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The inverse distance-weighting method (IDW) and kriging techniques are the most commonly used spatial interpolation techniques for

estimating levels of pollutant concentrations in regions that contain a number of monitoring stations. The measured ozone pollution peaks in

a period, in the atmosphere of the Mexico City region, are considered to be a sampled data set with a non-stationary mean. In order to study

the effect of a non-stationary mean in the performance of interpolation methods IDW and kriging, the data set is transformed by removing

the data trend of the sampled data set. The residuals obtained are considered to be a set of stationary random variables. This work initially

considers the residuals obtained from measured ozone concentration data at 20 stations at 15:00 hours for a set of 21 days in December,

2001. This set of 420 data is considered to be the training set. To determine the parameter values that define the statistical weights for

each of the IDW and kriging methods that are analyzed in this work, a cross-validation method is considered. This method assumes initial

parameter values, which are fitted by minimizing the root mean squared error, RMSE, between the observed and estimated values in each of

the stations. This process takes the training set in consideration for calculation. Once the parameter values that define the statistical weights

for each IDW and kriging methods are obtained, by the process described above, these methods are used to interpolate its corresponding

values at the stations at 15:00 hours for the days (3rd, 6th, 9th , . . . 27th, 30th) of December, 2001, which are considered to be the testing

sets. The RMSE between interpolated and measured values at monitoring stations is also evaluated for these testing values and is shown as a

percentage in Table I. These values and the defined generalization parameter G can be used to evaluate the performance and the ability of the

models to predict and reproduce the peak of ozone concentrations when the residuals or the sampled data are considered. Scatter plots for

testing data are presented for each interpolation method. An interpretation of the ozone pollution levels obtained at 15:00 hours on December

21st was given using the wind field that prevailed in the region at 14:00 hours on the same day.

Keywords: Spatial interpolation; statistical modeling; pollutant concentrations.

Las técnicas de interpolación espacial, peso inverso con la distancia (IDW) y kriging, son las más comúnmente usadas para la estimación de

niveles de contaminante en regiones que tienen un limitado número de estaciones de monitoreo. Los valores del pico de contaminación por

ozono, medidos en la atmósfera de la región de la Ciudad de México, se consideran como un conjunto de datos muestreados cuya media no es

estacionaria. Con el fin de estudiar el efecto de una media no estacionaria sobre el desempeño de los métodos de interpolación IDW y kriging,

se transforma el conjunto de datos al remover de cada uno de ellos el valor de su tendencia. El conjunto residual obtenido se considera como

un conjunto de variables aleatorias estacionarias. Para este caso se considera inicialmente el conjunto residual obtenido de los datos medidos

en las 20 estaciones para concentración de ozono a las 15 horas por un periodo de 21 dı́as del mes de Diciembre del 2001. Este conjunto

de 420 datos constituye el conjunto de entrenamiento. Para determinar el valor de los parámetros que definen los pesos en cada uno de los

métodos IDW y kriging que se analizan en este trabajo, se considera un método de validación cruzada mediante el cual se suponen para

los parámetros valores iniciales, que se van ajustando iterativamente hasta obtener el valor que produce el mı́nimo error cuadrático medio

entre los datos medidos y los estimados en cada una de las estaciones, para lo cual hacemos uso de los datos que constituyen el conjunto

de entrenamiento. Una vez determinados, por el procedimiento anterior, los valores de los parámetros que definen los pesos de cada uno de

los métodos IDW o kriging, se usan estos métodos para hacer estimaciones de los valores de las concentraciones de ozono, a las 15 horas

en las estaciones para los 10 dı́as de Diciembre de 2001 no considerados en el conjunto de entrenamiento. El error cuadrático medio entre

datos medidos y estimados es calculado para este conjunto de prueba y se muestra en porcentaje en la Tabla I. Estos valores y el parámetro

de generalización G pueden ser usados para medir el desempeño y habilidad de los modelos para predecir y reproducir el pico de ozono

tanto para los residuales como para los datos originalmente muestreados sin ninguna transformación. Se muestran gráficas de dispersión de

los datos de prueba para cada método de interpolación. Se da una interpretación de los niveles de contaminación de ozono obtenidos para

Diciembre 21 de 2001 a las 15 horas usando el campo de vientos preexistente en la región, a las 14:00 horas del mismo dı́a.

