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Abstract

In this article, we study the asymptotic behavior of the spatial integral of the so-
lution to the hyperbolic Anderson model in dimension d ≤ 2, as the domain of
the integral gets large (for fixed time t). This equation is driven by a spatially
homogeneous Gaussian noise, whose covariance function is either integrable, or is
given by the Riesz kernel. The novelty is that the noise does not depend on time,
which means that Itô’s martingale theory for stochastic integration cannot be used.
Using a combination of Malliavin calculus with Stein’s method, we show that with
proper normalization and centering, the spatial integral of the solution converges to
a standard normal distribution, by estimating the speed of this convergence in the
total variation distance. We also prove the corresponding functional limit theorem
for the spatial integral process.

Mathematics Subject Classifications (2020): Primary 60H15; Secondary 60H07,
60G15, 60F05

Keywords: hyperbolic Anderson model, spatially homogeneous Gaussian noise, Malli-
avin calculus, Stein’s method for normal approximations

1 Introduction

Stochastic partial differential equations (SPDEs) are mathematical models used for phys-
ical phenomena which are subject to random perturbations. These perturbations are
typically described by a collection of random variables which constitute the noise. In
general, the existence and behaviour of the solution of an SPDE is strongly influenced by
the temporal component of the noise, which usually resembles a well-understood classical
process, such as Brownian motion, fractional Brownian motion, or a Lévy process. But it
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is also possible that the noise has no temporal component at all, which will be the case
for the equation considered in the present article.

In the recent years, there has been a lot of interest in studying the asymptotic behavior
as R → ∞ of the spatial integral IR(t) =

∫
BR
u(t, x)dx associated with the random field

solution u of an SPDE (as defined in Walsh’ lecture notes [29]), where BR is the ball
of radius R centered at 0. This line of investigations was initiated in article [17] for the
stochastic heat equation in dimension d = 1, driven by a spatially homogeneous Gaussian
noise which behaves in time like Brownian motion (i.e. it is white in time). In this
equation, the initial condition is constant and the noise is multiplied by σ(u), where σ
is a Lipschitz function. Combining tools from Malliavin calculus with Stein’s method for
normal approximations, the authors of [17] proved that for fixed t > 0, IR(t) converges
(with proper normalization and centering) to the N(0, 1) distribution as R → ∞, by
estimating the speed of this convergence in the total variation distance. They also proved
the corresponding functional limit theorem for the integral process {IR(t); t ≥ 0} in the
space C[0,∞) of continuous functions on [0,∞). Further developments and extensions for
the heat equation with the same type of noise can be found in [9, 10, 18]. The parabolic
Anderson model (corresponding to the case σ(u) = u) with the same noise and delta
initial condition was studied in [11]. The same problem for the fractional heat equation
(in which the Laplacian is replaced by its fractional power) has been considered in [1].
The case of the parabolic Anderson model driven by a Gaussian noise colored in time was
treated in [26, 25], and the same model with rough noise in space appeared in [24].

There are several articles dedicated to this problem for the stochastic wave equation in
dimension d ≤ 2, with constant initial condition and a Lipschitz function σ(u) multiplying
the noise. The case of the white noise in time with spatial covariance given by the Riesz
kernel was considered in [14, 8] for d = 1 and d = 2 respectively, while the case of an
integrable spatial covariance function was studied in [27]. The hyperbolic Anderson model
(for which σ(u) = u) with the colored noise in time was examined in [6].

In this article, we consider the following hyperbolic Anderson model:






∂2u

∂t2
(t, x) = ∆u(t, x) + u(t, x)Ẇ (x), t > 0, x ∈ R

d, (d ≤ 2)

u(0, x) = 1,
∂u

∂t
(0, x) = 0.

(1)

The novelty stems from the fact that the noise is time-independent, i.e. it is given by a
zero-mean Gaussian process {W (ϕ);ϕ ∈ D(Rd)} with covariance:

E[W (ϕ)W (ψ)] =

∫

(Rd)2
γ(x− y)ϕ(x)ψ(y)dxdy =: 〈ϕ, ψ〉P0,

where D(Rd) is the space of infinitely differentiable functions on R
d, with compact support.

We assume that the noise is defined on a complete probability space (Ω,F ,P), and we
denote by ‖ · ‖p the Lp(Ω)-norm for any p > 0. We will work with a “strong” solution,
i.e. a solution defined on this fixed probability space.
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The parabolic Anderson model with Gaussian time-independent noise as above:




∂u

∂t
(t, x) = 1

2
∆u(t, x) + u(t, x)Ẇ (x), t > 0, x ∈ R

d, (d ≥ 2)

u(0, x) = 1,
(2)

appeared for the first time in article [15], the solution being defined in the Skorohod sense.
Hölder continuity of the sample paths and exponential bounds for the moments (known
as intermittency properties) were obtained in [16] of both Skorohod and Stratonovich
solutions using their respective Feynman-Kac representations. The exact asymptotic be-
haviour of the moments of the Skorohod solution for the same model was obtained in [12]
(taking α0 = 0), under additional assumptions on γ. New properties of the Skorohod
solution of (2) in dimension d = 1 have been recently discovered in [20, 28].

By contrast, the hyperbolic model (1) is far less studied. In fact, we are aware of only
two references for this model, both of them quite recent and involving the first author
of this paper. More precisely, the exact asymptotic behaviour of the moments of the
Skorohod solution of (1) has been obtained in [4] under the same assumptions on γ as in
[12], while the Stratonovich solution of equation (1) has been examined in [2].

We give now few more details about the noise W . We assume that the function
γ : Rd → [0,∞] is non-negative-definite in the sense of distributions. By the Bochner-
Schwartz theorem, there exists a tempered measure µ on R

d such that γ = Fµ in S ′(Rd):
∫

Rd

ϕ(x)γ(x)dx =

∫

Rd

Fϕ(ξ)µ(dξ), for any ϕ ∈ S(Rd).

We say that µ is the spectral measure of γ (and of the noise W ). Consequently,
∫

Rd

∫

Rd

ϕ(x)ψ(y)γ(x− y)dxdy =

∫

Rd

Fϕ(ξ)Fψ(ξ)µ(dξ), for any ϕ, ψ ∈ S(Rd).

Here Fϕ(ξ) =
∫
Rd e

−iξ·xϕ(x)dx is the Fourier transform of ϕ and S(Rd) is the set of
rapidly decreasing functions. If µ(Rd) <∞, then γ(x) =

∫
Rd e

−iξ·xµ(dξ) for any x ∈ R
d.

The noise is stationary (or homogeneous) in space, i.e. the covariance of the random
distribution {W (ϕ);ϕ ∈ D(Rd)} is invariant under translations:

E[W (τhϕ)W (τhψ)] = E[W (ϕ)W (ψ)] for any h ∈ R
d,

where (τhϕ)(x) = ϕ(x+ h) for all x ∈ R
d. The concept of stationary random distribution

(not necessarily Gaussian) goes back to the 1950’s, as it was introduced by Itô in [19]
for d = 1, and was extended to d ≥ 1 by Yaglom in [30], who called it a “homogeneous
generalized random field”. In the Gaussian case, this type of covariance structure became
very popular for the noise perturbing an SPDE only after the publication of Dalang’s
seminal article [13], in which the noise is white in time.

We assume that the spectral measure µ of the noise satisfies Dalang’s condition:

Cµ :=

∫

Rd

1

1 + |ξ|2µ(dξ) <∞. (D)

Note that this condition always holds for d = 1 (see Remark 10 of [13]).

Below are some examples of pairs (γ, µ). In these examples, µ has density function g.
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Examples 1.1. 1. (Heat kernel) γ(x) = (2πa)−d/2e−|x|2/(2a), g(ξ) = e−a|ξ|2 (a > 0)

2. (Poisson kernel) γ(x) = cda(a
2 + |x|2)− d+1

2 , g(ξ) = e−a|ξ| (a > 0)

3. (Riesz kernel) γ(x) = |x|−β, g(ξ) = Cd,β|ξ|−(d−β) (β ∈ (0, d))

4. (Bessel kernel) γ(x) = 1
Γ(α)

∫∞

0
tα−1(4πt)−d/2e−t−|x|2/(4t)dt, g(ξ) = (1 + |ξ|2)−α/2

(α > 0)

5. (Fractional kernel) γ(x) =
∏d

i=1 αHi
|xi|2Hi−2, g(ξ) =

∏d
i=1 cHi

|ξi|1−2Hi with x =

(x1, . . . , xd), ξ = (ξ1, . . . , ξd) αH = H(2H − 1), cH = Γ(2H+1) sin(πH)
2π

(Hi ∈ (1
2
, 1)).

Then {W (x) = W (1[0,x])}x∈Rd is a fractional Brownian sheet with indicesH1, . . . , Hd.

Let P0 be the completion of D(Rd) with respect to 〈·, ·〉P0. By the isometry property,
the map D(Rd) ∋ ϕ 7→ W (ϕ) ∈ L2(Ω) can be extended P0. Then W = {W (ϕ);ϕ ∈ P0}
is an isonormal Gaussian process as in Malliavin calculus (see [22]).

The Hilbert space P0 may contain tempered distributions. By Theorem 3.5 of [7], if
µ has density function g, then

P0 ⊂ U0 := {S ∈ S ′(Rd);FS is a function,

∫

Rd

|FS(ξ)|2µ(dξ) <∞},

and P0 = U0 if 1/g is tempered, i.e.
∫
g>0

(1 + |ξ|2)−k[g(ξ)]−1dξ < ∞ for some k ∈ N.

In Example 1.1.3, P0 ⊂ H−(d−β)/2(Rd), where Hr(Rd) is the fractional Sobolev space of
order r, and (D) holds if and only if β < 2. In Example 1.1.4, P0 = H−α/2(Rd), and (D)
holds if and only if d− α < 2.

Example 1.2 (white noise). We consider also the case when W is white noise, i.e.

E[W (ϕ)W (ψ)] =

∫

Rd

ϕ(x)ψ(x)dx.

In this case, P0 = L2(Rd), γ = δ0 (formally), µ(dξ) = (2π)−ddξ and {W (x) =W (1[0,x])}x∈Rd

is a Brownian sheet. Formally, the white noise case corresponds to Example 1.1.3 with
β = d. Obviously, (D) holds if and only if d = 1; in this case, Cµ = 1/2.

We now introduce the concept of solution. A process u = u(t, x); t ≥ 0, x ∈ R
d} is a

(Skorohod) solution to equation (1) if it satisfies the following integral equation:

u(t, x) = 1 +

∫ t

0

∫

Rd

Gt−s(x− y)u(s, y)W (δy)ds,

where W (δy) denotes the Skorokod integral with respect to W , and G is the fundamental
solution to the deterministic wave equation with the same initial conditions as (1):

Gt(x) :=





1

2
1{|x|<t} if d = 1;

1

2π
√
t2 − |x|2

1{|x|<t} if d = 2,
(3)
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for any t > 0 and x ∈ R
d, with | · | being the Euclidean norm.

