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Summary. The capacity of the compound eye to perceive its spatial environ- 

ment is quantified by determining the number of different pictures that can be 

reconstructed by its array of retinula cells. We can then decide on the best 

compromise between an animal's capacity for fine detail and contrast sen- 

sitivity. The theory accounts for imperfect optics, photon noise, and angular 

motion limitations to acuity. 

1. There is an optimum parameter p =DA O, where D is the facet diameter 

and A q~ is the interommatidial angle, for each mean luminance, angular 

velocity and mean object contrast. We find that this value ofp is approximately 

that found by Snyder (1977) for threshold resolution of a sinusoidal grating at 

the ommatidial sampling frequency. 

2. A diffraction limited eye (DA (o-2/1/7) is the optimum design only for 

those animals that are active in the brightest sunlight, and have a region of 

their eye that normally experiences low angular velocity, otherwise it is better 

to have a larger DA4). 2 is the wavelength of light in vacuum. 

3. The design of the fly Musca is consistent with that of an animal with 

high angular velocity. 

I. Introduction 

In this paper we attempt to determine the design of a compound eye that optimises 

the animal's spatial acuity or spatial resolving power. Clearly, the optimum design 

depends on the range in environmental intensities experienced by the animal, its 

mean velocity and the preferred acuity task. Previous calculations of eye param- 

eters have neglected the intensity of light as well as the animal's velocity and are 

based on either two point resolution or resolution of a sinusoidal grating (ex- 

amples include Mallock, 1894, 1922; Barlow, 1952; Mazokhin-Porshnyakov, 

1969; Kirschfeld, 1976). Goetz (1965) has presented an analysis for finding the 

ratio (acceptance angle/interommatidial angle) but has not included the depen- 

dence on intensity. More recently Snyder (1977 a) has determined the parameters 

of the compound eye as a function of intensity and velocity but for sinusoidal 
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gratings as the acuity task. Since sinusoidal gratings are unnatural, one might 

sensibly question the relevance of results derived from them. 

The purpose of this paper is to develop a quantitative measure of an animal's 

resolving power (the spatial information capacity) that is based on a generalized 

acuity task and then to determine the parameters of the eye that maximise this 

measure. To accomplish this, we introduce intuitive concepts of information 

theory as developed by us originally for the study of vertebrate eyes (Snyder et al., 

1977). The formulation leads to an understanding of the compromise an animal 

must strike between contrast sensitivity and spatial resolving power. 

II. Concept of an Animal's Spatial Information (Picture Reconstructing) Capacity 

An eye must reconstruct its spatial environment from an array of intensity 

measurements, each measurement provided by an individual ommatidium. It is 

convenient to view this spatial quantization as a two-dimensional mosaic or 

checkerboard, i.e. a picture constructed from many smaller elements. Thus 

the number of ommatidia per field of view sets the capacity of the eye for fine 

detail. 

The fine detail of a picture is lost if there is inadequate contrast between 

the various elements. Accordingly, the capacity of the eye for contrast sensitivity 

is determined by the number of different intensity level s that can be discriminated 

by an array of ommatidia. At first it might be thought that an infinite number 

of different intensity levels can be distinguished; however we show below that 

the quantum nature of light, i.e. photon noise, sets a lower limit to the number 

that is reliably distinguished. The more photons captured by the ommatidia, 

the greater the number of intensity levels and thus the greater the contrast 

sensitivity of the animal. In other words, both space and intensity are quantized 

by the eye. 

Now it is clear that (for a given eye size) as the number of ommatidia per 

field of view increases, the potential of the eye for resolving fine detail also increases, 

but there must be fewer photons available for each of the ommatidia and hence 

a smaller number of recognizable intensity levels. Because of this unavoidable 

competition between the capacity of the eye for fine detail on one hand and the 

capacity for contrast sensitivity on the other, what is the most appropriate 

number of ommatidia per field of view? The answer clearly depends on the 

number of available photons, but some measure of acuity performance is required. 

A natural metric is the number of different pictures that can be reconstructed 

by the mosaic of ommatidia, i.e. by the many elements that make up each picture. 

Assuming that there are n, ommatidia per field of view, each one with one of 

n i possible intensity levels, the maximum number of pictures that can be recon- 

structed by the ommatidia is nl np). Now it follows from the classical arguments 

of information theory (Goldman, 1953; Pierce, 1961) that the logarithm of the 

maximum number of different pictures that can be reconstructed, per field of 

view, by the ommatidia is the spatial information capacity of the eye, denoted 

here as H. 

