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Recent developments in studies of tumor heterogeneity have provoked new thoughts on
cancer management. There is a desperate need to understand influence of the tumor micro-
environment on cancer development and evolution. Applying principles and quantitative
methods from ecology can suggest novel solutions to fulfil this need. We discuss spatial
heterogeneity as a fundamental biological feature of the microenvironment, which has
been largely ignored. Histological samples can provide spatial context of diverse cell types
coexisting within the microenvironment. Advanced computer-vision techniques have been
developed for spatial mapping of cells in histological samples. This has enabled the appli-
cations of experimental and analytical tools from ecology to cancer research, generating
system-level knowledge ofmicroenvironmental spatial heterogeneity.We focus on studies of
immune infiltrate and tumor resource distribution, and highlight statistical approaches for
addressing the emerging challenges based on these new approaches.

C
ancer is an evolutionary and ecological pro-
cess (Merlo et al. 2006). Concerted efforts

to study cancer evolution have enabled us to

map the landscape of cancer genetic diversity,
to track cancer evolution over time and space,

and to decipher the genetic drivers behind it

(Gerlinger et al. 2012; de Bruin et al. 2014; Ho-
bor et al. 2014; Misale et al. 2014; Arena et al.

2015; Siravegna et al. 2015; Yates et al. 2015;

Williams et al. 2016). Besides genetic drivers,
evolutionary forces can shape diversity through

the interplay between genetic variants and

environmental factors. There is accumulating
evidence to support the influence from the mi-

croenvironment on cancer progression and evo-

lution (Weinberg 2008; Junttila and de Sauvage
2013; Marusyk et al. 2014; Williams et al. 2016).

Genetic variations among neoplastic subclones
place them in competition with each other, al-

lowing them to occupy specialized niches in a

manner analogous to diverse species in ecosys-
tems (Greaves 2015; Nawaz and Yuan 2015). To

gain fitness advantages, cancer cells can actively

engage in constructing ecological niches by
modifying their surrounding environments,

such as modulating immune checkpoint path-

ways for immune evasion, co-opting fibroblasts
to provide growth factors, and stimulating

angiogenesis to obtain nutrients (Merlo et al.

2006; Greaves and Maley 2012). In turn, the
environment shapes cancer cell phenotypes by

providing selective pressure through a myriad

of mechanisms, including nutrient supply via
adjacent blood vessels, immune regulation, and
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tissue remodeling (Weinberg 2008; Junttila and

de Sauvage 2013; Greaves 2015). These cancer–
microenvironment interactions can have signif-

icant implications for cancer development and

evolution.
As such, there is a desperate need to under-

stand the roles of microenvironmental factors

during cancer progression and evolution (Junt-
tila and de Sauvage 2013; Greaves 2015). De-

cades of research on a related topic in ecology

have revealed insights on mechanisms, analyti-
cal approaches, and experimental pitfalls that

may aid our studies of ecological processes in

tumors. In this article, we summarize key mes-
sages from ecological theories andmethods that

are relevant for understanding microenviron-

mental heterogeneity in human solid tumors.
Specifically, we outline (1) spatial heterogeneity

as a fundamental feature of the tumor microen-

vironment and its clinical implications, (2) ad-
vanced computer-vision techniques applied to

histology that enable spatial analysis of complex

tumors, (3) experimental and analytical tools
required to achieve a systematic understanding

of microenvironmental spatial heterogeneity,

(4) clinical significance of microenvironmental
spatial heterogeneity with regards to immune

infiltrate and tumor resource distribution, and

(5) statistical methods for addressing challenges
emerged from these new approaches.

CLINICAL SIGNIFICANCE OF
MICROENVIRONMENTAL SPATIAL
HETEROGENEITY

Spatial Heterogeneity Is a Fundamental
Feature of the Tumor Microenvironment

It is important to recognize that the orchestrat-

ed influence of microenvironmental compo-

nents on cancer is often accompanied by strong
regional differences (Gillies et al. 2012; Junttila

and de Sauvage 2013). Evidence of spatial var-

iations has been well documented in patholog-
ical observations (Clemente et al. 1996; Galon

et al. 2006; Kruger et al. 2013). This is analogous

to the environmental impacts that have been
frequently observed in natural ecosystems. For

example, riparian and desert regions coexist

within a small spatial distance in the Arizona

desert. As a result, diverse plant species and phe-
notypes emerged with strong regional varia-

tions. Similarly, high spatial heterogeneity has

been observed in tumors, such as coexisting
vascular and hypoxic regions (Fig. 1) (Alfarouk

et al. 2013). Evidence of cancer genotype varia-

tion under different microenvironments has
emerged. In glioblastoma, cancer cells with

epidermal growth factor receptor (EGFR) am-

plification have been observed in poorly vascu-
larized areas, whereas platelet-derived growth

factor receptor (PDGFRA)-amplified cancer

cells were enriched near endothelial cells (Little
et al. 2012). This spatial association between

genetically different cancer cells and blood ves-

sels may be attributed to environmental adap-
tation, or the ability of cancer cells to modify

their environments. In both cases, a sufficient

knowledge of the spatial variability in the mi-
croenvironment would be useful for identifying

the driving factors of tumor heterogeneity.

The importance of spatial structure in bio-
logical systems has long been recognized by

ecologists (Tilman and Kareiva 1997). For ex-

ample, a geographical survey revealed environ-

Cancer cells

Cancer cells

Vessels

Figure 1. Spatial heterogeneity of the tumor micro-
environment illustrated with an ovarian cancer his-
tological hematoxylin and eosin (H&E) tumor sec-
tion, where regional differences with respect to vessel
distribution can be seen.
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mental traits that allow successful adaptation

and establishment of invasive plant species
(Matesanz et al. 2015). Analysis of spatial dis-

persal patterns of zebra mussels in northern

America identified the most efficient way for
them to spread, thereby providing useful means

for intervention (Johnson and Padilla 1996).

These examples of geographical expansion of
invasive species show how studying spatial

structure can shed light on the driving factors

of an ecological process and suggest potential
interventions with parallels to studies of cancer

prognosis as well as treatment.

A New Generation of Diagnostic, Prognostic,
and Predictive Biomarkers

There is strong clinical and experimental evi-

dence to support the importance of tumor

microenvironment in cancer progression and
mediation of drug resistance (Gatenby and

Gillies 2008; Gillies et al. 2012). For example,

molecular subtyping has repeatedly revealed
new prognostic subtypes related to the micro-

environment (Finak et al. 2008; Tothill et al.

2008; Gentles et al. 2015); the presence of tu-
mor-infiltrating immune cells, cancer-associat-

ed fibroblasts, and vascular invasion has been

shown to be highly predictive of prognosis and
treatment response across different types of can-

cers (Hwang et al. 2008; Anderberg et al. 2009;

Denkert et al. 2010; Nakasone et al. 2012). Nev-
ertheless, the spatial dimensions of the tumor

microenvironment have only begun to attract

attention recently (Galon et al. 2006; Heindl
et al. 2015; Nawaz and Yuan 2015). Spatial

locations of immune cells have been shown to

correlate with clinical outcome in different can-
cers. In colorectal cancer, a prognostic factor

that incorporates type, density, and location of

immune cells outperformed traditional his-
topathological methods to stage cancer (Galon

et al. 2006). In estrogen receptor (ER)-negative/
human epidermal growth factor receptor 2
(Her2)-negative (Loi et al. 2013) andHer2-neg-

ative (Issa-Nummer et al. 2013) breast cancer

patients, a high degree of immune infiltration
in tumor stroma was found to be associated

with increased survival and complete response

rates, respectively. Recent developments in

computer vision has enabled ecological statis-
tics to be directly applied to histological sam-

ples, providing quantitative spatial hetero-

geneity measures of immune infiltrate that are
predictive of prognosis in breast cancer (Maley

et al. 2015; Nawaz et al. 2015; Yuan 2015) and

follicular lymphoma (Nelson et al. 2015). These
novel tumor features were shown to be inde-

pendent of clinical variables and immune cell

counts. A new generation of biomarkers beyond
traditional clinical parameters and cell counting

is on the horizon.