The goal of the present paper is to investigate the asymptotic behaviour as R → ∞
of the centered spatial integral:

FR(t) =

∫

BR

(
u(t, x)− 1

)
dx,

where BR = {x ∈ R
d; |x| < R}. Letting σ2

R(t) = Var
(
FR(t)

)
, we will show that

FR(t)

σR(t)

d→ Z ∼ N(0, 1) as R → ∞,

by estimating the speed of this convergence in the total variation distance dTV . Recall
that dTV(X, Y ) = supB∈B(R) |µX(B)− µY (B)| for random variables X, Y with respective

laws µX , µY , and dTV(Xn, X) → 0 as n→ ∞ implies that Xn
d→ X as n→ ∞.

In order to do this, we follow the same general strategy as in [6], namely we first
identify the order of magnitude of σ2

R(t), and then use the bound given by Proposition 1.8
of [6] for the distance dTV (FR(t)/σR(t), Z), which is valid also for the time-independent
noise.1

A key idea, which is common to all references who studied this problem, is to show
that the moments of the first and second Malliavin derivatives of u(t, x) are dominated,
respectively, by the first two chaos kernels f1(·, x; t) and f2(·, x; t) which appear in the
chaos expansion of the solution. We will achieve this too, in relations (24) and (38) below.

When d = 2, we will impose the following hypothesis:

(H1)

{
(a) γ ∈ Lℓ(R2) for some ℓ ∈ (1,∞); or

(b) γ(x) = |x|−β for some β ∈ (0, 2),

Under this assumption, if we define the constant q ∈ (1/2, 1) by

q =

{
ℓ/(2ℓ− 1) in case (a),

2/(4− β) in case (b).
(4)

then L2q(R2n) ⊂ P⊗n
0 and for any f, g ∈ L2q(R2n),

〈f, g〉P⊗n
0

≤ Cn‖f‖L2q(Rnd)‖g‖L2q(Rnd) (5)

where the constant C > 0 depends only on γ (see Lemma 2.3.(1) of [6]). This inequality
will play an important role in the present paper. In the case d = 1, we do not need a
hypothesis similar to (H1), since the function G has a very simple form.

1A different (but longer) argument for estimating the distance dTV (FR(t)/σR(t), Z) can be found in
the first version of this article (available on arXiv:2201.02319). This argument is based on the classical
Stein-Malliavin bound (as in the original article [17]) and illustrates the challenges of working with the
time-independent noise compared with the white noise in time. For instance, there is no Clarke-Ocone
formula for the noise W , and key results from Itô’s martingale theory (such as Burkholder-Davis-Gundy
inequality) cannot be used simply because there is no martingale.
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It can be proved that for any t > 0 and s > 0 fixed, the covariance

E[(u(t, x)− 1)(u(s, y)− 1)] := ρt,s(x− y)

is non-negative and depends only on x − y (see Remark 2.5 below). In particular,
{u(t, x)}x∈Rd is a positively-correlated stationary process with covariance ρt = ρt,t.

We give few comments about the notation. We write f(R) ∼ g(R) if f(R)/g(R) → 1
as R → ∞. We let ωd be the Lebesque measure of B1, i.e. ω1 = 2 and ω2 = π if d = 2.
We denote by C[0,∞) the space of continuous functions f : [0,∞) → R, equipped with
the uniform convergence on compact sets.

We are now ready to state the main results of this article, which correspond to the
two cases of Hypothesis (H1) when d = 2.

The first result covers the case when γ is an integrable function, or the noise is white
(in space) and d = 1. The analogue result for the white noise in time is given in [27].

Theorem 1.3. Suppose that γ is non-negative and non-negative definite, γ ∈ L1(Rd) and
the spectral measure µ satisfies (D), or the noise is white and d = 1. If d = 2, in parts
(ii)-(iii) below, we assume in addition that γ ∈ Lℓ(R2) for some ℓ > 1. Then:

(i) for any t > 0 and s > 0,

E[FR(t)FR(s)] ∼ K(t, s)Rd as R→ ∞, where K(t, s) := ωd

∫

Rd

ρt,s(z)dz <∞,

and in particular σ2
R(t) ∼ K(t, t)Rd as R → ∞;

(ii) for any t > 0,

dTV

(
FR(t)

σR(t)
, Z

)
≤ CtR

−d/2,

where Ct > 0 is a constant depending on t;
(iii) there exists a continuous modification of the process {R−d/2FR(t)}t≥0 which con-

verges in distribution in C[0,∞) as R → ∞, to a zero-mean Gaussian process {G(t)}t≥0

with covariance E[G(t)G(s)] = K(t, s).

The second result covers the case when γ is the Riesz kernel. The counterpart of this
result for the white noise in time can be found in [14, 8] for d = 1, respectively d = 2.

Theorem 1.4. Suppose that γ(x) = |x|−β where β ∈ (0, d ∧ 2). Then:
(i) for any t > 0 and s > 0

E[FR(t)FR(s)] ∼ K ′(t, s)R2d−β as R → ∞, where K ′(t, s) :=
t2s2

4

∫

B2
1

|x− x′|−βdxdx′,

and in particular σ2
R(t) ∼ K ′(t, t)R2d−β;

(ii) for any t > 0,

dTV

(
FR(t)

σR(t)
, Z

)
≤ C ′

tR
−β/2

where C ′
t > 0 is a constant depending on t;

(iii) there exists a continuous modification of the process {R−d+β/2FR(t)}t≥0 which con-
verges in distribution in C[0,∞) as R → ∞, to a zero-mean Gaussian process {G(t)}t≥0

with covariance E[G(t)G(s)] = K ′(t, s).
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The article is organized as follows. In Section 2, we review some basic facts about
Malliavin calculus, we prove the existence of solution under (D), and we compute the
covariance of the solution. In Section 3, we give the key moment estimates for the first
and second Malliavin derivatives of the solution. The proofs of Theorems 1.3 and 1.4 are
given in Sections 4 and 5, respectively. The appendix contains some auxiliary results.

To simplify the writing, throughout the article we will use the convention:

Gt(x) = 0 when t ≤ 0. (6)

2 Skorohod solution

In this section, we review some elements of Malliavin calculus and give some basic prop-
erties of the solution. In particular, we show that under condition (D), equation (1) has a
unique (Skorohod) solution, a result which was stated in [4] without proof (see Theorem
2.2 of [4]). We refer the reader to [22, 23] for more details about Malliavin calculus.

Since W = {W (ϕ);ϕ ∈ P0} is an isonormal Gaussian process, every square-integrable
random variable F which is measurable with respect toW has the Wiener chaos expansion:

F = E(F ) +
∑

n≥1

In(fn) for some fn ∈ P⊗n
0 , (7)

where P⊗n
0 is the n-th tensor product of P0 and In is the multiple Wiener integral with

respect to W . By the orthogonality of the Wiener chaos spaces,

E[In(f)Im(g)] =

{
n! 〈f̃ , g̃〉P⊗n

0
if n = m

0 if n 6= m

where f̃ is the symmetrization of f in all n variables:

f̃(x1, . . . , xn) =
1

n!

∑

ρ∈Sn

f(xρ(1), . . . , xρ(n)),

and Sn is the set of all permutations of {1, . . . , n}. It can be proved that:

‖f̃‖P⊗n
0

≤ ‖f‖P⊗n
0
, (8)

an inequality will be used several times below. If F has the chaos expansion (7), then

E|F |2 =
∑

n≥0

E|In(fn)|2 =
∑

n≥0

n! ‖f̃n‖2H⊗n .

Let S be the class of “smooth” random variables, i.e variables of the form

F = f(W (ϕ1), . . . ,W (ϕn)), (9)
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where f ∈ C∞
b (Rn), ϕi ∈ P0, n ≥ 1, and C∞

b (Rn) is the class of bounded C∞-functions
on R

n, whose partial derivatives of all orders are bounded. The Malliavin derivative of F
of the form (9) is the P0-valued random variable given by:

DF :=

n∑

i=1

∂f

∂xi
(W (ϕ1), . . . ,W (ϕn))ϕi.

We endow S with the norm ‖F‖D1,2 := (E|F |2)1/2 + (E‖DF‖2P0
)1/2. The operator D can

be extended to the space D
1,2, the completion of S with respect to ‖ · ‖D1,2 .

The divergence operator δ is the adjoint of the operator D. The domain of δ, denoted
by Dom δ, is the set of u ∈ L2(Ω;P0) such that

|E〈DF, u〉H| ≤ c(E|F |2)1/2, ∀F ∈ D
1,2,

where c is a constant depending on u. If u ∈ Dom δ, then δ(u) is the element of L2(Ω)
characterized by the following duality relation:

E(Fδ(u)) = E〈DF, u〉P0, ∀F ∈ D
1,2. (10)

In particular, E(δ(u)) = 0. If u ∈ Dom δ, we use the notation

δ(u) =

∫

Rd

u(x)W (δx),

and we say that δ(u) is the Skorohod integral of u with respect to W .
If F has the chaos expansion (7), we define the Ornstein-Uhlenbeck generator

LF =
∑

n≥1

nIn(fn)

provided that the series converges in L2(Ω). It can be proved that F ∈ Dom L if and
only if F ∈ D

1,2 and DF ∈ Dom δ; in this case, LF = −δ(DF ). The pseudo-inverse L−1

of L is defined by

L−1F =
∑

n≥1

1

n
In(fn).

For any F ∈ D
1,2 with E(F ) = 0, the process u = −DL−1F belongs to Dom δ and

F = δ(−DL−1F ). (11)

(see e.g. Proposition 6.5.1 of [23]).

We return now to our problem. The solution to equation (1) exists if and only if the
series

∑
n≥1 In(fn(·, x; t)) converges in L2(Ω), where the kernel fn(·, x; t) is given by:

fn(x1, . . . , xn, x; t) =

∫

Tn(t)

Gt−tn(x− xn) . . . Gt2−t1(x2 − x1)dt1 . . . dtn,
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with Tn(t) = {(t1, . . . , tn); 0 < t1 < . . . < tn < t}. In this case,

u(t, x) = 1 +
∑

n≥1

In(fn(·, x; t)), (12)

and
E|u(t, x)|2 =

∑

n≥1

n!‖f̃n(·, x; t)‖2P⊗n
0
.

We have following result.

Theorem 2.1. Assume that γ is non-negative and non-negative definite and the spectral
measure µ satisfies (D), or the noise is white and d = 1. Then for any t > 0 and x ∈ R

d,

‖fn(·, x; t)‖2P⊗n
0

≤
(
tn

n!