H = In nl np) = np Inn i (1) 
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Table 1. List of important symbols 

p =eye parameter 

p = DA 4) = D2/R = R (A 0) 2; Dam]. 

At the diffraction limit p = 2/2 (square lattice); p = 2/1~ (hexagonal lattice) 

A ~b = interommatidial angle 

A 4 = D / R ;  [radians] in formulae, [degrees] in figures 

D =facet diameter, assumed to be equal to the entrance pupil diameter; [gin] 

R = (local) eye radius; [gm] 

f = distance from distal tips of rhabdom to posterior nodal point 

A Pr = effective angular diameter of the rhabdom [radians]. Includes possible additional light 

gathering due to crystalline cone; when not present APr = dRfff, where dRh is the rhabdom 

diameter 

A p = width of the angular acceptance function of the photoreceptor retinula cell at 50 

sensitivity; [radians]. A p2 = (2//))2 + (A p~)Z 

v~ = sampling frequency; i.e. highest spatial frequency that can be reconstructed by the array of 

ommatidia; [radians] 

v~ = 1/2 A ~b (square lattice); v~ = 1/] f3A ~) (hexagonal lattice) 

vc0 = cutoff frequency, i.e. highest spatial frequency passed by the optics of an individual 

ommatidium 

Vco=D/2, in case of diffraction limit; [radians] -1 

2 = wavelength of light in vacuum; [gm] 

v =angular  velocity; [radians] [s] -1 in formulae, [degrees] [s] -1 in figures 

= mean contrast of a random two-dimensional distribution of light intensity in the object world 

(see Fig. 2) 

Nr = m e a n  number of photons absorbed by each photoreceptor of an array of photoreceptors, per 

integration time of the eye, due to a uniform source, infinite in extent. 

(l) ;V =I(DApr) ~ 

(2) I =intensity parameter 

=0.89 e A t  I o 

(3) ]0 =mean  number of photons per second entering the entrance pupil per square gm per 

steradian of field; [s r] - 1 [~tm]- 2 [s] - 1 

(4) e = quantum efficiency, i.e. the fraction of photons entering the pupil that are counted by 

the photoreceptors 

(5) At=integrat ion time (effective shutter time) of the eye; [s] 

M~ = modulation transfer function (MTF) of lens-pupil = [exp { - 3.56 (v 2//))2}] 

M r = MTF of rhabdom = [exp { - 3.56 (vA p~)2 }] 

M = M i M ~ = e x p { - 3 . 5 6 ( v A p )  2} 

H = information capacity per unit solid angle of object field, defined here to be the natural 

logarithm of the number of different pictures that can be reconstructed by an array of 

ommatidia at the level of the retinula cells 

(1) H =n  v In nl; [sr] -1 in formulae, [degrees] -2 in figures 

(2) np= number of ommatidia per solid angle of object field; [s r ] -  1 in formulae, [degrees]- 2 

in figures 

(3) n~ = number of different intensity levels that can be distinguished by the photoreceptor 

array 
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Spatial information capacity = (no. of ommatidia per field of view) 

x In (no. of different intensity levels) 

where In is to the base e. By using the logarithm of the number of pictures, we 

preserve the intuitive notion that doubling the number of ommatidia per field 

of view np, doubles the spatial information capacity H of an eye. 

Having established the essential concept, we next relate np and n i to the 

physical parameters of the compound eye. 

The number of ommatidia per square radian of object space np is 

np = 1/(A (15) 2 (2) 

assuming for simplicity that the ommatidia are arranged in a square lattice, 

where A 4~ is the interommatidial angle in radians. 

IlI. Number of Intensity Levels that can be Distinguished Reliably 

by the Mosaic of Ommatidia 

The number of intensity levels n i that can be reliably distinguished by the om- 

matidia is limited by noise, ultimately due to the quantum nature of light, i.e. 

photon noise, and by imperfect optics, ultimately due to the wave nature of 

light, i.e. by diffraction. We first consider the limitation of photon noise. 

