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ABSTRACT
Data warehouse and Online Analytical Processing(OLAP) play a
key role in business intelligent systems. With the increasing amount
of spatial data stored in business database, how to utilize these
spatial information to get insight into business data from the geo-
spatial point of view is becoming an important issue of data ware-
house and OLAP. However, traditional data warehouse and OLAP
tools can not fully exploit spatial data in coordinates because multi-
dimensional spatial data does not have implicit or explicit concept
hierarchy to compute pre-aggregation and materialization in data
warehouse. In this paper we extend the traditional set-grouping hi-
erarchy into multi-dimensional data space and propose to use spa-
tial index tree as the hierarchy on spatial dimension. With spatial
hierarchy, spatial data warehouse can be built accordingly. Our ap-
proach preserve the star schema in data warehouse while building
the hierarchy on spatial dimension, and can be easily integrated
into existing data warehouse and OLAP systems. To process spa-
tial OLAP query in spatial data warehouse, we propose an OLAP-
favored search method which can utilize the pre-aggregation result
in spatial data warehouse to improve the performance of spatial
OLAP queries. For generality, the algorithm is developed based on
Generalized Index Searching Tree(GiST). To improve the perfor-
mance of OLAP-favored search, we further introduce a heuristic
search method which can provide an approximate answer to spa-
tial OLAP query. Experiment result shows the efficiency of our
method.
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1. INTRODUCTION
Spatial data exists pervasively in business information systems.

It is claimed that 80% of the overall information stored in comput-
ers is geo-spatial related, either explicitly or implicitly [6]. With
the advent of mobile computing and location-based services, even
more amount of spatial data is collected and stored in database.
While storing spatial data is the first step, it is more important to
analyze spatial data in business intelligent systems to provide in-
sight into business from the geo-spatial point of view. For example,
when choosing site when opening a store, spatial related informa-
tion like distance to the nearest highway, income of neighborhood
residents, and/or daily traffic volume on the nearby roads should be
taken into consideration.

Data warehouse is ”a subject-oriented, integrated, time-variant,
and nonvolatile collection of data in support of management’s de-
cision making process.” [15]. The purpose of data warehouse is to
support OLAP, which is especially designed for knowledge work-
ers (executives, managers, analysts) to systematically organize, un-
derstand, and use their data to make strategic decisions. In data
warehouse and OLAP, business data is viewed from multiple di-
mensions and modeled as multidimensional data cubes defined by
dimensions and facts [10]. Each dimension represents some busi-
ness perspective, like customers, products and time, and facts are
numerical measures to be analyzed, such as sales in dollars. Cell
in data cube is referred as cubiod. To provide user with flexible
views of data from different perspectives on multiple summariza-
tion levels, concept hierarchy is defined on dimension. OLAP ma-
terializes these views to improve the performance of OLAP query
processing. Materializing, or pre-aggregation, computes aggregate
measure in cubiods.

While taking spatial data into consideration, data warehouse and
OLAP can provide insight into data from the geo-spatial point of
view. Location data in databases is often described in text strings,
like street address, and has implicit hierarchy like (street < city <
state or province < nation). This location string is not what we
called multidimensional spatial data, and has limited capacity in
spatial analysis. For example, query like ”what’s the total sales of
gas stations less than 10 km from the mall” can not be processed
easily when the mall’s location is represented in street address.
Geocoding technique translates street address into two-dimensional
point data. Some commercial database vendors, such as IBM and
Oracle, provide spatial extensions in their database systems [19][1]
to store spatial data and has certain level of spatial analysis capa-
bilities.

We refer spatial data as multi-dimensional spatial objects de-
scribed in coordinates. Traditional data warehouse and OLAP tools
can not fully exploit spatial data because spatial data does not have
implicit or explicit concept hierarchy. While trying to address the
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problem under the framework and data model of traditional data
warehouse and OLAP, we adopt Han’s definition of spatial-to-spatial
dimension as spatial dimension, whose primitive level and all of
its high level generalized are spatial [13]. The spatial dimension
differentiates from the non-spatial dimension in that there is lit-
tle a priori knowledge about the concept hierarchy on the dimen-
sion[17][18]. Without concept hierarchy, data warehouse can not
pre-aggregate on spatial dimension.

