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Abstract: Spatial data with covariate measurement errors have been commonly ob-

served in public health studies. Existing work mainly concentrates on parameter

estimation using Gibbs sampling, and no work has been conducted to understand

and quantify the theoretical impact of ignoring measurement error on spatial data

analysis in the form of the asymptotic biases in regression coefficients and vari-

ance components when measurement error is ignored. Plausible implementations,

from frequentist perspectives, of maximum likelihood estimation in spatial covariate

measurement error models are also elusive. In this paper, we propose a new class of

linear mixed models for spatial data in the presence of covariate measurement er-

rors. We show that the naive estimators of the regression coefficients are attenuated

while the naive estimators of the variance components are inflated, if measurement

error is ignored. We further develop a structural modeling approach to obtaining

the maximum likelihood estimator by accounting for the measurement error. We

study the large sample properties of the proposed maximum likelihood estimator,

and propose an EM algorithm to draw inference. All the asymptotic properties

are shown under the increasing-domain asymptotic framework. We illustrate the

method by analyzing the Scottish lip cancer data, and evaluate its performance

through a simulation study, all of which elucidate the importance of adjusting for

covariate measurement errors.
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1. Introduction

Spatial data are common in ecology, environmental health and epidemiol-
ogy, where sampling units are geographical areas or spatially located individuals
(Cressie (1993)). Analysis of spatial data is challenged by the spatial correlation
among the observations. Mixed effects models provide a convenient framework
to model the spatial correlation using random effects that are assumed to follow
some spatial correlation structure, such as the conditional autoregressive (CAR)
structure (Yasui and Lele (1997) and Waller, Carlin, Xia and Gelfand (1997)) or
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the Matèrn correlation structure (Stein (1999)). Asymptotic theory for spatial
linear mixed models was established by Mardia and Marsh (1984).

Spatial data are susceptible to measurement errors in covariates. For exam-
ple in ecological studies, covariates are often collected from a small survey sample
in each area and sample averages are used as surrogates for the true population
aggregated values, such as the percentage of smokers in a county (Xia and Carlin
(1998)). Measurement errors can be substantial when the areas are small, es-
pecially in nutritional ecological studies (Prentice and Sheppard (1995)), where
additional measurement errors arise due to inaccuracy in measuring nutrition in-
takes, such as fat intake, using conventional instruments, and 24 hour food recall.
In environmental health studies, the air pollution level, e.g., PM10 or ozone, in
an area is difficult to measure and is often approximated by using the distance
from a polluted site or by using the measures at a few monitoring sites (Carroll,
Chen, George, Li, Newton, Schmiediche and Wang (1997)).

There is a vast literature on modeling measurement error for independent
data. For an overview, see Carroll, Ruppert and Stefanski (1995). Several au-
thors have considered measurement error in covariates in generalized linear mixed
models for clustered data, such as longitudinal data (Wang and Davidian (1996)
and Wang, Lin, Gutierrez and Carroll (1998)). However, only limited work has
been done in modeling measurement error in covariates for spatial data. Bernar-
dinelli, Pascutto, Best and Gilks (1997) and Xia and Carlin (1998) accounted for
measurement error in covariates using hierarchical models in disease mapping.
These authors mainly concentrated on parameter estimation using Gibbs sam-
pling. Little is understood about the theoretical effect of measurement error on
the asymptotic biases in regression coefficients and variance components when
measurement error is ignored. To our knowledge, our work is the first attempt
to understand the theoretical properties of maximum likelihood estimation in
spatial measurement error mixed effects models.

We first study the asymptotic bias in the naive estimator when measurement
error is ignored. Our results show that ignoring measurement error results in
attenuated regression coefficients and inflated variance components. We then
proceed by applying the structural modeling approach to make valid maximum
likelihood inference by accounting for measurement error. An EM algorithm is
proposed to compute the maximum likelihood estimator. The proposed methods
are illustrated through an application to the Scottish lip cancer data and their
performance is evaluated through a simulation study.

2. The Spatial Linear Mixed Measurement Error Model

Suppose that the data are obtained from n geographical areas with continu-
ous outcome variable Yi, unobserved true covariate Xi (assumed to be a scalar),
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observed Xi-related covariate Wi, and other accurately observed covariates Zi

at the ith area (i = 1, · · · , n). Conditional on the site-specific random effects bi

that model the spatial correlation, the spatial linear mixed model of Y given X

and Z can be written as

Yi = β0 + Xiβx + ZT
i βz + bi + εi, (2.1)

where the random effect vector (b1, . . . , bn) is N{0,V(θ)} and θ is a vector of
variance components, the residuals εi are N(0, σ2

ε ), and bi and εi are independent
of each other and of the covariates X and Z.

