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Genetic admixture of distinct gene pools is the consequence of complex spatio-

temporal processes that could have involved massive migration and local mating

during the history of a species. However current methods for estimating individ-

ual admixture proportions lack the incorporation of such a piece of information.

Here, we extend Bayesian clustering algorithms by including global trend sur-

faces and spatial autocorrelation in the prior distribution on individual admixture

coefficients. We test our algorithm by using spatially explicit and realistic coa-

lescent simulations of colonization followed by secondary contact. By coupling

our multiscale spatial analyses with a Bayesian evaluation of model complexity

and fit, we show that the algorithm provides a correct description of smooth clinal

variation, while still detecting zones of sharp variation when they are present in

the data. We also apply our approach to understanding the population structure of

the killifish, Fundulus heteroclitus, for which the algorithm uncovers a presumed

contact zone in the Altantic coast of North-America.
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Biological data based on geographic surveys often display global trends and

spatial autocorrelation (Sokal and Oden 1978). Spatial autocorrelation is the cor-

relation of a geographic variable with itself but at a certain distance apart. This

phenomenon complicates the analysis of spatial patterns by creating departure

from the standard independence hypothesis (Slatkin and Arter 1991; Epperson

and Li 1996). This pattern may be driven by endogeneous factors like dispersal

limitation, or by exogenous factors like an important environmental determinant

that is spatially structured and that implies spatial structuring in the observed vari-

able. It is widely acknowledged that underestimating autocorrelation in ecologi-

cal data can bias inference from statistical models (Lichstein et al 2002; Dormann

2007).

Traditional spatial statistical analyses take these points into account by de-

composing the spatial variation of a response variable, z, into global and local

effects

z = m(x)+ y ,

where x are the two-dimensional spatial coordinates. The first term, m(x), is a

trend surface – often defined as a first order polynomial, m(x) = β0 +β1x1 +β2x2 –

capturing regional or long-range variation. The second term, y, is a spatially auto-

correlated residual which represents short-range variation. This approach is some-

times called universal kriging (Ripley 1988) or spatial trend analysis (Bocquet-

Appel and Sokal 1989).

An important question that could greatly benefit from a more precise modeling

of spatial patterns is the study of genetic admixture. The demography of natural

populations is the result of phases of expansion, contraction and migration, or lo-

cal mating that can produce shifting patches of genotypes. In such conditions,

populations isolated for a long time may be brought into contact in a certain area,
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leading to the genetic admixture of different gene pools (Chakraborty 1986). Ad-

mixture is particularly pervasive in humans because migratory movements have

brought together peoples from different origins (Cavalli-Sforza et al 1994), and

its precise assessment is important for association studies that are susceptible to

biases due to population structure (Pritchard et al 2000; Yu et al 2006). In ad-

dition, admixture between populations originating in different continents can be

exploited to detect disease susceptibility loci at which risk alleles are distributed

differentially between these populations (Chakraborty and Weiss 1988; Reich and

Patterson 2005; Smith and O’Brien 2005).

Under natural conditions, admixture is known to happen in secondary con-

tact zones, and it may generate Hardy-Weinberg and linkage desequilibria at un-

linked loci (Barton and Hewitt 1985; Durrett et al 2000). These zones are places

where the hybrid offspring of the interbreeding populations are present, and where

their allele frequencies form a cline (Barton and Gale 1993; Endler 1977). Sec-

ondary contact or hybrid zones have often been described as the consequence of

post-Pleistocene re-colonization of landmasses after the ice retreat (Taberlet et al

1998). Detecting and identifying the relative contributions of these refugia to cur-

rent populations is of paramount interest to the reconstruction of the demographic

history of many organisms (Hewitt 2000).

Many admixture models compute population coefficients, considering hybrid

genes as proportionally inherited from two or more populations that are thought

of as being the relicts of some parental populations. The quantities being esti-

mated, the admixture coefficients, are the respective contributions of the parental

populations to the hybrid gene pools. Several approaches to estimating these pro-

portions in populations have been proposed during the last few decades, including

least-square regression (Roberts and Hiorns 1965), maximum likelihood (Long
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1991), estimation of coalescence times (Bertorelle and Excoffier 1998), Markov

chain Monte Carlo (MCMC) algorithms or likelihood-based methods (Chikhi et al

2001; Wang 2003), and approximate Bayesian computation (Excoffier et al 2005).

Regarding the estimation of admixture proportions in individuals, current meth-

ods are based on computer-intensive programs like STRUCTURE (Pritchard et al

2000; Falush et al 2003), ADMIXMAP (Hoggart et al 2004), INSTRUCT (Gao et al

2007), LAMP (Sankararaman et al 2008). Spatial models have been implemented

in TESS (Chen et al 2007) and BAPS (Corander et al 2008). Recent examples

of the use of individual-based Bayesian clustering algorithms are for the genetic

analysis of hybridization between two species of lemurs (Pastorini et al 2009), the

inference of a strong subdivision between two subpopulations of the lepidopteran

Chilo suppressalis in China (Meng et al 2008), the demographic history of Euro-

pean population of the model plant Arabidopsis thaliana (François et al 2008) or

the recolonization of the Swiss Alps by the Valais shrew Sorex antinorii (Yannic

et al 2008). Principal component analysis (PCA) may provide concurrent means

to estimate admixture proportions, and spatial versions of PCA might also be rel-

evant to this framework (Patterson et al 2006; Jombart et al 2008).