1. Limitation of Photon Noise to the Number of Discriminable Intensity Levels n~ 

Because of the random nature of photon emission and absorption, a uniform 

light source (infinite in extent) appears non-uniform to an array of ommatidia, 

as shown in Figure 1. The standard deviation anois e in photon counts across 

an infinite array of ommatidia is 

O-noise (3) 

where i~ is the mean number of photons captured by the individual rhabdoms 

per integration or shutter time of the eye (Barlow, 1964; Rose, 1973). Because 

of this 1 / ~  uncertainty in the interpretation of a photon count, there is only a 

finite number of intensity levels n i that can be distinguished with certainty by 

the ommatidia. 
We suppose here that the intensity levels need be separated by 2 anois e intervals 

to be reliably discriminated, i.e. the standard deviation of one level just meets 

the standard deviation of the neighboring level. This is the usual reliability 

criterion for communication systems and is analogous to assuming that the 

threshold signal to noise ratio is unity (see Appendix B). Thus, n i is found by 

determining the number of intervals of width 2 O-nois e that can f i t  into a given range 

of mean object intensity. This intuitive procedure gives the maximum number 

of intensity levels that can be reliably distinguished (Carlson, 1975). 
We are reminded that our expression for spatial information capacity H, 

given by Equation (1), is based on the maximum number of pictures that om- 

matidia can reconstruct. It is convenient to know what distribution of object 



Spatial Information Capacity of Compound Eyes 

Uniform Source Intensity 

187 

O'nois e 

i 
receptor number receptor number 

Fig. t. The fluctuation in photon counts across the photoreceptors (in one integration time) due only 
to the random arrival of photons (photon noise). The object is a two dimensional uniform source, 
infinite in extent (see Fig. 3) 

intensities would produce this maximum. From information theory (e.g. Pierce, 

1961) we learn that a random scene fulfils the requirement, i.e. a scene con- 

taining objects of random contrast and random size (or identical size at random 

distances from the eye). Such a scene is the epitome of the unexpected since 

every spatial frequency has equal importance. The spatial information capacity 

H of an eye is therefore equivalent to the amount of information that it can 

extract from a random scene. Accordingly, we determine the number of possible 

contrast levels that exist when the object intensity is random as in Figure 2. 

In the absence of photon noise, the standard deviation %g in photon counts, 

due to the random scene in Figure 2, is 

~sig = N C (4) 

where N is the mean number of photons absorbed by the rhabdoms of the 

individual ommatidia and C is the mean contrast of the object intensity dis- 

tribution. In the presence of noise (Fig. 3), twice the standard deviation in photon 

4-gr 2 ]1/2 remembering that variances and not standard counts is given by 2 (a~2ig_-,oi . . . .  

deviations must be summed (Goldman, 1953). Dividing this expression by 2 anoi~ e 

gives the number n i of possible intensity levels 

2 2 1/2 
n i = { 1 + O-sig/anoise} (5 a) 

= {1 +NC2}  1/2 (5b) 
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Fig. 2. Spatial distribution of photon counts by an array of ommatidia due to a random distribution 

of object intensity. The effect of noise has been intentionally neglected but is included in Figure 3 

assuming photon noise is the only limitation. We next examine how imperfect 

optics modify this result. 

2. Limitations of Imperfect Optics Plus Photon Noise 

to the Number of Discriminable Intensity Levels 

In order to appreciate how imperfect optics limits the number of intensity levels 

we must first discuss some basic concepts of optical filtering (Goodman, 1968). 

The most useful way to quantify the effect of imperfect optics is by the demodula- 
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Random Source Intensity 

2 2 1 
�9 [O ' s i g  + Ono ise  ]2  

. . . . . . . . .  Y . . . . . . .  
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| 

[ a~ig 2 ! + a.ojse ]2 
t 

receptor n u m b e r  

Fig. 3. The effect of noise on the spatial distribution of photon counts by an array of ommatidia due to 
a random distribution of object intensity. Ommatidia with larger facets accept more photons than 
those with smaller facets (assuming nearly equal focal lengths in both cases) so that their signal to noise 
ratio is greater 

tion of a spatial sinusoid as it passes through each component part of the visual 

system (Fig. 4). In particular we use the modulation transfer function M(v) or 

MTF to characterize the modulation of a spatial sinusoid of unity amplitude 

and frequency v after passing through all components. Figure 4 shows the MTF 

at the photoreceptor level. The MTF of the lens-pupil is Mz(v), while the MTF 

of the finite diameter of the rhabdom is Mr(v ). Thus, as shown in Figure 4, the 

modulation that appears across the array of retinula cells is a quantized version 

of rnM1M,, where m is the object contrast or modulation. 

It is intuitive, from Figure 5, that the interommatidial angle sets the highest 

spatial frequency v~ that can be reconstructed by the array of ommatidia. We 

call v~ the sampling frequency of the ommatidia,  where 

v~ = sampling frequency = 1/2A (J (6) 

assuming a square array of ommatidia. The case of a hexagonal lattice of visual 
axes is discussed by Snyder (1977 a, b). 