Descriptores: Interpolación espacial; modelamiento estadı́stico; contaminantes en el aire.

PACS: 92.60.Sz; 02.50.Tt; 02.50.Sk

1. Introduction
The measurement of pollutant concentrations is important in

the study of urban and regional smog problems to determine

zones where a high enough concentration may affect human,

animal and vegetation health.

Many cities exhibit photochemical smog including Mex-

ico City. Photochemical smog is the air pollution resulting

when sunlight intensity and emissions from fossil-fuel com-

bustion sources are high.
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Ozone concentrations are strongly linked to meteorolog-

ical conditions and are also influenced by winds due to the

transportation of both ozone and its precursors. Ozone, after

suspended particulate matter, is the second most important

pollutant found in Mexico City’s atmosphere. In fact, the

maximum allowed ozone concentration level (0.11 ppm, one

hour per year) was exceeded in 2000 on approximately 84%

of the days. This percentage of days has been continually re-

duced thanks to enacted control norms and to improvement

in fuel quality, gasoline particularly. In 2005, the maximum

ozone concentration level permitted was exceeded 60.5% of

the days (Secretaria del Medio Ambiente, Gobierno del Dis-

trito Federal, March, 2006). Although these pollution levels

are far from ideal, these regulations have noticeably improved

the air quality in the Mexico City region.

Unfortunately, due to high costs, it is only possible to

measure pollutant concentrations at some few monitoring

sites regarding the extension of the region of interest.

2. Spatial interpolation methods

Spatial interpolation techniques are commonly used for esti-

mating levels of pollutant concentrations in regions that con-

tain a number of monitoring stations. The interpolation tech-

niques are based primarily on distance-weighting methods

(De Leeuw et al. 1997, Phillips et al. 1997) and kriging

(Mulholland et al 1998, Phillips et al. 1997).

2.1. IDW

The inverse distance-weighting method (IDW) is based on

the intuitive idea that nearer observations must have more in-

fluence on the estimated value than farther ones. This is a

local method for the estimation of Z on x0 with the following

expression:

Ẑ(x0) =

N
∑

i=1

w(d−1
i )z(xi)

N
∑

i=1

w(d−1
i )

(1)

where w (·) is the weighting function of the inverse of the

distance di between the observation at xi and the interpo-

lation point x0. Equation (1) is referred to as the stan-

dard IDW interpolation for the simplest weight definition

wi(d
−1
i ) = d−α

i s with 1≤ αg ≤ 4. This weight comprises

a monotonically decreasing function that vanishes as the dis-

tance tends to infinity.

2.2. Optimized IDW

In practice, it is desirable for the method to be flexible enough

to optimize the datasets by limiting the radius of influence

for the weighting function and exploring with different decay

exponents. The optimized IDW is an attempt to provide this

flexibility, and it has the advantage that these two parame-

ters are chosen optimally according to a minimum root mean

square error (RMSE) criterion. The interpolated Zvalue for

the optimized IDW can be obtained through the following

expression,

Ẑ =

N
∑

n=1
wnZn

N
∑

n=1
wn

. (2)

The weights are given by;

wn =

{ K
1+(K−1)(dn/r)α , dn ≤ r

0, dn > r
, (3)

The parameters α and r can be estimated by minimizing

the square root of the mean-square differences between the

measured and the estimated value, and dn is the discrete dis-

tance variable. The parameter K is a scaling constant that

makes the weight at d= 0 finite rather than infinite, as in the

standard case.

2.3. Kriging

Kriging is a regression-based technique that estimates values

at non-sampled locations using weights that reflect the cor-

relation between data at two sampled locations or between

a sample location and the location to be estimated (Wacker-

nagel 2003). Environmental sciences have recently started

to use geostatistics as a means of interpolating data and of

exploring forms of spatial variation. Pollution can be con-

sidered to be a regionalized random variable z(x) defined

throughout a domain D,such that kriging can be used to ex-

plore the way that pollutants vary in space.