In this study we extended the hierarchical Bayesian algorithm implemented

in TESS in order to include spatial prior distributions on the individual admixture

proportions, and we assessed the abilities of this approach to detect admixture in

secondary contact zones. The proposed approach adopts a formulation similar to

universal kriging in which a response variable – here admixture proportion – can

be modelled as the sum of two components: a trend surface plus a Gaussian au-

toregressive residual term (Besag 1975; Ripley 1981; Cressie 1993). The trend

surface and the residual terms attempt to capture the broad-scale and fine-scale

patterns that may be expected under migration or local isolation-by-distance pro-
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cesses (Bocquet-Appel and Sokal 1989).

The objective of the proposed algorithm is to improve inference of admixture

proportions when admixture proportions are variable across space. The inference

method is tested on synthetic data obtained from simple models and from spatially

explicit scenarios simulating secondary contact and mimicking realistic migration

routes for a species that colonized Europe from two glacial refugia. We measure

the relative fit of spatial and non-spatial models in terms of statistical information

criteria, and we display their posterior spatial predictions using a two-dimensional

graphical method. The approach is applied to analyzing an hypothesized contact

zone in the marine species Fundulus heteroclitus, with individuals genotyped at 8

microsatellite loci in 15 samples along the east coast of North-America (Adams

et al 2006).

1 Materials and Methods

A spatial prior for admixture proportions. We consider N individuals genotyped at

L loci, and we assume that their geographic coordinates were recorded at the sam-

pling locations. Individuals can be either diploid or haploid. As in the algorithm

underlying STRUCTURE (Pritchard et al 2000), we assume that the individuals

represent a mixture from at most Kmax unobserved clusters, and a matrix denotes

the admixture proportions for all the individuals. Each element of the matrix, qik,

is the proportion of individual i’s genome that originated from cluster k.

We perform inference of population structure in a Bayesian framework by

incorporating individual geographic covariates in the prior distributions on the

admixture coefficients. More specifically, we assume a Dirichlet distribution on
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the qik’s for each individual i,

qi. ∼ D(αi1, . . . ,αiKmax) , (1)

where αik is proportional to the average admixture coefficient, E(qik). The novelty

is that we consider a log-normal model for the αik, viewed as unobserved response

variables

log(αi.) = f (xi)
T β. + yi. , (2)

where xi represents a two-dimensional vector of spatial covariates for i, for exam-

ple latitude and longitude. Log-linear regressions of the average admixture levels

on the spatial covariates are performed in each of the Kmax clusters. The definition

of the two terms appearing in the right-hand-side of equation (2) is given hereafter.

The hidden regression model described in equation (2) is similar to universal

kriging (Ripley 1981; Cressie 1993), and it can be separated into two compo-

nents. The first component, m = f (xi)
T β , represents the mean response, and it is

modelled as a (possibly) non-linear trend surface. Although this was not stated

explicitly, latent regression models that may incorporate trend surfaces were pre-

viously considered by Gaggiotti et al (2004), Foll and Gaggiotti (2006) and Faubet

and Gaggiotti (2008) who studied population divergence measures and recent mi-

gration rates. We limited our further analyses to linear trend surfaces, but the

proposed method is valid for arbitrary polynomial shapes, and our computer pro-

gram allows the use of quadratic or cubic models. The second component, yi,

represents a zero-mean spatially autocorrelated random variable. This term is

a conditional autogressive Gaussian model (CAR, Besag 1975; Vounatsou et al

2000). In the CAR model, the conditional expectation of yi, given the response at

all other locations, is a weighted sum of the mean-centered coefficients at neigh-
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boring locations

E(yi | y j atother locations) = ρ ∑
j neighborof i

wi jy j (3)

where ρ is a parameter that determines the magnitude of the spatial neighborhood

effect, and wi j are weights that determine the relative influence of location j on

location i. The CAR model is mathematically defined as a Gaussian random field,

and it may represent the locally structured part of the variation. To better account

for local mating, we defined neighbors from the Dirichlet tessellation (François

et al 2006), and we used an exponential covariance matrix to model the decay of

correlation with geographic distance

wi j = exp(−di j/θ) (4)

where di j is the great-circle distance between the sites i and j, and θ is a scale

parameter that may be related to the intensity of gene dispersal. More specifically,

the expression (3) for yi implies the covariance matrix Λ = σ2(Id−ρW )−1 where

W is an N ×N matrix with zeros on the diagonal and the neighbor weights (wi j)

in the off-diagonal positions, Id is the identity matrix, and σ2 is the variance of

the CAR. Equation (3) underlines that ρ and θ are not simultaneously identifiable

parameters, and that estimates should focus on the product ρW . In practice, we

set θ equal to the mean value of great-circle distances between the individuals

locations, and ρ is estimated from the data. We further refer to the model defined

in equation (2) as the full regression model. A model without the CAR component

is termed a trend model.