The covariance matrix V(θ) models the spatial correlation and admits many
choices. For instance, we might parameterize the (i, j)th component of V(θ) as
Vij(θ) = θρ(‖si − sj‖), where correlation function ρ(.) is an isotropic correlation
function that decays as the Euclidean distance dij = ‖si − sj‖ between two
individuals increases. A widely adopted choice for this correlation function is
the Matèrn function [(2η

√
νd)νKν(2η

√
νd)]/[2ν−1Γ(ν)], where η measures the

correlation decay with the distance and ν is a smoothness parameter, Γ(·) is the
conventional Gamma function and Kν(·) is the modified Bessel function of the
second kind of order ν (see, e.g., Abramowitz and Stegun (1965)). This spatial
correlation model is rather general, special cases including the exponential model

ρ(d) = exp(−d) (2.2)

when the smoothness parameter ν = 0.5 and the ‘decay parameter’ η = 1, and
the Gaussian correlation model

ρ(d) = exp(−d2) (2.3)

corresponding to ν → ∞ and η = 1 (see, e.g., Waller and Gotway (2004, p.279)).
Our theoretical development in the ensuing sections focuses on these two widely
used cases of the Matèrn family.

The conditional auto-regressive (CAR) structure is also a popular choice. It
has appealing theoretical properties, computational advantages, and attractive
interpretation (Cressie (1993)). A common CAR structure takes the form (Yasui
and Lele (1997))

V = θ(I − γMQ)−1M = θ(M−1 − γQ)−1, (2.4)

where Q = {qij} is an n×n symmetric matrix; M is an n×n diagonal matrix with
diagonal elements 1/qi+, with qi+ =

∑
j qij , −1 < γ < 1 is the spatial dependence

parameter that controls the amount of information in an area provided by its
neighbors, and θ is a scale parameter. The quantity qij controls the strength of
connection between areas i and j, and often takes value 0 when areas i, j are not
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neighbors. When area i and area j are neighbors, a common choice is qij = 1
to reflect equal weights from neighboring areas. Note the flexibility of the CAR
structure that allows a more general neighborhood concept than geographical
proximity.

In the presence of measurement error we cannot observe X directly, but see
instead its error-contaminated version W . The spatial linear mixed measurement
error model is completed by assuming an additive measurement error model to
relate W and X as

Wi = Xi + Ui, (2.5)

where Ui is the measurement error and is N(0, σ2
u) independent of the unobserved

covariate Xi. Note that the measurement error variance σ2
u often needs to be

estimated using replicates or a validation data set.
Since the covariate X is unobserved, we use the structural modeling approach

in the measurement error literature (Carroll, Ruppert and Stefanski (1995)) by
assuming a parametric model for X, and proceed with maximum likelihood es-
timation. The classical measurement error model often assumes X to be an in-
dependent and identically distributed Gaussian random variable. However, since
we are dealing with spatial data, it is likely that spatial correlation exists not
only in the outcome variable Y , but also in the covariate X. Hence we assume a
spatial linear mixed model for the unobserved covariate X,

Xi = α0 + ZT
i αz + ai + ei, (2.6)

where the random effect vector (a1, . . . , an) ∼ N{0,Σ(ζ)}, Σ(ζ) models the
spatial correlation among the Xi, and the residuals ei are independent N(0, σ2

e).
We assume the ai and the ei are independent of the Zi. Let W = (W1, . . . ,Wn)T ,
with X, Y, Z, a, b defined similarly. Note that we allow the spatial correlation
structure Σ(ζ) among the Xi to be different from the spatial correlation structure
V(θ) among the Yi. In practice, since X and Y both come from the same area,
it is often reasonable to assume that they share the same spatial correlation
structure with possibly different parameter θ and ζ.

It follows that the likelihood of the observed data Y, W conditional on Z is

L(Y,W|Z) =
∫

L(Y|X,Z)L(W|X,Z)L(X|Z)dX.

Since all the conditional distributions inside the integral are Gaussian, the joint
distribution of (Y,W|Z) has the closed form

`(Y,W|Z) = −(2n)
2

ln(2π)−1
2

ln |Λ|−1
2

(
Y−µy

W−µw

)T

Λ−1

(
Y−µy

W−µw

)
, (2.7)
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where µy = (β0 + βxα0)1 + Z(βxαz + βz), µw = α01 + Zαz, and

Λ = cov(Y,W|Z) =

(
β2

xΣ(ζ)+V(θ)+(β2
xσ2

e + σ2
ε )I βx{Σ(ζ)+σ2

eI}
βx{Σ(ζ) + σ2

eI} Σ(ζ)+(σ2
e + σ2

U )I

)
,

with I an n-dimensional identity matrix.

3. The Asymptotic Bias Analysis

It is of substantial interest to investigate the effect of measurement error by
investigating the bias caused by ignoring measurement error, i.e., simply replacing
X in model (2.1) by its error-prone version W . This problem, albeit common
in spatial data and cautioned by many authors, is never formally addressed.
Specifically, the direction and magnitude of biases in naive estimators obtained by
ignoring measurement error are not well understood. The goal of this section is to
study their asymptotic biases. Our asymptotic bias analysis shows that ignoring
measurement error results in an attenuated regression coefficient estimator and
an inflated variance component estimator.

