
Spatial Joins Using R-trees: Breadth-First Traversal 

with Global Optimizations * 

Yun- Wu Huang Ning Jing 

IBM T. J. Watson Research Center Changsha Institute of Technology 

ywh@watson.ibm.com ningjing@pdns.nudt.edu.cn 

Elke A. Rundensteiner 
Worcester Polytechnic Institute 

rundenst@cs.wpi.edu 

Abstract 

R-tree based spatial join is useful because 
of both its superior performance and the 
wide spread implementation of R-trees. We 
present a new R-tree join method called BFRJ 
(Breadth-First R-tree Join). BFRJ syn- 
chronously traverses both R-trees in breadth- 

first order while processing join computation 
one level at a time. At each level, BFRJ 

creates an intermediate join index and de- 
ploys global optimization strategies (ordering, 

memory management, buffer management) to 
improve the join computation at the next 
level. We also present an experimental eval- 

uation of the proposed optimizations as well 
as a performance comparison between BFRJ 
and the state-of-the-art approach. Our experi- 

mental results indicate that BFRJ with global 
optimizations can outperform the competitor 

by a significant margin (up to 50%). 

This work was supportedin part by the University of Michi- 

gan ITS Research Center of Excellence grant (DTFH61-93-X- 

0001i’-Sub) sponsored by the U.S. Dept. of Transportation and 

by the Michigan Dept. of Transportation. This work was per- 

formed while the authors were at the University of Michigan. 

Permission to copy without fee all OT part of this material is 

granted provided that the copies are not made OT distributed for 

direct commercial advantage, the VLDB copyright notice and 

the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very Large Data Base 

Endowment. To copy otherwise, OT to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the 23rd VLDB Conference 
Athens, Greece, 1997 

1 Introduction 

Spatial data management has become more and more 
crucial in a wide range of applications such as geo- 
graphic information systems, image processing, VLSI, 
and CAD/CAM. A successful spatial database man- 
agement system must provide efficient query functions 
such as spatial joins that combine multiple data sets 
based on a spatial predicate (e.g., intersect or contain) 

[9]. Examples of spatial join queries are Ql: “Find all 

parks which are in a city.” and Q2: “Find all trails 

that go through some forest.” In Ql, the two data sets 

are parks and cities, the spatial predicate is contains, 

whereas in Q2, the two data sets are trails and forests, 

and the spatial predicate is intersects. 

It is well known that processing such spatial join 

queries is an extremely I/O and CPU expensive pro- 
cess. This paper presents a new method for spatial 

joins with a significant performance improvement (up 
to 50%) over the state-of-the-art approach [3]. Like 
other spatial join techniques [3], our method is based 
on existing R-tree indexes for the two input data sets. 
Using R-trees for spatial join processing is effective be- 

cause R-tree (and its variants) has become a very pop- 
ular spatial index structure, e.g., Illustra, Intergraph’s 

GIS databases, Postgres, and MapInfo all offer R-tree 

support. Furthermore, join processing based on R- 
trees has been shown to result in superior performance 
as compared to alternate index structures [15]. 

While the state-of-the-art R-tree join approach [3] 

follows a depth-first order for traversing the two in- 
put R-trees, we demonstrate in this paper that a spa- 
tial join technique based on the breadth-first order- 
ing approach offers new unique opportunities for op- 

timization and thus results in significant performance 
improvements beyond previous solutions. This new 
technique, which we call Breadth First R-tree Join 

396 



(BFRJ), traverses both R-trees synchronously and 

processes join computation level by level. Based on the 
intermediate join results created at a given level, called 

the intermediate join index (IJI), BFRJ can make in- 
formed decisions as to which two nodes from the two 

R-trees respectively are to be joined at the next lower 
level. This is in contrast to the depth-first R-tree join 
approach [3] which has the inherent limitation that 

optimization can only be achieved locally because the 
access pattern for nodes beyond the current scope (i.e., 
local sub-trees) is not captured. 

The IJIs generated by BFRJ instead capture more 
information enabling BFRJ to apply global optimiza- 
tion strategies for effectively managing these IJIs. In 

particular, we propose three such global optimization 
dimensions that include IJI ordering, IJI memory man- 

agement, and buffer management optimizations. 

The IJI ordering optimization incorporates strate- 
gies for ordering each IJI such that page faults are 
minimized during join computation at the next level. 

The IJI memory management optimization determines 
the proper means of storage (main memory buffer or 

secondary storage) for IJIs based on various buffer 
sizes. The buffer management optimization adjusts 

the buffer paging behavior exploiting knowledge avail- 

able in the IJI about which pages are more likely to 
be accessed in the (near) future. 

Our performance studies of BFRJ, like other spatial 
join research in the literature, are based on an exper- 
imental evaluation. We experiment with contrasting 
the respective impacts of alternative solutions for each 

of the three global optimization dimensions for BFRJ. 
We also compare the performance of BFRJ with the 
state-of-the-art techniques in R-tree joins [3]. Our ex- 
perimental evaluation shows that, with the proper se- 

lection of options in global optimizations, BFRJ con- 

sistently outperforms the competitor by up to 50%. 
The rest of the paper is organized as follows. Sec- 

tion 2 discuses related work, while Section 3 provides 

background material on spatial join processing. Sec- 
tion 4 introduces the framework of BFRJ, followed by 
Section 5 where BFRJ global optimizations are pro- 
posed. We present our experimental results in Section 
6 and conclude the paper in Section 7. 