To give correct interpretations of linear trend surfaces, one should keep in

mind that the assumption is not that the admixture proportions vary linearly in

space. In fact the model assumes that the qik’s have sigmoidal shapes across space,
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mirroring theoretical predictions for allele frequency curves in hybrid zones (Bar-

ton and Hewitt 1985). To give an illustration of the shape of the admixture pro-

portions under a linear trend model, we simulated realizations of the prior model

using two clusters. Assuming dependence on the longitude, x, we parameter-

ized the trend surface as m1 = a−bx in cluster 1 and as m2 = −a + bx in cluster

2 (a = 25,b = 5), and we sampled individuals along the longitudinal gradient

(x ∈ [4,6]). A rough approximation of the average admixture proportion in cluster

1 at longitude x can then be given by qx,1 = 1/(1+ exp(−2(a+bx))), which can

be represented by a sigmoid curve. Figure 1 shows that the curve of the expected

admixture proportions indeed varies spatially with a sigmoidal shape, staying al-

most constant in each cluster and decreasing sharply at the boundary between

the two clusters. Simulations with 3 adjacent clusters displayed similar patterns,

with admixture coefficients showing stable values over large regions and varying

substantially at their boundaries.

Implementation details. Our Bayesian model was implemented as a hybrid MCMC

algorithm, following Gelman et al (2004) for the priors on regression models and

Metropolis-Hastings rules for the CAR model (Supporting Text ST1). For the pa-

rameter ρ , we used a non-informative prior over the interval (0,1/λmax), where

λmax is the largest eigenvalues of W , and we implemented Metropolis-Hastings

updates. An important feature of the hidden regression approach was the possi-

bility to display posterior predictive maps of admixture coefficients. These maps

can show the predictions of admixture proportions for an individual at an arbitrary

geographic location, adding useful information to the standard unidimensional bar

chart representations.

Since the model specified in equation (2) is not the unique way to define a spa-

tially explicit prior for admixture, we implemented variants of the above Bayesian
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approach. One alternative is to use a multinomial logit regression model for the

admixture proportions, qik, instead of the log-normal model for their average-

proportional values, αik. Another alternative is to use a convolution Gaussian

prior with two variance parameters, τ2 and σ2, as defined by Besag et al (1991)

and used by Mollié (1996) in an epidemiological context (BYM model; Support-

ing Text ST1). The CAR and the BYM models are close to each other. Both of

them were implemented in the TESS computer program, and were used in the sub-

sequent data analyses. They generally led to similar results. For the BYM model

we used non-informative priors on variance parameters, and updates of these pa-

rameters were performed according to a Gibbs sampling algorithm.

Model choice. Following Pritchard et al (2000), we suggest performing anal-

yses of population structure for a range of values of Kmax. When choosing the

number of population, we need to account for the fact that including a trend sur-

face implies a regularization of the number of observed clusters, so that the actual

number of clusters, K, may be less than the number specified by the mixture model

(François et al 2006). To decide which Kmax (and K) may provide the best fit to

the genetic data, we used the Deviance Information Criterion (DIC, Spiegelhalter

et al 2002). The DIC was computed along MCMC runs as the average model

deviance plus a penalty term, pD, that counts the effective number of parameters

in a model. To select the number of clusters, the program was run for a range

of values of Kmax, and we considered the values for which the DIC first reached

a plateau, like it is usually done for STRUCTURE with the logarithm of evidence

(Evanno et al 2005). The DIC was also useful for selecting among a non-spatial

prior, a trend-only prior or the full model (trend plus CAR prior). It allowed us to

assess the presence of clines or clusters and to measure the relative importance of

large-scale and local effects. In this case the focus of model selection shifted to

10



choosing the best regression model, and we utilized a conditional version of the

DIC based on the average residuals of the hidden regression model (Celeux et al

2006).

Simulations of recent admixture of two parental populations. In a first series

of experiments, we simulated spatial genetic data mimicking the instantaneous

admixture of two weakly differentiated parental populations. The parental pop-

ulations were assumed to be in migration/drift equilibrium, and genotypes for

n = 400 diploid individuals were obtained from structured coalescent simulations

with two islands, constant levels of gene flow and constant mutation rate (infinite

allele model, 4µNe = 1). We controlled the simulations by varying the effective

migration rate M = 4mNe between 4 and 12 so that the FST of the parental gene

pool varied in the range [.02, .05] (estimated with HIERFSTAT (Goudet 2005)).