In order to make statistical inferences possible from a sin-

gle occurrence, the sample data z (xi) must be considered to

be a realization of a stationary random function Z(x). That

is, the expected value (or mean) of Z(x) must be constant

for all points x, i.e. E (Z(x)) = m(x) = m, and the covari-

ance function between any two points x and x + h in the do-

main D depends on the vector h but not on the point x, i.e.
C (h) = E [(Z(x +h)-m) (Z(x)-m)]= E[Z(x)Z(x+h)]- m2.

In practice, it often happens that these assumptions are

not satisfied. On both theoretical and practical grounds it is

convenient to be able to weaken this hypothesis. In terms of

increments of the function Z(x), these two conditions can be

expressed in a weaker and more generalized form.

It assumes that the increments {Z(x +h )-Z(x)} are

weakly stationary, that is, the mean and variance of the

increments exist and are independent of the point x. If

E{Z(x)-Z(x +h)} =m(h), that is, the random function has a

linear drift m(h), in order for Z(x) to have a weak stationary

mean, i) m(h) must be equal zero and ii) the variance of the

increments must exit and be independent of the observation

point x, that is, Var {Z (x) − Z (x + h)} = 2γ (h) ∀x,x +
h ∈ D

Function γ is called the semivariogram, which is said

to be isotropic if it depends only on the modulus of h, and
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anisotropic if it depends on both the modulus and the direc-

tion of h. The anisotropy of the contamination data would

require the use of an anisotropic semivariogram model. The

sparse ozone-sampled locations, and the inappropriate spa-

tial distributions of monitors, do not permit the evaluation of

an anisotropic semivariogram model and consequently in this

work we consider an isotropic model, approach. The random

variables Z(x) and Z(x + h) relate to the same attribute z,

i.e. the concentration of a given contaminant, at two different

locations x and x +h.

2.4. Simple kriging estimation

If m (h) =0, that is, if the random function has a constant

mean and this mean is known we must consider the simple

kriging (SK) model. In order to estimate Z0 = Z(x0), (i.e.,
the contaminant concentration value at x0), a linear estimator

Z∗

0 =
∑

i

λiZiis used. The weights λiare determined using

two conditions:

1. The estimator Z0* must be unbiased,

E[Z0 ∗ −Z0] = 0

2. The variance of the estimation error must be a mini-

mum:

Var[Z0 ∗ −Z0]minimum,

where Z0represents the exact but unknown value of Z

at x0.

These two conditions lead to the linear system of N equa-

tions, known as the simple kriging system (SK):

N
∑

j=1

= λjC(xi, xj) = C(xi, x0)i = 1, 2, . . . , N

(Chilès and Delfiner 1999).

The λi are solutions to this system of equations.

C (xi, x j) is the covariance between the data Z (xi) and Z

(x j) and, C (xi, x0) the covariance between the data and the

target.

C(xi, xj) = E[(Z(xi) − m)(Z(xj) − m)].

2.5. Data with a non-stationary mean

The sample data z(xi) that represent the ozone concentra-

tion measured at meteorological station i at 15:00 hours

is considered to be a realization of a non-stationary ran-

dom function Z(x). This means that the expectation and

the covariance are not translation invariant over the do-

main D, i.e. for a vector h linking any two points (x)

and (x +h) in the domain E [Z(x +h)] 6= E [(x)] and Cov

[Z(x +h), Z(x)] = C(x, h). In other words, the expected value

(mean value m) E [Z(x)] = m(x) depends on the point x in the

domain, and covariance is a function of both the point x and

the vector h.

In order to study the effect of a non-stationary mean in

the performance of interpolation methods IDW and kriging,

the data set is transformed by removing the data mean m(x)

of the sampled data set.

The evaluation of m(x) is done through a linear regres-

sion process of the sample data on the coordinates of the

stations to estimate the mean as a function of the position

(Rojas-Avellaneda et al. 2006). It is assumed that m(x) can

be written as a finite expansion:

m(x0) =

L
∑

l=0

alf
l(x0), (4)

where the f l (x0) are known basis functions and al are fixed

but unknown coefficients. The first basis function (case l=0)

is the constant function equal to 1, which guarantees that the

constant-mean case is included in the model. The other func-

tions are considered monomials in the coordinates (x), so that

f l (x0) = xl
0

In this work the first two terms for the basis functions

are considered, the case l=0, corresponding to a constant

mean, and l=1 a linearly varying mean. The coefficients al

in Eq. (4), are determined through a linear regression process

of the sample data on the coordinates of the sample locations.