We assume the spatial linear mixed measurement error model (2.1) only
contains a single covariate X (no Z) with

Yi = β0 + Xiβx + bi + εi,

Xi = α0 + ai + ei,
(3.1)

where the distributions of bi, εi, ai, ei are the same as those in (2.1) and (2.6).
The naive estimators of (β0, βx, θ, σ2

ε ) are obtained by simply replacing Xi with
the error-prone observation Wi and fitting

Yi = β0,naive + Wiβx,naive + bi,naive + εi,naive, (3.2)

where bi ∼ N{0,V(θnaive)} and εi ∼ N(0, σ2
ε,naive). Let W = (1,W), βnaive =

(β0,naive, βx,naive)T , Λnaive(ϑ)=V(θnaive)+σ2
ε In, and ϑnaive = (θnaive, σ

2
ε,naive)

T def
=

(ϑ1, ϑ2)T . The naive estimates would be obtained by maximizing the likelihood
which ignores measurement error,

−n

2
log(2π) − 1

2
log |Λnaive| −

1
2
(Y − Wβnaive)

TΛ−1
naive(Y − Wβnaive). (3.3)

Specifically, they solve
1
n

WTΛ−1
naive(Y − Wβnaive) = 0

1
2n

[
(Y − Wβnaive)

T ∂Λnaive

ϑj
Λ−1

naive

∂Λnaive

ϑj
(Y − Wβnaive)

−tr
(
Λ−1

naive

∂Λnaive

ϑj

)]
= 0. (3.4)
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We seek the probability limits of the naive estimates as functions of the true
values as n → ∞; with a slight abuse of notation, these are βnaive and ϑnaive.

We resort to the increasing domain asymptotics framework when studying
bias, this as opposed to infill asymptotics. Zhang and Zimmerman (2005) com-
pared these two frameworks and found that, for certain consistently estimable pa-
rameters of exponential covariograms, approximations corresponding to the two
frameworks perform about equally well, but for those parameters that cannot be
estimated consistently or are highly correlated, infill asymptotic approximation
may be preferable. It is usually difficult to derive infill asymptotic properties, so
the increasing domain asymptotic framework is used in this work.

Consider Λ in (3.3), which depends on ϑ = (θ, σε)
def
= (ϑ1, ϑ2). Let Λi =

∂/∂ϑiΛ(ϑ) and Λij = ∂2/∂ϑi∂ϑjΛ(ϑ), where the differentiation is element-wise
for i, j = 1, 2. Now let λ1 ≤ · · · ≤ λn be the eigen-values of Λ, and let those of Λi

and Λij be λi
k and λij

k for k = 1, . . . , n, respectively, with |λi
1| ≤ · · · ≤ |λi

n| and
|λij

1 | ≤ · · · ≤ |λij
n | for i, j = 1, 2. We consider the following modified regularity

conditions of Mardia and Marsh (1984).
(c.1) lim supλn < ∞, lim sup |λi

n| < ∞, lim sup |λij
n | < ∞, for all i, j = 1, 2.

(c.2) ||Λi||−2 = O(n−(1/2)−δ) for some δ > 0, i = 1, 2, ||A|| =
√

tr(ATA).

(c.3) A = (aij)2×2 is invertible, where for all i, j = 1, 2, aij = {tij/(tiitjj)1/2}
exists and tij = tr(Λ−1ΛiΛ−1Λj).

(c.4) lim(WT W)−1 = 0.

These conditions ensure the growth and convergence of the information ma-
trix from (3.3), which allows the usage of the general results of Sweeting (1980) to
guarantee the convergence of the naive estimates. In practice, (c.1) and (c.2) are
difficult to verify. However, using some basic matrix norm properties, we show
in Appendix A.0 that the common geostatistical models, for example the expo-
nential, Gaussian, and CAR models, satisfy (c.1) and (c.2). Condition (c.3) is an
identifiability condition, ensuring that the variance components (ϑ1, ϑ2) are not
linear dependent, which is satisfied in our settings. Condition (c.4) ensures that
the observed covariates are not trivial and is satisfied for the measurement error
models (2.5) and (2.6). Then if (c.1)−(c.4) hold, required limits exist (Sweeting
(1980)) and satisfy the asymptotic equations (Harville (1977)),

lim
n→∞

1
n

E
{

WTΛ−1
naive(Y − Wβnaive)

}
= 0,

lim
n→∞

1
2n

[
E

{
(Y−Wβnaive)

T ∂Λnaive

ϑj
Λ−1

naive

∂Λnaive

ϑj
(Y−Wβnaive)

}
−tr

(
Λ−1

naive

∂Λnaive

ϑj

)]
= 0, (3.5)



SPATIAL LINEAR MIXED MODELS WITH COVARIATE MEASUREMENT ERRORS 1083

where the expectations are taken under the true law of (Y,W) in (2.1) (omitting
Z). In particular, we can calculate the asymptotic biases in the naive regression
coefficients βnaive. The result is summarized in Theorem 1 and the proof is given
in Appendix A.1 (on-line supplement), which can be found on-line at http:

//www.stat.sinica.edu.tw/statistica.

