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Abstract—Co-location pattern mining aims at finding sub-
sets of spatial features frequently located together in spatial
proximity. The underlying motivation is to model the spatial
correlation structure between the features. This allows to
discover interesting co-location rules (feature interactions) for
spatial analysis and prediction tasks. As in association rule
mining, a major problem is the huge amount of possible
patterns and rules. Hence, measures are needed to identify
interesting patterns and rules. Existing approaches so far
focused on finding frequent patterns, patterns including rare
features, and patterns occurring in small (local) regions.

In this paper, we present a new general class of interest-
ingness measures that are based on the spatial distribution
of co-location patterns. These measures allow to judge the
interestingness of a pattern based on properties of the un-
derlying spatial feature distribution. The results are different
from standard measures like participation index or confidence.
To demonstrate the usefulness of these measures, we apply
our approach to the discovery of rules on a subset of the
OpenStreetMap point-of-interest data.

Keywords-Co-location pattern mining, interestingness mea-
sures, density estimation

I. INTRODUCTION

Co-location pattern mining tries to find subsets of spatial

features frequently located together in spatial proximity in

some geographic space. Example applications of co-location

pattern mining include, among others, services and queries

on mobile phones frequently requested and located together

[1], interactions between symbiotic species in ecology [2],

and public safety and health [3].

The frequency of a co-location might, however, not be

sufficient to identify interesting patterns. As proposed in [3],

[4], [5] patterns might only occur in small areas. Then the

pattern has a low support, but it is still interesting for a

particular region. Furthermore, a pattern might have a low

support because a feature does not occur sufficiently often

in the dataset, i.e., it is rare. A rule with a rare feature

on the left-hand side (LHS) will, however, still be of high

confidence and hence might be interesting [6], [7].

In this paper, we study a general class of interestingness

measures based on the spatial distribution of co-locations. A

co-location pattern naturally has an inherent spatial distribu-

tion based on the distribution of the features it describes.

For example, a number of features might co-occur over

the whole space. Such a co-location then has a meaning

in the whole space and might be seen as exhibiting a global

phenomenon. On the other hand, some features might occur

in the whole space, but they only co-occur in a certain

region. Such a co-location can be seen as exhibiting a certain

regional phenomenon.

In our approach, we focus on a general formulation of

spatial interestingness measures, which allows to define

measures to mine co-location patterns and rules based on

their spatial characteristics. We do not discuss algorithmic

extension and justify our focus based on the following

assumption:

• We assume that mining co-locations with small support-

like thresholds (like the prevalence index) is possible

for very large datasets using large cluster computing

environments (e.g., MapReduce [11]) for transaction-

alization (e.g., like in feature-centric approaches or as

shown in [12]) and parallel itemset mining methods like

PFP-Growth [13].

• Statistics to compute spatial interestingness measures

can easily be tracked in the mining process by extend-

ing the pattern data structures, as shown in Section IV.

By that, the resulting patterns have all the necessary

information to compute the spatial measures when the

mining process has been completed. Moreover, we can

always compute these statistics based on the mined

patterns in a subsequent step in reasonable time, also

using, e.g., cluster environments.

In this work, we therefore do not consider the problem of

identifying a large number of patterns efficiently, but to filter

out interesting patterns from the results. Therefore, our focus

is to formulate, track and compute spatial characteristics of

patterns for subsequent filtering and exploration tasks.

A. Related Work

Existing work on co-location pattern mining focuses on

efficient algorithms to mine patterns with low support-

like measure thresholds, e.g., [1], [2], [8]. The proposed

techniques allow to efficiently identify patterns by exploiting

the anti-monotonic property of support-like measures, such

as the participation index. A superset of a pattern will only

be considered if the pattern itself is frequent. A natural

ordering of the patterns is then done based on decreasing

support measure to identify the most interesting co-locations.