The residual function R(x), defined as the difference between

Z(x) and the estimated mean, is a random function with a con-

stant mean equal to zero. For this function we must consider

the simple kriging model.

The weighting factors λ′

i for the estimator

R0∗ =
∑

i

λ′

iRi

are solutions to the Simple Kriging system (SK system)

N
∑

j=1

λ′

jC(xi, xj) = C(xi, x0)i = 1, 2, . . . , N (5)

where C( xi, xj) is the covariance between R(xi) and R(xj),

R(xi) = Z(xi) – m(xi), is the residual at sample point xi and

x0 is the interpolation point. The covariance is obtained from

the variogram model and its parameter sill and range using

the basic relation between the variogram and the correspond-

ing covariance C (h):

γ(h) = C(0) − C(h) (6)

[Chilès and Delfiner 1999; Eq. (2.3)] which is a relation valid

for stationary random functions and where C (0) = σ2 is the

variance.

The value of Z0* is then given by:

Z ∗ (x0) =
∑

i

λ′

i(Z(xi) − m(xi)) + m(x0). (7)
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FIGURE 1. Spherical variogram fitting for the ozone data at 15:00

hours of Dec. 21, 2001.

2.6. Estimation of the variogram model

In practice, the variogram model is estimated from the sam-

ple variogram γ*. We consider in this work the sample var-

iogram proposed by Cressie and Hawkins, [Cressie 1991;

Eq. (2.4.12)]

2γ ∗ (h) ≡
|N(h)|

(0.457 |N(h)| + 0.494)

×







1

|N(h)|

∑

N(h)

|Z(xi) − Z(xj)|
1

2







4

(8)

In this equation, a sample design consisting of n data lo-

cations {xj , j=1, . . . ,n} is considered, with |N(h)| distinct

data pairs so that N(h) ={ (xi, xi) : xi- xi=h; i, j =1,. . . , n}
and where Z(xj), j=1,. . . ,n are the specific observed values,

sampled at the n locations {xj}. If the estimated γ* is calcu-

lated for a number of values of h, the resulting experimental

variogram is then used to provide the sill value for the vari-

ogram models.

In order to ensure that the variance of any linear com-

bination never becomes negative, only certain functions can

be used as models for variograms and covariances. We con-

sidered here the most common isotropic variogram models:

spherical and exponential. Other variogram models con-

sidered here are the rational quadratic, cubic and Gaussian

(Cressie 1991, pp 61-63) (Chilès and Delfiner, pp 82-85). All

these models are bounded, which means that the variogram

reaches an actually or practically limiting value (its sill) at a

critical distance r, called the range. As an example Fig. 1

presents the spherical variogram fitting for the ozone data at

15:00 hours on Dec. 21, 2001.

Because the linear variogram model is not bounded by a

finite value γ(∞) a covariance function can-not be found for

this model and consequently it will not be considered in this

work.

For all other bounded models, the covariance function can

be obtained from the equation:

C(h) = γ(∞) − γ(h) (9)

[Wackernagel 2003, Eq. (7.26)], where γ(∞) = C (0)=σ2 is

the variance obtained from the sample variogram.

Bounded variograms correspond to stationary variables,

and for these variograms the sill is approximately equal to

the variance σ2. The spherical model, for example, is written

as

γ (h) = b +
s

2

[

3 |h|

r
−

|h|
3

r3

]

, (10)

where b, s and r are the parameters nugget, sill and range

respectively to be estimated by the fitting process. While

this model reaches its sill at its range, the others reach theirs

asymptotically; for these cases, a practical range r is then de-

fined as the distance at which the model value equals 95%

of the sill. The estimated sample variogram provides the sill

value, s= s0, and the range’s initial value, r0 for the variogram

model. The nugget parameter b is assumed to be equal to zero

and b=0 was used throughout this work.

TABLE I.