Theorem 1. (Asymptotic Biases in the Regression Coefficients) Under (c.1)−
(c.4), the following hold.

(i) The probability limit of the naive estimator βnaive is

βx,naive = λ∗βx, β0,naive = β0 + α0(1 − λ∗)βx, (3.6)

where

λ∗= lim
n→∞

tr
[
{V(θnaive) + σ2

ε,naiveI}−1{Σ(ζ) + σ2
eI}

]
tr
[
{V(θnaive)+σ2

ε,naiveI}−1{Σ(ζ)+σ2
eI}

]
+σ2

utr
[
{V(θnaive)+σ2

ε,naiveI}−1
] ,

(3.7)
and hence 0 ≤ λ∗ ≤ 1.

(ii) If Y and X have the same spatial covariance structure with different scale
parameters,

V(θ) = θR, Σ(ζ) = σ2
ΣR, (3.8)

where R is a known matrix, then λ∗ in (3.7) is

λ∗ = lim
n→∞

∑n
l=1(δlσ

2
e + σ2

Σ)/(δlσ
2
ε,naive + θnaive)∑n

l=1{δl(σ2
e + σ2

u) + σ2
Σ}/(δlσ

2
ε,naive + θnaive)

, (3.9)

where {δl} are the eigenvalues of R−1.

(iii)For regular (square) grid data and the conditional auto-regressive spatial cor-
relation structure (2.4) defined using the adjacent neighborhood spatial corre-
lation structure of Breslow and Clayton (1993),

λ∗ ≥
σ2

Σ + σ2
e(4 + 4γ)

σ2
Σ + (σ2

e + σ2
u)(4 + 4γ)

; (3.10)

for regular grid data and an exponent or Gaussian spatial correlation struc-
ture,

0 ≤ λ∗ ≤ 1 − σ2
u

σ2
u + σ2

e + 4σ2
Σ/(1 − e−1/

√
2)2

. (3.11)

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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The results in Theorem 1 show that ignoring the measurement error causes
the regression coefficient estimates to be attenuated. Calculations of the attenu-
ation factor λ∗ can be quite complicated in general. Therefore the results in (ii)
are particularly useful for numerically computing λ∗, since it avoids the inversion
of large matrices. Note that the eigenvalues therein do not depend on data if
the spatial dependence parameter γ is known. For grid data, exponential and
Gaussian correlation structures are often used. In these cases, (iii) provides a
bound of the attenuation factor that can be easily computed.

We state in Theorem 2 the asymptotic bias in the naive variance component
ϑnaive; the proof is given in Appendix A.2 (on-line supplement).

Theorem 2. (Asymptotic Biases in Variance Components) Suppose Y and X

have the same spatial covariance structure with different scale parameters as at
(3.8). Under (c.1)−(c.4), the asymptotic limits of the naive estimators of the
spatial variance component and the residual variance satisfy,

θnaive = θ + (1−λ∗)2σ2
Σβ2

x, σ2
ε,naive = σ2

ε + {(1−λ∗)2σ2
e + λ2

∗σ
2
U}β2

x, (3.12)

where λ∗ is defined in (3.9).

Theorem 2 shows that when Y and X possess the same spatial covariance
structure, a reasonable assumption in practice since they come from the same spa-
tial area, the naive estimators of the spatial variance component and the residual
variance both overestimate the corresponding true values. For more general cases
when the spatial covariance structure of Y and X differ, the asymptotic limits
of the naive estimators are difficult to calculate, and no analytic expressions are
available.

The asymptotic relative biases in the naive estimators of the regression coeffi-
cients and the variance components, assuming the adjacent neighborhood spatial
correlation structure, is illustrated in Figure 1. Since the computation of λ∗ in-
volves n → ∞, we approximate λ∗ with n = 1, 024 on a 32 × 32 lattice. The
spatial dependence parameter γ in (2.4) are taken as γ = 0.2 and γ = 0.95. The
regression coefficient is βx = 0.5, variance components are θ = 1 and σ2

ε = 0.3.
The parameters in the X models are α0 = 1.4, σ2

Σ = 1.2, and σ2
e = 0.5. We

iteratively calculate λ∗ using (3.9) and (3.12). In our experience, convergence is
often achieved within five iterations. Then we obtain the expected naive esti-
mates from (3.6) and (3.12). The bias curves for the naive estimates of βx and
θ are plotted as a function of the measurement error variance σ2

u. It should be
noted that the bias curves in fact correspond to the finite sample exact bias.

Figure 1 shows that the naive estimate of the regression coefficient βx is
attenuated, while the naive estimate of the variance component θ is inflated.
The biases increase with the measurement error variance σ2

u, but decrease with
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Figure 1. Asymptotic relative biases in the naive estimates of βx and θ.
The CAR spatial covariance structure with spatial dependence parameter
γ = 0.2 and 0.95 was used. The true parameter values were βx = .5, θ = 1,
σ2

ε = 0.5, σ2
Σ = 1.2, and σ2

e = 0.5. Variance of measurement error σ2
u varied

between 0 and 1.0. The two curves in each plot correspond to the spatial
dependence parameters γ = 0.2 and γ = 0.95.

the spatial dependence parameter γ. The reason for the latter phenomenon is
explained by the fact that stronger dependence implies that neighbor areas can
provide more information, and hence the estimates are more resistant to the
effect of measurement error.