A random distribution of object intensities contains all spatial frequencies, 

equally weighted (O'Neill, 1963). Using Fourier analysis of random distribu- 

tions, we have shown (Snyder et al., 1977) that the presence of imperfect optics 

reduces the number of possible intensity levels n i from that given by Equation 
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+*F 
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, ~  !~-N-~'m M| M r 

Fig. 4. Demodula t ion of a sinusoidal grating by an array of ommatidia.  The object modulat ion is m, 

the modulat ion transfer function of the lens and the rhabdom are M z and M r respectively. The modu-  

lation in photon counts hence is m M  z M  r 

(5b) to 

n~ = { 1 + ~ ~2 M(vs)}l/2 (7) 

where M = M z Mr. The greater vs, the smaller M and hence the fewer the number 

of intensity levels that can be distinguished. 

3. Expressions for the MTF M(v) 

We assume that the lens-pupil is diffraction limited (Kirschfeld and Franceschini, 

1968) for which case the MTF of the lens-pupil M~ is the Fourier transform of 

the diffraction intensity pattern of a circular aperture (Goodman, 1968) and 

approximated well by the Gaussian function (rev. Snyder, 1976a, b). 

- ~.56 ( @ 2  

Mt (v) = e (8) 



Spatial Information Capacity of Compound Eyes 191 
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~--4, 

g 9  

Q.  

t t ~ N m  M~Mr 

Fig. 5. Highest spatial frequency v s that can be reconstructed by a square array of ommatidia, where 

M~ and M~ are the MTF's of the lens pupil and the rhabdom respectively 

where 2 is the wavelength of light in vacuum and D the entrance pupil diameter, 

assumed here to be the diameter of the facet. 

The MTF of the rhabdom Mr is given b y  the Fourier transform of the 

rhabdom's light capture profile (in isolation from the lens-pupil) which includes 

possible light funnelling due to the crystalline cone. Snyder (1977a) has shown 

that a Gaussian approximation is suitable for M r so that 

M r  (v) = e -  3"56(rAPt)2 (9) 

where APr is the effective angular diameter of the rhabdom. The m i n i m u m  value 

of APr equals the angular diameter of the rhabdom. 

We can now specify the MTF at the level of the retinula cells due to a sinusoid 

at the ommatidial sampling frequency v s. From Equations (6), (8) and (9) 

M(v~)  = M l (Vs) M r (v~) = e- o.89 (~_)2 (10) 
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A 
1.0 

\ ~  /LrJ 

Fig. 6. Angular acceptance function of an ommatidium. 
The halfwidth A p is at 50 ~o sensitivity. D is the facet 
diameter, R is the eye radius, and A qb the interommatidial 
angle 

where, A p, the width of the photoreceptor cell angular sensitivity function at 

50 ~ sensitivity (Fig. 6), is given by (Snyder, 1977 a) 

(A p)2 = (VD)2 + (A ;r) 2. (11) 

The highest spatial frequency passed by the optics of an individual ommatidium 

is called the cutoff frequency Vco, and is defined by M(Vco)-0. If the optics is 

limited by diffraction only, i.e. Apr~2/D, then (Goodman, 1968) 

Vco = cutoff frequency = D/2. (12) 

This is the highest spatial frequency passed by an individual ommatidium when 

the entire optical system is diffraction limited. Allowing for limitation due to 

a finite rhabdom diameter, the highest spatial frequency is effectively reduced 

to Vco~-1/Ap as discussed by Snyder (1977a, b). 

4. Expression for the Mean Number of Photons Absorbed 

If we let i o be the mean number of photons entering the eye per square radian 

of object field per (gin) 2 per second, e the fraction of this number that is absorbed 

by the rhabdom, A t the sampling time of the eye, then N = I 0 ~ A t times the pupil 
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area D 2 ~/4, multiplied by the solid angle that the rhabdom subtends in object 

space. Assuming the rhabdom has a Gaussian acceptance profile of half width 

A Pr, we find (Snyder, 1977 a) 

= i (D Apr) ~ (13) 

where the intensity parameter i is defined in Table 1. 