2 Related Work on Spatial Joins 

In [14], the z-ordering technique is used to trans- 

form multi-dimensional data into the l-dimensional 
domain. Spatial join is then conducted on the B+-tree 
structures that store z-ordering values of the spatial 
data. In [16], spatial join indexes are computed us- 
ing Grid files [13] to index the spatial data. In [6], a 
model of the generalization tree is proposed to com- 
pa.re the tree-based spatial joins with the alternative 

approaches. Spatial joins based on depth-first traver- 

sal of R-trees were proposed in [3]. Their techniques 
exploit the R-tree hierarchy by synchronously travers- 

ing subtrees from both R-trees only if the MBRs of 

the subtrees’ root nodes overlap. A variety of CPU 
and I/O optimizations are also presented in [3]. To 
this date, this R-tree join [3] has become the state-of- 
the-art approach for spatial joins when R-tree indexes 

exist for both spatial data sets. Its performance even 
has become the yardstick used by other researchers to 

measure the performance of their proposed non-index 
based spatial join methods [12, 151. 

Besides R-tree joins, recent spatial join research has 
also focused on joining spatial data when the asso- 
ciated spatial indexes do not exist for the data sets. 

When no index exists for the two input data sets, then 

the spatial hash join proposed in [12] uses spatial parti- 
tioning as the hash function. A similar partition-based 
spatial-merge join is also proposed in [15]. 

Like most other recent work on R-tree based joins, 
the BFRJ technique we propose in this paper opti- 
mizes the filter step of spatial join processing (i.e., it 

works at the Minimum Bounding Rectangle (MBR) 
level). In [lo], on the other hand, we present an op- 
timization of the refinement step of spatial join pro- 

cessing, called SID (Symbolic Intersect Detection), for 

which we demonstrate unparalleled performance im- 
provements. Given that SID is complimentary to 
BRFJ, our combined solution of BRFJ + SID thus 
offers a radical improvement of the overall R-tree 
join processing task making it practical for even very 
large spatial data sets as commonly found in advanced 
GIS applications. Finally, newly developed estima- 

tion techniques for spatial join costs [ll] will allow 
for spatial database engines to trade off between us- 

ing these versus other join techniques for processing 

spatial queries. 

3 Background on R-Tree Spatial Joins 

3.1 The R-tree Structure 

R-trees [7] are an extension of B-trees [l] that st,ore 
multi-dimensional data. A non-leaf node in an R-tree 
contains entries of the form < addr, mbr > where addr 
is the address of a child node and mbr is the MBR that 
encloses MBRs of all entries in that child node. A leaf 
node contains entries of the form < oid, mbr > where 

oid refers to a spatial object stored in the database 

and mbr is the MBR of that spatial object. 
In most R-tree variants, entry MBRs are allowed to 

overlap one another [2, 7, 51. This means that there 
may be more than one search path. Recently proposed 
R-tree variants tried to minimize the overlap between 
the entry MBRs. Among them, R*-tree [2] introduces 
heuristics that yield a better query performance. In 

397 



[5], R-trees are constructed in a bottom-up approach 
called the packed R-tree based on the Hilbert curve 
transformation. As a result, the node occupancy rate 

is maximized whereas the overlap between entry MBRs 

is minimized. The experimental results presented in 
this paper are based on packed R-trees. 

3.2 Notations Related to R-tree Joins 

For brevity, we denote the two R-trees used for spatial 

joins as R and S. Below, we present the notations that 

describe R. The notations for S are straightforward. 

] RI is the number of spatial objects indexed by R. 

hR is the height (number of levels) of R. 

lRi is the number of nodes at level i of R, where 

0 5 i < hR. Note that lR” = 1. 

nRf is the i-th tree node at level 1 of R, where 
0 5 1 < hR and 0 2 i < IR’ . Since there is only 

one root node at level 0, we use nR” to denote the 
root node of R. 

eRf is the number of entries in the tree node nRi. 

< oidRj, mbrRi >i is the i-th entry in tree node 

nRj, where 0 _< I< hR, 0 5 j < IR’, 0 < i < eRfi, 

oidRfi is the addr (for non-leaf nodes) or oid (for 

leaf nodes) and mbrRfi is mbr of this entry. 

In this paper, spatial join pertains to MBR-spatial 

joins and the spatial predicate is overlap'. The re- 
sult of the MBR-spatial join, called the candidate set, 
is a set of 2-tuples < oidRhR-I, oidShsvl > where 
oidRhRW1 and oidShS-’ are the spatial object IDS 
from the leaf nodes of R and S respectively such that 

their associated MBRs overlap each other. The MBR- 
spatial join process is called the filter step. To com- 
plete the spatial join process, a spatial intersect algo- 
rithm [lo] is then applied to each item in the candidate 

set to determine if the two objects really overlap. This 
latter process is called the refinement step. 

3.3 Local Optimizations for R-tree Based Spa- 

tial Joins 

In R-tree based spatial joins, such as the techniques 
proposed in this paper and in [3], an important atomic 
operation is to retrieve two nodes, one from each R- 

tree, and join the entry MBRs between the two nodes. 
We call this process a node-pair join. Let nRi and 

nSj (0 _< r < hR and 0 5 s < hS) be the two 
nodes retrieved from R and S respectively. The node- 
pair join between nRi and nS; computes a set of 

‘We use overlap and intersect interchangeably. 

ID pairs < oidR’, oidS’ > such that their associated 

MBRs, mbrR’ and mbrS”, overlap. Local optimiza- 
tions pertain to the techniques that improve the CPU 

cost for node-pair joins. We now describe two lo- 
cal optimization techniques [3], namely search-space- 
restriction and plane-sweep, that are incorporated by 
BFRJ. 