4. Maximum Likelihood Estimation

We consider the large sample results for the maximum likelihood estimator
for the spatial linear mixed measurement error models (2.1), (2.5) and (2.6).
In particular, we show for some commonly used spatial models, the MLEs are
consistent and asymptotically normal. To proceed, we assume mild regularity
conditions on the parameter space and the observed covariate Z.

(d.1) The unknown parameters Ω in (2.1), (2.5) and (2.6) lie in a compact set of
an Euclidean space.

(d.2) Let Z̃ = (1,Z), where 1 is an n × 1 vector of 1’s, lim n−1Z̃
T
Z̃ = Z0 in

probability, where Z0 is a positive definite matrix.

It follows that, for the common geostatistical models, such as the exponential,
Gaussian and CAR models, the maximum likelihood estimator is consistent and
asymptotically normal, as summarized in the following theorem. The proof is
deferred to Appendix A.3 (on-line supplement).

Theorem 3. (Consistency and Asymptotic Normality of MLEs) Let Ω0 be the
true unknown parameters in (2.1), (2.5) and (2.6) and Ω̂ be its maximum likeli-
hood estimator. Suppose that Y and X have the exponential, Gaussian or CAR
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(2.4) spatial covariance structure on regular grid. Then, under (d.1) and (d.2),
Ω̂ is consistent and Γ1/2(Ω̂ − Ω0) → N(0, Ip) in distribution, where Γ1/2 is the

Cholesky decomposition of Γ
def
= EΩ0

{−∂2`/∂Ω∂ΩT }, Ω0 is the truth, ` is as
defined in (2.7), and Ip is the identity matrix of dimension of p, the dimension
of Ω0.

Theorem 3 does not require X and Y to have the same correlation structure,
but, since X and Y both come from the same area, it may be reasonable to assume
that they do. In such a situation we propose an EM algorithm to compute the
MLEs; in particular, we assume the spatial covariance structures of the random
effects b and a take the same form (3.8) with different scale parameters. The
EM algorithm for a general spatial covariance structure is similar. The complete
data are (Y,W,X,Z,b,a), where (Y,W,Z) are observed data and X, b, and
a are missing data. The complete data loglikelihood is

`(Y,W,X,b,a|Z) = −n

2
log(σ2

ε ) −
1

2σ2
ε

‖Y−β01−βxX−Zβz−b‖2 − n

2
log(θ)

− 1
2θ

bTR−1b − n

2
log(σ2

u) − 1
2σ2

u

‖W − X‖2 − n

2
log(σ2

e)

− 1
2σ2

e

‖X−α01−Zαz−a‖2 − n

2
log(σ2

Σ) − 1
2σ2

Σ

aTR−1a,

where ‖ · ‖ denotes the square norm.
Let X̃ = (1,X,Z), Z̃ = (1,Z), β = (β0, βx, βT

z )T , and α = (α0, α
T
z )T . At

the (t + 1)th step, let the estimator of β be β̂
(t+1)

and the estimator of α be
α(t+1), and define the variance component estimates similarly. In the M step, we
update the regression coefficients

β̂
(t+1)

= E(X̃
T
X̃|Y,W,Z, ξ̂

(t)
)−1E(X̃

T
(Y − b)|Y,W,Z, ξ̂(t))

α̂(t+1) = (Z̃
T
Z̃)−1Z̃

T
E(X − a|Y,W,Z, ξ̂(t)),

where E(·|Y,W,Z, ξ̂
(t)

) is the expectation conditional on the observed data
(Y,W) with all parameters taking the values of the current estimates ξ̂(t). We
update the variance components by

θ̂(t+1) =
1
n

E(bTR−1b|Y,W,Z, ξ̂
(t)

),

σ̂2(t+1)
ε =

1
n

E(‖Y − β̂(t+1)
x X − Zβ̂

(t+1)

z − b‖2 |Y,W,Z, ξ̂
(t)

),

σ̂
2(t+1)
Σ =

1
n

E(aTR−1a|Y,W,Z, ξ̂
(t)

),

σ̂2(t+1)
e =

1
n

E(‖X − α̂0
(t+1)1− Zα(t+1)

z − a‖2 |Y,W,Z, ξ̂
(t)

).
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In the E step, we compute the conditional expectations that appear in the above
equations. The closed-form expressions of these conditional expressions are de-
rived and can be found in Appendix A.4 (on-line supplement). These steps can
be easily implemented since all the quantities involved have closed form and no
numerical integration is needed. Finally, the standard errors of the maximum
likelihood estimates can be obtained by inverting the Fisher information matrix.