IV. Optimum Eye Parameters for Maximum Spatial Information Capacity 
of Compound Eyes 

1. Mathematical Expression for Information Capacity H 

We can now express the spatial information capacity of compound  eyes H 
given by Equation (1) in terms of the animal's physical parameters. From Equa- 

tions (1), (2), (7), (10), (11) and (13) 

/-/= - ~  ln{l+/qC2M(v~)}l/2 (14a) 

1 ln[l+CZf(DApr)ze-O.a9{(~)2+(A~-)2}]. (14b) 
2 (A 4,) 2 

Our purpose is to find the optimum parameters D, Apt and A qS, i.e., those 
that maximise an animal's information capacity H for any given mean intensity 

and contrast C. 

2. Optimum Rhabdom Acceptance Angle APr 

The information capacity/-/given by Equation (14b) is maximised when 

Apt= 1.06A ~. (15) 

This is the optimum rhabdom acceptance angle. Substituting this optimum value 
of Ap~ into Equations (11) and (14b) leads to 

Ap { ( 2  )?'+1.12} 1/2, (16) 
= 5Y - 

for the ratio of the acceptance angle A p to the interommatidial angle A ~b, and 

H = (@~)y In { 1 + 0.37 N C 2 Ml (v~)} 1/2 (17 a) 

_ 1 ln{1 +0.41 C2 I(D A ~b) 2 e - ~ (D@~)2} (lYb) 
2(A~b) ~ 

for the spatial information capacity H of the eye. 

From this expression, we see that D A ~ is the determinant of H given a 
certain contrast intensity parameter C; i. 
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3. Optimum Facet Diameter D and Interommatidial Angle A ~) 

The facet diameter D and interommatidial angle A~b are related by geometry 

to the local radius R of the eye (Fig. 6) 

D=RA4). (18) 

We emphasize that in general compound eyes are neither spherical nor are D and 

A 4) constant over the eye. However, the parameter p, 

p=D---R=R(A4):=D A4), (19) 

is nearly constant over a substantial portion of many eyes, including the honeybee 

(Kuiper and Leutscher-Hazelhoff, 1965), the fly Musca (Stavenga, 1975) and 

numerous compound eyes of insects native to Australia (Horridge, 1976). This 

parameter p is also a principle determinant in maximizing H in Equation (17b) 

as we have noted above. We emphasize however that the absolute resolving 

power of an eye is determined by A ~b and not by p. 

Provided there is sufficient luminance, the ommatidia can reconstruct the 

highest frequency passed by the optics when the ommatidial sampling frequency v s 

equals the cutoff frequency % of the optics. F rom Equations (6) and (12) we 

find that there is no advantage in having the interommatidial angle A ~b < 2/2D, 

so that 

p > 2/2 (20) 

for a square lattice of ommatidia. Thus, with 2 = 0.5 ~tm, the minimum value of 

p = 0.25 gin. This is the well known case of a diffraction limited compound eye. 

Distinction between R and D Constant Cases. We can solve Equation (17) subject 

to two different constraints: i) the R constant case where we ask for the optimum 

eye parameter p for a given local eye radius R; ii) the D constant case where we 

ask for the optimum eye parameter p for a given facet diameter D. The mathematics 

associated with these two cases is discussed further in Appendix A and B. 

The R constant case is particularly meaningful for a spherical eye or for 

large portions of eyes constrained to have a particular radius. With the assumption 

that the fovea is specialized for high resolving power, then the fovea should have 

relatively large facet diameters D. Many diverse factors determine D, including 

the behavioral necessity of achieving a certain acuity over a specified field of view, 

the corneal area and the number of supportable photoreceptors. 

Information theory, as presented here, cannot account for these factors; 

however, given a diameter for neighboring facets, it can determine the inter- 

ommatidial angle Aq5 and the angular light capture area Ap~ of the rhabdom 

that gives the greatest number of pictures per unit angle. Thus, the D constant 

case is applicable to the foveal region of compound eyes. 

In Figure 7 we have plotted the optimum eye parameter p vs the mean light 

intensity parameter I" for various mean object contrasts. It is necessary for 

log ~'~2 to be greater than 7 for the R constant case and greater than 5 for the 
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Fig. 7 a and b. The optimum value of the eye parameter p as a function of the light intensity parameter 
i at different mean contrasts C. The conversion from f to luminance in candelas per square meter 
is given in Appendix C. a and b give the case for R and D constant respectively 

