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Abstract: One of the problems which often arises in climatology is either data
at a given site is missing or the site is ungauged. In this study, a spatial '
interpolation model was developed to estimate the weekly rainfall of the Dry
zone of Sri Lanka at ungauged sites assuming that the spatial continuity of
rainfall at two neighbouring locations are exponentially correlated. Twenty
years of weekly rainfall data from six stations located in the Dry zone was used
in the study. To support the methodology, the results of the exponential model
were compared with the other two methods of spatial interpolation techniques,
namely, the local mean and the inverse distance methods. The results of the
study indicates that the exponential correlation model is a promising candidate
for estimating mean weekly rainfall of the Dry zone. However, the local mean
and the inverse distance methods compare quite well along with the exponential
model, indicating that more complex models have no particular advantage over
simple models for estimating rainfall in the Dry zone of Sri Lanka. Nevertheless,
the results point towards the relative importance of the exponential model as
opposed to the other two models when the neighbouring Jocations do not have
long series of historical records.
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INTRODUCTION

The complex, interacting atmospheric processes which give rise to rainfall make
it a variable phenomenon across the landscape. Therefore, recorded rainfall
from a rain gauge usually represents only an extremely small area of the
catchment. Rain gauges in the Dry zone are usually separated by several
kilometres. Therefore, the existing network of gauges may not be sufficient to
estimate the parameters that are needed for hydrological and climatological
applications. This problem is further aggravated by the frequent missing data
in the observed rainfall sequences. Thus, there is a need for a methodology of
spatial interpolation of rainfall which uses only minimum available data.
Spatial interpolatiohs of data available at other sites are being used in
the field of hydrology and climatology to generate the data for ungauged locations.
In most cases, simple methods of point estimation are applied. The availability
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of computing facilities has encouraged the development of advanced methods of
interpolation. As a result, a number of spatial interpolation techniques are
available today with varying degrees of complexity such as local mean, Thiessen
polygon, inverse distance, inverse square distance, isohyetal and krigging.*?
Some of them are very simple with limited applicability while others involve
complex mathematical frameworks and need a large number of data points to
obtain a reasonable level of accuracy.

METHODS AND MATERIALS

Spatial continuity exists in most earth science data sets and two data
sets close to each other are expected to have closer values than those that are
far apart.® A function can be developed to describe the continuity of the
relationship between the value of one variable at a point and the value of the
same variable at another point, a given distance away.! Correlation, covariance
and variogram functions have been used to express the spatial continuity of a
random variable. Similar assumptions have been made about rainfall
phenomena over an area, and estimation methods used in earth science have
been applied to rainfall data to estimate the values at ungauged sites.

The spatial correlatign models for rainfall have been presented in inverse
power and exponential forms*:

Yoo= (1+0d (1)
Yo=¢ od (2)
where,
Yab = spatial correlation coefficient between stations A and B
O = acoefficient
¢ = a power coefficient
d = distance between the pair of stations

Assuming homogeneity and isotropicity,” a study was undertaken to
determine the appropriateness of point estimation of weekly rainfall by an
exponential spatial correlation model for the Dry zone’s climatic environment.
In this study, two distinctive regions of the Dry zone were considered, the north-
central part and the southern part of the Dry zone (Figure 1). Both regions
exhibit fairly similar physiography of gently-undulating to rolling, with 3 to 4%
slopes. However, some geographical features are not alike. The north-central
part of the Dry zone, (abbreviated NCDZ), is generally an inland region. The
southern part of the Dry zone, (abbreviated SDZ), resembles an area that is
closer to the ocean. Therefore, the amount of water vapour in the atmosphere,
available to become cloud with the chance of subsequently becoming rain,
may not be comparable in the two regions. Thus, the correlation structure
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of the rainfall process could be different in the two regions. This necessitates
the evaluation of the spatial correlation model for the two regions separately
to meet the assumptions made on the isotropicity and homogeneity.

SCALE
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Figure 1: Location of the reference rainfall stations used in the study.