Extensions to the above techniques include the identifi-

cation of co-locations having rare events, which still lead

to rules with high confidence [6], [7]. The extensions allow

to efficiently mine such rules, but they even increase the

number of results. Moreover, in these approaches there is

no formal notion of why an event is rare, might it be rare

because it just occurs a few times globally, or because it just

occurs in a small region.

Recent work studied the efficient identification of regional

co-locations [3], [4], [5]. A regional co-location is unlikely

to be found by support-like measures because it occurs less

often than features that are distributed in the whole space.

Beside efficiency considerations, local patterns are interest-

ing because they exhibit local phenomena. The measures

of spatial interestingness we introduce in this paper cover

the description of local phenomena, among other spatial

characteristics.

In [9] a clustering-based visualization of co-locations has

been proposed. The motivation is to support the exploration

and interpretation of mined patterns. We also consider the

spatial distribution of patterns as an important characteristic.

However, different from visualization-based analysis, our

aim is to identify interesting patterns by measures describ-

ing the spatial characteristics. Furthermore, our proposed

representation of a co-location pattern as a non-parametric

distribution can easily be used for visualization purposes.

B. Contributions

In this paper, we present a new class of interestingness

measures describing the spatial characteristics of mined

co-location patterns, which we call spatial interestingness

measures of co-locations. Our contributions are: (a) We

formalize the spatial distribution of co-location patterns,

(b) based on that we develop a pattern entropy measure

and a Kullback-Leibler divergence rule measure to describe

their spatial characteristics, (c) we give examples of how

spatial measures can be computed based on data structures

capturing statistics of the spatial pattern distribution, and (d)

we show initial results of mined co-location patterns and

rules using an OpenStreetMap (OSM) dataset based on our

measures.
II. BACKGROUND

In this section, we introduce the basic concepts underlying

our idea of spatial interestingness of co-locations, which are

formally presented in the next section.

A. Co-location Pattern Mining

In the following, we use the event-based approach in-

troduced in [2] to define a co-location pattern mining

framework. We note, however, that such measures are not

restricted to the event-based approach but can easily be

adapted to other methods, such as listed in [8].

As input we are given a set of p discrete spatial features

F = {f1, . . . , fp}. The features are distributed in geographic

space W ⊆ R
2 described by the relation O ⊆ F × W .

We describe the relation as a set of feature instances oi =
(id, u, f) with id being a unique instance id, u ∈ W , and

f ∈ F .

Spatial proximity is described by a spatial relation R

between feature instances. In this paper, we assume a simple

distance-based relation. Two feature instances are related if

they co-occur within a given radius h. A neighbor set L is a

set of instances such that all pairwise instance locations are

spatially related in R, hence forming a clique. A co-location

then is defined as a subset of features C ⊆ F such that every

feature in C appears in at least one neighbor instance of L,

and there exists no proper subset in L doing so. In [2] the

neighbor set instances of a co-location C are called the row

instances of C, in the following denoted rowset(C).
To efficiently mine co-locations being interesting regard-

ing their frequency of occurrence the participation index is

introduced in [2]. The participation index indicates whether

spatial features in a co-location likely show up together. It is

defined as the minimum participation ratio pr(C, f) among

all features f ∈ C. The participation ratio for a feature f in

a co-location C is defined as follows.

pr(C, f) :=
# of f instances in any row instance of C

# of f instances
(1)

The participation index then is defined as the minimum

participation ratio among all features in a co-location C,

PI(C) := min
f∈C

pr(C, f) (2)

A co-location rule C1 → C2 describes how likely one

will find feature instances of C2 in spatial proximity to

feature instances of C1. The rule has a frequency described

by the participation index PI(C1 ∪ C2) and a conditional

probability p(C2|C1). This probability is also called the

confidence of a rule and is simply computed as follows:

P (C2|C1) =

# of C1 row instances in any C1∪C2 row instance

# of C1 row instances

(3)

Given a co-location miner, the set of possible co-location

patterns is typically very large. Measures to reduce the

size of the patterns may include different tasks, such as

looking only at patterns with certain features (projection),

using higher prevalence/support thresholds, or using higher

confidence thresholds for co-location rules. In this paper,

we introduce an additional class of measures, allowing to

identify patterns based on their spatial characteristics.