KRIGING MODEL
PARAMETERS

DRIFTORD
RMSE (1) % RMSE (2) %

GENERALI-ZATION G
SILL RANGE(Km.) NUGGET TRAINIG TESTING

EXPONENTIAL 1.50E-03 29.9974 0 0 14.93618 17.17482 0.87

SPHERICAL 1.50E-03 19.4294 0 0 15.83164 17.85536 0.89

RAT. QUAD. 1.50E-03 6.06073 0 0 16.08236 18.07027 0.89

CUBIC 1.50E-03 13.6496 0 0 17.21064 18.78664 0.92

GAUSSIAN 1.50E-03 5.87688 0 0 17.15691 18.89409 0.91

GAUSSIAN 6.00E-04 3.85489 0 1 13.79 14.59591 0.94

EXPONENTIAL 6.00E-04 3.93634 0 1 13.66464 14.68545 0.93

CUBIC 6.00E-04 9.49933 0 1 13.86164 14.79291 0.94

RAT. QUAD. 6.00E-04 3.15153 0 1 13.79 14.79291 0.93

SPHERICAL 6.00E-04 9.9889 0 1 13.64673 15.11527 0.90

Rev. Mex. Fı́s. 53 (6) (2007) 447–454



SPATIAL INTERPOLATION TECHNIQUES FOR STIMATING LEVELS OF POLLUTANT CONCENTRATIONS IN THE ATMOSPHERE 451

Because interpolation values do not depend on the sill pa-

rameter, we chose for this parameter, for all models used,

the same value γ*(∞) obtained from the experimental vari-

ogram. For this value we found the optimal range r, i.e., the r

value that gave the lowest RMSE between the evaluated data

and data measured at stations.

3. Study area and data used

In order to evaluate the performance of each of the

two approaches, IDW and kriging, as spatial interpola-

tion techniques, this work considers the data set of mea-

surements of pollutant concentrations in the atmosphere

of Mexico City provided by the “Red Automática de

Monitoreo Atmosférico de la Ciudad de Mexico, RAMA”

(http://www.sma.df.gob.mx/simat/homecontam.php).

The RAMA network provides hourly values for the main

air pollutants: carbon monoxide CO, sulfur dioxide SO2, ni-

trogen oxides NO2 and NOx, ozone O3 and suspended par-

ticulate matter PM10. RAMA uses the ultraviolet photomet-

ric method to determine ozone concentrations at monitoring

stations (Sistema de monitoreo atmosférico de la Ciudad de

México). RAMA also provides hourly values for the magni-

tude and direction of wind velocity which are measured in 15

stations.

In order to compare the techniques used in this analy-

sis, data monitored at twenty stations for December, 2001,

were used since this month showed many days in which the

maximum allowed ozone concentration level was exceeded

and the measurement data were almost completely recorded.

The 31 recorded data at each station that correspond to 15:00

hours provide a sample of 620 data which were used for spa-

tial analysis and interpolation purposes. 15:00 hours is the

time at which the highest mean of pollutant concentration is

observed, and at which the official Mexican norm for ozone

is regularly exceeded.

4. Estimation process

4.1. Training process

In the first step, we find the best parameters that define the

best weights for the models used in this work for the interpo-

lation. This first step is the training or learning process. In

this step we fit the interpolated values using the models IDW

or kriging to the sampled data in order to obtain the optimal

value for their parameters.

For the kriging models, for fixed values of s and b var-

iogram parameters , the optimal value of the r parameter is

obtained, i.e., the r value that gives the lowest mean RMSE

between the interpolated values and the data measured at

stations for twenty-one days in December, 2001, which we

chose as the training set. The estimated sample variogram

provides the sill value, s= s0, and the range’s initial value, r0.

The nugget parameter b is assumed to be equal to zero.

Using the variogram model γ(0, s0, r0) and the first day

data at the twenty stations, a cross validation process is ap-

plied by removing one ozone monitoring site from this data

set, interpolating the remaining sites and evaluating the dif-

ference value between the measured concentration at the re-

moved site with the respective interpolated value. The inter-

polation is done using the SK system equations [Eq. (5)] with

the covariance function given in Eq. (9).

The interpolated value z1* (x0) is obtained from Eq. (7),

where z1(xi)- m1(xi)= r1*(xi) is the interpolated value for the

first day at (xi) evaluated in the previous step.