D constant case in order to have a diffraction l imited eye, i.e. one with p = 2 / 2  

to be at op t imum (see also Appendix  B). W h e n  ] C  2 is lower than this min imum,  

the op t imum eye has p greater than 0.25 pm. A hexagonal  lattice of  ommat id ia  

requires the same j ~ 2  to reach the diffraction limit, which is then p=2/]/~, 
or 0.29 pm if ) . = 0 . 5  ~tm (Snyder, 1977 a). 
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Fig. 10a and b. Mean photon count N, per integration time of the eye, by the individual ommatidia 

when the information capacity is maximum for the case the R is constant a and D is constant b 

In Figure 8 the optimum values of the facet diameter D and eye radius R 

are also shown explicitly. The optimum ratio A p/zl d) also depends on the in- 

tensity of light as shown in Figure 9. (The ratio A p/A ~ has been discussed by 

Goetz (1965) and Wehner (1975) as a determinant of eye design.) In Figures 10 

and 11 we also show the mean photon coun t /q  and the maximum H associated 

with the optimum eye parameter p. 
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Fig. 11. The maximum information capacity H . . . .  i.e., H for the opt imum eye parameter p (Fig. 7). 

When eye radius R is constant H,,ax/R is given uniquely by intensity parameter I" and mean contrast C; 

when facet diameter D is constant it is Hmax/D 2, see Appendix B. The dimension of Hm~x/R is [de- 
grees]- 2 [gm]-1 and of H,.ax/D 2 [degrees]-2 [gm]-2 
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time is 4 t, We have assumed the intensity of light is that of a bright sunny day log(IC2)=5 

4. Effect of Angular Motion on Determining the Optimum Eye Parameters 

The presence of angular motion produces an additional spatial uncertainty of 

the amount vat, where v is the angular velocity and At the imegration time 

of the eye. gnyder (1977 a) has shown that the effect of motion on spatial resolution 

is accounted for by a simple modification of Equation (11) of the form 

(~ r =(,~/o)2 + (~ 0,.)2 + (v d 02 (21) 
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so that the expression for information capacity Equation (17a) becomes 

1 ,x~-~ J }. 
H = 2(~A- ~ In {1 .+0.37NC2Ml(vs) e -~ (22) 

Thus, the presence of a finite angular velocity is equivalent to a reduction in 

the intensity contrast parameter ] C  2. This is demonstrated in Figure 12, which 

shows that the optimum eye parameter p and the interommatidial A q5 must 

increase as the angular velocity v increases. A fly undergoing fast angular turns 

is from the point of view of acuity placing itself in a dimmer or greyer environment. 

IV.  D i s c u s s i o n  

I. Philosophy of Information Capacity 

An animal views the spatial environment as a picture reconstructed by an array 

of retinula cells. This picture has two fundamental determinants: fine detail 

and contrast. The fine detail of the picture is set by the number of ommatidia 

per field of view, while the contrast depends on the light intensity and the quality 

of the optics, since it is limited by photon noise and imperfect optics. The smaller 

the interommatidial angle A q~, the greater the capacity of the eye for fine detail; 

however, as Aq5 decreases so must the contrast sensitivity. This is because the 

imperfect optics (ultimately diffraction limited) degrades the higher spatial 

frequencies that are sampled by the ommatidia more than the lower frequencies. 

If the decrease in A q5 is accompanied by a decrease in facet diameter, there is 

an additional reduction in estimated or perceived contrast because fewer photons 

are then absorbed and pupil diffraction increases. Consequently, contrast and 

fine detail are interrelated, an increase of one coming at the expense of a decrease 

in the other. How is one to decide on which to value more? We have used a 

criterion for determining the optimum value of the parameters of the compound 

eye based on maximising the number of different pictures that an array of om- 

matidia can reconstruct from a random scene. Thus, for a given mean luminance 

and contrast, there is an optimum facet diameter D and interommatidial angle A~b 

and angular rhabdom diameter, Apr. 
One might sensibly question the relevance of using a random scene as the 

acuity task for eye design. It is quite true that no natural scene is ideally random 

for then it could not have discernable detail. However, the virtue of a random 

scene is that it places equal emphasis on all spatial frequencies. Although an 

animal never sees a random scene at any one instant, over the course of time 

it is exposed to a wide spectrum of spatial frequencies so that to specialize to 

any one spectral region is artificial. 