New Opportunities in Cancer Therapy

Applying principles from spatial ecology and
complexity of resource networks can suggest

novel solutions to the problem of therapeutic

resistance in cancer management. It can further
lead to other clinical innovations including the

development of efficient treatment strategies.

The problem of therapeutic resistance can be
fundamentally attributed to tumor heteroge-

neity. The emergency of drug resistance may

be partly explained by complex structures of
the tumor microenvironment. For instance,

spatial heterogeneity of nutrient resources rep-

licated in an ecologically designed microfluidic
device to mimic the bone marrow environment

can facilitate rapid emergence of chemotherapy

resistance in multiple myeloma cells (Wu et al.
2015). A substantial part of adaptive strategies

of resistant cells is to regulate ancient genes, sug-

gesting that phenotypic diversity may be more
rapidly achieved in this way to adapt to extreme

selective pressures.

Therefore, an understanding of microenvi-
ronmental heterogeneity can provide the basis

of effective therapeutic strategies. In ecology, it

is known that the most efficient way to kill a
species is by destroying its niche environment,

and this idea has been proposed for cancer ther-

apeutics (Walther et al. 2015). Effective uses of
therapies to disrupt cancer cell niches in their

own environment, such as antiangiogenic drugs

and immunotherapy, have the potential to
transform cancer management (Formenti and

Demaria 2013; Wood et al. 2014; Brahmer et

Spatial Heterogeneity in the Tumor Microenvironment
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al. 2015). To successfully apply this strategy in

personalized medicine, it is critical to recognize
that diverse environments can coexist within

the same tumor, as discussed before. Therefore,

an assessment of the spatial heterogeneity of
microenvironment in the first place can be a

step toward predicting treatment resistance and

avoiding selection of resistant populations.

COMPUTER VISION TO ENABLE RAPID
MAPPING OF MICROENVIRONMENTAL
SPATIAL STRUCTURE

Histology and imaging are excellent resources
for obtaining tumor spatial structure in large

quantities. Such spatial data, once quantitative-

ly analyzed, will aid the identification of clini-
cally relevant features, potentially yielding pre-

dictions more powerful than measurements of

cell abundance that ignore the spatial context.
With appropriate methodologies, studies of

pathohistological tumor sections can reveal the

spatial context of cancer–microenvironment
interactions at single-cell resolution, whereas

powerful imaging techniques allow us to track

the spatiotemporal changes in the microen-
vironment over the course of treatment. The

remaining part of this article will focus on re-

cent developments in analysis of histological
samples. Much more spatial- and texture-ori-

ented analyses have been proposed for imaging

data and are discussed extensively elsewhere
(Gatenby et al. 2013; Hu et al. 2015).

With advancing computing techniques, re-

markable progress in image analysis has been
made on objective assessment of cellular con-

text in digitized cancer histological sections.

The use of machine learning methods enables
automated identification of various cell types,

tumor components, and regions based on hu-

man expert input, namely, supervised learning
(Holmes et al. 2009; Basavanhally et al. 2010;

Tuominen et al. 2010; Balsat et al. 2011, 2014;

Beck et al. 2011; Doyle et al. 2012; Yuan et al.
2012; Lu et al. 2014). The computer compares a

new cell with what human experts call a cancer,

stromal, or other cell types and determines its
type based onmorphological similarity (Fig. 2).

As a result, rapid mapping of the identities and

spatial locations of millions of cells is now pos-

sible. Just as large areas of land can be mapped
for population density variation, a tumor sam-

ple can be processed to map changes in density

of its constituent cells (Fig. 2). Such methods
thus offer a new opportunity for studying the

spatial structure of tumors. Nevertheless, there

are many accompanying challenges. It is well
known that image-analysis methods can be sen-

sitive to sample quality and variability; there-

fore, it is imperative that methods are developed
to accommodate the significant amount of var-

iation in histological samples (McCann et al.

2015). Comprehensive reviews in this special-
ized field are available (Gurcan et al. 2009; Ko-

thari et al. 2013). In this review, wewill focus on

the next step following image analysis—spatial
analysis of the tumor microenvironment.

QUANTITATIVE ANALYSIS OF SPATIAL
HETEROGENEITY IN THE TUMOR
MICROENVIRONMENT

The first step in understanding heterogeneity is

to identify patterns. In ecology, spatial statistics

(Ripley 1984) has been widely applied to cap-
ture patterns of species and/or habitats. It is

recognized that, in many situations, direct mea-

surements of ecological processes can be impos-
sible (McIntire and Fajardo 2009). Thus, a rap-

idly emerging concept, “space as a surrogate,”

has been proposed for maximizing inference
about ecological processes through the analysis

of spatial patterns, rather than relying on time-

series data (McIntire and Fajardo 2009). Many
recent studies have successfully examined spa-

tial patterns to understand a diverse array of

ecological processes where experimental ma-
nipulation or direct measurements are difficult

to obtain or are not feasible (de Knegt et al.

2009; Sanders et al. 2013; Smith et al. 2013).
This bears high similarity with the situation in

cancer research, where the majority of data have

been gathered using biopsy and surgical resec-
tion samples. Experimental manipulation di-

rectly on human tissues without subjecting

them to further modification and selection is
almost impossible. Tissue-engineered models,

such as tumor spheroids and organoids, al-

Y. Yuan
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though highly successful for expanding our
knowledge on drug resistance, can lack critical
interactions between cancer and the microenvi-
ronment, such as limited release of cytokines
(Villasante and Vunjak-Novakovic 2015). A
key benefit of using “space as a surrogate” in
studies of cancer is the amount of spatial data
a single tumor can provide alone. With thou-
sands or millions of cells as spatial points, a
statistically significant spatial pattern is more
likely to be generated by biological processes
than noise or biases. Here, we discuss current
progress in establishing the spatial heterogene-
ity of tumor microenvironments and how sys-
tematic studies have contributed to our under-
standing of tumor ecology.

Spatial Heterogeneity of Immune Infiltrate

Interactions between cancer cells and immune

cells are an important component of the eco-

logical conditions inwhich cancer cells exist and

evolve (Greaves and Maley 2012). As discussed

above, an array of studies has established the
clinical significance of immune cell infiltrate

in a number of cancer types (Galon et al.

2006; Issa-Nummer et al. 2013; Loi et al. 2014;
Denkert et al. 2015). The spatial interactions

among immune and cancer cells generate com-

plex ecological dynamics that can ultimately in-
fluence tumor progression and response to

treatment (Demaria et al. 2005; Fridman et al.

2012; Denkert et al. 2015; Gentles et al. 2015).
Ecology can provide a framework for under-

standing these complex dynamics beyond cell

abundance and predicting clinical outcomes.
Several ecological methods have been applied

to studying spatial patterns of immune infil-

trate, where strong predictors of clinical out-
come have been identified for different breast

cancer subtypes.