The selected rainfall recording stations from the NCDZ region are located
at Maha-Illuppallama, Pelwehera and Maradankadawala. Out of these three
stations, Maradankadawala which lies in between the other two stations was
considered as the location for estimation of rainfall values. The areal distances
from Maradankadawala to Maha-Illuppallama and from Maradankadawala to
Pelwehera are 17 km and 25 km respectively, while the areal distance
between Maha-Illuppallama and Pelwehera is 38 km. From the SDZ region
which represents a coastal area, Angunakolapellessa, Ambalantota and
Weerawila were selected for the study. In this region, Ambalantota which
lies in between the other two stations was considered as the location for
estimation of rainfall values. The areal distances from Ambalantota to
Angunakolapellessa and from Ambalantota to Weerawila are 15 km and 27
km respectively, while the areal distance between Angunakolapellessa and
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Weerawila is 38 km. In the selection of the rainfall recording stations, care was
given to select the locations with reliable data with a maximum number of record
lengths to be on par with the guidelines stipulated by the Hydrology and Water
Resources Program, Department of Civil Engineering, Colorado State
University.” The said guidelines prescribe that data records with more than 30
years should be used. Butthe available length of the records from the selected
locations were 20 years. Although there are some other locations in the Dry
zone which have the minimum of 30 years of records, a large number of missing
data and unreliability of the measurements forced us not to select them for the
study.

In addition, the models were also evaluated for situations with short series
of historical data and when the stations are located relatively far away. Weekly
rainfall values for Angunakolapellessa were interpolated using 10 years of
historical rainfall records from two neighbouring locations, Embilipitiya and
Tangalle. As the reliable rainfall data from the immediate vicinity of a rainfall
station in the Dry zone was unavailable, these two locations were selected from

.the neighbouring Intermediate zone (Ifigure 1). The aerial distances from
Embilipitiva to Angunakolapellessa and from Angunakolapellessa to Tangalle
are 18 km and 20 km respectively, while the aerial distance between Embilipitiya
and Tangalle is 35 km. An evaluation of the interpolation models for the stations
located farther apart was carried out by interpolation of weekly rainfall at
Weerawila using Tangalle and Lahugala (eastern part of the Dry zone). The
areal distance from Lahugala to Tangalle is 143 km whereas distances from
Lahugala to Weerawila and from Weerawila to Tangalle are 93 and 58 km
respectively.

The spatial correlation coefficient ¥, for weekly rainfall values can be
determined using contemporaneous observation pairs from stations A and
B. Using the calculated 7Y,, and the distance between stations A and B,
the coefficient (O ) of equation (2) can be found.

’Yab - e—a(l
_ InYe (3)
O = e ,

The observed spatial correlation coefficients between the two stations, A
and B, and the value for o from equation (3) can be used in equation (2) to
estimate the correlation coefficients between stations A and B with the

station C (Yacand Vpc).
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Let the unbiased linear estimator for the normalised rainfall at station C be:

Ré= Wa Ra+Wo R, . (4)
Where
R — estimated normalised rainfall at station C

[\):;t observed normalised rainfall at station A
R} = observed normalised rainfall at station B
Wa = weight assigned to the station A
Wp = weight assigned to the station B

The least squares regression for equation (4) can be written in matrix notation:

C W - Y
1 Yab 1 Wa Ya
’Yab 1 1 m fnd bcc ..... ( 5 )
1 1 0 5 1

The matrix C consists of the covariance value of rainfall between the two sample
locations. The vector ¥ 'consists of the covariance values of rainfall between
two sample locations and the location where we need the estimation. The vector
w consists of the weight given to each location and the Lagrange parameter p*
To solve for the weights, multiply both sides of equation (5) by C .

w=c». v (6)
Based on the homogeneity and isotropicity assumptions, the estimated mean

rainfall and the standard deviation of the rainfall at station C can be calculated
using the following linear estimation :

A - -
Re =AC | Re=Ry| (7
AB
A
6.= AC |CGa=Cn | (8)
AB
where

kc = estimated mean rainfall at station C
R, = observed mean rainfall at station A

E b = observed mean rainfall at station B
N .
O, = estimated standard deviation of rainfall at station C
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Oq = observed standard deviation of rainfall at station A
Op = observed standard deviation of rainfall at station B

AB = distance between stations A and B in km

AC = distance between stations A and C in km
Once the above parameters are determined from the observed data, equation
(4) can be used to estimate the rainfall in each week of the year.