)2

Dn
t C

n
µ , (13)

where Dt = 2(t2 ∨ 1) and Cµ is given by (D), or Cµ = 1/2 if the noise is white. Conse-
quently, equation (1) has a unique (Skorohod) solution, and for any p ≥ 2 and T > 0,

sup
(t,x)∈[0,T ]×Rd

‖u(t, x)‖p <∞. (14)

Proof. By the Cauchy-Schwarz inequality,

|Ffn(·, x; t)(ξ1, . . . , ξn)|2 =
∣∣∣∣∣

∫

Tn(t)

n∏

j=1

FGtj+1−tj (ξ1 + . . .+ ξj)dt1 . . . dtn

∣∣∣∣∣

2

≤ tn

n!

∫

Tn(t)

n∏

j=1

|FGtj+1−tj (ξ1 + . . .+ ξj)|2dt1 . . . dtn,

where tn+1 = t. Hence,

‖fn(·, x; t)‖2P⊗n
0

=

∫

(Rd)n
|Ffn(·, x; t)(ξ1, . . . , ξn)|2µ(dξ1) . . . µ(dξn) ≤

tn

n!
Jn(t), (15)

where

Jn(t) =

∫

Tn(t)

∫

(Rd)n

n∏

j=1

|FGtj+1−tj (ξ1 + . . .+ ξj)|2µ(dξ1) . . . µ(dξn)dt1 . . . dtn. (16)

Using the fact that |FGt(ξ)|2 = sin2(t|ξ|)
|ξ|2

≤ Dt
1

1+|ξ|2
with Dt = 2(t2 ∨ 1), and

sup
η∈Rd

∫

Rd

1

1 + |ξ + η|2µ(dξ) =
∫

Rd

1

1 + |ξ|2µ(dξ) = Cµ, (17)

we obtain that

Jn(t) ≤ Dn
t C

n
µ

tn

n!
. (18)
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Relation (13) follows. Using the rough bound (8), we get:

∑

n≥1

n!‖f̃n(·, x; t)‖2P⊗n
0

≤
∑

n≥1

n!‖fn(·, x; t)‖2P⊗n
0

≤
∑

n≥1

t2n

n!
Dn

t C
n
µ <∞.

This proves the existence of solution. To estimate its moments, we use hypercontractivity:

‖u(t, x)‖p ≤
∑

n≥0

(p− 1)n/2(n!)1/2‖f̃n(·, x; t)‖P⊗n
0

≤
∑

n≥0

(p− 1)n/2
tn

(n!)1/2
(DtCµ)

n/2.

Relation (14) follows, since the constant Dt is increasing in t.

Remark 2.2. Theorem 2.1 remains valid in any dimension d ≥ 1.

Remark 2.3 (white noise). By Theorem 3.1 of [4], we know that equation (1) driven
by white noise has a unique (Skorohod) solution which satisfies (14) also in dimension
d = 2, although condition (D) does not hold in this case. Unfortunately, in the case of
the white noise in dimension d = 2, we could not prove the key estimate (24) below for
the Malliavin derivative Dzu(t, x), the main difficulty being that G2

t is not integrable.

Remark 2.4 (Comparison with white noise in time). Consider the hyperbolic Anderson
model with Gaussian noise X which is white noise in time and has the same spatial
covariance structure as W :





∂2v

∂t2
(t, x) = ∆v(t, x) + v(t, x)Ẋ(t, x), t > 0, x ∈ R

d, (d ≤ 2)

v(0, x) = 1,
∂v

∂t
(0, x) = 0

(19)

More precisely, X = {X(ϕ);ϕ ∈ D(R+ × R
d)} is a zero-mean Gaussian process with

covariance

E[X(ϕ)X(ψ)] =

∫

R+

∫

(Rd)2
γ(x− y)ϕ(t, x)ψ(t, y)dxdydt =: 〈ϕ, ψ〉H0,

We let H0 be the completion of D(R+ × R
d) with respect to the inner product 〈ϕ, ψ〉0.

Then H0 is isomorphic to L2(R+;P0). If (D) holds, equation (19) has a unique solution
which has the chaos expansion:

v(t, x) = 1 +
∑

n≥1

IXn (fn(·, t, x))

where IXn is the multiple integral with respect to X and the kernel fn(·, t, x) is given by

fn(t1, x1, . . . , tn, xn, t, x) = Gt−tn(x− xn) . . . Gt2−t1(x2 − x1)1{0<t1<...<tn<t}.

It is not difficult to see that E|v(t, x)|2 =
∑

n≥0 Jn(t), where Jn(t) is given by (16) for

n ≥ 1, and J0(t) = 1. Using (8) and (15), we obtain that for any t ∈ [0, 1] and x ∈ R
d,

E|u(t, x)|2 =
∑

n≥0

n!‖f̃n(·, x; t)‖2P⊗n
0

≤
∑

n≥0

n!‖fn(·, x; t)‖2P⊗n
0

≤
∑

n≥0

tnJn(t) ≤ E|v(t, x)|2.
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Remark 2.5 (Covariance of solution). For t > 0, s > 0, x ∈ R
d and y ∈ R

d, using the
Wiener chaos decomposition (12), we see that

ρt,s(x− y) = E
[(
u(t, x)− 1

)(
u(s, y)− 1

)]
=
∑

n≥1

1

n!
αn(x− y; t, s) (20)

where

αn(x− y; t, s) =(n!)2〈f̃n(·, x; t), f̃n(·, y; s)〉P⊗n
0

= (n!)2〈fn(·, x; t), f̃n(·, y; s)〉P⊗n
0

=n!
∑

ρ∈Sn

∫

(Rd)n

∫

(Rd)n
fn(x1, . . . , xn, x; t)fn(yρ(1), . . . , yρ(n), y; s)

n∏

i=1

γ(xi − yi)dxxxdyyy

=n!
∑

ρ∈Sn

∫

(Rd)n
Ffn(·, x; t)(ξ1, . . . , ξn)Ffn(·, y; s)(ξρ(1), . . . , ξρ(n))µ(dξ1) . . . µ(dξn)

=n!
∑

ρ∈Sn

∫

(Rd)n
e−i(ξ1+...+ξn)·(x−y)

(∫

Tn(t)

n∏

j=1

FGtj+1−tj (ξ1 + . . .+ ξj)dttt

)

(∫

Tn(s)

n∏

j=1

FGsj+1−sj(ξρ(1) + . . .+ ξρ(j))dsss

)
µ(dξ1) . . . µ(dξn), (21)

and we denote tn+1 = t, sn+1 = s, ttt = (t1, . . . , tn) and sss = (s1, . . . , sn), xxx = (x1, . . . , xn)
and yyy = (y1, . . . , yn). In particular, this shows that αn(x − y; t, s) and ρt,s(x − y) are
non-negative and depend on x and y only through the difference x− y.

3 Estimate for Malliavin derivative

In this section, we will prove some key estimates for the moments of the first and second
Malliavin derivatives of the solution to equation (1).

We will show that for any z ∈ R
d fixed,

Dzu(t, x) =
∑

n≥1

nIn−1(f̃n(·, z, x; t)) :=
∑

n≥1

An(z, x; t) in L2(Ω). (22)

More importantly, we will give an estimate for the p-th moment of Dzu(t, x) showing that
the first term of the series above:

A1(z, x; t) = f1(z, x; t) =

∫ t

0

Gt−r(x− z)dr

dominates the other terms.

First, note that for any z ∈ R
d fixed, we have the decomposition:

f̃n(·, z, x; t) =
1

n

n∑

j=1

h
(n)
j (·, z, x; t), (23)
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where h
(n)
j (·, z, x; t) is the symmetrization of the function f

(n)
j (·, z, x; t) given by:

f
(n)
j (x1, . . . , xn−1, z, x; t) = fn(x1, . . . , xj−1, z, xj , . . . , xn−1, x; t)

=

∫

{0<t1<...<tj−1<r<tj<...<tn−1<t}

Gt−tn−1(x− xn−1) . . .Gtj−r(xj − z)Gr−tj−1
(z − xj−1) . . .

Gt2−t1(x2 − x1)dt1 . . . dtn−1dr.

The next result will play an important role in our developments.

Theorem 3.1. Assume that γ is non-negative and non-negative definite and the spectral
measure µ satisfies (D), or the noise is white and d = 1. If d = 2, suppose that Hypothesis
(H1) holds. Then for any t > 0, x ∈ R

d, z ∈ R
d and p ≥ 2,

‖Dzu(t, x)‖p ≤ C

∫ t

0

Gt−r(x− z)dr, (24)

where the constant C depends on (p, t, γ) and is increasing in t.

Proof. We first consider the case p = 2. We will prove that the series (22) converges in
L2(Ω), and therefore,

E|Dzu(t, x)|2 =
∑

n≥1

E|An(z, x; t)|2. (25)

We need to evaluate E|An(z, x; t)|2. First, note that

An(z, x; t) = nIn−1(f̃n(·, z, x; t)) =
n∑

j=1

In−1(h
(n)
j (·, z, x; t)).

The calculation below will show, in particular, that f
(n)
j (·, z, x; t) ∈ P⊗(n−1)

0 .

Using the estimate |
∑n

j=1 aj |2 ≤ n
∑n

j=1 |aj |2 and the fact that E|In(f)|2 = n!‖f̃‖2
P⊗n
0

≤
n!‖f‖2

P⊗n
0

for any f ∈ P⊗n
0 , we obtain that:

E|An(z, x; t)|2 ≤ n

n∑

j=1

E|In−1(h
(n)
j (·, z, x; t))|2 ≤ n

n∑

j=1

(n−1)!‖f (n)
j (·, z, x; t)‖2

P
⊗(n−1)
0

. (26)

The last term of this sum turns out to be easy to estimate. By definition,

f (n)
n (x1, . . . , xn−1, z, x; t) =

∫ t

0

Gt−r(x− z)fn−1(x1, . . . , xn−1, z; r)dr.

By the Minkowski’s inequality for integrals,

‖f (n)
n (·, z, x; t)‖

P
⊗(n−1)
0

≤
∫ t

0

Gt−r(x− z)‖fn−1(·, z; r)‖P⊗(n−1)
0

dr.

Using relation (13) and the fact that the constant Dt is increasing in t, we infer that

‖f (n)
n (·, z, x; t)‖

P
⊗(n−1)
0

≤ tn−1

(n− 1)!
(DtCµ)

(n−1)/2

∫ t

0

Gt−r(x− z)dr. (27)
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Relation (27) can also be deduced from relations (31) and (34) below, with the convention
that the second term on the right-hand side is equal to 1 when j = n.