5. Simulation Study

Our simulation study aims at evaluating the finite sample performance of the
naive estimates obtained by ignoring the measurement error and the maximum
likelihood estimates obtained by accounting for the measurement error. We took
the data to be on a regular grid. We considered the Y model (2.1) with a single
covariate X. We assumed the adjacent neighborhood CAR spatial correlation
structure (2.4) for both the random effects {bi} and {ai} in the Y and X models,
neighbors being defined as the four adjacent areas for each location except for
those on the edge. The weight qij was set to be 1 if areas i and j are neighbors and
0 otherwise. The spatial dependence parameter was γ = 0.95, mimicking what
was obtained in the data example in the next section. The unobserved covariate
X was generated under model (2.6) with mean 1.4 and variance components 1.2
and 0.3, respectively, for the spatial covariance and residual error term. The
observed error-contaminated version W was generated by adding Gaussian noise
with variance σ2

u = 0.50 to X. To generate the outcome variable Y , the regression
coefficients were taken as (β0, βx)T = (0.0, 2.0)T , and the variance components
for the spatial covariance and residual error term were taken as 1.0 and 0.5.
For each generated data set, we computed the naive estimates that ignored the
measurement error and the maximum likelihood estimates that accounted for
the measurement error using the EM algorithm. We varied the grid size to be
7(n = 7 × 7), 10(n = 10 × 10) and 20(n = 20 × 20). The averages and variances
of the estimates from 500 replications are given in Table 1.

We next examined the performance of the MLE when the spatial correlation
structure was specified to be the exponential model, as well as the Gaussian
model. The locations of subjects were sampled uniformly over region [0,

√
n]2,

where n is the number of subjects. We set n = 49, 100, 400 in our simulations.
The results are documented in Tables 2 and 3.

All the results (Tables 1−3) show that the naive estimate of βx is attenuated
while the naive estimates for θ and σ2

ε are inflated, agreeing with our asymp-
totic bias analysis. The maximum likelihood estimates computed using the EM
algorithm, on the other hand, performed very well. The mean of the estimates
of the regression coefficients and the variance components were very close to the
corresponding true values. As expected, there was a bias-variance tradeoff. The
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Table 1. Results of a simulation study from 500 replications under the
CAR model. A regular 20 × 20 grid design and an adjacent neighborhood
covariance structure with γ = 0.95 were used. The true parameters were
β0 = 0, βx = 0.5, θ = 1σ2

ε = 0.3, σ2
Σ = 1.2, σ2

e = 0.5 and α0 = 1.4. The
measurement error variance was σ2

u = 0.5. Inside the brackets are estimated
standard errors.

Sample Para- Mean of model based Var. of Mean of model based Var. of
Size meter naive est naive est MSE MLE MLE MSE
49 β0 0.221 0.095 (0.161) 0.200 -0.045 0.150 (0.210) 0.210

βx 0.326 0.011 (0.012) 0.040 0.513 0.030 (0.043) 0.043
θ 1.141 0.355 (0.383) 0.401 1.041 0.283 (0.367) 0.368
σ2

ε 0.461 0.054 (0.063) 0.090 0.374 0.045 (0.056) 0.061
100 β0 0.261 0.062 (0.072) 0.14 -0.042 0.079 (0.090) 0.09

βx 0.323 0.005 (0.005) 0.036 0.507 0.0157 (0.0157) 0.016
θ 1.066 0.222 (0.265) 0.269 0.957 0.209 (0.239) 0.240
σ2

ε 0.399 0.0268 (0.033) 0.043 0.326 0.0312 (0.029) 0.030
400 β0 0.247 0.0160 (0.0154) 0.076 0.0032 0.020 (0.022) 0.022

βx 0.318 0.0012 (0.0012) 0.034 0.503 0.0035 (0.0035) 0.0035
θ 1.015 0.067 (0.073) 0.073 0.989 0.062 (0.072) 0.072
σ2

ε 0.376 0.0068 (0.0069) 0.012 0.304 0.0068 (0.0072) 0.0072

MLEs effectively eliminated the biases in the naive estimators but had larger
variances. As an overall measure of performance using the MSE, the MLEs had
smaller MSEs than the naive estimators. The MSE gain was more apparent as
n increased.

Finally, to compare the empirical results with our theoretical asymptotic
bias analysis results, we computed the theoretical values of the naive estimate
using the results in Theorems 1 and 2. For example, under the CAR model
with γ = 0.95, these values were 0.254, 0.318, 1.039, 0.367 for β0, βx, θ and σ2

ε ,
compared with 0.247, 0.318, 1.027, 0.376 of the average naive estimates based on
500 simulations for grid size 20 (n = 400) (see Table 1). Hence, our theoretical
values do match with our simulation results.