Search Space Restriction. During a node- 
pair join between nRi and nSj, the intersecting 
area between the MBRs of the two nodes is it- 
self an MBR (c.alled intersect-MBR). If an entry 
< oidRz , mbrRi >Z in nRT overlaps an entry < 
oidSjJ , mbrSj” >Y in nSj , both mbrRr and mbrSjJ must 
intersect their intersect-MBR. Therefore, we can scan 
all entries in nRr and nSj once to discard the entries 
whose MBRs do not overlap the intersect-MBR be- 
tween the two nodes. The actual node-pair join takes 

only the selected entries as input. 

Plane Sweep. This optimization is similar to the 
sort-merge join technique used to join two simple data 

sets. During the plane sweep optimization of a node- 
pair join computation between nRf and nS;, we first 
sort the MBR entries in the two nodes respectively. 
To sort multi-dimensional data, we use the low E 
coordinate value of each MBR as the key. In the merge 
process, we scan the two sorted entries of MBRs se- 

quentially based on their ordered key values. For each 

MBR (say mbri), we conduct intersect tests against 
the MBRs from the opposite entry which overlap mbri 
based on their x-coordinate values. 

Local Versus Global Optimizations. The 
search-space-restriction and plane-sweep techniques in- 
corporated by BFRJ are referred to as local optimiza- 
tions because they improve the computation efficiency 
within each node-pair join process [3]. In Section 5. we 

introduce three novel techniques that can further op- 
timize BFRJ by exploiting the inter-relation between 
the node-pair join computations. We call them global 

optimizations. 

4 Spatial Joins Based on Breadth-First 
Traversal of R-Trees 

In this section we present the framework of the pro- 

posed Breadth-First R-tree Join (BFRJ). 

4.1 Search Pruning by Traversing R-Trees 

One important information captured in an R-tree is 
that its hierarchy manifests the enclose relation, i.e., 
the MBR of a tree node always encloses the MBRs of 

its descendant nodes. To take advantage of this prop- 
erty, a node-pair join between nRT and nS;, is only 
needed when the MBR of nRC’s parent node over- 

398 



laps that of nSjJ’s parent node. We call this search 

pruning. Simple top-down graph-traversal algorithms 
can be used to achieve search pruning at all levels. In 

[3], search pruning is done by synchronously traversing 
the two input R-trees depth-first whereas in BFRJ it 
is achieved by synchronized breadth-first traversal of 
both R-trees. The effect of search pruning at all R- 
tree levels is that, starting from the top level, the two 
nodes, one from each R-tree, are only traversed for join 

computation if the MBRs of their parent nodes over- 
lap. Thus, the number of node-pair traversals is re- 

duced by search pruning compared to the nested-loop 
approach. 

Figure 1: Breadth-First R-tree Join (BFRJ) on R-trees 

of the Same Height. 

4.2 The BFRJ Solution 

The BFRJ first conducts a node-pair join between R’s 

root, node (nR”) and S’s root node (nS”) (see Figure 

1). The results are a set of 2-tuples < oidR”, oidS” > 

called intermediate join index at level 0 (IJIo). Be- 

cause we focus on spatial overlap join in this paper, 
each tuple < oidR”, oidS” > specifies that the MBRs 
of the two elements overlap. Next, for each tuple in 
IJIo, BFRJ retrieves the two nodes referenced by each 
tuple item from R and S respectively. It then conducts 
node-pair join between the entries of the two retrieved 
nodes. While BFRJ reads tuples of IJIo for join com- 

put,ation, it stores the join results, also in the form of 
2-tuples < oidRl,oidS’ >, in the current intermedi- 

ate join index at level 1 (IJI1). When it completes join 

computation for all tuples in IJIo, it discards IJIo and 
proceeds to now process the tuples in IJIl for join com- 

putation. This process continues as BFRJ traverses 
down the two R-trees synchronously level by level. It 

terminates when the intermediate join index is created 
by joining the leaf entries in R with the leaf entries in 
S. If the two trees are not of the same height, then 
after reaching the leaf level of one of the two trees, 
say R. then the algorithm will stay at this leaf level 

of R while proceeding to traverse S downwards level 
by level until S’s leaf level is reached as well. At this 

point, the filter step of the spatial join process is com- 

pleted and the current (leaf-level) IJI is the output of 
the spatial join process. 

Figure 1 depicts an example of t,he processing of 
BFRJ between two R-trees with the same height. Not,e 
that nodes 1, 3, 4 from R and nodes 3, 5 from S are 
never read from disk because the search pruning opti- 

mization determines that these nodes are not needed 

for join computation. 

4.3 The BFRJ Algorithm 

Finally, the algorithm that conducts an R-tree spatial 
join based on the above described BFRJ framework is 
given in Figure 2. It assumes that the heights of the 
two input R-trees are the same (hR = hS), however 
a generalization for this BFRJ algorithm for trees of 
unequal height is straightforward and can be found in 
our technical report [8]. 

PROCEDURE BFRJ (R, S) 

// R, S are two R-trees, hR = hS 

// IJI[i] intermediate join index at level i 
DATA STRUCTURES: set IJI[hR] := 0; 

01 IJI[O] := NodePair-Join(nR’, nS”); 

02 // join two root nodes 

03 integer i := 0; 

04 while i<hR-1 do 
05 V < oidRi, oidSi >E IJI[i] do 
06 IJI[i + l] = IJI[i + l] 

07 U Node-Pair-Join(oidRi, oidSi) ; 

08 end do 
09 i := i + 1; //down one level 

IO end while 

11 output IJI[i] ; 

Figure 2: The BFRJ Algorithm (Shown for Input R- 
trees of the Same Height). 