To create a spatial framework, the individual locations were randomly generated

with Gaussian distributions around two centroids put at distance 2 on a longitu-

dinal axis (SD = 1). The genotype of each individual at each of L loci was built

as follows. For each individual and each locus, we computed the distance d1 (d2)

to the left (right) centroid, and we assumed that each allele originated in the first

(second) parental populations with probability d2/(d1 + d2) (d1/(d1 + d2)). We

used L = 100 loci. This simulation of individual levels of admixture was similar

to the ones classically used in studies of population samples (Griebeler et al 2006;

Chikhi et al. 2001). The simulation imposed a longitudinal trend to the genetic

data, with individuals at lower longitude sharing more alleles with the first parental

population than with the second one. Spatial autocorrelation was neglected in this

simulation process.

Simulations of contact zones in Europe. In a second series of simulations,

we used spatially explicit simulations to generate synthetic population genetic
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data following secondary contact. Simulations were performed using SPLATCHE

(Currat et al 2004), a computer program that allows incorporation of geographic

and environmental information in the migration scenario. The simulation of the

demographic phase occurred in a two-dimensional non-equilibium stepping-stone

model defined on a lattice of ∼25,000 cells (or demes) covering Europe. Each

deme represented a surface of ∼450 km2, and exchanged migrants with its four

neighbors at rate m. Topographic information was imported from a geographical

information system, and it was encoded into distinct friction values for each cell.

In these simulations, measures of genetic differentiation at neutral loci increased

with geographic distance. Population sizes grew logistically at rate r in each deme,

and saturated at their carrying capacity, C. The three parameters r,m,C determined

the speed of the wave-of-advance. In our study, the growth rate was set to r = .6,

the migration rate ranged between [.2, .9] and carring capacities were set either to

C = 100 or to C = 1,000 in each deme. With the tested parameter settings, Europe

was colonized in less than 600 generations.

The dynamics were started from an ancestral population of effective size Ne =

1,000 individuals. After an initial divergence phase of about 300− 500 genera-

tions, populations started to colonize Europe from two distant southern foci, one

in the Iberian peninsula and the other one in Turkey. Secondary contact occurred

in Central Europe, in an area close to Germany. We used a friction map that made

migration toward mountainous areas more difficult, and water-masses were im-

possible to cross. We added two isthmi that connected the British Isles to France

and Scandinavia to Denmark. We used two values for the total number of genera-

tions, T = 1,000 and T = 2,500. The genetic data were simulated as short tandem

repeats at either L = 10 or L = 100 neutral loci according to the stepwise mutation

model. We used a mutation rate of 5 ×10−4 per locus and generation, and we
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sampled 60 populations at random locations in Europe containing either 3 or 20

individuals per sample. Combining all the simulation parameters we generated a

total of 16 data sets.

Simulations of equilibrium stepping-stone models. In a third series of exper-

iments, we used EASYPOP (Balloux 2001) to generate spatial genetic data sets

under an equilibium model of isolation-by-distance. Under this scenario, theory

shows that measures of genetic differentiation at neutral loci increase with geo-

graphic distance, due to the well-known process of accumulation of local genetic

differences under geographically restricted dispersal (Wright 1943). Allele fre-

quencies vary across the region, but they do not exhibit regional shapes. Equilib-

rium stepping-stone simulations are examples of data that do not correspond well

to Bayesian clustering model assumptions. In absence of a reasonable number

of source populations, the inferred value of the number of clusters and the corre-

sponding allele frequencies in each cluster can be rather arbitrary (Pritchard et al

2003).

The simulation took place in a two-dimensional stepping-stone model defined

on a 10 by 10 lattice. We generated data sets for 60 populations of diploid invidu-

als genotyped at 10 microsatellite loci. The mutation rate was set to µ = 5×10−4,

and the migration rate, m, was varied in the interval [.3, .9]. Then we created two

data sets by randomly resampling 3 individuals in each population. The pres-

ence of long-range isolation-by-distance was assessed by regressing the pairwise

differentiation measures FST/(1−FST) on the geographic distances.

Application to Fundulus heteroclitus data. The mummichog Fundulus hete-

roclitus is a small killifish. Its habitat ranges from northern Florida to the Gulf of

St Lawrence along the eastern coast of North America. It has been shown that F.

heteroclitus exhibited a steep latitudinal cline using allozymes, mtDNA and mi-
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crosatellite markers (Power 1991; Adams et al 2006). Several hypotheses for this

clinal variation have been proposed, including secondary contact between two di-

vergent populations or a northward expansion from a southern refugium after the

last glacial age. Using 731 diploid individuals genotyped at 8 microsatellite loci,

Adams et al (2006) showed that a pure northward expansion might not explain the

observed nuclear pattern of variation, and they suggested an alternative model of

post-glacial colonization.