The RMSE is calculated for all differences at stations for

the first training day and is denoted by S1:

S1 =

{

1

20

20
∑

i=1

[z∗1(xi) − z1(xi)]
2

}1/2

In the same way, the RMSE is evaluated for all training

days. The mean RMSE, S for the training process is evalu-

ated through

S =
1

21

21
∑

j=1

Sj .

The r0 parameter’s optimized value, ropt, is obtained

through a minimization process of the S value. The minimum

S value is denoted by Sm.

The RMSE values expressed in percentage listed in Ta-

ble I, are calculated taking as reference value the maximum

allowed ozone concentration according to the Mexican norm

(0.11 ppm). The following expression was used:

RMSE (1) % = (Sm/0.11) × 100.

The optimal value ropt and the corresponding RMSE percent-

age, RMSE (1) %, are listed in Table I for the different krig-

ing models considered here.

4.2. Testing process

For the variogram model γ(0,s0, ropt) and testing data at the

twenty stations for a testing day j, a cross validation process

is applied by removing one ozone monitoring site from this

data set, interpolating the remaining sites and evaluating the

difference value between measured concentration at the re-

moved site with the respective interpolated value. The RMSE

is calculated for all differences at stations for the chosen test-

ing day j and is denoted by Sj:

Sj =

{

1

20

20
∑

i=1

[

z∗j (xi) − zj(xi)
]2

}1/2

.

The RMSE is evaluated in the same way for all testing days.

The RMSE, S for the testing process is evaluated through

S =
1

10

10
∑

j=1

Sj .
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The corresponding RMSE percentages, RMSE (2) %, are

calculated taking as reference value the maximum allowed

ozone concentration according to the Mexican norm using

the expression

RMSE (2) % = (S/0.11) × 100. (11)

These percentages are listed in Table I for the different

kriging models considered here.

5. Results and discussion

The results obtained for ozone interpolation using IDW and

kriging methods are presented graphically and numerically in

Fig. 2 and in Tables I and II.

In the first column, these tables list the name of the model

considered. The second column lists the parameters that de-

fine the model. The next column indicates the drift order,

zero or one, which indicates that a constant mean or a linearly

varying mean, respectively, is removed from the data set. The

RMSE (1) % column corresponds to the minimum RMSE,

expressed in percentage, for training data. The RMSE (2)%

column are given the RMSE values for the testing data.

In the last column, the generalization parameter G is

given. It represents the generalization capacity of the method,

a concept that is used in artificial neural networks. We ap-

plied this concept to all interpolation methods used in this

work, and the generalization G is defined as the relation-

ship between the minimum RMSE value for the training data,

Sm, and RMSE value for the corresponding testing data,

RMSE (2).

The parameters that define the weights for the IDW

method are the exponent α, which determines the degree of

smoothing, and the radius r, which defines the neighborhood

of interest.

In Table I, the kriging results are shown for the various

models considered. For this method the parameters that de-

fine the variogram are the sill, nugget and range.

As we can see from Tables I and II for all models of the

two methods used, IDW, and kriging (except for the uninter-

esting cases IDW with α= 4, 6 , 8), the results obtained under

the assumption of a linear drift show a lower RMSE for both

training and testing data than results obtained under the as-

sumption of constant drift. This fact shows us the remarkable

effect on the accuracy of the interpolation process of the trend

removal. Furthermore, the IDW models with drift=1 improve

all kriging models with drift =0, except for the uninteresting

cases mentioned above.

From the data in Table I, we can see that for all vari-

ogram models a constant drift produces results with a rela-

tively low generalization value, which means that the RMSE

in the testing procedure is relatively higher than the corre-

sponding RMSE for training data. The generalization con-

stants G have a higher value when linear drifts are considered,

corresponding to improved generalization processes.

TABLE II. Results for standard and optimized IDW methods.