The Node-Pair-Join0 procedure (lines 1 and 5 in 
Figure 2) takes two nodes from the two input R-trees 
respectively and conducts a spatial join between the 
entries in the two nodes. We assume this node-pair 
join process deploys the local optimizations described 

in Section 3.3. 

5 Global Optimizations of BFRJ 

In the BFRJ framework, an intermediate join zndex 

(IJI) at level i (IJIi) . 1s created after all R nodes a.t level 
i are joined with all S nodes at level i. The selection 
of an R node and an S node for node-pair join com- 
putation at level i can now be based on IJIi-1 which 
was generated at the previous higher level (level i - 1). 
We thus have global information at our avail about all 

399 



anticipated accesses of nodes at a given level (includ- 
ing their possible order of access as well as the number 
of times each node gets re-accessed) before processing 

joins at that level. This naturally lends i&elf to the 
application of alternative techniques for the effective 

management of the intermediate join indexes (IJI). 

In this section, we investigate alternative design de- 
cisions on three different IJI optimization dimensions: 

IJI ordering, IJI memory management, and IJI-related 

buffer management. We assume hR = hS in the fol- 
lowing sections. Applying the global optimization to 
cases when hR # hS is a straightforward extension of 
the proposed strategies [8]. 

5.1 Ordering of Intermediate Join Indexes 

Let the MBR of nRi intersect the MBRs of k different 
I-level S nodes, where k: > 1. Then the ID of nRf will 
appear L times in IJIl-1. During the join computation 

at level 1, nRi will participate in the node-pair join 
exactly ,4~ times. With a fixed-sized LRU system buffer, 

node nRi may be read from a disk multiple (up to a) 
times if the k appearances of its ID are widely scattered 
in IJIl-1. This is because the initial and subsequent 
retrievals of nRi may be too far apart, and nRf may 
already be paged out of the buffer by the time it is 
needed again. Therefore, we propose that the IJIs be 

kept in an order so that no multiple appearances of 
t.he same node ID are spread too widely in the IJ1s. 

However, each tuple < oidR, oidS > in IJIs has two 

items by which it may need to be fetched from sec- 
ondary storage. Clustering by one obviously does not 

assure a good clustering for the other. Consequently, 
an effective ordering may need to take into account 
both items of the index tuples in order to achieve bet- 
ter global optimization. We investigate the following 

ordering options2: 

Option 1: No particular ordering (OrdNon). 

OrdNon does not perform global ordering for the Ills. 
The IJI created at each level however is not truly 
randomly ordered because the plane sweep local opti- 

mization partially orders the entries within each node. 
Therefore, t,here may exist many regional orderings in 
each IJI. However, because an MBR from one R-tree 
may overlap more than one MBR from the other R- 

tree, it#s corresponding entry ID may exist in several 
locally ordered regions in the IJI. Therefore, OrdNon 

may not contribute to a good global ordering. 

Option 2: Ordering by items from one tree (Or- 

done). OrdOne sorts the Ibis by the lx’s of items 
from one tree. Because each IJI tuple is composed 
of two items < oidR, oidS >, one from each R-tree, 

2 We now ignore specifying the levels since ordering optimiza- 

t.ion applies to IJIs at all levels. 

ordering based on items from one tree, say oidR, cre- 
ates a perfect clustering for oidR while ignoring the 
clustering of oidS. 

Option 3: Ordering by the sum of the centers 

(OrdSum). For each tuple < oidR, oidS > in IJI, 

OrdSum first calculates the center x coordinate values 
of the MBRs for oidR and oidS, namely: 

CXoidR = (&idR + h&idR)/2. 

CXoidS = (bid.? + hGids)/2. 

OrdSum then sorts the IJI based on the sum of CXoid~ 
and CXoidS. Therefore, 

SortkeY = (lxoidR + hz,idR)/z + (lX,ids + hx,ids)/2. 

Option 4: Ordering by center point (Ord- 

Cen). OrdCen creates an enclosing MBR by com- 
bining oidR’s MBR with oidS’s MBR. It then sorts 
the IJI based on the x coordinate values of the center 

point of the enclosing MBRs. Namely, 

sortkey = (lx,in + hxmar)/2, 

where /x,in is the smaller lx and hx,,% is the larger 
hz between oidR’s MBR and oidS’s MBR. 

Option 5: Ordering by Hilbert curve value of 

the center (OrdHil). OrdHil is similar to OrdCen in 
that it sorts the IJI based on the x-coordinate values 
of the center point of the enclosing MBRs. Instead 

of using the z coordinate values, OrdHil calculates a 
Hilbert curve value for each center point, and sorts the 

IJI by the Hilbert curve values. 

5.2 Memory Management of Intermediate 

Join Indexes 

The Ibis can be stored in main memory or disk. The 
former improves IJI ordering efficiency and eliminates 

additional I/O f s or accessing IJIs while the latter gives 
more main memory space for join computation. 

StorDisk: Storing indexes on disks. In the 
StorDisk approach, the Ibis are stored on disk. During 
the join computation, only one buffer page needs to be 
reserved for them as they can be written out sequen- 

tially. All other buffer pages can be dedicated to join 
computation. The indexes are sorted only after the 
indexes at one level are completely written and before 

join computation starts at the next level. This means 
the entire buffer space can be dedicated to the sorting 
process. During sorting, the Ibis only need to be read 
once if they fit into the buffer, or more than once” if 

31n our experiments, the merge-sort process reads and writes 
the Ibis once for partial sorting, and reads the partially sorted 

indexes once for merging. 



merge-sort is required for a smaller buffer. After sort- 

ing, the join computation at the next level can then 
start based on the ordered indexes. 