In this paper we extend the traditional set-grouping hierarchy
into multi-dimensional data space and propose to use spatial index
tree as the spatial hierarchy. With this approach, concept hierar-
chy on spatial dimension can be automatically generated. Based
on spatial hierarchy, data cube and pre-aggregation can be com-
puted in spatial data warehouse while preserving the star schema in
data warehouse. To improve the efficiency of spatial OLAP query
processing, we propose an OLAP-favored search method which
utilizes the pre-aggregation result when processing spatial OLAP
queries in spatial data warehouse. For generality, the algorithm is
developed based on Generalized Index Searching Tree(GiST) pro-
posed in [14]. To further improve the query performance, we pro-
pose a heuristic OLAP-favored tree searching method which can
generate an approximate answer with controlled error. Experiment
conducted on three different data sets shows the efficiency of our
method.

The rest of the paper is organized as follows. Motivating ex-
ample is introduced in Section 2. Section 3 details the method of
generating the hierarchy on spatial dimension. Section 4 outlines
the OLAP favored query processing algorithm based on GiST. The
related work is covered in section 5. Section 6 concludes our work
and points out future works.

2. MOTIVATING EXAMPLE
Star schema is the most common modeling paradigm in data

warehouse [12]. Fig. 1 illustrates the star schema of an example
data warehouse with sample data. It’s a gas sales data warehouse to
analyze the gas sales concerning different gas stations, gas types,
customer’s vehicles and time.

Station_ID Station_Name Address Location 

77 Beiti Gas Station 2th Street, Shangdi, 

Beijing 

(116.37,39.51) 

 

Gas_ID Unit_Price 

90 3.25 

93 3.60 

 

Vehicle_Group_ID Type 

1 Private car 

2 Taxi 

3 Bus 

 

Time_ID Time Day Month Year 

3455 7:20 12 Feb 2002 

3456 7:25 13 Feb 2002 

 

Trans_No. Station_ID Gas_ID Vehicle_Group_ID Time_ID Quantity Sales 

5478912 77 90 2 3455 40 130.00 

 

Station

Vehicle

Sales

Gas

Time

Figure 1: Star Schema in Data Warehouse

In the data warehouse there are four dimension tables: Station,
Gas, Vehicle and Time. The Station table is the spatial dimension in
the data warehouse. Its attribute location gives the spatial location
of a gas station. The fact table is Sales which stores the sales data
of each transaction.

Users can analyze the data from multiple perspectives includ-
ing the spatial perspective. A spatial-related OLAP query may be
”what’s the total sales of all gas stations within the given rectangu-
lar region in January, 2003?” We refer to the query as Q1 hereafter
in this paper. The gas sales data warehouse and the dynamic spatial-
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Post order traversal:
((((S1,S2,S7)R4),(...)R5)R2,(...)R3)R1

NID  S ales  

...  ...  

...  ...  

S 1  8000.00  

S 2  3000.00  

S 7  4000.05  

R4  15000.00  

...  ...  

R5  20000.00  

...  ...  

R2  35000.00  

...  ...  

R3  45000.00  

R1  75000.00  

 

 

 

 

R1

R2 R3

R4 R5 R6 R7

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Rtree Summary Table

Figure 3: R-tree, Post order traversal and Aggregation path

related OLAP query in particular are employed as our motivating
example.

3. HIERARCHY OF SPATIAL DIMENSION
We introduce the term spatial index tree to denote the spatial in-

dexing method that organize spatial data in hierarchies. Various
spatial index trees have been surveyed [8], including Quadtree [7],
K-D-B-tree [20], R-tree [11], its variation R*-tree [3] and R+-tree
[21], etc. One characteristic of the spatial index tree is that a tree
node spatially encloses its children nodes. Taking R-tree as an ex-
ample, the spatial data set (points representing gas stations) and
the associated Rtree is shown in Fig. 2. Based on this character-
istic, we propose using spatial index tree as the multidimensional
set-grouping hierarchy on spatial dimension because it provides a
grouping schema in multi-dimensional space.

Unlike the traditional hierarchies, the spatial hierarchy can be
very complex. Post order traversal on the index tree generates all
the aggregation paths from the bottom to the top of the tree. The
relationship between R-tree, its post order traversal and aggregation
path is depicted in Fig. 3.

Taken spatial index tree as the set-grouping hierarchy, data ware-
house can build data cubes following aggregation pathes derived
from the index tree. A sample data cube based on spatial hierarchy
in Fig. 3 is shown in Table 1. The Group By Cube, an OLAP exten-
sions to SQL provided by DB2, is employed here to aggregate all
non-spatial dimensions[5].