6. Analysis of Scottish Lip Cancer Incidence Data

The Scottish lip cancer incidence data were collected in each of the 56 coun-
ties of Scotland (Breslow and Clayton (1993)). For each county, the number of
lip cancer cases among males from 1975-1980 and the percentage of AFF em-
ployment in all employed population were reported. Earlier analysis found that
the rates were higher in counties with higher proportion of the population em-
ployed in agriculture, forestry, and fishing (AFF) – the professions that require
working outdoors. This observation reflects the biological plausible causal rela-
tionship between ultraviolet rays and lip cancer. Breslow and Clayton (1993)
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Table 2. Results of a simulation study from 500 replications under the
Gaussian model. The locations of subjects were sampled uniformly over the
region [0,

√
n]2, where n is the number of subjects. The true parameters

were β0 = 0, βx = 0.5, θ = 1σ2
ε = 0.3, σ2

Σ = 1.2, σ2
e = 0.5 and α0 = 1.4. The

measurement error variance was σ2
u = 0.5. Inside the brackets are estimated

standard errors.

Sample Para- Mean of model based Var. of Mean of model based Var. of
Size meter naive est naive est MSE MLE MLE MSE
49 β0 0.276 0.107 (0.110) 0.186 -0.038 0.136 (0.191) 0.192

βx 0.320 0.010 (0.012) 0.044 0.532 0.031 (0.038) 0.039
θ 1.076 0.168 (0.180) 0.185 0.970 0.150 (0.156) 0.156
σ2

ε 0.365 0.019 (0.018) 0.022 0.300 0.020 (0.021) 0.021
100 β0 0.218 0.043 (0.041) 0.119 -0.022 0.055 (0.057) 0.057

βx 0.338 0.0057 (0.0056) 0.032 0.512 0.0128 (0.0134) 0.013
θ 1.049 0.077 (0.078) 0.081 0.982 0.071 (0.066) 0.066
σ2

ε 0.373 0.0153 (0.0158) 0.0211 0.298 0.0150 (0.0150) 0.0150
400 β0 0.176 0.0076 (0.0084) 0.039 0.034 0.009 (0.006) 0.006

βx 0.369 0.0015 (0.0018) 0.0189 0.498 0.002 (0.002) 0.002
θ 1.027 0.026 (0.022) 0.022 1.019 0.023 (0.024) 0.024
σ2

ε 0.386 0.013 (0.014) 0.021 0.303 0.0108 (0.0108) 0.011

applied spatial mixed models to study the association between the percentage
of the AFF employment and the lip cancer incidence. However the exposure of
main interest is the exposure to sunlight, a known risk factor for lip cancer. The
AFF employment variable serves as a surrogate for the degree of exposure to
sunlight. Since we mainly focused on the association between lip cancer and the
exposure to sunlight, we need to account for the measurement error in using the
AFF employment variable to measure the degree of exposure to sunlight.

Breslow and Clayton (1993) modeled the standardized morbidity ratios cal-
culated by dividing the observed number of cancer cases by the age-adjusted
expected cancer cases using a Poisson regression model. To apply our methodol-
ogy, we first took a square root transformation of the observed SMR; the trans-
formed SMR approximated a normal distribution well, which was verified using
the Shapiro-Wilks test. We applied the spatial linear mixed measurement error
model to account for the measurement error.

Following Breslow and Clayton (1993), we assumed the adjacent neighbor-
hood spatial correlation structure for the square-root transformed SMR. These
authors also noted that the covariate, the percentage of the AFF employment,
exhibited the same spatial aggregation as the SMR. We hence assumed the same
spatial correlation structure with a different scale parameter for the AFF vari-
able.
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Table 3. Results of a simulation study from 500 replications under the
exponential model. The locations of subjects were sampled uniformly over
the region [0,

√
n]2, where n is the number of subjects. The true parameters

were β0 = 0, βx = 0.5, θ = 1σ2
ε = 0.3, σ2

Σ = 1.2, σ2
e = 0.5 and α0 = 1.4.

The measurement error variance σ2
u = 0.5. Inside the brackets are estimated

standard errors.

Sample Para- Mean of model based Var. of Mean of model based Var. of
Size meter naive est naive est MSE MLE MLE MSE
49 β0 0.223 0.145 (0.179) 0.228 -0.030 0.187 (0.239) 0.239

βx 0.339 0.010 (0.012) 0.038 0.528 0.0270 (0.0323) 0.033
θ 1.079 0.220 (0.268) 0.274 0.966 0.191 (0.235) 0.236
σ2

ε 0.408 0.0535 (0.0670) 0.079 0.364 0.052 (0.063) 0.067
100 β0 0.216 0.062 (0.073) 0.108 -0.021 0.071 (0.079) 0.079

βx 0.350 0.0057 (0.0058) 0.028 0.509 0.012 (0.013) 0.013
θ 1.037 0.114 (0.130) 0.131 0.982 0.113 (0.134) 0.134
σ2

ε 0.399 0.037 (0.042) 0.038 0.314 0.036 (0.037) 0.037
400 β0 0.168 0.009 (0.010) 0.038 -0.002 0.011 (0.011) 0.011

βx 0.374 0.0015 (0.0015) 0.017 0.495 0.0026 (0.0026) 0.0026
θ 1.037 0.040 (0.030) 0.031 1.010 0.037 (0.045) 0.045
σ2