We will prove below that for any j = 1, . . . , n− 1,

‖f (n)
j (·, z, x; t)‖2

P
⊗(n−1)
0

≤ Cn 1

[(j − 1)!]2[(n− j + 1)!]2

(∫ t

0

Gt−r(x− z)dr

)2

, (28)

where C is a constant that depends on (q, γ, t), which is increasing in t and may be
different from line to line. This inequality holds also for j = n, due to (27). In particular,

this inequality implies that f
(n)
j (·, z, x; t) ∈ P⊗(n−1)

0 for any j = 1, . . . , n. Therefore,

n∑

j=1

‖f (n)
j (·, z, x; t)‖2

P
⊗(n−1)
0

≤ Cn

(n!)2

(∫ t

0

Gt−r(x− z)dr

)2 n∑

j=1

(n!)2

[(j − 1)!]2[(n− j + 1)!]2

≤ Cn

(n!)2

(∫ t

0

Gt−r(x− z)dr

)2(
2n

n

)
≤ Cn

(n!)2

(∫ t

0

Gt−r(x− z)dr

)2

,

where for the second last inequality we used the identity
∑n

k=0

(
n
k

)2
=
(
2n
n

)
, and for the

last inequality we used the fact that (2n)! ≤ Cn(n!)2, due to Stirling’s formula.
Finally, returning to (26), we have:

E|An(z, x; t)|2 ≤ n!

n∑

j=1

‖f (n)
j (·, z, x; t)‖2

P
⊗(n−1)
0

≤ Cn

n!

(∫ t

0

Gt−r(x− z)dr

)2

.

This shows that the series (22) converges in L2(Ω), and concludes the proof of (24) in
the case p = 2. The case p > 2 follows by applying Minkowski inequality in Lp(Ω), and
the hypercontractivity property ‖An(z, x; t)‖p ≤ (p− 1)n/2‖An(z, x; t)‖2.

It remains to prove (28) for any j = 1, . . . , n− 1. We will use the decomposition:

f
(n)
j (x1, . . . , xn−1, z, x; t) =

∫

{0<t1<...<tj−1<r<tj<...<tn−1<t}

gn−j(tj , xj, . . . , tn−1, xn−1, r, z, t, x)

fj−1(t1, x1, . . . , tj−1, xj−1, r, z)dt1 . . . dtn−1dr (29)

where
gk(t1, x1, . . . , tk, xk, r, z, t, x) = Gt−tk(x− xk) . . . Gt1−r(x1 − z). (30)

We consider separately the cases d = 1 and d = 2.

Case d = 1. By (29) and Minkowski’s inequality for integrals,

‖f (n)
j (·, z, x; t)‖

P
⊗(n−1)
0

≤
∫ t

0

(∫

{0<t1<...<tj−1<r}

‖fj−1(t1, ·, . . . , tj−1, ·, r, z)‖P⊗(j−1)
0

dt1 . . . dtj−1

)

(∫

{r<tj<...<tn−1<t}

‖gn−j(tj , ·, . . . , tn−1, ·, r, z, t, x)‖P⊗(n−j)
0

dtj . . . dtn−1

)
dr. (31)
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For each r ∈ (0, t) fixed, we estimate separately the two integrals above. Recall that
H0 = L2(R+;P0). For the first integral, we use the Cauchy-Schwarz inequality:

(∫

{0<t1<...<tj−1<r}

‖fj−1(t1, ·, . . . , tj−1, ·, r, z)‖P⊗(j−1)
0

dt1 . . . dtj−1

)2

≤ rj−1

(j − 1)!

(∫

{0<t1<...<tj−1<r}

‖fj−1(t1, ·, . . . , tj−1, ·, r, z)‖2P⊗(j−1)
0

dt1 . . . dtj−1

)

=
rj−1

(j − 1)!
‖fj−1(·, r, z)‖2H⊗(j−1)

0

≤ Cj−1

[(j − 1)!]2
, (32)

where for the last inequality,we used (3.15) of [6] (which holds also for the white noise).
For the second integral, we use the fact that Gt(x) =

1
2
1{|x|<t} and

{|x− xn−1| < t− tn−1} ∩ . . . ∩ {|xj − z| < tj − r} ⊂ {|x− z| < t− r}.

We have:

gn−j(tj , xj , . . . , tn−1, xn−1, r, z, t, x) =
1

2n−j+1
1{|x−xn−1|<t−tn−1} . . .1{|xj−z|<tj−r}

=
1

2n−j
1{|x−xn−1|<t−tn−1} . . .1{|xj−z|<tj−r} ×

1

2
1{|x−z|<t−r}

≤ 1

2n−j
1{|x−xn−1|<t−tn−1} . . .1{|xj+1−xj |<tj+1−tj} ×

1

2
1{|x−z|<t−r}

= Gt−tn−1(x− xn−1) . . .Gtj+1−tj (xj+1 − xj)×Gt−r(x− z)

= fn−j(tj, xj , . . . , tn−1, xn−1, t, x)Gt−r(x− z).

Applying again the Cauchy-Schwarz inequality, we obtain:

(∫

{r<tj<...<tn−1<t}

‖gn−j(tj , ·, . . . , tn−1, ·, r, z, t, x)‖P⊗(n−j)
0

dtj . . . dtn−1

)2

≤(t− r)n−j

(n− j)!

∫

{r<tj<...<tn−1<t}

‖gn−j(tj , ·, . . . , tn−1, ·, r, z, t, x)‖2P⊗(n−j)
0

dtj . . . dtn−1

≤(t− r)n−j

(n− j)!
G2

t−r(x− z)

∫

{r<tj<...<tn−1<t}

‖fn−j(tj, ·, . . . , tn−1, ·, t, x)‖2P⊗(n−j)
0

dtj . . . dtn−1

=
(t− r)n−j

(n− j)!
G2

t−r(x− z)

∫

{0<sj<...<sn−1<t−r}

‖fn−j(sj , ·, . . . , sn−1, ·, t− r, x)‖2
P

⊗(n−j)
0

dsj . . . dsn−1

=
(t− r)n−j

(n− j)!
G2

t−r(x− z)‖fn−j(·, t− r, z)‖2
H

⊗(n−j)
0

≤ (t− r)n−jC(t− r)n−j

[(n− j)!]2
G2

t−r(x− z),

(33)

where for the fourth line we used the change of variables sj = tj − r, and for the last line
we used (3.15) of [6]. Relation (28) follows substituting (32) and (33) into (31).
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Case d = 2. Using (5), it suffices to estimate ‖f (n)
j (·, z, x; t)‖2

L2q(R2(n−1))
. We use

decomposition (29). By Minkowski’s inequality for integrals,

‖f (n)
j (·, z, x; t)‖L2q(R2(n−1)) ≤
∫ t

0

(∫

{0<t1<...<tj−1<r}

‖fj−1(t1, ·, . . . , tj−1, ·, r, z)‖L2q(R2(j−1))dt1 . . . dtj−1

)

(∫

{r<tj<...<tn−1<t}

‖gn−j(tj , ·, . . . , tn−1, ·, r, z, t, x)‖L2q(R2(n−j))dtj . . . dtn−1

)
dr (34)

For any r ∈ (0, t) fixed, we estimate separately the two integrals. Since q < 1, G2q
t is

integrable (see (70)). Hence, for the first integral, we have:

∫

{0<t1<...<tj−1<r}

‖fj−1(t1, ·, . . . , tj−1, ·, r, z)‖L2q(R2(j−1))dt1 . . . dtj−1

= Cj−1

∫

{0<t1<...<tj−1<r}

(r − tj−1)
1−q
q . . . (t2 − t1)

1−q
q dt1 . . . dtj−1

= Cj−1Γ(1/q)
j−1r(j−1)/q

Γ((j − 1)/q + 1)
≤ Cj−1

[(j − 1)!]1/q
t(j−1)/q ≤ Cj−1

(j − 1)!
t(j−1)/q, (35)

where we used Stirling’s formula for the second last inequality. As for the second integral,
by the Cauchy-Schwarz inequality, we have:

[I
(j,n)
z,t,x (r)]

2 :=

(∫

{r<tj<...<tn−1<t}

‖gn−j(tj, ·, . . . , tn−1, ·, r, z, t, x)‖L2q(R2(n−j))dtj . . . dtn−1

)2

≤ (t− r)n−j

(n− j)!

∫

{r<tj<...<tn−1<t}

‖gn−j(tj , ·, . . . , tn−1, ·, r, z, t, x)‖2L2q(R2(n−j))dtj . . . dtn−1

=:
(t− r)n−j

(n− j)!
Tn−j+1(r, z, t, x).

By relations (3.18), (3.20), (3.22) and (3.23) of [6], we know that

Tn−j+1(r, z, t, x)

=

∫

{r<tj<...<tn−1<t}

(∫

R2(n−j)

G2q
t−tn−1

(x− xn−1) . . . G
2q
tj−r(xj − z)dx1 . . . dxj

)1/q

dtj . . . dtn−1

≤
{
CG

2−1/q
t−r (x− r) if n− j + 1 = 2, 3, 4

Cn−j+1 1
(n−j+2)!

1{|x−z|<t−r} if n− j + 1 ≥ 5.

Hence,

I
(j,n)
z,t,x (r) ≤

{
CG

1−1/(2q)
t−r (x− r) if n− j = 1, 2, 3

Cn−j+1 1
[(n−j)!]1/2

1
[(n−j+2)!]1/2

1{|x−z|<t−r} if n− j ≥ 4,
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Using properties (71) and (72) of G, we obtain that:

I
(j,n)
z,t,x (r) ≤

Cn−j+1

(n− j + 1)!
Gt−r(x− z) if n− j ≥ 1. (36)

Coming back to (34), and using (35) and (36), we obtain that for any j = 1, . . . , n− 1,

‖f (n)
j (·, z, x; t)‖L2q(R2(n−1)) ≤ Cn 1

(j − 1)!(n− j + 1)!

∫ t

0

Gt−r(x− z)dr. (37)

By (5), this concludes the proof of (28) in the case d = 2.

We end this section with a similar estimate for the second Malliavin derivative.

Theorem 3.2. Under the hypotheses of Theorem 3.1, for any t > 0, x, w, z ∈ R
d and

p ≥ 2,
‖D2

w,zu(t, x)‖p ≤ Cf̃2(w, z, x; t), (38)

where C > 0 is a constant that depends on (p, t, γ) and is increasing in t.

Proof. Step 1. We first prove that for any w, z ∈ R
d fixed, the following series converges

in L2(Ω):

D2
w,zu(t, x) =

∑

n≥2

n(n− 1)In−2(f̃n(·, w, z, x; t)) =:
∑

n≥2

Bn(w, z, x; t) (39)

We need to evaluate E|Bn(w, z, x; t)|2. The first term of this series is

B2(w, z, x; t) = 2f̃2(w, z, x; t) = f2(w, z, x; t) + f2(z, w, x; t)

=

∫

0<θ<r<t

Gt−r(x− z)Gr−θ(z − w)drdθ +

∫

0<r<θ<t

Gt−θ(x− w)Gθ−r(w − z)drdθ.