MCMC runs. We studied a total of 22 simulated data sets plus one biological

example. The scale parameter θ was set to 1 in the first four data sets (recent

admixture) and to θ = 1,000 in the other ones (contact zones). In the scenar-

ios of recent admixture and the equilibrium isolation-by-distance simulations, we

present results for the CAR model (similar results were obtained with the BYM

model). In secondary contact simulations and for the killifish, we used the CAR

and BYM models. Results were almost identical for both models, and we reported

results for the second one.

For each data set we investigated which of a non-spatial, a linear trend or a full

model provided the best fit. These analyses were performed for values of Kmax

ranging from 2 to 7. MCMC algorithms were run for a length of 50,000 sweeps

with burn-in periods of 40,000 sweeps. For each data set and for each model, we

ran the algorithm 100 times, retained the 10 runs with the best DICs, and averaged

admixture estimates using CLUMPP (Jakobsson and Rosenberg 2007). As the full

analysis required 41,400 runs, we put restriction on some computations when the

results were obvious (scenarios 1-6). Runs were performed using an upgraded

version of the program TESS (Chen et al. 2007) on a cluster of computers.
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2 Results

Recent admixture of two parental populations. For Kmax = 2 and FST ≥ .04, the

smooth longitudinal cline created in the simulated data was uncovered by the spa-

tial algorithms (Figure S1A). Note that the FST values were computed before cre-

ating admixture, and that these numbers were likely to overestimate the true levels

of differentiation in the data. Using a conditional version of the DIC for the hidden

regression, we evaluated the fit of the non-spatial (trend of degree 0), longitudi-

nal trend (trend of degree 1), and both longitudinal and latitudinal trends (trend

of degree 1) models in Table 1 (no autocorrelation term). Minimum values were

computed over 100 runs (Min) and averages over the ten best runs (Mean and

Standard Deviations). The best values are bolded and marked with a star. Values

for FST = .02 were similar to those reported for FST = .03. The non-spatial algo-

rithm was unable to obtain correct estimates of the admixture proportions when

FST = .04. The clustering algorithms failed to uncover the cline at FST ≤ .03.

There was a steep decrease of DICs when the cline was detected, shifting from val-

ues around 420 to values around 370. In the latter case, the DIC analysis selected

the longitudinal trend model (DIC = 362-366) in agreement with the synthetic data

generation process. The correlation between the estimated admixture proportions

and their true values was also highest for the longitudinal trend model (r = .97,

p < 10−10), indicating that the cline was almost perfectly reconstructed by the al-

gorithm. Similar results were obtained for Kmax = 3−4 for which K = 2 effective

clusters were actually detected when FST ≥ .04. We also obtained slightly bet-

ter performances for these data sets when we used a multinomial logit regression

model for the admixture proportions, uncovering the cline at FST = 0.03 (Figure

S1B).
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Table 1: Conditional DIC for data sets simulating recent admixture of two popu-

lations.

FST no covariate longitudinal trend linear trend surface

Min Mean sd Min Mean sd Min Mean sd

0.03 414.7 419.8 3.87 417.4 422.7 4.31 419.4 424.8 3.41

0.04 416.0 422.9 4.98 362.0∗ 369.1 4.94 367.5 398.4 5.72

0.05 387.7 397.7 4.77 366.4∗ 379.5 3.72 373.6 383.4 3.22

The strength of the spatial effect was measured by the regression coefficients.

Table 2 presents these coefficients for the trend model and for the scenario with

FST = .05. As expected, there was a clear effect of longitude on the admixture

proportions. Latitude, on the other hand, had no detectable influence since the

credibility interval of its regression coefficient included zero (Figure S2). sFinally,

the symmetric role of the two parental populations was reflected by regression

estimates that were approximately symmetric for each cluster.

Table 2: Regression table for a data set simulating recent admixture of two popu-

lations.

CLUSTER 1 CLUSTER 2

Estimate 95% C.I. Estimate 95% C.I.

Intercept -25.13 [−33.57,−16.44] 23.86 [14.07,34.02]

latitude 1.03 [−0.56,2.71] 0.34 [−1.41,1.97]

longitude 4.58 [3.18,5.92] -4.51 [−6.01,−3.13]

Contact zones in Europe. The levels of differentiation in the 16 simulated data

sets ranged from .02 to .28. The highest FST’s were observed for the smaller mi-
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gration rate, number of generation and carrying capacities. In accordance with

classical models, the FST decreased when one of these parameters increased. In

all data sets, longitudinal clines separating the western and eastern part of the con-

tinent were inferred as soon as we set Kmax ≥ 2. These patterns clearly exhibited

a contact zone localized in central Europe.

Separate DIC analyses were ran for the BYM model and for the small (180

individuals, 10 loci) and the large (1,200 individuals, 100 loci) data sets (Figure

S3 and S4). When the small data sets were used to compare the non-spatial, trend

and full models using Kmax = 3, the relative differences in DIC were in favor of

the inclusion of spatial covariates. The DIC selected the full regression model 7/8

times and the trend model for 1/8 data set (Figure 2A). For Kmax = 5, the spatial

models outperformed the non-spatial models, except for one data set (Figure 2B).