Breast cancer H&E Cell spatial map

Cancer
Lymphocyte
Stromal

Figure 2. Spatial mapping of cancer and normal cells in histological images using automated image analysis
techniques. Shown are a breast cancer hematoxylin and eosin (H&E)-stained image and a spatial distribution
map of cell types identified by automated image analysis, including cancer cells (green), stromal cells (red), and
lymphocytes (blue).
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Colocalization of Cancer and Immune Cells

Identical amounts and types of immune cells in

two tumors do not necessarily equate to the

same effect of immune infiltrate. Immune cell
distribution can vary dramatically in different

tumors. How immune cells distribute relative

to cancer cells may have profound clinical im-
plications. The Morisita–Horn index is a mea-

sure of similarity among community structure

in ecology (Morisita 1959; McIntosh et al.
2004; Scalon et al. 2011). It can be used to quan-

tify the extent of colocalization between two

or more species given their spatial structures.
For example, it was used to study predator–

prey interactions by establishing a positive as-

sociation between predator body size and prey
diversity (Radloff and Du Toit 2004). In breast

tumors, this index has been used for quantify-

ing colocalization of immune and cancer
cells (Fig. 3A) (Maley et al. 2015). Mathemati-

cally, theMorisita–Horn index uses the propor-

tional distribution of two or more variables
as input. To study the bivariate relationship be-

tween cancer and immune cells, the index is

defined as

M ¼
2
X

i
plip

c
i

X

i
ðpliÞ

2
þ
X

i
ðpci Þ

2
;

where pli and pci are the proportion of all im-

mune cells and cancer cells within a tumor, re-

spectively, at a region i, and 1 � i � R, where R
is the total number of regions intowhich a sam-

ple has been divided (Fig. 4). We will discuss

how tumor regions were defined in the next
section. The value of the Morisita–Horn index

ranges from 0 indicating no similarity or colo-

calization to 1 for the two structures being iden-
tical or perfectly colocalized.

Because the Morisita index measures colo-

calization, the opportunity to directly relate this
quantitative index with clinical outcome may

provide a clue as to the extent to which cancer

cells have evaded antitumor immune response
or recruited immune cells with protumor effect.

If a low Morisita score (low levels of colocaliza-

tion of immune and cancer cells) is associated
with a poor clinical outcome, this might suggest

that cancer cells have evolved immune evasion

strategies in these patients. A high Morisita

score (high levels of colocalization) associated
with a good prognosis might indicate effective

immune predation. On the other hand, a high

Morisita score associated with a poor prognosis
might indicate mutualistic interactions or co-

option of immune cells. When the Morisita–

Horn index was applied to 1026 breast cancer
samples following image analysis of the histo-

logical specimens, it was observed that a high

degree of colocalization between cancer and im-
mune cells was associated with significantly in-

creased probability of 10-year, disease-specific

survival in Her2-positive breast cancers (Maley
et al. 2015). This association likely suggests that

the presence of immune cells is indicative of

effective predation by the immune system in
Her2-positive cancer. But this effect is not evi-

dent in other subtypes of breast cancer, possibly

because of a less clearly defined antitumor effect
(e.g., effective predation) of the immune cells or

other unknown reasons.

TheMorisita–Horn index has many advan-
tages over other community similarity indices.

Community similarity indices have been evalu-

ated in terms of their dependencies on sample
size, species diversity, and other confounding

factors (Wolda 1981). The Morisita index was

found to be among the most robust to sample
size and species diversity when compared with

other similarity measures. It was recommended

because of the small effect of sample size and
diversity, and, if logarithmic transformation of

data is required, the Morisita–Horn transfor-

mation can be used. Thus, the Morisita–Horn
index as an ecological measure presents a robust

option for quantifying spatial patterns in tu-

mors.

Immune-Cancer Hotspots

Another type of spatial pattern is spatial clus-

tering. Many methods have been proposed to

identify such a pattern. For example, statistical
tests such as the Ripley’s K function (Ripley

1976) can be used to confirm the presence of

spatial clustering. Alternatively, there are meth-
ods to identify specific regions where spatial

clustering exists, such as the hotspot analysis

Y. Yuan
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(Getis and Ord 1992). An advantage of the sec-

ond type of method is that specific regions of
interest can be identified, and this type of meth-

od has already been applied to the analysis of

tumor microenvironment. Getis–Ord hotspot
analysis (Getis andOrd 1992) was used to detect

significant levels of immune cell clustering, or

“immune hotspots,” in histology sections (Fig.

3B) (Nawaz et al. 2015). Mathematically, z

scores are evaluated for each region for a specific

cell type in a sample, given by

zi ¼

X

j
wi;jcj � �c

X

j
wi;j

SU
;

Cancer density

Intratumor lymphocyte

= Intratumor

lymphocyte

1 mm

20 µm

Lymphocyte

Stromal cell

Cancer cell

= Cancer cell

Other lymphocyte

C  ITLR: Intratumor lymphocyte ratio

B  Colocalized hotspots: spatial clusters of immune and cancer cells

A  Morisita index: immune-cancer cell colocalization

    = Other

lymphocyte

Contour

Cancer cell

Low High

= Lymphocyte

= Cancer cell

= Lymphocyte

= Cancer cell

Figure 3. Schematic representation of cell spatial patterns captured by three statistical methods with histology
image examples: (A) Morisita index, (B) Getis–Ord hotspot analysis, and (C) intratumor lymphocyte ratio
(ITLR).
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where S and U are two normalizing factors:

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

j
c2j

R
� ð�cÞ2

s

;

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
X

j
w2
i;j �

X

j
wi;j

� �2

R� 1

v

u

u

t

;

where R is the total number of regions, cj is

the cell count for region j, �c is the mean value
of c for all regions in the image, and wi,j indi-

cates a neighborhood relationship between re-

gion i and j:

wi;j ¼
1 if j is a neighbor of i;
0 if j is not a neighbor of i:

�

The z scores indicate whether statistically

significant clusters of specific cell types are
found for each spatial region. The same analysis

was separately applied to cancer and immune

cells. In ER-negative breast cancer, abundance
of cancer or immune hotspots was not associ-

ated with clinical outcome. However, when

combined, a so-called immune-cancer hotspot
score was defined as the fractional area within a

tumor, with an overlap of cancer and immune

hotspots. This was found to be significantly as-
sociated with favorable prognosis in ER-nega-

tive breast cancer (Nawaz et al. 2015).

Intratumor Lymphocyte Ratio (ITLR)

A quantitative ratio to represent the degree
of infiltration of immune cells into the tumor

has been proposed (Yuan 2015). Unsupervised

Gaussianmixture clustering (Fraley and Raftery
2003) was used to detect different types of lym-

phocytes based on their spatial proximity to

cancer cells (Fig. 5). The cluster with the short-
est distance to cancer cells was classified as in-

tratumor lymphocytes (Fig. 3C). This was used

to define a quantitative measure for a tumor,
the ITLR as

ITLR ¼
nITL

nc
;

where nITL is the number of intratumor lym-

phocytes and nc is the total number of cancer
cells in a histological sample. In ER-negative/
Her2-negative breast cancer, high ITLR was

found to be associated with good disease-spe-
cific survival (Yuan 2015).