RESULTS

The validity and applicability of the foregoing interpolation model was
examined by comparing the model output with the observed data from
Maradankadawala and Ambalantota. In addition, a further comparison of the
model output was made with the other two interpolation techniques, namely,
ghe local mean method and the inverse distance method. Use of local mean or
the arithmetic mean in spatial interpolation is the most simplistic approach. It
assumes equal weight from all nearby sample locations, using the sample mean
as the estimate. Inverse distance method is a technique which gives more weight
to the closest samples and less to those that are farthest away. Thus, weight for
each sample is inversely proportional to its distance from the point being
estimated:

1

1
. 2

4

R ==L —_ L 9)
=1 d;
where

R= estimate of rainfall for ungauged location

V; = observed value at the i location
di= distance from each location to the point being estimated

Comparison of estimated and observed rainfall

Figures 2 and 8 show the mean estimated and observed rainfall in each
week for Maradankadawala and Ambalantota respectively. Typically, we want
a set of estimates that comes as close as possible to the true values. Thus, we
would prefer the results shown in Figures 2 and 3. There was no significant
difference between the observed values and the estimated values at both
Ambalantota and Maradankadawala. The standard deviations of the observed
sequences of rainfall were comparable with the estimated sequences of rainfall
from the exponential model (Tables 1 and 2). However, most of the time the
variability of the estimated values from the exponential model was less than



Dry zone Rainfall 253
that of the observed variability. This trend was more apparent at Ambalantota
in the SDZ region. Reduced variability of estimated values is often referred to
as “smoothing” and is a consequence of combining two or more sample values to
form an estimate.? As more sample values are incorporated in a weighted linear
combination, the resulting estimates generally become less variable.
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Figure 2: Observed and estimated rainfall at Maradankadawala in the Dry zone
of Sri Lanka.
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Figure 3: Observed and estimated rainfall at Ambalantota in the Dry zone of
Sri Lanka.
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Table 1: Standard deviations of the observed and the estimated rainfall
from the exponential model during major dry seasons at

Maradankadawala and Ambalantota in the Dry zone

of Sri Lanka.

" Maradankadawala Ambalantota
Standard Week Observed Estimated Observed Estimated
No. . (mm) (mm) (mm) (mm)
First dry season
6 21.5 27.0 - 20.7 19.8
7 27.4 31.5 19.1 33.1
8 : 15.5 14.3 16.2 13.1
9 41.6 45.0 21.2 14.0
10 40.6 55.3 29.1 19.5
11 13.4 10.1 13.3 17.0
Second dry season
22 " 30.9 14.6 26.9 24.6
23 42 5.5 12.6 11.1
24 6.4 5.1 16.2 11.6
25 0.9 2.5 27.8 13.7
26 1.8 4.2 10.6 9.0
27 10.9 11.7 12.6 7.1
28 28.6 29.0 15.2 10.0
29 25.5 23.5 18.2 17.0
30 21.6 10.1 10.5 8.1
31 4.6 11.3 11.9 7.8
32 28.2 18.8 26.4 16.2
33 1.4 2.3 16.1 9.5
34 15.4 13.6 11.9 5.4
35 9.5 4.2 26.6 11.1
36 5.7 7.9 8.5 6.3
37 38.2 38.7 19.5 17.9
38 35.3 23.5 21.2 16.0

39 33.7 44.3 22.2 17.5
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Table 2: Standard deviations of the observed and the estimated rainfall
from the exponential model during major rainy seasons at

