated. CT

actually did a better job with just a few months gain over AT1

in many regions. But again, the AT2 schedule delayed recurrence

for longer over the CT schedule for heterogeneous tumor com-

positions. Regardless, neither AT treatment sustained control

for long, as the net gain with AT2 was at the most 6 months. The

average doses for CT, AT1, and AT2 are shown in Fig. 6D. In the

sensitive region, which was controlled when there was no drift,

the doses were found to be higher for both AT1 and AT2.

Increasing the drift rate further destroyed any control whatsoever

using CT, AT1, or AT2. See Supplementary Fig. S6A to S6C for

the time-to-recurrence plots using each treatment schedule over

the array of tumors for drift rates of 0%, 10%, and 100%.

Discussion

Our simulations demonstrate the necessity of matching any

cancer treatment regimen to the corresponding intratumoral

evolutionary dynamics. The term "precision medicine" is often

applied to strategies that match tumor treatment to specific

predictive biomarkers. While this approach increases the proba-

bility of success, it neglects the reality that virtually all tumor

responses are followed by evolution of resistance, and thus,

treatment failure. Our results indicate that precision medicine

also needs to encompass the complex evolutionary dynamics that

govern emergence and proliferation of resistant phenotypes. Here

we present the diverse Darwinian interactions that can lead to

resistance but also corresponding treatment strategies that can

exploit these dynamics to delay the time to progression.

It is clear from our analysis that there is no one-size-fits-all

evolutionary strategy. Using a modified off-lattice agent-based

model, we found conventional MTD application of cancer ther-

apy can cure homogeneous tumors that consist entirely or

almost entirely of cells that are sensitive to the applied treatment.

While this is improbable at advanced stages, it is observed

clinically as some tumors that histologically appear homoge-

neous, such as testicular cancer and some lymphomas, are

frequently cured by conventional chemotherapy. However, dec-

ades of clinical experience, consistent with our model predic-

tions, have found that cure is not typically achievable in cancers

that are highly heterogeneous (e.g., melanoma, lung, and

breast), because they already contain cells that are therapy

resistant due to genetic, epigenetic or phenotypic properties or

environmentally mediated mechanisms (30).

In tumors that are not curable by standard MTD therapy, our

models found that evolution-based strategies that exploit the

fitness cost of resistance can delay treatment failure and tumor

progression. Recent experimental studies have shown that adap-

tive therapy can enforce prolonged tumor control (13); however,

noneof theprior theoreticalmodels have included spatial dynam-

ics and thus assume that the different tumor subpopulations are

well mixed (8, 9, 17). This is in contrast to radiologic and

pathologic images of tumor that show marked spatial heteroge-

neity (31–34). Spatial structure can affect the emergence of

resistant phenotypes due to space limitation (5, 35) and limited

drug perfusion (36, 37).We present some insight into how spatial

context might influence disease control, which reflects similar

ideas presented in a recent study with growing bacterial colonies
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of E. coli (35). In this study, less fit resistant clones were trapped

due to spatial constraints, but high-intensity drug exposure led

to the competitive release of dormant mutants. Our model

showed the same nature of competition, and we were able to

test multiple treatment strategies on different tumor phenotypic

compositions.

Previous modeling work has established the importance of

genetic (38–40) and phenotypic heterogeneity (5, 41, 42) as

well as mapping between them (43) in tumor progression.

There have also been models that consider the evolution of

drug sensitivity in low dose or metronomic treatments, but

either ignore space (17) or heterogeneity in drug sensitivity

(18), considering sensitive and resistant populations in a bina-

ry manner. We considered phenotypic heterogeneity over a

wide spectrum of tumor compositions in space. By systemat-

ically testing an array of different initial phenotypic distribu-

tions, we were able to delineate different regions where some

schedules work better than others. We also found that some AT

strategies are better than others for different situations. For

example, with cell migration and phenotypic evolution, we can

apply a strategy with less dose modulation and more emphasis

on treatment vacations to keep the population sensitive. The

extreme dose changes keep the tumor responding quickly

during both the growth phase and the treatment phase to either

maintain the spatial structure in the case of migration or to

prevent the evolution of less sensitive cells in the case of

phenotypic drift.