Comparison of Different Immune Measures

All of the above-mentioned immune spatial
measures were found to be independent of

existing clinical parameters in breast cancer

(Maley et al. 2015; Nawaz et al. 2015; Yuan
2015). They were further compared with pa-

thologist’s scoring of immune abundance and

H&E Classified cells Tessellation Colocalization

Cancer cell
Lymphocyte

Stromal cell

Figure 4. Quantifying cancer-immune cell colocalization using histological images. From left to right: hema-
toxylin and eosin (H&E) image of a breast cancer; classified cells in this image (cancer in green, lymphocyte in
blue, and stromal cells in red); Voronoi tessellation over this image using random cancer cells as seeds;measuring
cell colocalization based on the proportional data in the Voronoi grids (high colocalization in dark purple, and
low colocalization in light blue).
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a quantitative score of lymphocyte ratio that was
also obtained from automated image analysis

(Maley et al. 2015; Nawaz et al. 2015; Yuan

2015). Lymphocyte ratio, as a measure of the
presence of immune cells in a sample without

accounting for its spatial distribution, is defined

as the fraction of cells in a sample that are im-
mune cells, that is,

nl

nl þ nc þ ns
;

where nl is the number of immune cells, nc is the
number of cancer cells, and ns is the number of

stromal cells in a sample. All spatial measures

were found to be stronger prognostic factors
than pathological score and lymphocyte ratio,

and, in the respective breast cancer subtypes,

they were found to be prognostic (Maley et al.
2015; Nawaz et al. 2015; Yuan 2015). This high-

lights the importance of examining not just cell

abundance but also spatial patterns that can be
indicative of active immune response.

Despite high correlations between some of

these spatial measures, they appear to hold spe-
cific prognostic value in different breast cancer

subtypes. For example, the Morisita index and

ITLR were highly correlated in 180 ER-nega-
tive/Her2-negative breast cancers from the

METABRIC study (Curtis et al. 2012) (new

data for this review; Pearson’s correlation coef-
ficient r ¼ 0.50, p , 0.001). However, whereas

ITLR was associated with survival in the ER-

negative/Her2-negative but not the Her2-posi-
tive subtype, theMorisita index was found to be

prognostic in the Her2-positive subtype but not

other subtypes (Fig. 6). Generally speaking, the
Morisita indexmeasures the degree of immune-

cancer cell colocalization within a tumor, while

ITLR measures the amount of immune cells
infiltrated into tumor nests. Therefore, a tumor

with a low amount of intratumor lymphocytes

Lymphocyte spatial

proximity to cancer

Intratumor lymphocyte

A B C

D

Adjacent-tumor lymphocyte

Distal-tumor lymphocyte

F
re

q
u

e
n

c
y

Tissue
Cancer density

Figure 5.Quantifying intratumor immune infiltrationwith intratumor lymphocyte ratio (ITLR). (A) Building a
cancer densitymap using a kernel estimator, and (B) cancer density mapwith lymphocytes as spatial points. The
density of cancer cells at the location of a lymphocyte can be used as a direct measurement of spatial proximity of
this lymphocyte to cancer. (C) A higher resolutionmap of a tumor region. (D) Clustering lymphocytes based on
their spatial relationships to cancer using Gaussian mixture clustering revealed three subclasses of lymphocytes.
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that are highly colocalized with cancer cells

will have a high Morisita index but low ITLR.
Hence, unlike the Morisita index, which is a

global measure of trend in lymphocyte distri-

bution, ITLR concerns regional abundance of
lymphocytes that colocalized with cancer cells.

This is also true for the hotspot score, where

only spatial coclustering of cancer and immune
cells is quantified. More evenly spread cancer

and immune cell distributions in a sample, de-

spite greater intermixing with potentially high
Morisita and ITLR score, could, in fact, lead to

a low hotspot score. Therefore, different spatial

measures, although interrelated, can be used to
identify unique spatial arrangement patterns

and should be considered separately in studies

of different cancer types and subtypes.

Spatial Heterogeneity of Tumor Resource

During disease progression, perfusion variabil-

ity of resources such as nutrient and oxygen in

the microenvironments can generate significant
selective pressure, leading to accelerated cancer

evolution anddisease progression (Gatenbyet al.

2013). As discussed above, tumor resource het-
erogeneity often occurs as a result of irregular

vasculature that creates hypoxic or arid zones

(Alfarouk et al. 2013). The clinical and thera-
peutic consequences of tumor resource het-

erogeneity have received substantial research

investigations. Texture analysis of magnetic res-
onance images (MRIs) has been used to identify

spatial heterogeneity and regional variations

that are associated with microenvironmental
features, including cell density, tissue stiffness,

blood flow, and nutrient dispersion (Gatenby et

al. 2013; Chaudhury et al. 2015). Using digital
pathology, the spatial distribution of ER-posi-

tive and ER-negative cells were investigated in

relation to vascular density and tissue necrosis
in breast cancerhistology specimens (Lloyd et al.

2014). A strong association between ER expres-

sion and vascular areawas identified, suggesting
that environmental variables were likely to be

responsible for spatial heterogeneity in estrogen

distribution and thus directly relevant for anti-
estrogen treatment. More recently, combined

theoretical modeling and histology analysis of

breast cancer showed considerable regional var-

iations in cancer proliferation phenotype ac-
companied by environmental conditions such

as vascularity and immune response (Lloyd

et al. 2016). Besides spatial variations, temporal
heterogeneity in themicroenvironment can also

impose greater selective pressure than constant

conditions. Hypoxia is commonly recognized
as a harsh environmental condition; however,

breast cancer cell lines exposed to intermittent

hypoxia evolved an even higher degree of re-
sistance to etoposide compared with cells un-

der chronic hypoxia or normoxia (Verduzco

et al. 2015). Here, in the interest of quantitative
statistical studies, we discuss a spatial analysis

method that has been applied to histological

analysis and can be used to dissect the resource
heterogeneity of tumor microenvironment.

Fractal Dimensions

To measure a complexity pattern such as the

vasculature, the use of fractal dimensions (Man-
delbrot 1983) has been proposed (Losa 1995;

Cross 1997; Lennon et al. 2015). For example,

fractal dimensions may be used to identify fea-
tures of oncogenic vascular systems that may

contribute to the origins of cancer (Baum

2015). Recently, fractal dimensions have been
applied to analyzing oral cancer histology sam-

ples (Bose et al. 2015). Fractals, as mathematical

geometry that concern self-similarity, are often
measured over a range of dimensions. For ex-

ample, the box-counting method estimates

fractal dimensions by counting the number of
boxes with a range of sizes needed to cover the

spatial geometry under study (Cross 1994). Let

N be the number of b-by-b boxes required to
cover a spatial point pattern S, then the fractal

dimension of S, dim(S), is defined as

dimðSÞ ¼ lim
1!0

logðNÞ

ð1=bÞ
:

The more complex the geometric pattern,
the more boxes are needed at each scale and,

hence, the higher the fractal dimension score.

Using oral cancer histology samples, fractal di-
mensions were measured using the box-count-

ing method, and a high score of fractal dimen-
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Figure 6. Comparison of prognostic value of two immune spatial measures, the Morisita–Horn index and intratumor
lymphocyte ratio (ITLR), in two independent patient cohorts (site 1 and 2) in breast cancer subtype (A) Her2-positive
(Her2þ), and (B) triple-negative breast cancer (TNBC), defined as ER-negative/Her2-negative.
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sions in the cell pattern was reported to be asso-

ciated with improved disease-specific survival,
lymphocytic infiltration, and tumor prolifera-

tion (Bose et al. 2015). Besides histological anal-

ysis, fractals analysis has also demonstrated its
uses in biomarker discovery based on dynamic

contrast-enhanced MRI (Rose et al. 2009). As

measures of global heterogeneity, fractals have
shown superior prognostic power compared to

region-based measures that do not sufficiently

explore the relationships between tumor re-
gions (Rose et al. 2009). We anticipate the ap-

plication of fractal dimensions in histology by

using specific markers, such as hypoxia mark-
ers, to contribute to our understanding of re-

source heterogeneity in the microenvironment.