Note that we have the following decomposition:

f̃n(·, w, z, x; t) =
1

n(n− 1)

n∑

i,j=1,i 6=j

h
(n)
ij (·, w, z, x; t), (40)

where h
(n)
ij (·, w, z, x; t) is the symmetrization of the function f

(n)
ij (·, w, z, x; t) defined as

follows. If i < j,

f
(n)
ij (x1, . . . , xn−2, w, z, x; t) = fn(x1, . . . , xi−1, w, xi, . . . , xj−2, z, xj−1, . . . , xn−2, x; t)

=

∫

{t1<...<ti=1<θ<ti<...<tj−2<r<tj−1<...<tn−2<t}

Gt−tn−2(x− xn−2) . . .Gtj−1−r(xj−1 − z)

Gr−tj−2
(z − xj−2) . . . Gti−θ(xi − w)Gθ−ti−1

(w − xi−1) . . . Gt2−t1(x2 − x1)dt1 . . . dtn−2drdθ.

If j < i,

f
(n)
ij (x1, . . . , xn−2, w, z, x; t) = fn(x1, . . . , xj−1, z, xj , . . . , xi−2, w, xi−1, . . . , xn−2, x; t)
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In both cases, w is on position i and z is on position j.
Hence,

Bn(w, z, x; t) = n(n− 1)In−2(f̃n(·, w, z, x; t)) =
n∑

i,j=1,i 6=j

In−2(h
(n)
ij (·, w, z, x; t))

and

E|Bn(w, z, x; t)|2 ≤ n(n− 1)
n∑

i,j=1,i 6=j

E|In−2(h
(n)
ij (·, w, z, x; t))|2

= n(n− 1)
n∑

i,j=1,i 6=j

(n− 2)!‖h(n)ij (·, w, z, x; t))‖2
P

⊗(n−2)
0

≤ n(n− 1)

n∑

i,j=1,i 6=j

(n− 2)!‖f (n)
ij (·, w, z, x; t))‖2

P
⊗(n−2)
0

We will prove below that

‖f (n)
ij (·, w, z, x; t)‖

P
⊗(n−2)
0

≤ Cn

(i− 1)!(j − i)!(n− j + 1)!
f2(w, z, x; t) if i < j (41)

‖f (n)
ij (·, w, z, x; t)‖

P
⊗(n−2)
0

≤ Cn

(j − 1)!(i− j)!(n− i+ 1)!
f2(z, w, x; t) if j < i. (42)

Then

E|Bn(w, z, x; t)|2 ≤ n!

n∑

i,j=1,i<j

Cn

[(i− 1)!(j − i)!(n− j + 1)!]2
f 2
2 (w, z, x; t)+

n!
n∑

i,j=1,j<i

Cn

[(j − 1)!(i− j)!(n− i+ 1)!]2
f 2
2 (z, w, x; t)

≤ Cn

n!
(f 2

2 (w, z, x; t) + f 2
2 (z, w, x; t)),

using the fact that:

∑

k1+k2+k3=n

(
n

k1, k2, k3

)2

≤
(

∑

k1+k2+k3=n

(
n

k1, k2, k3

))2

= 9n

This proves that the series (39) converges in L2(Ω).

Step 2. We prove (38). By hypercontractivity and the decomposition (40),

‖D2
w,zu(t, x)‖p ≤

∑

n≥2

(p− 1)n/2[(n− 2)!]1/2
n∑

i,j=1,i<j

‖h(n)ij (·, w, z, x; t)‖
P

⊗(n−2)
0

≤
∑

n≥2

(p− 1)n/2[(n− 2)!]1/2
n∑

i,j=1,i<j

‖f (n)
ij (·, w, z, x; t)‖

P
⊗(n−2)
0

.
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Relation (38) follows using (41) and (42) and the fact that

∑

k1+k2+k3=n

(
n

k1, k2, k3

)
= 3n.

Step 3. It remains to prove (41) (the proof of (42) is similar). For i < j, we write

f
(n)
ij (x1, . . . , xn−2, w, z, x; t)

=

∫

{0<t1<...<ti−1<θ<ti<...<tj−2<r<tj−1<...<tn−2<t}

gn−j(tj−1, xj−1, . . . , tn−2, xn−2, r, z, t, x)

gj−i−1(ti, xi, . . . , tj−2, xj−2, θ, w, r, z)fi−1(t1, x1, . . . , ti−1, xi−1, θ, w)dt1 . . . dtn−2drdθ,

where the function gk is given by (30).
For the case d = 1, we apply the Minkowski’s inequality for the norm ‖ · ‖

P
⊗(n−2)
0

and

the separation of variables to obtain

∥∥f (n)
ij (·, w, z, x; t)

∥∥
P

⊗(n−2)
0

≤
∫

0<θ<r<t

drdθ

(∫

{0<t1<...<ti−1<θ}

∥∥fi−1(t1, ·, . . . , ti−1, ·, θ, w)
∥∥
P

⊗(i−1)
0

dt1 . . . dti−1

)

(∫

{θ<ti<...<tj−2<r}

∥∥gj−i−1(ti, ·, . . . , tj−2, ·, θ, w, r, z)
∥∥
P

⊗(j−i−1)
0

dti . . . dtj−2

)

(∫

{r<tj−1<...<tn−2<t}

∥∥gn−j(tj−1, ·, . . . , tn−2, ·, r, z, t, x)
∥∥
P

⊗(n−j)
0

dtj−1 . . . dtn−2

)

≤
∫

0<θ<r<t

C i−1

(i− 1)!
× Cj−i−1

(j − i− 1)!
Gr−θ(z − w)× Cn−j

(n− j)!
Gt−r(x− z)drdθ

=
Cn

(i− 1)!(j − i− 1)!(n− j)!
f2(w, z, x; t),

where we use (32) and (33) in the last inequality.
For the case d = 2, one can compute the norm ‖ · ‖L2q(R2(n−2)) first. Applying the

Minkowski’s inequality and the separation of variables, we have

‖f (n)
ij (·, w, z, x; t)‖L2q(R2(n−2))

≤
∫

{0<θ<r<t}

drdθ

(∫

{0<t1<...<ti−1<θ}

∥∥fi−1(t1, ·, . . . , ti−1, ·, θ, w)
∥∥
L2q(R2(i−1))

dt1 . . . dti−1

)

(∫

{θ<ti<...<tj−2<r}

∥∥gj−i−1(ti, ·, . . . , tj−2, ·, θ, w, r, z)
∥∥
L2q(R2(j−i−1))

dti . . . dtj2

)

(∫

{r<t1<...<ti−1<t}

∥∥gn−j(tj−1, ·, . . . , tn−2, ·, r, z, t, x)
∥∥
L2q(R2(n−j))

dtj−1 . . . dtn−2

)

≤
∫

{0<θ<r<t}

C i−1

(i− 1)!
t(i−1)/q × Cj−i

(j − i)!
Gr−θ(z − w)× Cn−j+1

(n− j + 1)!
Gt−r(x− z)drdθ
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=
Cn

(i− 1)!(j − i)!(n− j + 1)!
f2(w, z, x; t),

where we use (35) and (36) in the last inequality. The desired result (41) follows directly
from (5).

Remark 3.3. Using a similar argument, one can extend (38) to higher order Malliavin
derivatives Dmu(t, x) for m ≥ 3, as it was done in [6] for the colored noise in time.

4 Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3. We treat only the case of integrable
function γ. The case of the white noise with d = 1 is similar, and is omitted.

Since γ is integrable, µ has density function g given by:

g(ξ) =
1

(2π)d

∫

Rd

eiξ·xγ(x)dx, ξ ∈ R
d.

Note that g is continuous and bounded. More precisely, ‖g‖∞ ≤ (2π)−d‖γ‖L1(Rd).

4.1 Proof of Theorem 1.3.(i)

Recalling the definition (20) of the covariance function ρt,s, we have by Fubini theorem,

E[FR(t)FR(s)]

Rd
=

1

Rd

∫

B2
R

ρt,s(x− y)dxdy =

∫

BR

Leb(BR ∩ BR(−z))
Rd

ρt,s(z)dz.

We now intend to apply the dominated convergence theorem, using the fact that Leb(BR∩BR(−z))
Rd

converges to ωd as R → ∞, and is bounded by ωd. But to justify the application of this
theorem, we have to prove that:

∫

Rd

ρt,s(z)dz <∞, (43)

and for this, we will use the fact that γ is integrable. (Note that the converse is also true:
if (43) holds then γ is integrable. This is due to the non-negativity of αn(z; t, s) and
relations (44) and (45) below.) First, note that

∫

Rd

ρt,s(z)dz =
∑

n≥1

1

n!

∫

Rd

αn(z; t, s)dz. (44)

We consider first the case n = 1. By direct calculation,
∫

Rd

α1(z; t, s)dz =

∫

Rd

〈f1(x1, z; t), f1(y1, 0; s)〉P0dz

=

∫ t

0

∫ s

0

∫

(Rd)3
Gt−t1(z − x1)Gs−s1(y1)γ(x1 − y1)dzdx1dy1ds1dt1
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= ‖γ‖L1(Rd)

∫ t

0

∫ s

0

(t− t1)(s− s1)ds1dt1 = ‖γ‖L1(Rd)

t2 + s2

2
, (45)

integrating the variables z, x1, y1 in this order.
Next, we consider the case n ≥ 2. By the monotone convergence theorem,

∫

Rd

αn(z; t, s)dz = lim
ε↓0

∫

Rd

αn(z; t, s)e
−

ε|z|2

2 dz. (46)

We assume that s ≤ t. By (21), we have

Tn,ε :=

∫

Rd

αn(z; t, s)e
−

ε|z|2

2 dz = n!(2π)d
∑

ρ∈Sn

∫

Tn(t)

∫

Tn(s)

∫

(Rd)n

n∏

j=1

FGtj+1−tj (ξ1 + . . .+ ξj)

n∏

j=1

FGsj+1−sj(ξρ(1) + . . .+ ξρ(j))pε(

n∑

j=1

ξj)µ(dξ1) . . . µ(dξn)dtttdsss

≤n!(2π)dt2
∫

Tn(t)

∫

(Rd)n

n∏

j=1

|FGtj+1−tj (ξ1 + . . .+ ξj)|2pε(
n∑

j=1

ξj)µ(dξ1) . . . µ(dξn)dttt,

where for the second line we used the fact that
∫
Rd e

−iξ·ze−
ε|z|2

2 dz = (2π)dpε(ξ) with

pε(x) = (2πε)−d/2e−|x|2/(2ε), and for the last line we applied Lemma A.1 to the measure
µn(dξ1 . . . dξn) = pε(

∑n
j=1 ξj)µ(dξ1) . . . µ(dξn). Using the fact that that µ(dξ) = g(ξ)dξ

and the change the variables ηj = ξ1 + . . .+ ξj for j = 1, . . . , n (with η0 = 0), we obtain:

Tn,ε ≤n!(2π)dt2
∫

Tn(t)

∫

(Rd)n−1

n−1∏

j=1

∣∣FGtj+1−tj (ηj)
∣∣2

n−1∏

j=1

g(ηj − ηj−1)

(∫

Rd

|FGt−tn(ηn)|2 pε(ηn)g(ηn − ηn−1)dηn

)
dη1 . . . dηn−1dttt

For the inner integral, we use the fact that ‖g‖∞ ≤ (2π)−d‖γ‖L1(Rd), and so,

(2π)d
∫

Rd

|FGt−tn(ηn)|2 pε(ηn)ϕ(ηn − ηn−1)dηn ≤ ‖γ‖L1(Rd)

∫

Rd

sin2((t− tn)|ηn|)
|ηn|2

pε(ηn)dηn

≤ ‖γ‖L1(Rd)(t− tn)
2 ≤ ‖γ‖L1(Rd)t

2.