B. Non-parametric Density Estimation

We make use of non-parametric density estimation to

describe the spatial distribution of co-location patterns. First,

we generally assume a set of spatial points U . The density

distribution of that point set describes how likely one will

find a point u ∈ U at a certain location l or inside a given



area A. The density of the set U at a location l is denoted

pU (l), and the density inside an area A is denoted pU (A).
In parametric approaches the density is estimated by fitting

a parametric model (like a Gaussian mixture model). Non-

parametric approaches solely make assumptions on the char-

acteristics of the distribution. An important characteristic is

the smoothness of a distribution, which is usually described

by a bandwidth parameter b. Using a small bandwidth the

distribution will be very peaky and shows much small-scale

variation, while using a large bandwidth the distribution will

be very smooth and describes the large scale variation. In

situations where no prior knowledge about the domain of

the distribution is available the bandwidth can be chosen

using cross-validation [10]. In the geographic domain the

bandwidth reflects the scale-level of interest at which one

wants to describe a spatial phenomena (e.g, country level,

city level, street level). Then the bandwidth b is a function

of the scale-level (e.g., 50 km for country level and 5 km

for city level).

Among the most prominent estimators are Kernel Density

Estimation (KDE) and 2D histograms (also called window

counting). KDE estimates the density at a given location or

inside an area by summing up the covered point influences

described by a Kernel function [10]. While KDE gives a

smooth, non-discrete estimation for an arbitrary location l,

window counting approximates the distribution by a grid

Gb = {l1, . . . , lm} over geographic space. Through this the

number of points in U falling inside a grid cell l1, . . . , lm are

counted. The density at a location pU (l) then is described

by the normalized number of points inside cell li ∈ G

in which the location l falls. The width/height of a grid

cell b represents the bandwidth parameter of the estimator.

In the following, we use the window counting method by

employing a sparse grid over geographic space. Smoothness

of the distribution might be obtained by kernel convolution

on the grid, resulting in KDE-like distributions.

III. SPATIAL INTERESTINGNESS

In this section, we describe the spatial distribution of co-

location patterns in a general way and develop and discuss

spatial interestingness measures.

A. Pattern Distribution

We assume that a co-location instance i ∈ rowset(C)
can be represented by a point location in geographic space,

called the co-location instance point. This assumption is

reasonable, following the definition of an instance i as

a clique with a distance-based neighborhood relation. All

feature instance locations in a clique occur pairwise within

distance h. The centroid of the clique’s feature points of

co-location instance i is denoted centroid(i). The centroid

roughly represents the co-location instance location as the

center of a disc with radius h. Other location representations

of an instance can easily be employed, e.g., the convex hull

p{A}(l) p{A,B}(l)

p{A,C}(l) p{B,C}(l) p{A,B,C}(l)

A

B

C

Figure 1. Top: Plot of the spatial feature instances A,B,C and their
spatial relation (connecting lines). Bottom: 5 density distribution plots of
the row instances of patterns {A}, {A,B}, {A,C}, {B,C}, {A,B,C}.

C |rowset(C)| PI(C) entropy(C)

{A} 8 8/8 1.04

{A,B} 4 4/8 1.04

{A,C} 4 4/8 0.00

{B,C} 2 2/4 0.00

{A,B,C} 2 2/8 0.00

Figure 2. Table of patterns and their measures.

of the points, the cell id in discretized space covering the

points, or just the set of points itself.

Given a co-location instance i described by a point

location centroid(i), a co-location pattern C defines a set

of its instance points:

U(C) := {centroid(i)|i ∈ rowset(C)} (4)

The point set U(C) allows to derive spatial properties of

the pattern. For example, the points might be randomly

distributed in geographic space, they tend to cluster around

several locations, or they just show up at a single location.