Maradankadawala and Ambalantota in the Dry zone

of Sri Lanka.
- Maradankadawala Ambalantota ‘

Standard Week No. Observed Estimated Observed Estimated
No. (mm) (mm) (mm) (mm)
Rainy season - Yala
12 16.0 14.5 14.6 12.6
13 31.6 17.2 19.8 14.9
14 31.3 33.8 14.6 21.0
15 30.8 37.1 26.9 24.7
16 57.8 54.8 22.0 29.5
17 43.8 50.1 14.8 19.9
18 48.4 43.6 18.3 14.7
19 25.7 18.7 23.2 25.8
20 29.7 33.0 27.1 21.0
21 27.0 29.7 20.2 28.7
Rainy season - Maha o
40 42.8 51.6 17.1 16.2
41 49.6 57.6 18.5 16.3
42 49.4 44 .4 26.5 26.2
43 58.7 62.2 50.3 26.2
44 62.8 51.4 39.1 28.9
45 39.9 38.0 40.9 26.0
46 60.8 - 59.5 62.6 49.0
47 52.2 56.6 29.0 24.4
48 : 509 47.3 37.1 26.0
49 27.0 313 18.5 17.6
50 34.0 30.6 30.2 24.6
51 60.5 63.3 14.4 19.6
52 33.4 30.9 16.6 10.9
1 52.3 47.9 26.3 20.1
2 51.6 45.8 19.5 15.1
3 21.3 33.5 30.6 35.2
4 10.5 11.6 4.3 8.1
5 21.6 14.7 4.6 7.4
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Figure 4 shows the performance of the exponential model in interpolating
weekly rainfall at Angunakolapellessa with a short series of historical data
from neighbouring two locations. It is clear that the estimated data do not
represent the observed data well compared to the estimations at
Maradankadawala and Ambalantota. However, the differences between the
estimated mean values and the observed mean values were not significant at
the 5% probability level. The estimated mean weekly rainfall at Weerawila
from the historical data of Tangalle and Lahugala are shown in Figure 5. It is
clear that there is a distinct deviation of the estimated mean values from the
observed mean values. In general, these mean deviations were significant at
the 5% probability level, especially during the second half of the year.
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Figure 4: Observed and estimated rainfall at Angunakolapellessa in the Dry
zone of Sri Lanka.
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Figure 5: Observed and estimated rainfall at Weerawila in the Dry zone of Sri
Lanka.

Comparison between different interpolation methods

The results of the other two interpolation methods described in a preceding
section of this paper were compared with the outcome of exponential correlation
model. As the first criterion for comparing the different methods, the means in
each week were computed. Figures 6 and 7 show the means of weekly
interpolated rainfall values from the three methods for Maradankadawala and
Ambalantota, respectively. It may be seen that practically all of the interpolation
techniques reproduce the means well. None of these means were significantly
different from each other and also from the observed values. The estimated
values from all three models at Maradankadawala are almost identical (Figure
6). At Ambalantota, though it is not significant, a small discrepancy between
estimated values from the three models is noticeable during the two dry periods
and during the Yala season, mid-March to mid-May, (Figure 7). The differences
between estimated values from the three models at both Angunakolapellessa
and Weerawila were also not significant. However, most of the time the closest
value to the observed value was found with the exponential model.
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Figure 6: Estimated weekly rainfall from three models at Maradankadawala
in the Dry zone of Sri Lanka.
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Figure 7: Estimated weekly rainfall from three models at Ambalantota in the
Dry zone of Sri Lanka.
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Another way of checking the appropriateness of the model is to calculate the
correlation coefficient between the observed and the estimated values. Itis a
good index for summarising how close the points on a scatter plot come to falling
on a straight line, and therefore can be made use of to compare different
estimation models. The correlation coefficient between the observed and the
estimated values from each model was calculated for every week of the year.
These values were averaged over four different time periods of the year, namely,
first dry season ( early February to mid March), second dry season (late March
to late September), Yala season (mid March to mid May) and Maha season (early
October to late January). At both Maradankadawala and Ambalantota, the
seasonal correlation coefficients were always above 0.65 except during the Yala
season at Ambalantota (Table 3). It is interesting to note that when the
correlation between the estimated and the observed values is low, it is consistent
with all the three models.