4. OLAP-FAVORED QUERY PROCESSING

4.1 OLAP-favored Query Processing Overview
Due to the complexity of spatial hierarchy, the query processing

in spatial OLAP depends on spatial index to find out what cubiod
in the data warehouse need to be exploited. For example, to answer
query Q1 where the region is defined ad-hoc, OLAP query pro-
cessing engine needs to first check the spatial index on the location
dimension to get all the intermediate aggregated nodes ID. With
those IDs, associated cubiods in the summary table can be located,
and conditions on other dimensions will be further checked.
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Table 1: Sample content of OLAP data cube
NID Vehicle Gas Year Month Sales
... ... ... ... ... ...
R4 1 90 2002 Jan. 27865.00
R4 1 90 2002 Feb. 24500.00
R4 1 90 2002 ... ...
R4 1 90 2002 - 190234.00
R4 1 90 - - 348976.00
R4 1 93 2002 Jan. 3456.00
R4 1 93 ... ... ...
R4 1 93 - - 1098768.00
R4 1 ... ... ... ...
R4 1 - - - 2310087.00
R4 2 ... ... ... ...
R4 - - - - 45619876.00
... ... ... ... ... ...
R2 1 90 2002 Nov. 3017.00
R2 1 90 2002 - 455231.00
R2 1 90 null - 1765234.00
R2 1 - - - 28754395.00
R2 - - - - 63549857.00
... ... ... ... ... ...

Thus spatial index tree is not only needed to build up hierarchy
in data warehouse, but also plays a key role in spatial-related OLAP
query processing. Traditional tree searching method returns all the
tuples satisfying the query. However, it can not exploit the advan-
tage of pre-aggregation in spatial data warehouse. In order to better
utilize pre-aggregtion, we modify the search algorithm to return the
intermediate tree node if all the descendant tuples indexed by the
node satisfies the query. The intermediate tree node refers to a cu-
biod in the data cube. By using pre-aggregate in cubiod instead of
raw data in fact table, the performance of OLAP query processing
can be greatly improved. We call the modified search method the
OLAP-favored search.

In the case of the query Q1, we need not to retrieve every sin-
gle gas station within the query region. In R-tree, each node has a
minimum bounding rectangle(MBR) that encompasses all the chil-
dren nodes’ MBR. In the case of spatial predicate ”within”, if a tree
node’s MBR are within a certain query region, all the descendant
spatial objects rooted from the node are within the query region.
Thus, we can exploit pre-aggregated measures stored in data cube
by searching the R-tree in a top-down way from the root and finding
all the tree nodes whose MBR are within the query region, and the
gas stations satisfying the query predicate, but whose parent node
is not fully within the query region. Each intermediate tree node’s
aggregation has been computed and the aggregation of measure is
stored in the data cube.

Compared with traditional search method, OLAP-favored search
method returns less number of tuples and visits less number of
”edges” in the tree. Fig. 4 illustrates the advantages of OLAP-
favored search against traditional search.

4.2 OLAP-favored Search On GiST
Generalized Index Search Tree(GiST) [14] provides a flexible in-

dex mechanism that both data and access method can be extended.
Both one-dimensional index like B-tree and multi-dimensional in-
dex like R-tree can be implemented under the framework of GiST.
For generality, we develop the OLAP-favored search algorithm based
on GiST’s index framework. GiST provides the capability to ex-
tend by introducing two interfaces that need to be implemented by

(b) Traditional Search (c) OLAP-favored Search
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Figure 4: Traditional search and OLAP-favored search

Table 2: Consistent(E,q)
Consistent(E,q)

Input: Index entry E = (p; ptr), query predicate q
where p is the predicate of the index entry,
ptr is the pointer to the child node in the
index entry.

Output: returns false if for each descendant entry(DE) of E,
DE.p ∧ q can be guaranteed unsatisfiable,
true if for each descendant entry(DE) of E,
DE.p ∧ q can be guaranteed satisfiable,
partial true otherwise.

index implementors: Predicate interface and Gist interface. Predi-
cate interface defines an important method consistent that evaluate
the consistency between query predicate and tree node predicate.
The search algorithm in GiST invoke this method to get all the leaf
nodes that are consistent with the query predicate.