Challenges in Spatial Analysis of Histology
Samples

Spatial Tessellation

Histological sections can often contain up to
millions of cells. It is thus a nontrivial task to

discern spatial patterns from data at this scale.

This challenge can also be found in ecology,
where spatial data are sometimes acquired at a

large scale. Tessellation effectively reduces com-

plex problems to individual local structures,
thus has been used widely in ecology. A tessel-

lation is a mosaic set of spatially separated poly-

gons. Commonly used tessellation models
include Voronoi (Getis 1986) and rigid squares

(Fig. 7). Voronoi tessellation is generated by

seeds/spatial points to create polygons that con-
tain all their closest neighbors. It has been sug-

gested that because Voronoi tessellation mimics

naturally emerged patterns, it is therefore par-
ticularly useful for studies of biological process-

es in nature (Getis 1994). For example, Voronoi

tessellation has been used to predict plant har-
vest based on the Voronoi parameters of spatial

patterns of plants. In the pioneering work of

Mead (1966), measures of the Voronoi polygon
were found to best predict carrot monoculture

yield. These measures include area and two

shape features of the polygons, and plants that
grow close to the centroids of large isodiametric

polygons tend to have a better yield.

Because of its desirable property, Voronoi
tessellation has widespread applications, in-

cluding those in histological image analysis.

For example, it was used to extract architectural
features of cells in histological image analysis

of breast cancer, prostate cancer, B-cell lympho-

ma, and Barrett’s esophagus (Doyle et al. 2007;
Basavanhally et al. 2010; Muldoon et al. 2010;

Guidolin et al. 2015). For spatial analysis in

histology, the benefits of two tessellation con-

Voronoi tessellationA B

0.5

0.3

0.03

Square tessellation

Figure 7.Different spatial tessellation methods to provide spatial resolution for histological sample analysis: (A)
Voronoi tessellation for a hematoxylin and eosin (H&E) slide and corresponding immune cell density heatmap
as polygons, and (B) square tessellation for an H&E slide and corresponding immune cell density heatmap as
polygons.
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figurations on colocalization measures have

been investigated: a Voronoi lattice versus a rigid
square lattice (Maley et al. 2015). To generate

Voronoi polygons, cancer cells were randomly

sampled and used as “seeds” for tessellation,
and the numberof cancercells and immune cells

were computed for each polygon (Fig. 7A).

Meanwhile, square tessellations were generated
to have a similar amount of polygons as the

Voronoi tessellation (Fig. 7B). Voronoi tessella-

tion resulted in a more normally distributed set
of cells in the polygons compared with the dis-

tributions of cells resulting from square tessel-

lation (Maley et al. 2015). Combinations of tes-
sellation and spatial analysis methods were

further analyzed (Maley et al. 2015). Both the

Morisita–Horn index and Pearson correlation
have been widely used in ecology to study the

similarity of structures between two communi-

ties, for example, to compare Salmonella colo-
nization routes (Lim et al. 2014). When applied

to quantification of spatial colocalization of

cancer and immune cells, the Morisita–Horn
index displayed high statistical significance for

both types of tessellation in terms of association

with survival in breast cancer, whereas Pearson
correlation was associated with survival only

when used in conjunction with Voronoi tessel-

lation. This is not surprising because the Pear-
son correlation is known to be sensitive to data

with skewed distribution. Therefore, the choice

of spatial analysis methods should be carefully
evaluated based on the use of spatial tessellation

schemes.

Spatial Scale

Spatial heterogeneity is scale dependent. This
phenomenon has been well documented in a

number of studies in ecology, emphasizing

that a scale needs to be chosen that is appropri-
ate for the ecological process under study

(Gardner et al. 1987; Turner et al. 1989). In

histology analysis, the influence on spatial anal-
ysis by the use of different spatial scales along

with spatial methods has been investigated.

Cancer-immune cell colocalization was mea-
sured using the Morisita–Horn and Pearson

correlation methods using square and Voronoi

tessellation of eight different spatial scales,

where larger scale indicates larger regions
(Maley et al. 2015). Changes in their prognostic

value according to the spatial scales were evalu-

ated. The Morisita–Horn index was more ro-
bust to a spatial scale compared with a Pearson

correlation. Hence, there is a need to evaluate

robustness of the spatial index over different
spatial configurations and to choose an appro-

priate scale in histological studies.

CONCLUDING REMARKS

In this review, we discussed how a desire to
understand the interactions between cancer

cells and the microenvironment has fueled a

developing interest in studying tumors from a
novel perspective: ecology. Within a Darwinian

framework, analysis of tumor spatial heteroge-

neity can reveal distinct features in cancer hab-
itats that indicate a number of different eco-

logical processes. Studies of these ecological

processes occurring in tumors can benefit
from application of spatial statistics tools rou-

tinely used in ecological studies. Histology sam-

ples provide an abundance of data as input
for these methods because of preserved spatial

context. Thus, spatial analysis empowered by

large-scale analysis of archival histology sam-
ples could facilitate studies of ecological in-

teractions in human tumors with far-reaching

implications. It can aid in the identification
of patients at higher risk of progression or

treatment resistance who may benefit from

new treatments. We listed examples where spa-
tial analysis of tumor histological specimen re-

vealed associations between cancer prognosis

and immune infiltration or resource distribu-
tion. Development of robust analytical tools

capable of handling challenges presented in his-

tological samples could play a key role in pro-
pelling this niche area into mainstream research

and clinical uses. Nevertheless, histology on its

own can be limited by the two-dimensional
representation of a three-dimensional tumor.

Radio-imagingmodalities can step in to address

this problem (Chaudhury et al. 2015). Fabricat-
ed devices as those developed inWu et al. (2015)

could be used to test hypotheses in controlled

Spatial Heterogeneity in the Tumor Microenvironment

Cite this article as Cold Spring Harb Perspect Med 2016;6:a026583 13

w
w

w
.p

e
rs

p
e

c
ti

v
e

si
n

m
e

d
ic

in
e

.o
rg

 on August 25, 2022 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


environments. Further, integrating a variety of

assays including histology, imaging, genomics,
and in vitro systems will provide multiple layers

of information for the spatial and molecular

structure of the tumor, revealing new cancer–
microenvironment interactions that exist at dif-

ferent spatial scales.
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Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Hol-
gado E, et al. 2015. Nivolumab versus docetaxel in ad-
vanced squamous-cell non-small-cell lung cancer.NEngl
J Med 373: 1–13.

Chaudhury B, Zhou M, Goldgof DB, Hall LO, Gatenby RA,
Gillies RJ, Patel BK, Weinfurtner RJ, Drukteinis JS. 2015.
Heterogeneity in intratumoral regions with rapid gado-
linium washout correlates with estrogen receptor status
and nodal metastasis. J Magn Res Imaging 42: 1421–
1430.

Clemente CG,MihmMC Jr, BufalinoR, Zurrida S, Collini P,
Cascinelli N. 1996. Prognostic value of tumor infiltrating
lymphocytes in the vertical growth phase of primary cu-
taneous melanoma. Cancer 77: 1303–1310.

Cross SS. 1994. The application of fractal geometric analysis
to microscopic images. Micron 25: 101–113.

Cross SS. 1997. Fractals in pathology. J Pathol 182: 1–8.

Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dun-
ningMJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, et al.
2012. The genomic and transcriptomic architecture of
2,000 breast tumours reveals novel subgroups. Nature
486: 346–352.

de Bruin EC,McGranahanN,Mitter R, SalmM,WedgeDC,
Yates L, Jamal-Hanjani M, Shafi S, Murugaesu N, Rowan
AJ, et al. 2014. Spatial and temporal diversity in genomic
instability processes defines lung cancer evolution. Sci-
ence 346: 251–256.

de Knegt HJ, van Langevelde F, Coughenour MB, Skidmore
AK, de Boer WF, Heitkönig IMA, Knox NM, Slotow R,
van derWaal C, Prins HHT. 2009. Spatial autocorrelation
and the scaling of species–environment relationships.
Ecology 91: 2455–2465.

Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS,
Allison JP, Formenti SC. 2005. Immune-mediated inhi-
bition of metastases after treatment with local radiation
and CTLA-4 blockade in a mousemodel of breast cancer.
Clin Cancer Res 11: 728–734.

Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor
M, Budczies J, Darb-Esfahani S, Kronenwett R, Hanusch
C, et al. 2010. Tumor-associated lymphocytes as an inde-
pendent predictor of response to neoadjuvant chemo-
therapy in breast cancer. J Clin Oncol 28: 105–113.

Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S,
Kronenwett R, Pfitzner BM, Salat C, Loi S, Schmitt WD,
et al. 2015. Tumor-infiltrating lymphocytes and response
to neoadjuvant chemotherapy with or without carbopla-
tin in human epidermal growth factor receptor 2–posi-
tive and triple-negative primary breast cancers. J Clin
Oncol 33: 983–991.

Doyle S, Hwang M, Shah K, Madabhushi A, Feldman M,
Tomaszeweski J. 2007. Automated grading of prostate
cancer using architectural and textural image features.
In ISBI 2007 4th IEEE International Symposium on Bio-
medical Imaging: From Nano to Macro. pp. 1284–1287.

Y. Yuan

14 Cite this article as Cold Spring Harb Perspect Med 2016;6:a026583

w
w

w
.p

e
rs

p
e

c
ti

v
e

si
n

m
e

d
ic

in
e

.o
rg

 on August 25, 2022 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


Doyle S, Feldman M, Tomaszewski J, Madabhushi A. 2012.
A boosted Bayesian multiresolution classifier for prostate
cancer detection from digitized needle biopsies. IEEE
Trans Biomed Eng 59: 1205–1218.

Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M,
Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu
A, et al. 2008. Stromal gene expression predicts clinical
outcome in breast cancer. Nat Med 14: 518–527.

Formenti SC, Demaria S. 2013. Combining radiotherapy
and cancer immunotherapy: A paradigm shift. J Natl
Cancer Inst 105: 256–265.

Fraley C, Raftery AE. 2003. Enhanced model-based cluster-
ing, density estimation, and discriminant analysis soft-
ware: MCLUST. J Classif 20: 263–286.

Fridman WH, Pages F, Sautes-Fridman C, Galon J. 2012.
The immune contexture in human tumours: Impact on
clinical outcome. Nat Rev Cancer 12: 298–306.

Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B,
Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind
P, et al. 2006. Type, density, and location of immune cells
within human colorectal tumors predict clinical out-
come. Science 313: 1960–1964.

Gardner RH, Milne BT, Turnei MG, O’Neill RV. 1987. Neu-
tral models for the analysis of broad-scale landscape pat-
tern. Landscape Ecol 1: 19–28.

Gatenby RA, Gillies RJ. 2008. A microenvironmental model
of carcinogenesis. Nat Rev Cancer 8: 56–61.

GatenbyRA,GroveO,Gillies RJ. 2013.Quantitative imaging
in cancer evolution and ecology. Radiology 269: 8–14.

Gentles AJ, Newman AM, Liu CL, Bratman SV, FengW, Kim
D, Nair VS, Xu Y, Khuong A, Hoang CD, et al. 2015. The
prognostic landscape of genes and infiltrating immune
cells across human cancers. Nat Med 21: 938–945.

GerlingerM, Rowan AJ, Horswell S, Larkin J, Endesfelder D,
Gronroos E,Martinez P,MatthewsN, Stewart A, Tarpey P,
et al. 2012. Intratumor heterogeneity and branched evo-
lution revealed by multiregion sequencing. N Engl J Med
366: 883–892.

Getis A. 1986. Book review: Spatial data-analysis by exam-
ple, Vol. 1, Point pattern and quantitative data (ed. Upton
GJG, Fingleton B). Am Cartogr 13: 363–365.

Getis A. 1994. Book review: Spatial tessellations—Concepts
and applications of Voronoi diagrams (ed. Okabe A,
Boots B, Sugihara K). Geogr Anal 26: 88–90.

Getis A, Ord JK. 1992. The analysis of spatial association by
use of distance statistics. Geogr Anal 24: 189–206.

Gillies RJ, Verduzco D, Gatenby RA. 2012. Evolutionary
dynamics of carcinogenesis and why targeted therapy
does not work. Nat Rev Cancer 12: 487–493.

Greaves M. 2015. Evolutionary determinants of cancer.
Cancer Discov doi: 10.1158/2159-8290.CD-15-0439.

Greaves M, Maley CC. 2012. Clonal evolution in cancer.
Nature 481: 306–313.

Guidolin D, Marinaccio C, Tortorella C, Ruggieri S, Rizzi A,
Maiorano E, Specchia G, Ribatti D. 2015. A fractal anal-
ysis of the spatial distribution of tumoral mast cells in
lymph nodes and bone marrow. Exp Cell Res 339: 96–
102.

GurcanMN, Boucheron LE, CanA,Madabhushi A, Rajpoot
NM, Yener B. 2009. Histopathological image analysis: A
review. IEEE Rev Biomed Eng 2: 147–171.

Heindl A, Nawaz S, Yuan Y. 2015. Mapping spatial hetero-
geneity in the tumor microenvironment: A new era for
digital pathology. Lab Invest 95: 377–384.

Hobor S, Van Emburgh BO, Crowley E, Misale S, Di Nico-
lantonio F, Bardelli A. 2014. TGFa and amphiregulin
paracrine network promotes resistance to EGFRblockade
in colorectal cancer cells. Clin Cancer Res 20: 6429–6438.

Holmes S, Kapelner A, Lee PP. 2009. An interactive java
statistical image segmentation system: GemIdent. J Stat
Softw 30: i10.

Hu LS, Ning S, Eschbacher JM, Gaw N, Dueck AC, Smith
KA, Nakaji P, Plasencia J, Ranjbar S, Price SJ, et al. 2015.
Multi-parametric MRI and texture analysis to visualize
spatial histologic heterogeneity and tumor extent in glio-
blastoma. PLoS ONE 10: e0141506.

Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos
KD, Rivera A, Ji B, Evans DB, LogsdonCD. 2008. Cancer-
associated stromal fibroblasts promote pancreatic tumor
progression. Cancer Res 68: 918–926.

Issa-Nummer Y, Darb-Esfahani S, Loibl S, Kunz G, Neklju-
dova V, Schrader I, Sinn BV, Ulmer HU, Kronenwett R,
JustM, et al. 2013. Prospective validation of immunolog-
ical infiltrate for prediction of response to neoadjuvant
chemotherapy in HER2-negative breast cancer—A sub-
study of the neoadjuvant GeparQuinto trial. PloS ONE 8:
e79775.

Johnson LE, Padilla DK. 1996. Geographic spread of exotic
species: Ecological lessons and opportunities from the
invasion of the zebra mussel Dreissena polymorpha. Biol
Conserv 78: 23–33.

Junttila MR, de Sauvage FJ. 2013. Influence of tumour mi-
cro-environment heterogeneity on therapeutic response.
Nature 501: 346–354.