Besides the frequency of the pattern in the whole space, we

are now able to describe the pattern’s spatial distribution and

derive measures to describe its spatial characteristic. Addi-

tionally, given a density estimation of U(C), we can easily

visualize the co-location patterns for visual exploration such

as discussed in [9].

Given the co-location instances of {A,B} and {A,B,C},

as shown in the example in Figure 1. Clearly, the row

instances i ∈ rowset({A,B,C}) will always be supersets

of those row instances j ∈ rowset({A,B}) for which they

cover the same feature instances. The centroids centroid(i)
and centroid(j) for j ⊆ i will, of course, not be the same,

because j is made of two features instances while i is

made of three feature instances. However, again referring

to the assumption of a co-location instance being a clique,

the centroids can just be apart by a fraction of h. In the

following we neglect this difference. This can be justified

if h is small in relation to the area of interest. Because



C1 → C2 p(C2|C1) KL(C1 ∪ C2||C1)

{A} → {B} 4/8 0.00

{A} → {C} 4/8 0.69

{A,B} → {C} 2/4 0.69

{C} → {B} 2/4 0.00

Figure 3. Table of rules and their measures.

then the points U1 = U({A,B,C}) will always represent

co-location instances that are also co-location instances of

U2 = U({A,B}), the points U1 are a subset of U2. Hence,

U1 can be seen as being generated by a sampling from U2.

B. Spatial Measures

Using the notion of a point set description U(C) of a co-

location pattern C, we can define a variety of measures to

describe the spatial characteristics of such a set.

1) Pattern Entropy: The frequency of a pattern describes

how often a co-location occurs in the whole space. However,

it does not describe how the pattern is distributed. The

entropy is a measure in information theory describing how

much information is needed on average to encode the

observations of a distribution. To identify an observation

in a distribution that is almost random, one needs a lot

of information (because the possible number of values is

high), while identifying an observation in a distribution that

describes just a single event needs no information at all

(because we already know the value).

Put into the geographic domain with discrete space, the

entropy tells us if the point distribution is more uniform

(large entropy, globally and smoothly distributed), has a lot

of peaks (medium entropy, clusters), or just a single peak

(zero entropy, local). To calculate the entropy for a co-

location pattern C we define the density of a co-location

pattern over the cells of a grid Gb = {l1, . . . , lm} as pC(l).
The density can be derived by window counting as explained

in Section II-B. The entropy of a pattern C is then defined

over all locations pC(li) > 0 as follows:

entropy(C) := −
∑

li: pC(li)>0

pC(li) log pC(li) (5)

Table 2 shows the entropies of the patterns {A,B} and

{A,C}, both having a support of 4 and a participation

index of 0.5. However, the entropies differ because {A,B}
is distributed over 3 cells, while {A,C} occurs just in a

single cell. The entropy is hence a spatial interestingness

measure of a co-location pattern. We can use the entropy to

distinguish between global patterns and patterns that have a

more peaky distribution (clustered or local).

2) KL-Divergence: The conditional probability p(C2|C1)
of a rule C1 → C2 states how likely one will find features

of distribution C2 within the neighborhood of distribution

C1. Figure 3 shows the rules {A} → {B} and {A} → {C}.

Both rules have a confidence of 0.5. However, B co-occurs

with A equally likely over the whole space, while C only co-

occurs with A in a single cell. In the following, we describe

how the spatial characteristic of a rule can be described.