We enhanced GiST’s predicate interface by introducing a new
predicate consistent state Partial True. Table 2 gives the detail def-
inition of the new interface.

For example, in Fig. 4, tree node R3 is not fully within the query
region, but we can not guarantee that all its descendant leaf nodes
are outside the given region. Actually s9 is within the query region.
So for the within predicate on R3, Consistent should return partial
true.

For R-tree’s implementation of Consistent, Table 3 depicts the
spatial predicate of within.

With the third consistent state, we improve GiST’s query algo-
rithm to favor OLAP aggregation queries. Table 4 outlines the im-
proved search algorithm.

In general, while an intermediate tree node satisfies the query
predicate in OLAP-favored search, searching stops traversing the
tree and returns the intermediate tree node instead of all its descen-
dant leaf nodes.

4.3 Heuristic OLAP-favored Search
If the partial true consistent state can be quantified and the search-

ing algorithm can make some heuristic estimation on the final re-
sult of Q1, the performance of OLAP-favored search can be further
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Table 4: OLAP-favored Search Algorithm
Search(R, q)

Input: GiST rooted at node R, search predicate q
Output: all nodes/tuples that satisfies q
Sketch: Recursively descend all paths in tree whose keys are partially consistent with q
Procedure: List ret = null

//1. [Search subtrees]
IF R is not a leaf THEN

FOR Each entry E on R
BEGIN

IF Consistent(E,q) is true THEN
add E to ret

ELSE
IF Consistent(E,q) is partial true THEN

// invoke Search on the subtree whose root node is referenced by E.ptr
List subret = Search(E.ptr, q)
add subret to ret

END
//2. [Search leaf node]
ELSE // R is a leaf

FOR Each entry E on R
BEGIN

IF Consistent(E,q) is true THEN
add E to ret

END
RETURN ret

Table 3: R-tree’s Implementation of Consistent
Consistent(E,q)

Input: Index entry E=(p; ptr),
where p has the MBR of the node,
ptr is the pointer to node of the query entry
and the query predicate q has query region’s MBR.

Output: true, false, or partial true
Procedure: IF q.Predicate == Within THEN

IF q.MBR is contained by p.MBR THEN
RETURN true

ELSE
IF q.MBR is intersected with p.MBR THEN

RETURN partial true
ELSE

RETURN false

improved. We introduce an approximate factor(AF) to each tree
node. AF is a value between 0 and 1 indicating the ratio of the ap-
proximate query result to the actual aggregation value of the node’s
subtree when the node’s predicate partially satisfies the query pred-
icate. To control the error generated by approximate search, we
introduce Minimal AF threshold(MinAF). The searching method
will traversal the tree top-down until AF is larger than MinAF. The
AF value can be applied on the aggregation of the subtree rooted
from the node and generate an approximate aggregation.

AF can be computed based on the node’s MBR and the distribu-
tion of underlying spatial data. Here we take uniform distribution
as the example to generate an AF evaluation method. Other sophis-
ticated distribution may generate complex AF computation method,
which in turn produces more exact AF values if it can better model
the underlying data distribution.

Node’s MBR, N, can be described by a quartuple: (Nx1,Nx2,

x

y

Nx1 Nx2

/Qy1

/Ny2

Ny1

/Ix2/Ix1Qx1

Qy2

Qx2

Iy1

Iy2
N

Q

I

Figure 5: MBR, Query Window and Intersected Region

Ny1,Ny2), where Nx1 < Nx2, Ny1 < Ny2. (Nx1, Nx2) and
(Ny1, Ny2) give the range that the MBR extends in x and y dimen-
sion respectively. Similarly, query window, Q, can be described
by another quartuple: (Qx1, Qx2, Qy1, Qy2). The intersected re-
gion, I, can be described by: (Ix1, Ix2, Iy1, Iy2), where Ix1 =
min(Nx1, Qx1), Ix2 = max(Nx2, Qx2), Iy1 = min(Ny1, Qy1),
Iy2 = max(Ny2, Qy2). The relationship between N, Q and I is
depicted in Fig. 5.

Assume f(x, y) is the distribution of spatial objects over two di-
mensional space. Generally AF can be computed by the following
equation:

AF =

R Iy2
Iy1

R Ix2
Ix1

f(x, y)dxdy

R Ny2
Ny1

R Nx2
Nx1

f(x, y)dxdy

(1)

If the spatial data follows uniform distribution, AF is ratio of the
area of I to the area of N.