Table 3: Seasonal correlation coefficients between the observed and the
estimated values from the three models at Maradankadawala and

Ambalantota.
Exponential Inverse Local mean
model distance model model
Marddankadawala
First dry season 0.77 0.77 0.78
Second dry season " 0.66 0.66 0.65
Yala season 0.72 0.72 0.73
Maha season 0.77 0.77 0.77
Ambalantota
First dry season 0.76 0.74 : 0.74
Second dry season 0.71 0.72 0.71
Yala season 0.41 0:40 0.38
Maha season 0.69 0.69 0.68

The correlation coefficients between the estimated and the observed values
at Angunakolapellessa were always above 0.5 with all the three models where
the estimation was based only on 10 years of historical data (Table 4). However,
at Weerawila, where the estimation was based on two neighbouring locations
separated by over 100 km distance, only the first dry season exceeded the 0.5
boundary. During the Maha season, correlation coefficient was closer to 0.5
with the exponential model. But, during both the Yala and the second dry seasons,
correlation coefficients were below 0.40 with all the three models (Table 4).
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Table 4: Seasonal correlation coefficients between the observed and the
estimated values from the three models at Angunakolapellessa and

Weerawila..
Exponential Inverse Local mean
model distance model . model
Angunakolapellessa
First dry season 0.79 0.76 0.76
Second dry season 0.67 0.63 0.64
Yala season 0.52 0.50 0.50
Maha season 0.63 0.57 0.57 .
Weerawila
First dry season 0.62 0.59 0.59
Second dry season 0.34 0.31 0.32
Yala season ) 0.36 0.38 0.39
Maha season 0.49 0.45 0.45
DISCUSSION

Overall, the results show that mean weekly rainfall of both Ambalantota -
and Maradankadawala are well preserved. However, the discrepancy between
the observed and the estimated values at Maradankadawala is less than the
same at Ambalantota. The correlation of rainfall between any two locations is
highest for places which are close to each other, in flat country and away from
the coast.® The areal distances between the two sample locations at both regions
are almost equal. The topography of the two regions is also comparable to each
other. Thus, closeness to the ocean could be the main determining factor for the
small discrepancy between the observed and the estimated values at
Ambalantota in SDZ region. However, the performance of the exponential model
based on a short series of historical data (i.e. 10 years) is not comparable to its
performance with long historical data. This confirms that the more historical
data available, the better the estimation will be. The situation becomes worse
when the neighbouring locations are further apart (i.e. 100 ki or in excess).
This could be attributed to the fact that the correlation structure is being
weakened when the stations are farthest away.

The exponential method and the inverse distance method should give a better
estlmatlon of weekly rainfall data compared to the local mean method. Because,
_ give a varying weight depending on the distance apart rather than a
/"ekq{‘i il weight as in the case of local mean method. Therefore, it is reasonable
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to expect an improvément to the correlation with the exponential method and
the inverse distance method over the local mean method. However, the
correlation coefficient values of three models are almost similar at both
Maradankadawala and Ambalantota (Table 3) suggesting that performances of
all the three models are similar under the given environments. Thus, if one is
interested only in mean rainfall, as is often the case in climatological applications,
then there is no particular advantage in computing a complex exponential

relationship; rather a simple inverse distance or local mean will suffice.

Although the difference between the correlation coefficient values among
the three models is not large, both at Weerawila and Angunakolapellessa, the
resulting correlation coefficient values from the exponential model were always
higher than that from the other two models except during the Yala season at
Weerawila (Table 4). Thus, when the neighbouring locations are farther away
or especially with short series of historical data, the individual estimations of
the exponential model would approximate the real values comparatively better
than the other two models.

In conclusion, the results of this study suggest that the exponential
correlation model is a promising candidate for estimating weekly rainfall of the
Dry zone of Sri Lanka. However, the less sophisticated local mean and inverse
distance methods rate quite well along with the exponential model. There is no
particular basis to claim that the exponential model is significantly better than
the other two methods tested under the given environments. Nevertheless
correlation analysis shows an improvement to the estimates with the exponential
model, especially when the neighbouring locations do not have long series of
historical data.
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