StorMem: Storing indexes in main memory. 

StorMem keeps the Ibis at the current level in main 
memory ( IIJlm”” 1 must be smaller than the buffer 

size). This way, join computation has less buffer pages 
available, but the indexes do not need to be shuffled 
between disk and memory. During join computation, 
a special purge technique can be used to remove a in- 
dex page from the active buffer to the free page list if 
all index tuples in this page have been processed for 
join computation. 

5.3 Buffer Management of Intermediate Join 

Indexes 

The ordering optimization (Section 5.1) attempts to 
keep the join indexes in an order such that no two ap- 

pearances of the same ID are spread out too widely. 
However, since a perfect clustering is not possible for 
both tuple items, multiple disk reads for a tree node 

may still happen during join computation. Such mul- 
tiple reads can be further minimized if the buffer man- 
ager can predict which nodes have completed their join 

computation and which ones are to be fetched again in 
the future. This way, the buffer manager may retain 
the node pages to be accessed in the future in main 
memory and purge node pages that have completed 
their join computation from main memory. 

To accomplish such an optimization, we assume the 

buffer manager supports three buffer operations: pin, 

unpin and purge. The pin marks a page in the LRU 
buffer so that this page is retained in memory until it is 
unpinned. The unpin simply removes the pin marker. 

The purge removes a page from the LRU and inserts 
it into the free list of pages that are available for use 

during page faults. 
To predict which tree nodes are to be accessed, a 

counter for each node in both R-trees is kept. Dur- 
ing the generation of each IJI, each appearance of a 
tree node nRT increases its counter by 1. Therefore 

a counter corresponds to the number of appearances 
of its tree node in IJI. After the join computation 
between a node-pair, say nRT and nS;, is complete, 
their counters are both decremented by 1. If a counter 

reaches 0, it means that the tree node associated with 
this counter no longer appears in the remainder of the 
current IJI and will no longer be needed for the rest 
of the spatial join processing of the current IJI. There- 
fore: such a tree node can be unpinned if it has been 
pinned, and purged so that its page can be used imme- 
diately. If a counter remains above 0, its tree node will 
be accessed again in the future. The buffer manager 

can t,hen keep the page of this tree node pinned 4 until 
its counter reaches 0 later on. 

5.4 BFRJ versus Spatial Join Based on 

Depth-First Traversal of R-Trees 

Because the depth-first approach [3] goes not keep 
any global information (such as the intermediate join 

indexes), it requires no additional data structures to 
store the IJls. However, the depth-first approach does 
not have the ability to achieve global optimization by 
doing global ordering or global paging prediction as 
accomplished by our proposed BFRJ technique. This 
is because the order by which each node-pair is to be 

joined is determined by the recursive depth-first se- 
quence that consequently makes it difficult to globally 

modify any ordering of traversal. Another major dif- 
ference between BFRJ and the depth-first approach is 
that BFRJ never traverses upwards in an R-tree while 
the depth-first approach traverses upwards as part of 
function returns of the recursive routines. Therefore, 
redundant disk access of the same page may happen 
to BFRJ while processing joins at the same level if 

the ordering of the intermediate join indexes is not 

optimized, whereas it may happen to the depth-first. 
approach only during backtracking (hence leaving not 
much of an opportunity for optimization). 

6 Experimental Results 

Our performance studies are based on experiments 
conducted on a testbed implemented in C++ on a 

SUN Spare-20 workstation running the UNIX oper- 
ating system. The testbed includes the BFRJ with all 
optimizations introduced in this paper, the spatial join 

techniques proposed in [3], an l/O buffer manager, and 

other supporting data structures and procedures. 
We use real-world test data that consists of a data, 

set of streets (131,461 objects) and a. data set of rivers 
and railway tracts (128,971 objects) from an area in 
California. The data is derived from the TIGER/Line 
files distributed by the US Census Bureau [4]. We 
created two Hilbert curve packed R-trees [5], each for 
a data set, with the page size set to 4 KBytes. 

6.1 Experiments on Intermediate Join Index 

Ordering Optimizations 

We implemented IJI ordering optimization options 

OrdNon, OrdOne, OrdSum, OrdCen, and OrdHil, and 
conducted BFRJ spatial join on the two pa.ckecl R- 
trees for each option by varying buffer sizes from 100 
KBytes to 1,200 KBytes. We fix the other global opti- 
mization options to StorDisk and PinNo, meaning we 

4 We assume if all pages E~IY pinned, the buffer manager un- 

pins and purges the least recently used page. 

401 



store the intermediate join indexes on disk and we do 
not deploy the pinning optimization. 

Because the I/O costs with smaller buffers are very 
high, the performance difference with larger buffers 

cannot be clearly seen. For clarity, we separate the 
I/O results into two charts (Figures 3 and 4) based 

on buffer sizes. Note that the horizontal line marked 
optimal in both figures (and subsequent figures) rep- 
resents the theoretical lower bound of page I/O based 
on the two packed R-trees5 used for testing. 

The results in Figure 3 show that OrdOne outper- 
forms all other alternatives in I/O for all buffer sizes 
(100 KBytes - 500 KBytes) except for the case of buffer 
size 100 KBytes where OrdOne is second to OrdHil. 
We believe processing spatial joins with only an avail- 
able buffer size of 100 KBytes is an extreme case, given 

that modern databases tend to have a large system 
buffer. Therefore, when the buffer size is moderate 
(2 500 KBytes), OrdOne is the best choice in IJI or- 

dering optimization. From Figure 4, we can see that 
OrdSum is the clear winner when a more generously- 

sized buffer (2 600 KBytes) is available. 