Kothari S, Phan JH, Stokes TH, Wang MD. 2013. Pathology
imaging informatics for quantitative analysis of whole-
slide images. JAMIA 20: 1099–1108.

Kruger JM, Wemmert C, Sternberger L, Bonnas C, Diet-
mann G, Gancarski P, Feuerhake F. 2013. Combat or
surveillance? Evaluation of the heterogeneous inflam-
matory breast cancer microenvironment. J Pathol 229:
569–578.

LennonFE, Cianci GC,CiprianiNA,Hensing TA, ZhangHJ,
Chen CT, Murgu SD, Vokes EE, Vannier MW, Salgia R.
2015. Lung cancer—A fractal viewpoint. Nat Rev Clin
Oncol 12: 664–675.

Lim CH, Voedisch S, Wahl B, Rouf SF, Geffers R, Rhen
M, Pabst O. 2014. Independent bottlenecks charac-
terize colonization of systemic compartments and gut
lymphoid tissue by Salmonella. PLoS Pathog 10:

e1004270.

Little SE, Popov S, Jury A, Bax DA, Doey L, Al-Sarraj S,
Jurgensmeier JM, Jones C. 2012. Receptor tyrosine kinase
genes amplified in glioblastoma exhibit a mutual exclu-
sivity in variable proportions reflective of individual tu-
mor heterogeneity. Cancer Res 72: 1614–1620.

Lloyd MC, Alfarouk KO, Verduzco D, Bui MM, Gillies RJ,
IbrahimME, Brown JS, Gatenby RA. 2014. Vascularmea-
surements correlate with estrogen receptor status. BMC
Cancer 14: 279.

Lloyd MC, Cunningham JJ, Bui MM, Gillies RJ, Brown JS,
Gatenby RA. 2016. Darwinian dynamics of intratumoral
heterogeneity: Not solely random mutations but also

Spatial Heterogeneity in the Tumor Microenvironment

Cite this article as Cold Spring Harb Perspect Med 2016;6:a026583 15

w
w

w
.p

e
rs

p
e

c
ti

v
e

si
n

m
e

d
ic

in
e

.o
rg

 on August 25, 2022 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


variable environmental selection forces. Cancer Res doi:
10.1158/0008-5472.CAN-15-2962.

Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F,
Rouas G, Francis P, Crown JP, Hitre E, et al. 2013.
Prognostic and predictive value of tumor-infiltrating
lymphocytes in a phase III randomized adjuvant breast
cancer trial in node-positive breast cancer comparing
the addition of docetaxel to doxorubicin with doxorubi-
cin-based chemotherapy: BIG 02–98. J Clin Oncol 31:
860–867.

Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D,
Kellokumpu-Lehtinen PL, Bono P, Kataja V, Desmedt C,
et al. 2014. Tumor infiltrating lymphocytes are prognos-
tic in triple negative breast cancer and predictive for tras-
tuzumab benefit in early breast cancer: Results from the
FinHER trial. Ann Oncol 25: 1544–1550.

Losa GA. 1995. Fractals in pathology: Are they really useful?
Pathologica 87: 310–317.

Lu H, Papathomas TG, van Zessen D, Palli I, de Krijger RR,
van der Spek PJ, Dinjens WN, Stubbs AP. 2014. Auto-
mated selection of hotspots (ASH): Enhanced automated
segmentation and adaptive step finding for Ki67 hotspot
detection in adrenal cortical cancer. Diagn Pathol 9: 1–9.

Maley CC, Koelble K, Natrajan R, Aktipis A, Yuan Y. 2015.
An ecological measure of immune-cancer colocalization
as a prognostic factor for breast cancer. Breast Cancer Res
17: 131.

Mandelbrot BB, Wheeler JA. 1983. The fractal geometry of
nature. Am J Phys 51: 286–287.

Marusyk A, TabassumDP, Altrock PM, Almendro V,Michor
F, Polyak K. 2014. Non-cell-autonomous driving of tu-
mour growth supports sub-clonal heterogeneity. Nature
514: 54–58.

Matesanz S, Horgan-Kobelski T, Sultan SE. 2015. Evidence
for rapid ecological range expansion in a newly invasive
plant. AoB Plants 7: plv038.

McCann MT, Ozolek JA, Castro CA, Parvin B, Kovacevic J.
2015. Automated histology analysis: Opportunities for
signal processing. IEEE Signal Process Mag 32: 78–87.

McIntire EJB, Fajardo A. 2009. Beyond description: The
active and effective way to infer processes from spatial
patterns. Ecology 90: 46–56.

McIntosh AR, Peckarsky BL, Taylor BW. 2004. Predator-
induced resource heterogeneity in a stream food web.
Ecology 85: 2279–2290.

Mead R. 1966. A Relationship between individual plant-
spacing and yield. Ann Bot 30: 301–309.

Merlo LM, Pepper JW, Reid BJ, Maley CC. 2006. Cancer as
an evolutionary and ecological process. Nat Rev Cancer
6: 924–935.

Misale S, Arena S, Lamba S, Siravegna G, Lallo A, Hobor S,
Russo M, Buscarino M, Lazzari L, Sartore-Bianchi A,
et al. 2014. Blockade of EGFR and MEK intercepts
heterogeneous mechanisms of acquired resistance to
anti-EGFR therapies in colorectal cancer. Sci Transl Med
6: 224–226.

Morisita M. 1959. Measuring of the dispersion of individ-
uals and analysis of the distributional patterns.Mem Fac
Sci Kyushu Univ Ser 2: 215–235.

Muldoon TJ, Thekkek N, Roblyer D, Maru D, Harpaz N,
Potack J, Anandasabapathy S, Richards-Kortum R. 2010.

Evaluation of quantitative image analysis criteria for the
high-resolution microendoscopic detection of neoplasia
in Barrett’s esophagus. J Biomed Optics 15: 026027.

Nakasone ES, AskautrudHA,Kees T, Park JH, PlaksV, Ewald
AJ, FeinM, RaschMG, TanYX,Qiu J, et al. 2012. Imaging
tumor–stroma interactions during chemotherapy re-
veals contributions of the microenvironment to resis-
tance. Cancer Cell 21: 488–503.

Nawaz S, Yuan Y. 2015. Computational pathology: Explor-
ing the spatial dimension of tumor ecology. Cancer Lett
doi: 10.1016/j.canlet.2015.11.018.

Nawaz S, Heindl A, Koelble K, Yuan Y. 2015. Beyond im-
mune density: Critical role of spatial heterogeneity in
estrogen receptor-negative breast cancer. Mod Pathol 28:
1621.

Nelson LS, Mansfield JR, Lloyd R, Oguejiofor K, Salih Z,
Menasce LP, Linton KM, Rose CJ, Byers RJ. 2015. Auto-
mated prognostic pattern detection shows favourable dif-
fuse pattern of FOXP3þ Tregs in follicular lymphoma. Br
J Cancer 113: 1197–1205.

Radloff FG, Du Toit JT. 2004. Large predators and their prey
in a southern African savanna: A predator’s size deter-
mines its prey size range. J Animal Ecol 73: 410–423.

Ripley BD. 1976. The second-order analysis of stationary
point processes. J Appl Probab 13: 255–266.

Ripley BD. 1984. Spatial statistics—Developments 1980–3.
Int Stat Rev 52: 141–150.

Rose CJ, Mills SJ, O’Connor JPB, Buonaccorsi GA, Roberts
C, Watson Y, Cheung S, Zhao S, Whitcher B, Jackson A,
et al. 2009. Quantifying spatial heterogeneity in dynamic
contrast-enhanced MRI parameter maps. Magn Reson
Med 62: 488–499.