In Figure 13 we have compared our optimum eye design, based on the criterion 

of extracting the maximum information from a random scene, with that based 

on the criterion for optimum resolution of a sinusoidal grating at the ommatidial 

sampling frequency v, = 1/2A 0 (Snyder, 1977 a). 
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The two are similar, in the limit of high intensity and contrast. The reason is that the information 

capacity H of equation (1) is more sensitive to changes in np than in n~ (provided n~ > 2) so that a greater 

H is achieved by having a comparatively larger n v than nl, i.e. fine spatial detail is more important 

than contrast sensitivity in the limit of high contrast and intensity. The results of Figure 13 for sinusoidal 

gratings were obtained by taking the highest spatial frequency that can be resolved at a fixed signal 

to noise ratio equal to unity i.e. the minimum detectable contrast. Thus, the two different acuity 

tasks demand similar retinal designs because both give precedence to fine spatial detail over contrast 

sensitivity. 

Finally, we note that both of the acuity tasks discussed above involve an 

extended and continuous distribution of object intensities, i.e., the sinusoidal 

grating and the random distribution of object intensity are infinite in extent. 

Had the acuity task been resolution of isolated points, to take an extreme example, 

the optimum eye design criteria is different with the facet diameter D playing 

a role more like p in the analysis presented here (Snyder, 1977 a, b). 

2. Neural Pooling 

In the text we showed that, if an eye is to be at optimum for a range of environ- 

mental intensity and contrast, there must be a range both in the parameter p and 

the angular rhabdom diameter Apt across the eye. When p is uniform across 

the eye, there is an alternative effective strategy involving neural pooling. 
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In its simplest form neural pooling can be treated as an exact analogue of 

photoreceptors by assuming that pools d ~ not overlap. Thus the light gathering 

capacity (see Equation 13) of a neural ommatidium is proportional to D 2, where 

1), =RA(o, is the effective diameter of the neural ommatidium and A~b, is the angle 

between adjacent neural ommatidia. There are np=(1/AO,) 2 neural ommatidia 

per square radian of object space with a sampling frequency v s equal to 1/2A43,. 
Making these changes in Equations (1) and (14a) gives the information capacity H 

of an array of neural ommatidia. We find that H is maximised if the angular 

diameter of the rhabdom Apt varies as the neural interommatidial angle, i.e. 

Apr=l.O6A(~,. Furthermore; we find that the information capacity decreases 

by widening the acceptance angle of an ommatidium unless this widening occurs 

together with neural pooling. 

We are reminded that the information capacity is the capacity of an eye to perceive a white noise 

pattern. However, if the environment contains predominantly low spatial frequency components, 

it is advantageous to open up the acceptance angle with decreasing intensity (Laughlin, 1975, Snyder, 
1977a). 

A more detailed evaluation of strategies for dark adaptation is given by 

Snyder (1977a). 

Finally, we note an important difference between the effect of neural pooling 

in lens and apposition compound eyes. The image due to neural pooling in lens 

eyes is in theory no different from that found by larger photoreceptors. However, 

the image due to neural pooling in a compound eye is worse than that formed by 

larger ommatidia, even though the light gathering capacity is identical. The 

reason is that larger ommatidia have less pupil diffraction. 

3. Comparisons of Theory with Existing Eyes 

We have found that the diffraction limited eye (p = 2/2) is optimum only for 

animals that are exposed to the brightest sunlight and have regions of the eye 

that normally experience low angular velocity. For these animals, the eye param- 

eter p = 2/2 for a square lattice of ommatidia and p = 2/1/3 (or p = 0.29 gm when 

2 = 500 nm) for a hexagonal arrangement of ommatidia. This limit is very nearly 

reached in the foveas of the Australian sand wasp Bembix and the dragonfly 

Hemicordula tau (Horridge, 1976). Both of these animals hover when examining 

their prey. By comparison the dragonfly Zyxomma, active only before dawn and 

after dusk, has measured p values of 1.0-1.5 (Horridge, 1976) and this is consistent 

with our theoretical predictions (Fig. 7). 

On the other hand, the fly Musca is active in rather bright conditions, yet, 

throughout most of its eye, p---1.3~tm (Stavenga, 1975), i.e., about 4.5 times 

greater than the diffraction limit. According to Figure 7 p = 1.3 gm is the optimum 

design for an animal that is active in the late afternoon and at dusk. However, 

when we account for the high angular velocity habits of Musca, which con- 

servatively turns 360 ~ per second (see Land and Collett, 1974), we estimate, with 

At=20ms that vAt=7.2 ~ and thus, with R-~700~m and Figure 12a, p--~lgm 

appears to be indeed reasonable. In other words, high angular velocity is equivalent 

to a low intensity-contrast environment (Snyder, 1977 a). 
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optical superposition eye, and Musca, a neural superposit ion eye 

In conclusion, we have compared the information capacity H of a hypothetical 

ideal apposition and ideal optical superposition eye with that of Musca. The 

apposition eye is assumed to have an enormous range of p values to accommodate 

the optimum under all contrast-intensity conditions. The optical superposition 

eye is assumed to be diffraction limited with 150 participating facets and p -- 0.6 gm 

constant over the whole eye. The fly Musca is assumed to have p = 1.3 gm constant 

over the entire eye and a neural summation advantage of 6b7. Figure 14 shows 

the comparison. 