9000 

z 
p 8000 

4 
I 7000 

5 6000 
‘t 

: B 5000 

0 4000 

z 3000 
c 

2000 

r 
l/O On Packed R-trees (StorDisk, PinNo) 

1:-~ 

L ._._ _.._....... 
100 200 300 400 500 

Buffer Size (KByte) 

Figure 3: I/O Cost on Ordering Optimization (Small 

Buffers). 

The OrdSum option outperforms others with larger 
buffer sizes because it orders the IJIs by taking the 
spatial locations (on x-axis) of both tuple items into 

account. However; its storage locality spreads wider in 
order to cover both items. Therefore OrdSum has the 

best performance if a larger buffer that can cover Ord- 
Sum’s storage locality is available. If the buffer is too 

small to cover the locality, OrdSum’s performance de- 
teriorates dramatically. For smaller buffers, sorting by 

one item (OrdOne) performs better because its storage 
locality does not spread as widely as in OrdSum. 

Our separate CPU results (not shown due to space 
limitation) reveal that the differences in CPU cost 

5 Because our two test data are evenly distributed in the same 
area, the optimal lower bound is equal to the sum of the number 
of tree nodes in both R-trees. 

l/O On Packed R-trees (StorDisk. PinNo) 

1 
2600 

5 
$? 2600 
c 
8 2400 

2 
z 

2200 

g 2000 
z 
0” 1600 
: 

2 1600 
l- 

1400 

1200 k I 

600 700 800 900 1000 1100 1200 
Buffer Size (KByte) 

Figure 4: I/O Cost on Ordering Optimization (Large 

Buffers). 

among OrdNon, OrdOne, OrdSum, and OrdCen are 

negligible, whereas the CPU cost of OrdHil is consis- 

tently higher than others. This is because computing 
the Hilbert curve values requires additional CPU time, 
making OrdHil the most CPU expensive option. 

6.2 Experiments on Intermediate Join Index 
Memory Management Optimizations 

To evaluate IJI memory management optimization, 
we experimented with StorDisk and StorMem options. 
Because the estimated size of the largest intermedi- 

ate join index is already about 100 KBytes for our 

test data, we test the memory management options 

by ranging buffer sizes starting from 200 KBytes to 
1,200 KBytes. Based on the previous experimental re- 
sults, we select OrdOne and OrdSum as the ordering 
optimizations. 

l/O On Packed R-trees (PinNo) 

I; 

8000 

3 
0 % 7000 

‘%t 
B 

6000 

2. 
b: 

5000 

B 4000 

s 
_m 3000 

z 
2000 

OrdOne, StorDisk - 
OrdSum, StorDisk ---+--- 
OrdOne, StorMem ... -*--- 
OrdSum. StorMem o 

I--~-------------~--------------~------------~-----------.,--~ 
200 300 400 500 600 

Buffer Size (KByte) 

Figure 5: I/O Cost on Memory Management (Small 
Buffers). 

For this set of experiments, we also separate the I/O 

results into two charts based on buffer sizes. The re- 
sults in Figure 6 show that StorMem starts to outper- 
form StorDisk in I/O when the buffer size is larger than 

402 



800 KBytes. The reason StorMem performs so poorly 
with smaller buffers is that it needs additional main 
memory to store the join indexes (Figure 5). Thus, 

join computation in StorMem has less buffer pages to 
work with, thereby creating a buffer contention over a 
limited number of buffer pages. 

Although StorMem outperforms StorDisk in I/O 
when the buffer sizes are large (> 800 KBytes in Figure 
6), its performance on a smaller buffer is much worse 

than StorDisk. Besides, when the buffer size is smaller 
than the size of the largest join index (< 100 KBytes), 

StorMem is not applicable. Therefore, StorDisk is 
a more viable option with small- or moderate-sized 
buffers, whereas StorMem become advantageous when 
a large buffer is available. 

I/O On Packed R-trees (PinNo) 
2200 , I I 

3 
$!I 2000 - 

% 

E 
e 1800 - 

” 

t 
$ 1600 - 

0 
A 
is 
B 1400 - 
k 

he, StorDisk - 
urn, StorDisk ----*--- 
ne. StorMem ----.I---- 
Im. StorMem 8 

-----I 
1200 ’ ’ 

700 800 

I 

900 1000 1100 1200 
Buffer Size (KByte) 

Figure 6: I/O Cost on Memory Management (Large 

Buffers). 

Our separate CPU results (not shown due to space 
limitation) reveal that StorMem can improve the CPU 

usage time over StorDisk, but not very significantly. 

6.3 Experiments on Intermediate Join Index 

Buffer Management Optimizations 

To test the effect of the (pinning optimization) de- 
scribed in Section 5.3, we implemented this buffering 
strategy and use PinYes to denote that the pinning 
opt,imization is applied, and PinNo to denote other- 
wise. Because so far we have identified that OrdOne 
works the best for smaller buffers and OrdSum has the 

best performance for larger buffers, we conduct exper- 
iments on the pinning optimization based on OrdOne 

with smaller buffers and OrdSum on larger buffers sep- 
arately. For the first set of experiments (Figure 7), we 

run BFR.J based on OrdOne with both pinning opti- 
mizations by varying buffer sizes from 100 KBytes to 
500 KBytes for StorDisk option, and from 200 KBytes 
t.o 500 KBytes for StorMem option. We do not test 
StorMem with a 100 KBytes buffer because we need 

about 100 KBytes just to store the intermediate join 

indexes in the main memory buffer. For the second set 

(Figure 8), we run BFRJ baaed on OrdSum with both 

pinning optimizations and vary the buffer sizes from 
600 KBytes to 1,200 KBytes. 