The full model was also selected more often (5/8) than the trend model (2/8). For

these data, the effective number of cluster varied between 2 and 4, with the lowest

K’s found in data sets with small FST’s. Figure 2C-D details the DIC analysis for

two data sets (labels 1 and 8). Similar conclusions were reached for the big data

sets, but the trend model was selected more often (3/8) than the full model (1/8)

as more loci and larger samples were used.

The main features observed in the spatial population structure analyses are il-

lustrated in Figure 3A-B, considering one particular data set with demographic

parameters T = 1,000, C = 100, m = .3, total sample size n = 1200 and L = 100

loci. For these data, the DIC selected the linear trend model (DIC = 181,456) and

a value of Kmax ≈ 5 (label 6, Figure S4). For Kmax = 2, the admixture estimates

exhibited a clinal pattern in central Europe. For Kmax = 3, a clear separation was

identified in Scandinavia, a pattern that was observed in a majority of the simula-

tions. For Kmax = 4, a small cluster – particular to the studied data – was found in
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the North-East of Europe (blue cluster). Setting Kmax ≥ 5 did not modify the esti-

mates of admixture proportions significantly. Figure 3B displays a posterior map

of predicted admixture levels in Europe. The hidden regression model predicted

a long and narrow contact zone (in red pixels) consistent with the shape of hybrid

zones observed in many species (Barton and Hewitt 1985).

Equilibrium stepping-stone simulations. For the data set with the largest mi-

gration rate, the pairwise FST’s ranged from 0.0004 to 0.11, and the mean differ-

entiation was equal to 0.042 (SD= 0.019). The extent of long-range isolation-by-

distance was assessed in Figure S5. With the smallest value of the migration rate,

the levels of differentiation ranged from 0.0004 to 0.0037. Varying Kmax between

2 and 9, we used the DIC to compare the non-spatial models, CAR models (trend

of degree 0, ρ > 0), trend models (trend of degree 1, ρ = 0), and full models (trend

of degree 1, ρ > 0). For the largest value of the migration rate m, the DIC anal-

ysis revealed that the value Kmax = 4− 5 received the highest support, and that

no model performed better than the non-spatial models (Figure S6). No cluster

was effectively discovered. The results for the smallest value of m were similar to

those obtained for the largest value. With more extensive sampling (20 individu-

als in each population) and more genetic data (100 microsatellite neutral markers),

again no model performed better than the non-spatial models. We obtained 4 clus-

ters, located in the corners of the study area that were not subsets of those obtained

with Kmax = 3, suggesting that they might correspond to mathematical artifacts.

Application to Fundulus heteroclitus. Using the same scheme as for the sim-

ulated data, we fitted non-spatial, linear trend and full hidden regression models

to the Fundulus data (BYM model). The linear trend model obtained the best

DICs for values of Kmax in [2,7] (Figure 4). Increasing Kmax above 3 did not lead

to a significant decrease in DICs, and the clustering results remained unchanged
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suggesting that the effective number of cluster could be estimated as K = 3 (Fig-

ure 3C-D). The best models detected a cline separating the northern and southern

populations, and grouped two isolated samples to the south to the study area. The

posterior predictive map localized the cline to the east to New Jersey (in red pixels,

Figure 3D) and agreed with the findings of Adams et al (2006).

3 Discussion

We proposed a Bayesian algorithm to estimate individual admixture proportions

by incorporating spatial trends and spatial autoregressive processes in the prior

distribution on these coefficients. The priors were defined as hidden regression

models with autocorrelated residuals including spatial effects at multiple scales.

Although spatial autoregressive models have been known for a long time in the

statistical literature, they have been considered in population genetics only re-

cently (Vounatsou et al 2000; Wasser et al 2004). The new algorithms extend a

previous work by François et al (2006) who implemented a hidden Markov ran-

dom field in a model without admixture. The results of our simulation study

indicate that our method can outperform those that ignore spatial information, es-

pecially when genetic information is not extensive. For example, this is the case

in non-model species for which extensive genomic data sets are not yet available.

Regression of admixture proportions. Regression of admixture coefficients has

received much attention in population genetics in recent years. For example, re-

gression was previously utilized to examine the relationships between admixture

and geographic distance in Europeans. This was done in order to support the hy-

pothesis of a large contribution of the Neolithic farmers to the current European

gene pool. Surveys of admixture clines in this context uncovered an approxi-

mate linear relationship between admixture proportions and distance to a putative
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eastern origin (Chikhi et al 2001; Dupanloup et al 2004; Belle et al 2006), or a

true eastern origin when simulations were used (Currat and Excoffier 2005). Be-

cause they assumed statistically uncorrelated residuals, regressions of posterior

estimates might differ from those obtained by our approach in a drastic way. In

our approach, the regression is part of the modeling process. Polynomial trend

surfaces may account for clines in all directions, and autocorrelated residuals may

account for isolation-by-distance. Including spatial information in the prior distri-

bution on the admixture proportions can also provide posterior estimates that have

been corrected for genealogical correlation between individuals. This is achieved

in a rather natural fashion using the hierarchical Bayesian approach (Gelman et al

2003).