Comparing widely disseminated cancer, where the distribu-

tion of tumor cell subpopulations will likely vary among the

metastatic sites, to our model, which only considers the

Figure 6.

Comparing treatments when tumor cell phenotypes can drift. A, Comparing CT, AT1, and AT2 treatments using a tumor from a pregrowth normal

distribution of s ¼ 80% and ss ¼ 25%. Dose schedules, population dynamics, and spatial layout at various time points are shown for each treatment.

See Supplementary Movie S6 for animation. B, Trajectories for average sensitivity vs. average dose over time. C and D, Winning strategies (C) and average

dose (D) for different initial tumor compositions. See Fig. 4 caption for details on each panel.
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response of single tumors, may seem disconnected. It is thus

important to ask how much variation in clinical response to CT

and AT should be expected. We tested the treatments on a set of

6 tumor metastases with mixed compositions using the total

number of cells across all tumors to represent a systemic

measure of burden and showed that control can still be

achieved (Fig. 7, left). We found that with the CT strategy the

more sensitive tumors responded with complete eradication,

while the less sensitive tumors eventually recurred. In contrast,

both AT schedules could still control the disease. While the

more sensitive tumors shrank, the less sensitive ones grew,

keeping the total population relatively constant. The full dose

schedules and population dynamics are shown in Supplemen-

tary Fig. S7A and S7B along with a case where the set

of metastases all have the same heterogeneous composition.

In the latter situation, the set of tumors responded as if they

were single independent tumors.

To translate this to real patients, ideally we would to connect

the tissue scale heterogeneity with a systemic biomarker of tumor

burden (Fig. 7, right). A measure of variation in drug sensitivity

could be done prior to treatment using immunohistochemistry.

Further monitoring and assessment of disease burden is then

needed to make treatment decisions over time, which could be

done using systemic biomarkers, circulating tumor cells, cell-free

DNA, or imaging (44). Our model represents a generic solid

tumor that assumes that we can perfectly measure the total

number of tumor cells periodically instead of a surrogate bio-

marker. The methods for actually measuring tumor burden non-

invasively and frequent enough to direct treatment decisions are

notwell developed for all cancers. In theongoing adaptive therapy

trial on prostate cancer (26), PSA is used as a marker for disease

burden. PSA may not be a perfect indicator, but it is readily

available, standardized, and utilized (45). Other biomarkers

are used for surveillance of various cancers with degrees of

specificity and sensitivity (46), such as CA-125 for ovarian cancer

and LDH for melanoma. As technologies for serum biomarkers,

circulating tumor cells, and cell-free DNA continue to be devel-

oped (44), we hope this challenge can be addressed to better

measure burden in advanced and disseminated cancers through

periodic blood draws.

The tumor model presented here is greatly simplified and

abstracted to study the impact of spatial intratumoral heteroge-

neity on tumor progression and how it might be treated using

adaptive therapy. We have ignored pharmacokinetics (47), spa-

tially weighted dose dependence (48, 49), microenvironmental

influence (50), therapy-induced drug resistance (50), and of

course, the third dimension (51). All of these are possible exten-

sions of this work, and the model can be modified to represent

specific cancers, resistance mechanisms, and associated biomar-

kers, but we have chosen a simple starting point to understand

Figure 7.

Connecting a set of tumors at the tissue scale to a systemic measure of tumor burden. A set of tumors with dissimilar compositions are treated using CT,

AT1 (a ¼ 0.25, b ¼ 0.05), and AT2 (a ¼ 0.50, b ¼ 0.10) schedules using the change in the total tumor burden (the sum of tumor cells from all metastatic sites)

to adjust treatment doses. The population dynamics (top left) and the individual spatial compositions at the end of the simulation are shown

(bottom left). This model can be used to couple the total systemic tumor burden to the individual spatial distributions found from imaging (right).
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how a spectrum of cell phenotypes compete for space under

different drug strategies. Our work illustrates clearly the impor-

tance of using treatment response as a key driver of treatment

decisions, rather than fixed strategies. We strongly believe that the

future of precision medicine should be focused not only on the

development of new drugs but also in the smarter evolutionary

enlightened application of preexisting ones.
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