Hence

Tn,ε ≤ n!t4‖γ‖L1(Rd)

∫

Tn(t)

∫

(Rd)n−1

n−1∏

j=1

∣∣FGtj+1−tj (ηj)
∣∣2

n−1∏

j=1

g(ηj − ηj−1)dη1 . . . dηn−1dttt

= n!t4‖γ‖L1(Rd)

∫

Tn(t)

∫

(Rd)n−1

n−1∏

j=1

∣∣FGtj+1−tj (ξ1 + . . .+ ξj)
∣∣2 µ(dξ1) . . . µ(dξn−1)dttt

≤ t4‖γ‖L1(Rd)(DtCµ)
n−1tn,
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where Dt = 2(t2 ∨ 1) and Cµ =
∫
Rd

1
1+|ξ|2

µ(dξ) (see (18) for the last inequality). This

bound is independent of ε. Therefore, by (46), it follows that for any n ≥ 2,

∫

Rd

αn(z; t, s)dz ≤ t4‖γ‖L1(Rd)(DtCµ)
n−1tn. (47)

Coming back to (44) and using (45) and (47), we obtain:

∫

Rd

ρt,s(z)dz ≤ t4‖γ‖L1(Rd)

(
1 +

∑

n≥2

1

n!
(DtCµ)

n−1tn

)
<∞.

This concludes the proof of (43).

4.2 Proof of Theorem 1.3.(ii)

We apply Proposition 1.8 of [6], which continues to hold for the time-independent noise
with obvious modifications. We obtain:

dTV

(
FR(t)

σR(t)
, Z

)
= dTV (FR(t), N) ≤ 4

σ2
R(t)

√
A (48)

where N ∼ N(0, σ2
R(t)) and

A =

∫

(Rd)6
‖D2

z,wFR(t)‖4‖D2
y,w′FR(t)‖4‖Dz′FR(t)‖4‖Dy′FR(t)‖4

γ(y − y′)γ(z − z′)γ(w − w′)dydy′dzdz′dwdw′.

Since σ2
R(t) ∼ K(t, t)Rd (by part (i)), it is enough to prove that

A ≤ CRd, (49)

where C > 0 is a constant that depends on (t, γ, d).
By Minkowski’s inequality and Theorem 3.2, for any z, w ∈ R

d,

‖D2
z,wFR(t)‖4 =

∥∥∥∥
∫

BR

D2
z,wu(t, x)dx

∥∥∥∥
4

≤
∫

BR

‖D2
z,wu(t, x)‖4dx ≤ C

∫

BR

f̃2(w, z, x; t)dx =

C

∫

BR

(∫

0<θ<r<t

Gt−r(x− z)Gr−θ(z − w)drdθ +

∫

0<r<θ<t

Gt−θ(x− w)Gθ−r(w − z)drdθ

)
dx.

Similarly, by Minkowski’s inequality and Theorem 3.1, for any z ∈ R
d,

‖DzFR(t)‖4 =
∥∥∥∥
∫

BR

Dzu(t, x)dx

∥∥∥∥
4

≤
∫

BR

‖Dzu(t, x)‖4dx ≤ C

∫

BR

∫ t

0

Gt−s(x− z)dsdx.

It follows that

A ≤ C
4∑

j=1

Aj, (50)
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where

A1 =

∫

[0,t]2

∫

0<θ<r<t

∫

0<θ′<r′<t

∫

B4
R

∫

(Rd)6
Gt−r(x1 − z)Gr−θ(z − w)Gt−r′(x

′
1 − y)

Gr′−θ′(y − w′)Gt−s(x2 − z′)Gt−s′(x
′
2 − y′)γ(y − y′)γ(z − z′)γ(w − w′)

dydy′dzdz′dwdw′dx1dx2dx
′
1dx

′
2dr

′dθ′drdθdsds′

A2 =

∫

[0,t]2

∫

0<θ<r<t

∫

0<r′<θ′<t

∫

B4
R

∫

(Rd)6
Gt−r(x1 − z)Gr−θ(z − w)Gt−θ′(x

′
1 − w)

Gθ′−r′(w
′ − y)Gt−s(x2 − z′)Gt−s′(x

′
2 − y′)γ(y − y′)γ(z − z′)γ(w − w′)

dydy′dzdz′dwdw′dx1dx2dx
′
1dx

′
2dr

′dθ′drdθdsds′

A3 =

∫

[0,t]2

∫

0<r<θ<t

∫

0<θ′<r′<t

∫

B4
R

∫

(Rd)6
Gt−θ(x1 − w)Gθ−r(w − z)Gt−r′(x

′
1 − y)

Gr′−θ′(y − w′)Gt−s(x2 − z′)Gt−s′(x
′
2 − y′)γ(y − y′)γ(z − z′)γ(w − w′)

dydy′dzdz′dwdw′dx1dx2dx
′
1dx

′
2dr

′dθ′drdθdsds′

A4 =

∫

[0,t]2

∫

0<r<θ<t

∫

0<r′<θ′<t

∫

B4
R

∫

(Rd)6
Gt−θ(x1 − w)Gθ−r(w − z)Gt−θ′(x

′
1 − w′)

Gθ′−r′(w
′ − y)Gt−s(x2 − z′)Gt−s′(x

′
2 − y′)γ(y − y′)γ(z − z′)γ(w − w′)

dydy′dzdz′dwdw′dx1dx2dx
′
1dx

′
2dr

′dθ′drdθdsds′.

We treat separately the 4 terms. We start with A1. We have 10 integrals in the space
variables and the integrand is a product of 9 functions. Using the fact that

∫
Rd Gt(x)dx = t

and ‖γ‖L1(Rd) <∞, we integrate the space variables in the order x′2, y
′, x2, z

′, x′1, y, w
′, w, z,

using one function (G or γ) at a time. The remaining integral dx1 on BR (for which there
is no function G or γ to integrate) yields the factor Leb(BR) = ωdR

d. The remaining
iterated integral in the 6 time variables is bounded by t6. We obtain that:

A1 ≤ t12‖γ‖3L1(Rd)ωdR
d.

A similar argument works for A2,A3,A4. For A2, we use the same order of integration as
for A1. For A3,A4, we integrate in the order x′2, y

′, x2, z
′, x′1, y, w

′, z, w. This proves (49).

4.3 Proof of Theorem 1.3.(iii)

Step 1. (tightness) We prove that for any p ≥ 2 and 0 < s < t < T

‖FR(t)− FR(s)‖p ≤ CRd/2(t− s).

By Kolmogorov’s continuity theorem, it will follow that the process {FR(t)}t≥0 has a
continuous modification.

Using the chaos expansion, we can write FR(t)−FR(s) =
∑

n≥1 In(gn,R(·; t, s)), where

gn,R(x1, . . . , xn; t, s) =

∫

BR

(
fn(x1, . . . , xn, x; t)− fn(x1, . . . , xn, x; s)

)
dx
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=

∫

BR

∫

Tn(t)

n−1∏

j=1

Gtj+1−tj (xj+1 − xj)
(
Gt−tn(x− xn)−Gs−tn(x− xn)

)
dtttdx

and ttt = (t1, . . . , tn). Here we used the convention
∏0

j=1 = 1 and the fact that

∫

Tn(s)

Gs−tn(x− xn)

n−1∏

j=1

Gtj+1−tj (xj+1 − xj)dttt =

∫

Tn(t)

Gs−tn(x− xn)

n−1∏

j=1

Gtj+1−tj (xj+1 − xj)dttt.

since if ttt ∈ Tn(t) \ Tn(s), then tn > s and Gs−tn(x) = 0, due to our convention (6).
The Fourier transform in the spatial variables of the kernel gn,R(·; t, s) is

Fgn,R(·; t, s)(ξ1, . . . , ξn) =
∫

Tn(t)

∫

BR

e−ix·(ξ1+...+ξn)

n−1∏

j=1

FGtj+1−tj (ξ1 + . . .+ ξj)

(
FGt−tn(ξ1 + . . .+ ξn)− FGs−tn(ξ1 + . . .+ ξn)

)
dxdttt

= F1BR
(ξ1 + . . .+ ξn)

∫

Tn(t)

n−1∏

j=1

FGtj+1−tj (ξ1 + . . .+ ξj)

(
FGt−tn(ξ1 + . . .+ ξn)− FGs−tn(ξ1 + . . .+ ξn)

)
dttt. (51)

By the triangle inequality and the hypercontractivity property, we have

‖FR(t)− FR(s)‖p ≤
∑

n≥1

(p− 1)n/2‖In(gn,R(·; t, s))‖2 =
∑

n≥1

(p− 1)n/2
(
n! ‖g̃n,R(·; t, s)‖2P⊗n

0

)1/2
.

(52)

Using the Fourier transform for expressing the inner product, (51) and Lemma A.1 with
µn(dξ1 . . . dξn) = |F1BR

(ξ1 + . . .+ ξn)|2µ(dξ) . . . µ(dξn), we have

n!‖g̃n,R(·; t, s)‖P⊗n
0

= n!〈gn,R(·; t, s), g̃n,R(·; t, s)〉P⊗n
0

= n!