Model selection and DIC. An important intrinsic feature of imposing spatially

structured priors was the possibility for the MCMC algorithm to eliminate a num-

ber of spurious clusters automatically. When we input a maximum of Kmax clus-

ters to the model, the effective number of cluster in the data may be a smaller

value, K. In this case, the DIC sometimes selects models in which Kmax is greater

than K. An explanation may be the variability in estimated DICs. Theory pre-

dicts that errors in information criterion comparisons are of order
√

n, where n

is the number of observations (Ripley 1996). We suspect that the constant term

in this large-sample approximation could be rather big, especially in complex hi-

erarchical models as implemented in this study. In the killifish example, models

with Kmax = 4−5 clusters were given smaller values of the DIC than models with

Kmax = 3 clusters. Nevertheless it was obvious from the direct inspection of the

posterior estimates that the effective number of population was equal to 3 in the

selected models. It is possible that the DIC decrease – around 100 units – may not

be large enough to justify a choice of a model with a larger number of clusters.
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Note that although the DIC is widely acknowledged to be a useful measure, it does

not always lead to choosing the best model (Brooks 2002).

Simulation analyses. In the simulations of recent admixture, a given level of

admixture was assigned to each individual according to a pure longitudinal trend

model. These simulations were an approximation of more complex spatially ex-

plicit processes, for which we neglected spatial autocorrelation. The DIC analy-

sis selected the correct covariate, and the observed number of cluster in the data

agreed with two parental populations. The posterior estimates of the admixture

coefficients exhibited a longitudinal clinal shape, as we expected. In secondary

contact simulations, the best models were obtained when we included both the

trend and the autocorrelation terms in the statistical model. The estimated trends

were appearent in the prediction maps, and they were oriented along a longituti-

nal axis. They were visible for Kmax ≥ 2, and they captured the signature of the

simultaneous range expansion from the two refugia. The inclusion of autocorrela-

tion in the best model was not a surprising result as sampling was dense enough to

observe the short range effects that are inherent to the stepping-stone simulation

(the average distance between nearest samples was around 300 kilometers). The

prediction maps for the admixture proportion described and highlighted the areas

where the hybrids resided. These hybrid zones conformed to their theoretical pre-

dictions (Barton and Hewitt 1985). In some runs, more than three clusters were

actually found, especially when we used the larger number of loci and the larger

sample sizes. Only the continental cline and the northern cluster were consistently

present in all runs. The additional clusters were often located in the North-East or

in the British Isles, and might have resulted from drift or localized founder effects

within the main cline. Such founder effects were more frequent when the Baltic

sea was crossed, leading us to observe a Scandinavian cluster more frequently.
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One potential source of misleading interpretations is with data sets arising

from homogeneous short-range migration process across time and space. Such

data clearly violate the spatial admixture model assumptions. The formulation

of the admixture model accounts for short-range isolation-by-distance effects by

way of the autocorrelated residuals, and for regional effects by means of the la-

tent regression model and the trend surface. Under an equilibrium stepping-stone

model we expect a long-range isolation-by-distance pattern. Because there are no

regional effects, the trend surface is not useful, and genetic variation is partitioned

over artificial clusters like for other Bayesian clustering algorithms. In addition,

we observe that the estimated clusters are inconsistent over increasing values of

Kmax. In contrast, the reason why it works well in the case of a secondary contact

zone is that, in this case, variation is more structured and exhibits regional trends.

Regional effects are well taken into account by the latent regression, which makes

clusters easier to identify than in pure equilibrium situations. The residual au-

toregressive term can improve the admixture model by taking care of short-range

isolation-by-distance. Note that the goal of the proposed algorithm differs from

detecting isolation-by-distance. For an approach able to separate the effects of

isolation-by-distance from migration and to give an estimate of the scale at which

each process operate see (Bocquet-Appel and Sokal 1989).

Secondary contact hypothesis for the killifish. The killifish Fundulus hetero-

clitus has served as a model for understanding local adaptation to variable envi-

ronments (Avise 2004). This species is known to exhibit latitudinal clinal varia-

tion in a number of physiological traits, and patterns at mitochondrial and nuclear

DNA loci have suggested a complex history of spatially variable selection and

secondary contact, with an abrupt genetic transition between northern and south-

ern populations (Adams et al 2006). The spatial population structure analysis
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inferred a cline that separated the northern and southern populations. Adams et

al (2006) suggested that this cline was the result of recolonization of the whole

current habitat from unfrozen water at the end of the last glacial age, creating

a secondary contact zone between northern and southern populations. The best

model did not include spatial autocorrelation effects. An explanation may be the

use of population samples, which perhaps removed some local aspects of varia-

tion. We think that including spatial autocorrelation would have been more useful

if individual sampling had been performed uniformly within the study area. A

third cluster corresponded to the two southernmost samples of killifish. Because

these two samples were geographically isolated from the rest, it was difficult to

decide whether the smooth variation observed to the south of the area could be

attributed to isolation-by-distance, i.e. an artificial cluster, or to historical pat-

terns of migration. In any case, coupling Bayesian clustering methods with ad-

ditional demographic analyses seems always necessary, as secondary contact and

isolation-by-distance in an irregular sampling design might produce confounding

signals.