The Kullback-Leibler (KL) divergence K(P ||Q) is a

measure to describe how much additional information is

needed on average to encode observations of a distribution

P using a baseline distribution Q. The measure is zero if the

distributions P and Q are equal (no additional information is

needed). The more different the distribution P is from Q, the

higher is the KL-divergence. We can use the KL-divergence

to describe the spatial characteristic of a rule similar to the

confidence. The distribution pC1∪C2
(l) describes the density

of the co-location induced by the rule C1 → C2. The

LHS distribution pC1
(l) is the baseline distribution. The

KL-divergence can then be understood as the similarity of

the induced co-location distribution, conditional to the LHS

distribution. If the divergence is zero, the rule is valid equally

likely at all locations where C1 occurs. If the divergence is a

high number, the rule is only valid at some locations where

C1 occurs. Note that pC1
(l) has a density greater zero at all

locations where pC1∪C2
(l) has a density greater zero; this is

a necessary precondition to compute the KL-divergence.

KL(C1 ∪ C2||C1) := −
∑

li:
pC1∪C2

(li)>0

pC1∪C2
(li) log

pC1∪C2
(li)

pC1
(li)

(6)
C. Discussion on Measures

The relationship between a frequency measure of co-

location patterns and the entropy is important. Assume we

choose a bandwidth of our grid so small that each row

instance falls into a distinct cell. Then, the number of cells

having a value is equal to the number of row instances. The

entropy will be higher the more cells have a value. Hence,

the entropy then is proportional to the frequency measure.

Now if we increase the bandwidth, co-location instances

in close spatial proximity fall into the same cell. The entropy

will then be lower because the instances fall into a smaller

number of cells. Assume the case where all instances fall

into a single cell. We might still have a high frequency (be-

cause inside the cell many co-location instances occur), but

an entropy of zero, stating that the co-location is clustered

in a single cell.

The same observation is true for the KL-divergence. If

each row instance falls into a distinct cell, the confidence

of a rule will be anti-proportional to the KL-divergence.

Consequently, to identify meaningful spatial characteristics,

the measures of patterns and rules should be determined with

a resolution much higher than the neighborhood distance

threshold.

IV. IMPLEMENTATION CONSIDERATIONS

In general, spatial interestingness measures can be tracked

during the mining process or they can easily be computed on

the basis of the results. To make this clear we need to recall

that each co-location instance represents a spatial point, and

that a co-location pattern represents a set of points. A spatial

interestingness measure of a pattern is based on statistics



of the point set. Hence, we need to extend the patterns by

data structures that are able to update the pattern statistics

on the basis of the instance points. Then, we can compute

the spatial interestingness measure based on these statistics.

Hence, the main extension of a co-location miner is to use

proper data structures to capture the point set statistics of

the patterns. In the following we give a short description of

examples for three different kinds of measures.

A. Area Statistics

An area measure of a co-location area(C) describes the

area that is covered by the co-location instances. Several

approaches, probabilistic or geometric ones, to derive such

a measure are possible. Geometric methods include the

computation of a bounding box for each pattern C, cap-

tured in a simple two point data structure (southwest and

northeast point). Each new instance extends the southwest

and/or northeast point with a constant runtime complexity

O(log(1)). Similarly, the convex hull can easily be tracked

by a point set data structure. Each instance is then checked

to see if it is already included in the convex hull or if it

should extend the set. This operation has the runtime com-

plexity O(n log(n)). For both approaches, we can efficiently

compute the area covered by the pattern.

A probabilistic approach to derive the area is to compute

the sufficient statistics of a Gaussian for the instance points

of a pattern. These are the number of points n, the linear

sum vector ls ∈ R
2, and the squared sum matrix ss ∈ R

2×2.

From the tuple (n, ls, ss) it is possible to efficiently compute

the covariance Σ of the Gaussian described by the points.

Then, a confidence interval (e.g., 95%) can be used to

compute the area in which points of this set fall, given a

confidence threshold.