AF =
(Ix2 − Ix1)(Iy2 − Iy1)

(Nx2 − Nx1)(Ny2 − Ny1)
(2)

With AF, interface Consistent can be defined as Table 5.
Consequently, search can give approximate result with AF. While
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Table 5: Consistent(E,q)
Consistent(E,q)

Input: Index entry E = (p; ptr), query predicate q
where p is the predicate of the index entry,
ptr is the pointer to the child node in the
index entry.

Output: return 0 if for each descendant entry(DE) of E,
DE.p ∧ q can be guaranteed unsatisfiable,
return 1 if for each descendant entry(DE) of E,
DE.p ∧ q can be guaranteed satisfiable,
return AF(0 < AF < 1) otherwise.

searching against the Rtree, heuristic search calculates AF when
certain tree node partially satisfies the search predicate. Heuristic
search will stop traversing the tree till AF at on node is above a
predefined minimum threshold(MinAF). The approximate search
result can be calculated by first multiplying the summerized num-
ber by AF of each node respectively, and then summarizing the
total multiplied results. Because of limited space, we do not detail
the heuristic search algorithm in this paper.

5. EXPERIMENTS
To evaluate the efficiency of proposed method, we conduct ex-

periments on two simulated point data sets and one real point data
set. The two simulated data sets are generated following uniform
and normal distribution respectively. We simulate 1000 points spread-
ing over the space (0, 0) and (1, 1). The simulated point’s coordi-
nates are generated following uniform or normal distribution inde-
pendently. Real data set is retrieved from 2002 TIGER/Line file
published by U.S. Census Bureau[23]. We use the point landmark
feature in a county in California as our real data set. The number
of points in real data set is 504. The data sets are depicted in Fig. 6.
Sales data is simulated following normal distribution.
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Figure 6: Testing Data

9 groups of queries are generated with 100 query regions in each
group. Query regions in each group are same in size while the
group region size grows from 10% to 90% of the whole data area.
Experiment metrics of each group is given as the average metrics
of all queries in the group. Query region’s central location is gen-
erated following the normal distribution.

In Fig. 7, we compare OLAP-favored search algorithm with tra-
ditional search algorithm by counting the total number of nodes
and tuples returned by the OLAP-favored search algorithm and the
total number of tuples returned by the traditional search method. It
shows that OLAP-favored search algorithm can reduce result set
size to as much as 1/10 of the traditional query result. It also
shows that fanout impacts the algorithm’s efficiency. The advan-

tage of OLAP-favored search is bigger advantage when the fanout
is smaller.

We measure the cost advantage of our method by defining the
aggregation ratio as the number of nodes and tuples returned from
OLAP-favored search to the number of tuples returned by the tra-
ditional method in the same query. Smaller aggregation ratio indi-
cates better cost improvement. In the experiments, we found that
aggregation ratio has a close relationship with the fanout of the tree.
In Fig. 8, the aggregation ratio decreases with fanout. It is because
that smaller fanout makes the tree ”taller”, i.e., having more levels,
generating more tree nodes with different size of bounding area.
Thus more tree node can fully satisfy the ”within” query predicate
and stop the tree traversal on certain level. While bigger fanout
generates a flatter tree, and decreases tree node’s possibility of fully
satisfying the query predicate. Therefore more leaf nodes, or tuples
are returned instead of tree nodes.

The number of nodes and tuples returned by the search algorithm
impacts the cost of retrieving data from the summary table. To fur-
ther quantify the internal cost of tree traversal and its relationship
with the fanout parameter, we compare the number of edge visited
in the OLAP-favored search to the traditional search algorithm. We
also compute the ratio of edge visited in OLAP-favored search to
that in traditional search algorithm. The relationship of the percent-
age and the fanout is depicted in Fig. 9. Smaller fanout has smaller
ratio which indicates bigger saving in cost.

Experiments are also conducted to evaluate heuristic OLAP-favored
search method. We evaluate AF using the method of Equation 2
developed based on uniform distribution. To investigate the error
brought in the heuristic OLAP-favored search, we conduct the test
on uniformly distributed , normally distributed and real data set.
The number of records returned compared to OLAP-favored search
and traditional search method is depicted in Fig. 10. The error mea-
sured in percentage in heuristic OLAP-favored search is depicted
in Fig. 11. MinAF in heuristic OLAP-favored search algorithm can
also be regarded as an indicator of expected error rate. When the
sales data follows uniform distribution and spatial data follows the
the same distribution model as used in evaluation of AF, we have
MaxErrorRate = 1 − MinAF . For example, when MinAF
is 0.9, the expected error rate should be less than 10%. Experi-
ments on these data sets shows that actual error rate is far below
the expected error rate, even though the distribution model and AF
evaluation method may mismatch.