∫

(Rd)n
Fgn,R(·; t, s)(ξ1, . . . , ξn)F g̃n,R(·; t, s)(ξ1, . . . , ξn)µ(dξ1) . . . µ(dξn)

=
∑

ρ∈Sn

∫

(Rd)n
Fgn,R(·; t, s)(ξ1, . . . , ξn)Fgn,R(·; t, s)(ξρ(1), . . . , ξρ(n))µ(dξ1) . . . µ(dξn)

=
∑

ρ∈Sn

∫

(Rd)n

∫

Tn(t)

∫

Tn(t)

n−1∏

j=1

FGtj+1−tj (ξ1 + . . .+ ξj)

n−1∏

j=1

FGt′j+1−t′j
(ξρ(1) + . . .+ ξρ(j))

(
FGt−tn(ξ1 + . . .+ ξn)−FGs−tn(ξ1 + . . .+ ξn)

)

(
FGt−t′n(ξρ(1) + . . .+ ξρ(n))−FGs−t′n(ξρ(1) + . . .+ ξρ(n))

)
dtttdt′t′t′

|F1BR
(ξ1 + . . .+ ξn)|2µ(dξ1) . . . µ(dξn)

≤ tn
∫

(Rd)n
µ(dξ1) . . . µ(dξn)|F1BR

(ξ1 + . . .+ ξn)|2
∫

Tn(t)

dttt
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∣∣∣∣∣

n−1∏

j=1

FGtj+1−tj (ξ1 + . . .+ ξj)

∣∣∣∣∣

2

|FGt−tn(ξ1 + . . .+ ξn)−FGs−tn(ξ1 + . . .+ ξn)|2 . (53)

Noting that FGt(ξ) = |ξ|−1 sin(t|ξ|) is bounded by t and is a 1-Lipschitz function in
the time variable t, uniformly over ξ ∈ R

d, we have

∣∣FGt−tn(ξ1 + . . .+ ξn)− FGs−tn(ξ1 + . . .+ ξn)
∣∣ ≤

{
t− s, if tn ≤ s,

t− tn, if s < tn < t
≤ t− s.

(54)

Substituting (54) to (53) and using [6, Lemma 2.6], the fact that |FGt(ξ)|2 = sin2(t|ξ|)
|ξ|2

≤
Dt

1
1+|ξ|2

with Dt = 2(t2 ∨ 1), and (17), we obtain

n! ‖g̃n,R(·; t, s)‖2P⊗n
0

≤ (t− s)2tn
∫

(Rd)n

∫

Tn(t)

|F1BR
(ξ1 + . . .+ ξn)|2

×
∣∣∣∣∣

n−1∏

j=1

FGtj+1−tj (ξ1 + . . .+ ξj)

∣∣∣∣∣

2

dt1 . . . dtnµ(dξ1) . . . µ(dξn)

≤(t− s)2tn
∫

(Rd)n
µ(dξ1) . . . µ(dξn)

∫

Tn(t)

dt1 . . . dtn|F1BR
(ξn)|2

∣∣∣∣∣

n−1∏

j=1

FGtj+1−tj (ξj)

∣∣∣∣∣

2

≤(t− s)2tn
∫

Tn(t)

dt1 . . . dtn

∫

Rd

|F1BR
(ξ)|2µ(dξ)

(
Dt

∫

Rd

µ(dξ)

1 + |ξ|2
)n−1

=
(t− s)2t2nDn−1

t Cn−1
µ

n!

∫

Rd

|F1BR
(ξ)|2µ(dξ). (55)

Since γ is non-negative and belongs to L1(Rd), we have
∫

Rd

|F1BR
(ξ)|2µ(dξ) =

∫

(Rd)2
1BR

(x)1BR
(y)γ(x− y)dxdy ≤ Cγ,dR

d/2 (56)

where Cγ,d = ‖γ‖L1(Rd)ωd. By (52), (55) and (56), we obtain

‖FR(t)− FR(s)‖p .
∑

n≥1

(p− 1)n/2
(t− s)tn(DtCµ)

n−1
2

√
n!

√
Cγ,dRd ≤ C(t− s)Rd/2,

where C is a positive constant that only depends on T, µ, d, p.

Step 2. (finite-dimensional convergence) Let QR(t) = R−d/2FR(t). Fix T > 0. We
have to show that for any m ∈ N+, 0 ≤ t1 < . . . < tm ≤ T ,

(QR(t1), . . . , QR(tm))
d→ (G(t1), . . . ,G(tm)) (57)

By relation (11), FR(ti) = δ(−DL−1FR(ti)) and hence,

QR(ti) = δ(−R−d/2DL−1FR(ti)). (58)
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Let

Cij = E[G(ti)G(tj)] = ωd

∫

Rd

ρti,tj (x)dx = ωd

∑

n≥1

1

n!

∫

Rd

αn(x; ti, tj)dx

We use representation (58). By Theorem 6.1.2 of [21], for any continuous function h :
R

m → R with bounded second derivatives, we have:

∣∣∣E[h(QR(t1), . . . , QR(tm))]− E[h(G(t1), . . . ,G(tm))]
∣∣∣

≤ m

2
‖h′′‖∞

√√√√
m∑

i,j=1

E

∣∣∣〈DQR(ti),−R−d/2DL−1FR(tj)〉P0 − Cij
∣∣∣
2

=
m

2
‖h′′‖∞

√√√√
m∑

i,j=1

E

∣∣∣
1

Rd
〈DFR(ti),−DL−1FR(tj)〉P0 − Cij

∣∣∣
2

(59)

where for the last line we used the fact that DQR(ti) = R−d/2FR(ti). It suffices to show
that for any i, j = 1, . . . , m

E

∣∣∣∣
1

Rd
〈DFR(ti),−DL−1FR(tj)〉P0 − Cij

∣∣∣∣
2

→ 0 as R → ∞. (60)

Then (57) follows by applying (59) to the function h(x1, . . . , xm) = exp(−i
∑m

j=1 ujxj) for
arbitrary u1, . . . , um ∈ R.

We now prove (60). Fix i, j ≤ m and let XR,ij = R−d〈DFR(ti),−DL−1FR(tj)〉P0 . Note
that

E|XR,ij − Cij |2 ≤ 2{Var(XR,ij) + |E(XR,ij)− Cij |2}
and E(XR,ij) = R−d

E[FR(ti)FR(tj)] → Cij as R → ∞, by duality and part (i). We will
prove below that

Var
(
〈DFR(ti),−DL−1FR(tj)〉P0

)
≤ CRd. (61)

Then Var(XR,ij) ≤ CR−d and relation (60) follows.
To prove (61), we apply a version of Proposition 1.9 of [6] for the time-independent

noise. We obtain:

Var
(
〈DFR(ti),−DL−1FR(tj)〉P0

)
≤ (T1 + T2),

where

T1 =

∫

(Rd)6
‖D2

z,wFR(ti)‖4‖D2
y,w′FR(ti)‖4‖Dz′FR(tj)‖4‖Dy′FR(tj)‖4

γ(y − y′)γ(z − z′)γ(w − w′)dydy′dzdz′dwdw′

and T2 has a similar expression by switching the roles of FR(ti) and FR(tj). Similarly to
(49), it can be proved that T1 ≤ CRd and T2 ≤ CRd. This proves (61).
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5 Proof of Theorem 1.4

In this section, we give the proof of Theorem 1.4. Recall that the Riesz kernel γ(x) = |x|−β

with β ∈ (0, d) is the Fourier transform of the measure µ(dξ) = cd,β|ξ|−(d−β)dξ. This is
Example 1.1.3. Condition (D) holds since β < 2.

5.1 Proof of Theorem 1.4.(i)

Step 1. Recalling (12), we have the Wiener chaos expansion FR(t) =
∑

n≥1 Jn,R(t), with

Jn,R(t) = In(gn,R(·; t)) and gn,R(·; t) =
∫

BR

fn(·, x; t)dx.

By orthogonality of the Wiener chaos spaces,

E[FR(t)FR(s)] =
∑

n≥1

E [Jn,R(t)Jn,R(s)] .

We will prove the that only the projection on the first chaos contributes to the limit.

Step 2. We first consider J1,R(t). For any t > 0, s > 0, we have

E [J1,R(t)J1,R(s)] =〈g1,R(·; t), g1,R(·; s)〉P0

=

∫

B2
R

dxdx′
∫

(Rd)2
f1(x1, x; t)f1(x

′
1, x

′; s)γ(x1 − x′1)dx1dx
′
1

=

∫

B2
R

dxdx′
∫

Rd

Ff1(·, x; t)(ξ)Ff1(·, x′; s)(ξ)µ(dξ)

=

∫

B2
R

dxdx′
∫ t

0

dt1

∫ s

0

dt′1

∫

Rd

e−iξ·(x−x′)FGt−t1(ξ)FGs−t′1
(ξ)µ(dξ).

Applying the change of variables (x, x′, ξ) → (Rx,Rx′, ξ/R), we get

E [J1,R(t)J1,R(s)] =R
2d−β

∫

B2
1

dxdx′
∫ t

0

dt1

∫ s

0

dt′1

∫

Rd

e−iξ·(x−x′)FGt−t1(ξ/R)FGs−t′1
(ξ/R)µ(dξ).

Note that for r > 0, FGr(ξ/R) is uniformly bounded and convergent to r as R → +∞.
Besides, we have

∫

B2
1

e−iξ·(x−x′)dxdx′ = |F1B1(ξ)|2 . (62)

Hence, by Fubini’s theorem and dominated convergence theorem, we have

lim
R→+∞

E [J1,R(t)J1,R(s)]

R2d−β
=

∫ t

0

(t− t1)dt1

∫ s

0

(s− t′1)dt
′
1

∫

Rd

|F1B1(ξ)|2 µ(dξ)

=

∫ t

0

(t− t1)dt1

∫ s

0

(s− t′1)dt
′
1

∫

B2
1

γ(x− x′)dxdx′
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=
t2s2

4

∫

B2
1

|x− x′|−βdxdx′ =:
t2s2

4
κβ,d. (63)

Step 3. We consider Jn,R(t) for n ≥ 2.

E
[
J2
n,R(t)

]
= n!‖g̃n(·; t)‖2P⊗n

0
= n!〈gn(·; t), g̃n(·; t)〉P⊗n

0

=n!

∫

(Rd)n
Fgn(·; t)(ξ1, . . . , ξn)Fgn(·; t)(ξ1, . . . , ξn)µ(dξ1) . . . µ(dξn)

=n!

∫

B2
R

∫

(Rd)n
Ffn(·, x; t)(ξ1, . . . , ξn)F f̃n(·, x′; t)(ξ1, . . . , ξn)µ(dξ1) . . . µ(dξn)dxdx′

=
∑

ρ∈Σn

∫

B2
R

dxdx′
∫

(Rd)n
µ(dξ1) . . . µ(dξn)

∫

Tn(t)

dt1 . . . dtn

∫

Tn(t)

dt′1 . . . dt
′
n

× e−i(ξ1+...+ξn)·(x−x′)
n∏

j=1

FGtj+1−tj (ξ1 + . . .+ ξj)FGt′j+1−t′j
(ξρ(1) + . . .+ ξρ(j)).

Here, we use the convention tn+1 = t′n+1 = t. Using (62) and Lemma A.1 for µn(dξ1, . . . , dξn) =

|F1BR
(ξ1 + . . .+ ξn)|2 µ(dξ1) . . . µ(dξn), we obtain

E
[
J2
n,R(t)

]
≤tn

∫

Tn(t)

dt1 . . . dtn

∫

(Rd)n

(∫

B2
R

e−i(ξ1+...+ξn)·(x−x′)dxdx′

)
µ(dξ1) . . . µ(dξn)

×
n∏

j=1

∣∣FGtj+1−tj (ξ1 + . . .+ ξj)
∣∣2 .