B. Clustering Statistics

A different measure is the amount of clustering a pattern

shows. In the simple case of checking if the points cluster

at a single location the area statistics are tracked. To check

if the point set shows several clusters a promising statistic

is the cluster feature tree [14], computed online for each

pattern. A cluster feature tree describes clusters by sufficient

statistics of a Gaussian, iteratively computed for each new

incoming point. Setting up the tree for a number of n points

has runtime complexity of O(n log(n)). The clustering then

can be described, given a branch-width and a distance split

parameter, by the number of emerging clusters.

C. Non-parametric Distribution Statistics

To derive a non-parametric distribution of co-location

patterns, e.g., to compute the entropy or the KL-divergence

between pairs of patterns, a sparse grid with a given band-

width can be employed (e.g., a hashmap data structure).

Thereby the grid cell counts are updated for each incoming

instance. Cells without any counts do not consume memory.

The distribution is then easily extracted by normalizing the

counts of each cell by the total number of counts.

V. EXPERIMENTS

In this section, we demonstrate initial results of mining

co-location patterns and rules using spatial interestingness

measures.

A. Dataset and Computation

As data we use an OSM points-of-interest dataset cov-

ering the Los Angeles city area. The dataset consists of

|O| = 5840 points of interest. The number of features is

|F | = 201. To compute the pattern entropy and the rule KL-

divergence we use two grids: (a) A low resolution grid with

a bandwidth of 4.37 km resulting in a 11×7 grid, and (b) a

high resolution grid with a bandwidth of 0.48 km resulting

in a 101 × 59 grid. To compute the co-location patterns

we use an FP-Growth implementation on a transactional-

ized dataset using support-based pruning. The neighborhood

transactions are naively generated for each point of interest

using a distance threshold of 0.11 km. This approach over-

estimates the frequency of co-location patterns with frequent

features compared to an event-based approach. However,

the results still show frequent co-locations. As analytically

shown in this work, the measures will also identify spatial

characteristics when an event-based approach is used. We

plan to compare the measures with such an approach in our

ongoing work.

B. Entropy Measure

Mined co-location patterns in the OSM dataset are shown

in Table 4. The table shows the co-location patterns ordered

by decreasing support, decreasing entropy using the high

resolution grid, and decreasing entropy using the low res-

olution grid. As explained in Section III-C we expect the

entropy of the patterns to be more similar to the support

measure using a high resolution grid for density estimation.

The results show that some patterns change their order with

respect to the support ordering because they are more or less

uniformly distributed. For example, the pattern {fuel, fast-

food} gets a higher position because it is more uniformly

distributed than some patterns above in the support ordered

list. More interestingly we see new patterns being in the

top-10 list. Using the high resolution grid there are three

distinct patterns. For instance, {library, place-of-worship} is

a pattern occurring rather uniformly but is not in the top-10

support list. Using the low resolution grid the results become

even less similar to the support ordered list. E.g., the pattern

{library, park} is considered. The results show that different

patterns are identified if we use a distribution-based measure.

In this example, we consider patterns as interesting that are

most uniformly distributed, exhibiting a pattern valid in the

whole area of interest.

C. KL-Divergence Measure

The rules mined from the OSM dataset are listed in

Table 5. The table only shows rules having cafe on the LHS,

ordered by decreasing confidence, increasing KL-divergence



by support by entropy (high res) by entropy (low res)

sup entr sup entr sup entr

0.051 0.023 school place-of-worship 0.051 0.023 school place-of-worship 0.051 0.464 school place-of-worship

0.040 0.006 fast-food restaurant 0.021 0.007 convenience fuel 0.017 0.234 fuel fast-food

0.034 0.005 cafe restaurant 0.017 0.006 fuel fast-food 0.010 0.233 library place-of-worship

0.024 0.003 cafe fast-food 0.040 0.006 fast-food restaurant 0.021 0.229 convenience fuel

0.021 0.007 convenience fuel 0.034 0.005 cafe restaurant 0.005 0.192 fire-station place-of-worship

0.019 0.002 bank restaurant 0.010 0.004 library place-of-worship 0.007 0.175 park school