10000 , 1 
I/O On Packed R-trees (OrdOne) 

I 

9000 

5 

0 8000 
B 

E 7000 

B 
N 6000 

I B 5000 

g 4000 

m z 3000 

i 

StorMem, PinYes - 
StorMem, PinNo ----*--- 
StorDisk, PinYes .. --f---- 
StorDisk. PinNo 0 

Optimal -.- 

l.*.- ~..... ~ . . . . . . . . . . . ..___._.......... 1 

100 200 300 400 500 
Buffer Size (KByte) 

Figure 7: I/O Cost on Buffer Management (Small 
Buffers). 

2800 f\ 
I/O On Packed R-trees (OrdSum) 

2600 
3 
0 

% 
240’3 

g 2200 
Y 

5. 
I 

2000 

B 1800 

$ 
m 1600 
z 

+ 1400 

StorMem, PinYes - 
StorMem, PinNo ----*--- 
StorDisk. PinYes *. 
StorDisk. PinNo e 

1200 ’ a I 

500 600 700 800 900 1000 1100 1200 
Buffer Size (KByie) 

Figure 8: I/O Cost on Buffer Management (Large 

Buffers). 

The results in Figure 7 show that, when the buffer 
is very small (< 300 KBytes), the combined option of 
StorDisk and PinNo works the best with OrdOne, al- 
though combining StorMem and PinYes out,performs 
StorDisk/PinNo for OrdOne for a more moderate 
buffer size (400 KBytes - 500 KBytes). When t#he 
buffer sizes are larger, the results in Figure 8 indicate 

that StorMem/PinYes with OrdSum achieves the op- 
timal performance when the buffer size is greater than 
700 KBytes, and StorDisk/PinYes with OrdSum per- 
form very close to the optimal when the buffer size is 

greater than 600 KBytes. The reason that the per- 
formance of StorDisk/PinYes with OrdSum can only 

be very close to the optimal is that StorDisk has an 
overhead of transferring the join indexes bet,ween disks 
and main memory. We did not show the comparison in 
CPU time because our test results do not show any no- 
ticeable difference between PinNo and PinYes options. 

403 



Therefore, I/O is the dominant factor in determining 
t,he performance between PinYes and PinNo. 

We conclude that when the buffer size is relatively 

small, OrdOne/StorDisk/PinNo is the most att$ractive 
combination. With a moderate buffer size, the com- 

bination of OrdOne/StorMem/PinYes starts t,o out- 

perform OrdOne/StorDisk/PinNo. When the buffer 
sizes are larger, the pinning optimization is effec- 
tive for OrdSum as both OrdSum/StorMem/PinYes 

a.nd OrdSum/StorDisk/PinYes have excellent perfor- 
mance, with OrdSum/StorMem/PinYes slightly better 
because it does not require any overhead in transfer- 
ring the IJIs between disk and main memory. 

6.4 Comparing BFRJ with the State-of-the- 

Art R-Tree Join 

Overall Performance On Packed R-trees 

c 80000 
E 
E 70000 
F 

c 
B 

60000 

; 50000 

F 0 40000 

30000 

I 

200 300 400 500 
Buffer Size (KByle) 

Figure 9: Overall Cost: BFRJ Vs. DFRJ (Small 

Buffers). 
Overall Performance On Packed R-trees 

38000 I’ 

32000 

260X+ , , , , , ,j 

600 700 800 900 1000 1100 1200 
Buffer Size (KByte) 

Figure 10: Overall Cost: BFRJ Vs. DFRJ (Large 
Buffers). 

We have implemented the state-of-the-art R-tree 
join technique with proper optimizations presented in 
[3]. We call it Depth-First R-tree Join, or DFRJ. 

To compare with DFRJ, we choose two combina- 
tions of global optimizations in BFRJ, namely Or- 

dOne/StorDisk/PinNo (denoted as Combol) and 
OrdSum/StorMem/PinYes (denoted as Combo2). 
The choice of the two combinations is based on the re- 

sults of the previous experiments where we concluded 
that. Combo1 is among the best options for small 

buffers, and Combo2 is t*he best for large buffers. We 
ran experiments varying buffer sizes from 100 KBytes 
to 1,200 KBytes for both Combo1 and DFRJ, and 

from 200 KBytes to 1,200 KBytes for Combo2. The 
Combo2 option stores IJIs in the main memory buffer 
and therefore is not applicable when the available 
buffer is very small. We collected both the I/O and 
CPU results and combined them using the following 
formula: 

t = c + (m. x p), 

where t is the total cost, c be the CPU usage time 
in ms, p be total number of page I/OS incurred during 
spatial join query computation, and m be the average 

page access time. 

To compute t , we need to estimate the m value since 
our experimental results have already yielded the c and 
p values. In this paper, we assume m = 10 ms for 
each 4-KByte page. In theory, the total page a.ccess 
time is the sum of the seek time, latency time, and 
transfer time. The 10 ms page access time that we use 
here is derived from the performance specifications of 

one class of modern disk drives, namely the Seagate 
Barracuda 2LP family disk drives [17] 6. 

The results in Figure 9 show that Combo1 has a. 
better overall performance than DFRJ and Combo2 

when the buffer sizes are small. When a larger buffer 

is available, the results in Figure 10 indicate that 
Combo2 outperforms both Combo1 and DFRJ by a. 
significant margin (up to 50%). Our separate I/O and 
CPU results (not shown due to space limitation) indi- 
cate that the CPU difference among the three options 

is very small while the I/O cost becomes the dominant 

factor in overall performance. 