Sanders D, Sutter L, van Veen FJF. 2013. The loss of indirect
interactions leads to cascading extinctions of carnivores.
Ecol Lett 16: 664–669.

Scalon JD, Avelar MBL, Alves GdF, Zacarias MS. 2011. Spa-
tial and temporal dynamics of coffee-leaf-miner and
predatory wasps in organic coffee field in formation.
Ciência Rural 41: 646–652.

Siravegna G, Mussolin B, BuscarinoM, Corti G, Cassingena
A, Crisafulli G, Ponzetti A, Cremolini C, Amatu A, Laur-
icella C, et al. 2015. Clonal evolution and resistance to
EGFR blockade in the blood of colorectal cancer patients.
Nat Med 21: 795–801.

Smith CE, Hurley BJ, Toms CN, Mackey AD, Solangi M,
Kuczaj SA. 2013. Hurricane impacts on the foraging pat-
terns of bottlenose dolphins Tursiops truncatus in Mis-
sissippi Sound. Marine Ecol Prog Ser 487: 231–244.

Tilman D, Kareiva PM. 1997. Spatial ecology: The role of
space in population dynamics and interspecific interactions.
Princeton University Press, Princeton, NJ.

Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S,
Johnson DS, Trivett MK, Etemadmoghadam D, Locan-
dro B, et al. 2008. Novel molecular subtypes of serous and
endometrioid ovarian cancer linked to clinical outcome.
Clin Cancer Res 14: 5198–5208.

Tuominen VJ, Ruotoistenmaki S, Viitanen A, Jumppanen
M, Isola J. 2010. ImmunoRatio: A publicly available web
application for quantitative image analysis of estrogen
receptor (ER), progesterone receptor (PR), and Ki-67.
Breast Cancer Res 12: R56.

Y. Yuan

16 Cite this article as Cold Spring Harb Perspect Med 2016;6:a026583

w
w

w
.p

e
rs

p
e

c
ti

v
e

si
n

m
e

d
ic

in
e

.o
rg

 on August 25, 2022 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


Turner M, O’Neill R, Gardner R, Milne B. 1989. Effects of
changing spatial scale on the analysis of landscape pat-
tern. Landscape Ecol 3: 153–162.

Verduzco D, Lloyd M, Xu L, Ibrahim-Hashim A, Balagu-
runathan Y, Gatenby RA, Gillies RJ. 2015. Intermittent
hypoxia selects for genotypes and phenotypes that in-
crease survival, invasion, and therapy resistance. PLoS
ONE 10: e0120958.

Villasante A, Vunjak-Novakovic G. 2015. Tissue-engineered
models of human tumors for cancer research. Exp Opin
Drug Discov 10: 257–268.

Walther V, Hiley CT, Shibata D, Swanton C, Turner PE,
Maley CC. 2015. Can oncology recapitulate paleontolo-
gy? Lessons from species extinctions. Nat Rev Clin Oncol
12: 273–285.

Weinberg RA. 2008. Coevolution in the tumor microenvi-
ronment. Nat Genet 40: 494–495.

WilliamsMJ,Werner B, Barnes CP, GrahamTA, Sottoriva A.
2016. Identification of neutral tumor evolution across
cancer types. Nat Genet 48: 238–244.

Wolda H. 1981. Similarity indexes, sample-size and diver-
sity. Oecologia 50: 296–302.

Wood SL, Pernemalm M, Crosbie PA, Whetton AD. 2014.
The role of the tumor-microenvironment in lung cancer-
metastasis and its relationship to potential therapeutic
targets. Cancer Treat Rev 40: 558–566.

Wu A, Zhang Q, Lambert G, Khin Z, Gatenby RA, Kim HJ,
Pourmand N, Bussey K, Davies PCW, Sturm JC, et al.
2015. Ancient hot and cold genes and chemotherapy
resistance emergence. Proc Natl Acad Sci 112: 10467–
10472.

Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem
G, Van Loo P, Aas T, Alexandrov LB, Larsimont D, Davies
H, et al. 2015. Subclonal diversification of primary breast
cancer revealed by multiregion sequencing. Nat Med 21:
751–759.

Yuan Y. 2015. Modelling the spatial heterogeneity and mo-
lecular correlates of lymphocytic infiltration in triple-
negative breast cancer. J R Soc Interface doi: 10.1098/
rsif.2014.1153.

Yuan Y, Failmezger H, Rueda OM, Ali HR, Graf S, Chin SF,
Schwarz RF, Curtis C, Dunning MJ, Bardwell H, et al.
2012. Quantitative image analysis of cellular heterogene-
ity in breast tumors complements genomic profiling. Sci
Transl Med 4: 157–143.

Spatial Heterogeneity in the Tumor Microenvironment

Cite this article as Cold Spring Harb Perspect Med 2016;6:a026583 17

w
w

w
.p

e
rs

p
e

c
ti

v
e

si
n

m
e

d
ic

in
e

.o
rg

 on August 25, 2022 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


2016; doi: 10.1101/cshperspect.a026583Cold Spring Harb Perspect Med 
 
Yinyin Yuan
 
Spatial Heterogeneity in the Tumor Microenvironment

Subject Collection  Cancer Evolution

Cancer Therapy
The Evolution and Ecology of Resistance in

Robert A. Gatenby and Joel S. Brown
Cancer Therapy
The Evolution and Ecology of Resistance in

Robert Gatenby and Joel Brown

Big Bang Tumor Growth and Clonal Evolution
Ruping Sun, Zheng Hu and Christina Curtis Heterogeneity

Phylogenetic Quantification of Intratumor

Thomas B.K. Watkins and Roland F. Schwarz

Fitness Models for Cancer
Spatiotemporal Axes: A Prelude to Quantitative 
Observing Clonal Dynamics across

Sohrab P. Shah
Andrew W. McPherson, Fong Chun Chan and

Strategies
for the Development of Novel Immunotherapeutic 
The ''Achilles' Heel'' of Cancer and Its Implications

al.
Kroopa Joshi, Benjamin M. Chain, Karl S. Peggs, et

Evolution of Premalignant Disease

Graham
Kit Curtius, Nicholas A. Wright and Trevor A. Perspective of Cancer

Homeostasis Back and Forth: An Ecoevolutionary

David Basanta and Alexander R.A. Anderson

The Role of Aneuploidy in Cancer Evolution
Laurent Sansregret and Charles Swanton Architecture of Cancers

Principles of Reconstructing the Subclonal

Loo
Stefan C. Dentro, David C. Wedge and Peter Van

Pressures Sculpt Cancer Evolution
Treatment-Induced Mutagenesis and Selective

S. Taylor, et al.
Subramanian Venkatesan, Charles Swanton, Barry

Responses to Therapy
Tumor Microenvironment and Differential

Eishu Hirata and Erik Sahai

Heterogeneity and Evolution
Chromosomal Instability as a Driver of Tumor

Samuel F. Bakhoum and Dan Avi Landau
Influences Cancer Evolution
Order Matters: The Order of Somatic Mutations

David G. Kent and Anthony R. Green

in Chronic Lymphocytic Leukemia
Coevolution of Leukemia and Host Immune Cells

Noelia Purroy and Catherine J. Wu
Cancer
The Cellular Origin and Evolution of Breast

Mei Zhang, Adrian V. Lee and Jeffrey M. Rosen

http://perspectivesinmedicine.cshlp.org/cgi/collection/ For additional articles in this collection, see 

Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved

 on August 25, 2022 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/cgi/collection/
http://perspectivesinmedicine.cshlp.org/cgi/collection/
http://perspectivesinmedicine.cshlp.org/