Noting that µ(dξ) = cd,β|ξ|β−ddξ, we apply the change of the variables for ηj = ξ1+. . .+ξj ,
and then for (x, x′, ηn) → (Rx,Rx′, ηn/R), we have

E
[
J2
n,R(t)

]
≤cnd,βtn

∫

Tn(t)

dt1 . . . dtn

∫

(Rd)n

(∫

B2
R

e−iηn·(x−x′)dxdx′

)

×
n∏

j=1

∣∣FGtj+1−tj (ηj)
∣∣2

n∏

j=1

|ηj − ηj−1|β−ddηj

≤cnd,βtnR2d−β

∫

Tn(t)

dt1 . . . dtn

∫

(Rd)n

(∫

B2
1

e−iηn·(x−x′)dxdx′

)
n−1∏

j=1

∣∣FGtj+1−tj (ηj)
∣∣2

× |FGt−tn(ηn/R)|2
n−1∏

j=1

|ηj − ηj−1|β−d|ηn − ηn−1R|β−ddη1 . . . dηn. (64)

Here, we use the convention η0 = 0.
We use the fact that |FGt−tn(ηn/R)|2 ≤ t2. Then we integrate dηn using the following

fact:

cd,β

∫

Rd

∫

B2
1

e−iηn·(x−x′)|ηn − Rηn−1|−(d−β)dxdx′dηn =

∫

B2
1

e−iRηn−1·(x−x′)|x− x′|−βdxdx′.
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See the last part of the proof of part (2) of Proposition 4.1 of [6]. Hence

1

R2d−β
E
[
J2
n,R(t)

]
≤ tn+2cn−1

d,β

∫

Tn(t)

∫

(Rd)n−1

n−1∏

j=1

|ηj − ηj−1|−(d−β)
n−1∏

j=1

|FGtj+1−tj (ηj)|2

(∫

B2
1

e−iRηn−1·(x−x′)|x− x′|−βdxdx′

)
dη1 . . . dηn−1dt1 . . . dtn.

If ηn−1 6= 0, the integral
∫
B2

1
e−iRηn−1·(x−x′)|x − x′|−βdxdx′ converges to 0 as R → ∞ by

Riemann-Lebesgue’s lemma, and is bounded by κβ,d. Note that the integral

∫

Tn(t)

∫

(Rd)n−1

n−1∏

j=1

|ηj − ηj−1|−(d−β)
n−1∏

j=1

|FGtj+1−tj (ηj)|2dη1 . . . dηn−1dt1 . . . dtn

coincides with the integral Qn−1 given by (4.16) of [6], andQn−1 ≤ Cn/n! (see the equation
on display after (4.17) of [6]). Hence 1

R2d−βE
[
J2
n,R(t)

]
converges to 0 as R → ∞ and is

bounded by tn+2cn−1
d,β κβ,d

Cn

n!
. By the dominated convergence theorem,

1

R2d−β

∑

n≥2

E[J2
n,t(R)] → 0 as R → ∞. (65)

By Cauchy-Schwarz inequality and the dominated convergence theorem,

1

R2d−β

∑

n≥2

|E[Jn,R(t)Jn,R(s)]| → 0 as R → ∞.

5.2 Proof of Theorem 1.4.(ii)

We use again (48). By part (i), σ2
R(t) ∼ K ′(t, t)R2d−β. So it is enough to prove that

A ≤ CR4d−3β , (66)

where C > 0 is a constant depending on (t, γ, d). For this, we use again inequality (50).
We examine A1.

Noting that Gt(Rx) = R1−dGt/R(x) and γ(Rx) = R−βγ(x), we change the variables

(y, y′, z, z′, w, w′, x1, x2, x
′
1, x

′
2) → (Ry,Ry′, Rz, Rz′, Rw,Rw′, Rx1, Rx2, Rx

′
1, Rx

′
2). (67)

We obtain that:

A1 = R6+4d−3β

∫

[0,t]2

∫

0<θ<r<t

∫

0<θ′<r′<t

∫

B4
1

∫

(Rd)6
G t−r

R
(x1 − z)G r−θ

R
(z − w)G t−r′

R
(x′1 − y)

G r′−θ′

R
(y − w′)G t−s

R
(x2 − z′)G t−s′

R
(x′2 − y′)γ(y − y′)γ(z − z′)γ(w − w′)′

dydy′dzdz′dwdw′dx1dx2dx
′
1dx2dr

′dθ′drdθdsds′.
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Recall the definition (3) of G, the integrand above is non-zero only when

|x1 − z|, |x2 − z′|, |x′1 − y|, |x′2 − y′|, |z − w|, |y − w′| ≤ t

R
.

Moreover, the four variables x1, x2, x
′
1, x

′
2 should be in B1. By triangle inequality, when

R ≥ t, one can deduce that the integral domain R
d for the variables y, y′, z, z′, w, w′ can

be replaced by the ball B3 in R
d, for all R ≥ t. Using the following facts

∫

Rd

Gt(x)dx = t and sup
x∈B3

∫

B3

γ(x− y)dy ≤
∫

B6

γ(y)dy =: Dγ <∞,

when R ≥ t, we integrate the space variables in the order x′2, y
′, x′1, y, w

′, x2, z
′, w, z, using

one function (G or γ) at a time. The remaining integral dx1 on B1 yields the constant
Leb(B1) = ωd. The remaining iterated integral in the 6 time variables is bounded by t6.
We obtain that:

A1 ≤ R6+4d−3βC3
γ

(
t

R

)6

ωdt
6 = CR4d−3β .

Similarly, it can be proved that Aj ≤ CR4d−3β for j = 2, 3, 4. This proves (66).

5.3 Proof of Theorem 1.4.(iii)

Step 1. (tightness). We will prove that

‖FR(t)− FR(s)‖p ≤ C(t− s)Rd−β/2,

where C is a positive constant that only depends on T, µ, d, p. By Kolmogorov’s continuity
theorem, it will follow that the process {FR(t)}t≥0 has a continuous modification.

The formulas (52) and (55) still hold. Recalling that γ(x) = |x|−β, making change of
variables, we have

∫

Rd

|F1BR
(ξ)|2µ(dξ) =

∫

(Rd)2
1BR

(x)1BR
(y)γ(x− y)dxdy

=R2d

∫

(Rd)2
1B1(x)1B1(y)γ(Rx−Ry)dxdy

=R2d−β

∫

(Rd)2
1B1(x)1B1(y)γ(x− y)dxdy = C ′

γ,dR
2d−β. (68)

Here, C ′
γ,d is a positive constant that only depends on γ, d. By (52), (55) and (68), we

have

‖FR(t)−FR(s)‖p ≤
∑

n≥1

(p−1)n/2
(t− s)tn(DtCµ)

n−1
2

√
n!

√
C ′

γ,dR
2d−β ≤ C(t−s)Rd−β/2, (69)

where C is a positive constant that only depends on T, µ, d, p.
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Step 2. (finite-dimensional convergence) We have to prove that for any 0 ≤ t1 < . . . <
tm ≤ T , (

FR(t1)

Rd−β/2
, . . . ,

FR(tm)

Rd−β/2

)
d→ (G(t1), . . . ,G(tm)) as R→ ∞.

There are two methods for proving this. The first method is similar to the proof of
Theorem 1.3.(iii) given in Section 4.3 above, based on the bound:

Var
(
〈DFR(ti),−DL−1FR(tj)〉P0

)
≤ CR4d−3β.

The second method is faster and uses the domination of the first chaos. We explain
this below. Using the chaos expansion of FR(ti) for i = 1, . . . , k, we write

(
FR(t1)

Rd−β/2
, . . . ,

FR(tm)

Rd−β/2

)
=

(
J1,R(t1)

Rd−β/2
, . . . ,

J1,R(tm)

Rd−β/2

)
+

1

Rd−β/2

∑

n≥2

(Jn,R(t1), . . . , Jn,R(tm)).

The first vector is Gaussian (since it belongs to the first chaos space) and converges in
distribution as R → ∞ to (G(t1), . . . ,G(tm)) since the covariances converge (as shown in
part (i)). The second term converges to 0 in L2(Ω;Rm) as R → ∞, due to (65).

A Auxiliary results

In this section, we give some auxiliary results which are used in this article. In the case
d = 2, the function G has the following properties: for any t > 0 and x ∈ R

2,

‖Gt‖pLp(R2) =
(2π)1−p

2− p
t2−p for all p ∈ (0, 2), (70)

Gp
t (x) ≤ (2πt)q−pGq

t (x) for all 0 < p < q (71)

1{|x|<t} ≤ 2πtGt(x). (72)

The following theorem is analogous to Lemma 2.5 of [6].

Lemma A.1. Let µn be a symmetric measure on (Rd)n for some integer n ≥ 1. Then
for any 0 < s ≤ t,

∑

ρ∈Σn

∫

Tn(t)

dt1 . . . dtn

∫

Tn(s)

ds1 . . . dsn

∫

(Rd)n
µn(dξ1 . . . dξn)

h(t1, . . . , tn, ξ1, . . . , ξn)h(s1, . . . , sn, ξρ(1), . . . , ξρ(n))

≤s
n + tn

2

∫

Tn(t)

dt1 . . . dtn

∫

(Rd)n
|h(t1, . . . , tn, ξ1, . . . , ξn)|2µn(dξ1 . . . dξn),

for any measurable non-negative function h for which the above integral makes sense.
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Proof. Using the inequality 2ab ≤ |a|2 + |b|2 and the symmetry of µn, we have

∑

ρ∈Σn

∫

Tn(t)

dt1 . . . dtn

∫

Tn(s)

ds1 . . . dsn

∫

(Rd)n
µn(dξ1 . . . dξn)

h(t1, . . . , tn, ξ1, . . . , ξn)h(s1, . . . , sn, ξρ(1), . . . , ξρ(n))

≤1

2

∑

ρ∈Σn

∫

Tn(t)

dt1 . . . dtn

∫

Tn(s)

ds1 . . . dsn

∫

(Rd)n
|h(s1, . . . , sn, ξρ(1), . . . , ξρ(n))|2µn(dξ1 . . . dξn)

+
1

2

∑

ρ∈Σn

∫

Tn(t)

dt1 . . . dtn

∫

Tn(s)

ds1 . . . dsn

∫

(Rd)n
|h(t1, . . . , tn, ξ1, . . . , ξn)|2µn(dξ1 . . . dξn)

≤s
n + tn

2

∫

Tn(t)

dt1 . . . dtn

∫

(Rd)n
|h(t1, . . . , tn, ξ1, . . . , ξn)|2µn(dξ1 . . . dξn).
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