7 Conclusions 

In this paper, we present a new spatial join method 
that is based on breadth-first traversal of R-trees, 

called Breadth-First R-tree Join (BFRJ). Whereas the 
state-of-the-art technique in R-tree spatial joins re- 
lies on local optimizations for performance improve- 

ment, our proposed BFRJ is capable of both local and 
global optimizations. In particular, three dimensions 
for global optimization are proposed for BFRJ, i.e., the 
ordering, memory management, and buffer manage- 
ment optimizations of the intermediate join indexes, 

6 This family of hard drives have an average seek time between 
8 and 9 ms, an average latency time of 4.17 ms, and an average 

t.ransfer time for a 4-KByte page between 0.4 and 0.6 ms. 

404 



with alternative solution techniques identified for each 

of these three dimensions. 
We conducted an extensive experimental evaluation 

of the performance of BFRJ using real GIS data sets 
from the US Census Bureau. Our experimental re- 
sults give insights into selecting the best combination 
of global optimization strategies based on the available 
system resources such as the buffer space. Our results 

also show that with the proper selection of options in 
global optimizations, BFRJ consistently outperforms 

the competitor by up to 50%. 

Acknowledgements. We would like to thank 

all students in the University of Michigan Database 
Group (UMDG) for their help and suggestions for this 
work and its presentation. In particular, we thank 
Matthew Jones, Nauman Chaudhry, Stacie Hibino, 

Anisoara Nica, Viviane Crestana, Lei Zhou, and Amy 

Lee. 

References 

PI 

PI 

I31 

PI 

[51 

PI 

VI 

PI 

PI 

PO1 

Bayer, R. and McCreight, E., “Organization and 
Maintenance of Large Ordered Indexes”, Ac2a In- 
formutica, Vol. 1, No. 3, 1972, pp. 173 - 189. 

Bechmann, N., Kriegel, H., Schneider, R., and 
Seeger, B., “The R*-tree: An Efficient and Ro- 
bust Access Method for Points and Rectangles”, 
Proc. of the 1990 ACM SIGMOD Int. Conf. on 
Management of Data, May 1990, pp. 322 - 332. 

Brinkhoff, T., Kriegel, H., and Seeger, B., “Effi- 
cient Processing of Spatial Joins Using R-trees”, 
Proc. of the 1993 ACM SIGMOD Int. Conf. on 
Management of Data, 1993, pp. 237 - 246. 

Bureau of Census., “Tiger/Lines Precensus Files: 
1990 Technical Documentation”, Technical re- 
port, Bureau of Census, Washington, D.C., 1989. 

Faloutsos, C. and Kamel, I. “On Packing R-tree,” 
Proc. of the CIKM, 1993, pp. 490 - 499. 

Gunther, O., “Efficient Computation of Spatial 
Joins,” Proc. of the 9th Int. Conf. on Data Eng., 
1993, pp. 50 - 59. 

Guttman, A., “R-tree: a dynamic index structure 
for spatial searching”, Proc. of the 1984 ACM 
SIGMOD Int. Conf. on Management of Data, 
1984, pp. 45 - 57. 

Huang, Y.W., Jing, N., and Rundensteiner, E.A., 
“BFRJ: Global Optimization of Spatial Joins Us- 
ing R-trees,” Dept. of Computer Science, Worces- 
ter Polytechnic Institute, Tech. Report WPI-CS- 
TR-97-5, Jan. 1997. 

Huang, Y.W., Jing N. and Rundensteiner, E. A., 
“Integrated Query Processing Strategies for Spa- 
tial Path Queries,” IEEE Int. Conf. on Data En- 
gineering, Birmingham, UK, April 1997. 

Huang, Y.W., Jones, M. and Rundensteiner, 
E. A., “Improving Spatial Intersect Joins Using 
Sympolic Intersect Detection,” 5th Int. Symp. on 
Large Spatial Databases, Berlin, Germany, 1997. 

Pll Huang, Y.W., Jing N. and Rundensteiner, E. A., 
“A Cost Model for Estimating the Performance 
of Spatial Joins Using R-trees,” 9th Int. Conf. on 

Scientific and Statistical Database Management, 
Olympia, Washington, Aug. 1997. 

WI Lo? M.L. and Ravishankar, C.V., “Spatial Hash- 
Jams.” Proc. of the 1996 ACM SIGMOD Int. 
Conf.’ on Management of Data, June 1996, pp. 
247 - 258. 

P31 

1141 

Nievergelt, J. and Hinterberger, H., “The Grid 
File: A Adaptable, Symmetric Multikey File 
Structure”, ACM Transactions on Database Sys- 
tems, Vol. 9, No. 1, Mar. 1984, pp. 39 - 71. 

Orenstein, J.A., ‘Spatial Query Processing in an 
Object-Oriented Database System”, Proc. of the 
1986 ACM SIGMOD In-t. Conf. on Management 
of Data, 1986. 

P51 Pate!, J.M. and Dewitt, D.J., “Partition Based 
Spatial-Merge Join,” Proc. of the 1996 ACM SIG- 
MOD Int. Conf. on Management of Data, June 
1996, pp. 259 - 270. 

WV 

1171 

Rotem, D., “Spatial Join Indices,” IEEE 7th Int. 
Conf. on Data Engineering, 1991, pp. 500 - 509. 

Seagate Corporation, “Performance Specifica- 
tions for Barracuda 2LP Family Disk Drives,” 
http://www:seagate.com, 1996. 

WI Sellis, T., Roussopoulos, N. & Faloutsos, C, 

“The @-Tree: A Dynamic Index for Multi- 
dimensional Objects,” Proc. of the VLDB Conf., 
Brighton, England, 1987, pp. 3 - 17. 

405 