IDW MODEL
PARAMETERS

DRIFTORD
RMSE (1) % RMSE (2) %

GENERALI-ZATION G
ALPHA RADIO(Km.) TRAINING TESTING

STANDARD 1 1 INF 0 18.42845 17.96282 1.03

OPTIMIZED 1 2.1878 23.3294 0 15.92118 16.60173 0.96

STANDARD 2 2 INF 0 16.51218 16.87036 0.98

OPTIMIZED 2 2.83436 INF 0 16.10027 17.01364 0.95

OPTIMIZED 3 2.83436 23.3408 0 15.93909 16.72709 0.95

STANDARD 4 4 INF 0 16.40473 17.65836 0.93

STANDARD 6 6 INF 0 17.10318 18.44636 0.93

STANDARD 8 8 INF 0 17.60464 18.92991 0.93

STANDARD 1 1 INF 1 15.04364 14.84664 1.01

OPTIMIZED 1 1.2902 8.7496 1 14.68545 16.36891 0.90

STANDARD 2 2 INF 1 14.52427 15.366 0.95

OPTIMIZED 2 2.0707 INF 1 14.52427 15.41973 0.81

OPTIMIZED 3 2.0707 8.7496 1 14.75709 16.60173 0.89

STANDARD 4 4 INF 1 15.49136 17.10318 0.91

STANDARD 6 6 INF 1 16.42264 17.96282 0.91

STANDARD 8 8 INF 1 16.95991 18.41055 0.92

Rev. Mex. Fı́s. 53 (6) (2007) 447–454



SPATIAL INTERPOLATION TECHNIQUES FOR STIMATING LEVELS OF POLLUTANT CONCENTRATIONS IN THE ATMOSPHERE 453

FIGURE 2. Crossvalidation scattergrams for the two methods: (a)

IDW with α=1.2902 and r = 8.7496 km; (b) SK-exponential with

nugget=0, sill=6e-4, range=3.9363 km.

In Figs. 2a and 2b, scatter plots are presented for each of

the methods as a help for the analysis of the results. These

plots confirm the numerical results obtained for RMSE in Ta-

bles I and II.

Figures 3a and 3b show the maps for ozone concentration

interpolated levels at 15:00 hours on December 21, 2001, for

particular parameter values of IDW and kriging models, re-

spectively. The small diamond-shaped figures indicate the

station’s positions, and their color indicates the measured

ozone value; at these points, interpolated and measured val-

ues are deliberately the same when kriging or IDW meth-

ods are used for the interpolation, as we can see in Figs. 3a

and 3b.

The interpolated wind field is also shown on these maps.

The magnitude and direction of wind velocity is measured at

15 monitoring stations in the Mexico City region and its val-

ues are provided hourly. Wind field was obtained from values

measured at stations at 14:00 hours on Dec. 21, 2001. The

highest ozone pollution concentrations are found in the north-

west region of Mexico City, as is the wind field convergence

direction. Along their trajectories through the city, deter-

mined by the wind field, primary pollutants, emitted mainly

on the east side of the city, are blown by the wind towards the

northwest side, where they arrive as ozone.

6. Conclusions

If one is faced with data that appear to be samples from re-

alizations of non-stationary random functions, one cannot ig-

nore the apparently non-stationary ones when interpolation

FIGURE 3. Ozone concentration maps for December 21: (a)

IDW with α = 1.2902, r=Inf; (b) SK-exponential with nugget = 0,

sill = 6e-4 and range = 3.9363km In both cases a linear drift was

computed through the least square method. The arrows indicate

the wind velocity field with their length corresponding to wind dis-

placement in a half hour.
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processes are to be considered, because one can obtain unsat-

isfactory results.

In this case, removal of a trend produces a data set for

which interpolation processes obtain noticeably more accu-

rate results, as indicated by a smaller RMSE between mea-

sured and interpolated data. The generalization capacity of

interpolation methods is also improved when a drift is re-

moved from the data. The parameter G value has a higher

value when a linear drift is removed from the data than the G

value obtained when a constant drift is removed. A higher G

value corresponds to an improved generalization process.

Although linear interpolation processes such as IDW and

kriging normally require relatively high sampling densities

and uniformly-spaced sample locations, the relative accuracy

obtained with the application of these methods for estimat-

ing ambient ozone concentrations in Mexico City region was

stimulating.

Although kriging and IDW were tested to interpolate

ozone pollution values, preliminary calculations indicated

that these methods can also be used for other pollutants.
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