6. RELATED WORKS
Although data warehouse and OLAP technology arose intensive

interest both in academy and industry, spatial data warehouse has
just become an active research topic recently. Han et al [13] did
some pioneer work in this area and proposed a spatial data ware-
house framework. They focused on the spatial data as measure and
proposed a method to select spatial objects for materialization. Our
method differs from Han’s work in that we address the problem of
aggregation path on spatial dimension, while he tried to manage
the spatial measure and materialization. Papadias et al [17] [18]
proposed an approach to store aggregation results in the index tree.
Papadias’s approach modifies the classical star schema in the exist-
ing data warehouse, while our method preserves the star schema in
data warehouse.

Li et al[16] propose a method to enable OLAP to process prede-
fined spatial related OLAP queries based on spatial database. The
method addresses the problem of static spatial related OLAP query
whose query operator and parameters don’t change. In this paper,
we focus on more dynamic spatial-related OLAP queries like query
Q1 in which the region is defined ad-hoc by user at run time.
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Figure 7: OLAP-favored Search
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Figure 8: Aggregation Ratio In OLAP-favored Search
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(b) Normally Dist. Data
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(c) Real Data

Figure 9: Number of Edge Visited in OLAP-favored Search
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Figure 10: Heuristic OLAP-favored Search With Fanout = 100
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Figure 11: Error in Heuristic OLAP-favored Search With Fanout = 100

From the access methods’s point of view, statistics access meth-
ods such as SIAM [9], TBSAM [22] and LST [4] compute the
scalar aggregate function over one-dimensional domain by utilizing
the pre-computed aggregate result stored in the statistics tree. Our
method extends the statistical access methods to multi-dimensional
data and stores the pre-aggregation result in the summary table.
Traversal algorithm in statistical access method has at most two
edge descents, while in multi-dimensional data space there is more
descents because of the bounding predicate overlap. From our ex-
periments, fanout has a great impact on the number of ”edge de-
scents” in query processing. Smaller fanout generates less ”edge
descents”. Aoki et al[2] mentioned a generalized statistical ac-
cess method based on GiST. In this paper we outline the OLAP-
favored search method based on GiST. Furthermore, we provide
the heuristic search method by introducing AF as well as its evalu-
ation method.

7. CONCLUSIONS AND FUTURE WORKS
With the increasing amount of spatial data stored in business in-

formation systems, how to utilize these spatial information when
analyzing business data is becoming an important issue of data
warehouse and OLAP. Traditional data warehouse and OLAP sys-
tem could not exploit spatial data because spatial data is multi-

dimensional and does not have a natural hierarchy to compute pre-
aggregation and materialization in data warehouse and OLAP.

The contribution of this paper is three folds. Firstly, we extend
the grouping-set hierarchy into multidimensional data space and
use spatial index tree as the hierarchy in spatial data warehouse.
With hierarchy on spatial dimension, data cube and pre-aggregation
can be computed in spatial data warehouse. This approach preserve
the data warehouse’s star schema while providing the spatial pro-
cessing capabilities in data warehouse. Secondly, we develop an
OLAP-favored search algorithm that can utilize the pre-aggregation
on spatial dimension, and thus can enable OLAP search engine to
handle spatial-related OLAP queries. Thirdly, we propose a heuris-
tic query method which can further improve the OLAP query per-
formance.

Experiment results show the efficiency of our method. We found
that the tree’s fanout and query cost is closely related. Smaller
fanout reduce the edge visited during query processing, but result
in bigger tree and summery table in the meanwhile. The cost trade-
offs need to be further investigated. We introduce the factor of
AF and propose a heuristic search algorithm. General evaluation
method and a particular method based on uniform distribution of
underlying spatial data are also given. Further study can explore
the detailed AF computation method on different data distribution
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in space, and model the error brought by the heuristic search.
We implement a prototype system based on the method [24].

The prototype shows the feasibility of seamlessly integrating spa-
tial data into traditional OLAP systems. Experiment on the proto-
type also shows the efficiency of the method.
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