0.017 0.006 fuel fast-food 0.014 0.004 supermarket fast-food 0.011 0.173 convenience fast-food

0.017 0.002 cafe fast-food restaurant 0.007 0.004 level-crossing place-of-worship 0.040 0.170 fast-food restaurant

0.014 0.004 supermarket fast-food 0.011 0.004 convenience fast-food 0.006 0.167 park place-of-worship

0.013 0.002 bank fast-food 0.024 0.003 cafe fast-food 0.005 0.161 library park

Figure 4. Co-location pattern results of OSM dataset. Table shows patterns ordered by decreasing support, entropy (high resolution), and entropy (low
resolution). Patterns in boldface in the entropy ordered lists are not in the support ordered list. Ordering by decreasing entropy means the patterns are
ordered by increasing peaky distribution.

by conf by kldiv (high res) by kldiv (low res)

sup conf kldiv sup conf kldiv sup conf kldiv

0.034 0.645 0.304 cafe → restaurant 0.034 0.645 0.304 cafe → restaurant 0.034 0.645 0.178 cafe → restaurant

0.024 0.451 0.605 cafe → fast-food 0.024 0.451 0.605 cafe → fast-food 0.024 0.451 0.339 cafe → fast-food

0.017 0.319 0.869 cafe → restaurant fast-food 0.017 0.319 0.869 cafe → restaurant fast-food 0.012 0.232 0.560 cafe → bank

0.012 0.232 1.071 cafe → bank 0.012 0.232 1.071 cafe → bank 0.017 0.319 0.568 cafe → restaurant fast-food

0.010 0.200 1.239 cafe → bank restaurant 0.010 0.200 1.239 cafe → bank restaurant 0.004 0.083 0.624 cafe → pharmacy

0.008 0.151 1.387 cafe → bank fast-food 0.008 0.151 1.387 cafe → bank fast-food 0.004 0.087 0.666 cafe → museum

0.007 0.141 1.442 cafe → bank restaurant fast-food 0.007 0.141 1.442 cafe → bank restaurant fast-food 0.010 0.200 0.754 cafe → bank restaurant

0.005 0.109 1.899 cafe → convenience 0.003 0.061 1.742 cafe → school 0.003 0.071 0.790 cafe → restaurant pharmacy

0.005 0.103 1.933 cafe → station 0.003 0.064 1.842 cafe → fuel 0.003 0.064 0.880 cafe → place-of-worship

0.005 0.096 2.021 cafe → pub 0.004 0.083 1.884 cafe → pharmacy 0.002 0.041 0.900 cafe → bank pharmacy

Figure 5. Co-location rule results. Table shows rules ordered by decreasing confidence, increasing KL-divergence (high resolution), and increasing KL-
divergence (low resolution). Rules in boldface in the KL-divergence ordered lists are not in the confidence ordered list. Ordering by increasing KL-divergence
means the rules are ordered by increasing spatial dissimilarity.

using the high resolution grid, and increasing KL-divergence

using the low resolution grid. As in the pattern example, the

KL-divergence list shows a reordering and the emergence

of new rules based on the similarity of the rule distribution

to its LHS. As can be seen for the low resolution grid,

e.g., the rules with pharamacy, museum, place-of-worship

on the RHS are similar to the cafe distribution. Hence they

are interesting co-location rules at all location where cafes

occur, even if they have a rather low frequency.

VI. CONCLUSIONS AND ONGOING WORK

In this paper, we introduced a class of interestingness

measures that are based on the spatial distribution of co-

location patterns. The measures are based on density esti-

mations of the instance locations of co-location patterns. We

showed that patterns can easily be extended by data struc-

tures capturing instance point statistics, which can in turn

be used to compute spatial interestingness measures. The

defined entropy and KL-divergence measures are promising

candidates to identify patterns based on global and local

characteristics. We plan to define more spatial measures and

evaluate their applicability for spatial analysis using large-

scale real world datasets.
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