The ideal optical superposition eye is the best of the three but probably 

the results are inapplicable at high intensities (where the lens-pupil function 

limits acuity), because we have not accounted for the aberrations of the effective 

aperture formed by the 150 recruited ommatidia. Within a restricted region of 

intensity and contrast the neural superposition eye is better than the ideal ap- 

position eye. Thus, the neural improvement of photon capture by a factor of 

6 significantly compensates for the high p values found in this animal. 

Appendix A. Optimum Eye Parameters when Facet Diameter D is Held Constant 

When D rather than R is held constant in the process of finding the parameters 

that maximise the spatial information capacity of the eye, we must allow for 

some modifications not presented in the text. 

The expression for the number of intensity levels n i given by Equation (7), 

is inaccurate for b7 < 10. A more uniformly valid expression is (Snyder et al., 1976) 

§ 
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In the R constant case, the optimum value of N is greater than 10 for all situations 

of interest, so this modification is unnecessary. In the high intensity region it 

is also unnecessary for the D constant case. 

We have determined the optimum parameters for the D constant case by 

maximising H as represented by Equation (1), when np is given by Equation (2) 

and n i by Equation (A.1). In this case Apt is slightly intensity dependent, but 

over the region of interest A p~-~ 1.1A qS. 

Appendix B. High Intensity Limit of Information Capacity 

When the intensity is high, we can express the information capacity H, given in 

Equation (17b), by 

H = (R/2p) In {0.41 C z ]p2 e- o.89(x/p)2}, (B.1) 

for the R constant case and 

H = (DZ/2p 2) In {0.41 C 21 p2 e- 0.89(~/p)2}, (B.2) 

for the D constant case. 

1. R Constant Case 

Finding the p that maximises Equation (B.1) leads to 

In {0.41 ~2]p2 e-2.67(.Vp)2} =2 ,  (B.3) 

or by noting the definitions of 2V and M~ (vs) 

in {0.37 A7 C z M 3 (v~)} = 2, (B.4 a) 

C 2 Mz 3 (vs) =20. (B.4b) 

The diffraction limit is given by v s = Vco or p = 2/2. Substituting p = 2/2 into the 
above expression leads to 

log A7 ~2 = 5.94 (B.5) 

for the minimum number of photons to have the diffraction limit be the optimum 

design or equivalently when 2 = 0.5 gm 

log i C  z = 7.09. (B.6) 

2. D Constant Case 

Finding the p that maximises Equation (B.2) leads to an analogous set of equations; 

In {0.41 ~2]p2 e-l.78(.Vp)z} = 1, (B.7) 

in {0.37 C2IM 2 (vs)} = 1, (B.8) 

~2 M 2 (v~) = 7.35. (B.9) 

Substituting p =  2/2 into these expressions gives the minimum conditions neces- 
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sary for the diffraction limit to be the optimum design, when ).=0.5 ~tm 

log (N C 2) = 3.96 (B. 10) 

log (] C 2) = 5.11. (B.11) 

Appendix C. Conversion of i to Luminance 

Using our table of symbols, 

]=0.89eAtio, (C.i) 

According to Wyszecki and Stiles (I967), p. 226, 

Jr=L. A.  (2/Vj) �9 8.8.10 9 (C.2) 

where i is the mean number of quanta per second entering the ommatidium 

per square degree of field, A apparent area in (ram) z, L the luminance of the 

field in candelas per m 2, 2 the wavelength in cm and V~ the CIE relative luminous 

efficiency curve (for scotopic vision). 

We take 2=  5.10 -s  cm so that Vj =0.98, A=(rc/4)D 2. 10 -6, lo=i(4/nDZ)(180/n) z, 
so that 7 o = 1.47 �9 103L and 

] =  1.31 x 103(eAt)L. (C.3) 

With e =0.5 and A t = 2 . 1 0 - 2 s  (20 ms) as representative values 

log ] = l o g  L + 1.11. (C.4) 
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