Clines and clusters. The methods presented in this study have the potential to

detect coexisting clines and clusters through the inferred variation of admixture

proportions (see Rosenberg et al (2005) for a related discussion on clustering al-

gorithms). This was emphasized by the analysis of simulations of range expansion

from two refugia. In these spatially explicit simulations, the algorithm detected a

contact zone at the same time as it found clusters in the north of Europe and else-

where. In general it might be difficult to distinguish between clines and clusters

without a good spatial coverage of the study area. In this case, a DIC analysis

will provide an assessment of the relative contribution of clines and clusters to the

posterior estimates of admixture coefficients. For example, a non-spatial analysis
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for the killifish data suggested the existence of four clusters partitioning the south-

ern cline, but a spatial analysis coupled to a DIC evaluation indicated that a cline

merging two clusters better explained the data.

Comparisons with simpler methods. Relationships between Bayesian cluster-

ing algorithms and PCA have been emphasized by Patterson et al (2006) who con-

sidered a model of genetic structure in which populations have diverged from an

ancestral population recently. If the model assumes K populations, PCA is then

expected to have K − 1 significant components under the Tracy-Widom theory

(Patterson et al 2006). Applying PCA to the killifish, the cline and the south-

ern genetic cluster were visible in the first and in the third eigenvectors (PC1 and

PC3; Figure S7). In this example, the patterns found in PC1 and PC3 match

those computed by the Bayesian clustering program. In simulations of recent ad-

mixture, the tests were significant for PC1 only, and this axis of variation clearly

captured clinal variation at the contact zone. This was to be expected, because the

informative panel FST was low and the theory could be expected to perform very

well. In contrast, the Tracy-Widom theory yielded more than fifteen significant

axes of variation (p < .01) in some simulations of contact zones in Europe (Fig-

ure S8). For these components, the genetic meaning was hard to interpret. This

happened in situations where the informative panel FST was high (>.10), and the

Tracy-Widom theory less valid. In this case, the Bayesian algorithm was more

robust as it always detected no more than five clusters, and provided interpretable

values for the admixture proportions. Nevertheless the first PCs always included

the cline and clusters found by the Bayesian clustering algorithm, and we believe

that the two methods are useful complementary exploratory tools.

Concluding remarks. Bayesian algorithms for inference of population struc-

ture have traditionally focussed on finding clusters, whereas less efforts have been
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devoted to detecting clinal variation. To provide a better description of the rela-

tive contribution of clines and clusters, we coupled a multiscale spatial admixture

analysis with a Bayesian assessment of model complexity and fit. This approach

reduces the number of spurious cluster when the underlying variation is mainly

clinal, while still detecting zones of small genetic discontinuities. Our new al-

gorithm provides more accurate estimates of admixture proportions compared to

standard non-spatial methods, and this suggests its use when studying spatial pop-

ulation structure, secondary contact zones, and when correcting for population

structure in phenotype-genotype association studies.
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Figure 1. Expected admixture proportions qx as a function of space under a

longitudinal linear model, log(αx) = 25− 5x, in a simulation of the spatial prior

distribution using 2 clusters. The results for the second cluster are symmetric with

respect to the middle of the area.

Figure 2. Bayesian model choice for secondary contact scenarios. (A-B) All

simulations (180 individuals, 10 loci). Data sets are labelled 1-8. The plots rep-

resent relative differences in DIC for 2 hidden regression models. The reference

model is the model without covariate (non-spatial model, dashed lines). (C) DIC

as a function of Kmax for one simulated data set (T = 2,000, m = .9, C = 1000) for

3 models. (D) DIC as a function of Kmax for one simulated data set (T = 1,000,

m = .3, C = 1000) for 3 models.

Figure 3. Posterior estimates of admixture proportions and predictive maps

for selected models. (A-B) Range expansion from 2 refugia (T = 1,000, m = .3,

C = 100, 1,200 individuals, L = 100 loci). These results are representative of a

majority of the data sets. The contact zone is highlighted in red pixels. (C-D)

Fundulus heteroclitus. In (C), the individuals are sorted by latitude. The cline at

latitude 40◦41.2′ (red pixels, black line) corresponds to the observation of Adams

et al (2006).

Figure 4. DIC as a function of Kmax for F. heteroclitus. The vertical dashed

line corresponds to estimated effective number clusters K = 3 obtained from the

linear trend model.
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