ε 0.387 0.022 (0.014) 0.021 0.298 0.020 (0.024) 0.024

The analysis results are given in Table 4. The naive analysis showed a
strong effect of the AFF employment on the SMR (βx = 0.139 and SE=0.091),
and the spatial correlation seemed to dominate in the total variation (θ̂ = 0.310,
σ̂2

ε = 0.0389). We next considered the spatial linear mixed measurement error
model to account for the measurement error in the AFF employment. Since no
validation data set was available, the measurement error variance σ2

u could not be
estimated directly from the data. We fit a linear random intercept CAR model
on W . This allowed us to estimate the sum of σ2

e and σ2
u as 0.041. We then

did a sensitivity analysis by varying σ2
u from 0.0, naive analysis, to moderate

measurement error, σ2
u = 0.020, to severe measurement error, σ2

u = 0.035. The
estimates of the dependence parameter γ were 0.922 when σ2

u = 0, 0.928 when
σ2

u = 0.02 and 0.932 when σ2
u = 0.035, all of which were close to the estimate of

0.93 obtained by Yasui and Lele (1997), and indicated a strong spatial depen-
dence. Second, all the analyses indicated that working outdoors was associated
with the risk of lip cancer. Third, ignoring measurement error did attenuate the
regression coefficient estimates. As σ2

u increased, the estimates of the regression
coefficients became larger. For example, the estimate of the coefficient of ‘AFT’,
with estimated standard error in brackets, increased from 0.132 (0.093) when
σ2

u = 0, to 0.153 (0.099) when σ2
u = 0.02, and to 0.172 (0.104) when σ2

u = 0.035,
while the variance component for the spatial correlation part was estimated as
0.434 (0.245) when σ2

u = 0, 0.414(0.234) when σ2
u = 0.02, and 0.394 (0.228) when
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Table 4. Sensitivity analysis of Scottish Lip Cancer Incidence Data: Out-
come variable is the square root of SMR; the covariate is AFF/10. The
measurement error variance varied between 0 (naive), 0.02 (moderate) and
0.035 (severe).

Estimate ± standard error
Parameter naive moderate severe

σ2
u = 0.0 σ2

u = 0.02 σ2
u = 0.035

γ 0.922 ± 0.072 0.928 ± 0.044 0.932 ± 0.043
β0 0.939 ± 0.164 0.923 ± 0.168 0.908 ± 0.171
βx 0.132 ± 0.093 0.153 ± 0.099 0.172 ± 0.104
θ 0.434 ± 0.245 0.414 ± 0.234 0.394 ± 0.228
σ2

ε 0.017 ± 0.045 0.021 ± 0.044 0.024 ± 0.044
σ2

Σ 1.258 ± 0.258 1.183 ± 0.256
σ2

e 0.0001 ± 0.0005 0.0001 ± 0.0003
α0 0.8033 ± 0.258 0.8030 ± 0.258

σ2
u = 0.035. These results indicated that accounting for measurement error in-

creased the magnitude of the estimated effects of ‘AFT’ while it decreased the
overestimation of the spatial variance component.

7. Discussion

In this paper we have proposed spatial linear mixed measurement error mod-
els to account for covariate measurement error and spatial correlation in spatial
data. Our asymptotic bias analysis shows that, by ignoring the measurement
error, the naive estimators of the regression coefficients are attenuated and the
naive estimators of the variance components are inflated. We give formulae for
calculating these biases for a general case, and provide simplified forms or bounds
for some commonly-used spatial correlation structures. Our numerical calcula-
tion also shows that the biases are related to the spatial dependence parameter
γ for an adjacent neighborhood structure.

We have developed a structural modeling approach to accounting for the
covariate measurement error in spatial data, where spatial linear mixed models
are assumed for both the outcome and the unobserved covariate, and an additive
model is assumed for the observed error-prone covariate. An EM algorithm is
developed to compute the maximum likelihood estimate. Our simulation study
shows that the maximum likelihood estimator works well in finite samples and
appropriately corrects for the bias in the naive estimator. We also find that the
maximum likelihood estimators correct the biases in naive estimators, but are
associated with larger variances.

On the computational side, our algorithm requires operations on matrices of
large size, including inversion of large matrices. We alleviate the computational
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burden by diagonalizing the matrices simultaneously. Since the sizes of the ma-
trices involved increase rapidly with the grid size of the spatial areas, many
operations on these matrices are needed in each EM iteration. These cause prob-
lems in handling large data sets with the EM algorithm. Here it might be more
convenient to adopt an MCMC algorithm, especially if one uses the conditional
autoregressive spatial covariance structure.

Our structural modeling approach, where a parametric model is assumed
for the unobserved covariate X, might be sensitive to misspecification of the
distribution of X. An alternative estimation in the measurement error literature
is functional modeling, such as SIMEX (Carroll et al. (1995)), which makes no
distributional assumption on X. However it can be less efficient than the MLE
when the distribution of X is correctly specified. It is of interest in future research
to compare these two approaches in terms of their robustness and efficiency.

We have concentrated on Gaussian spatial outcomes. Work is underway to
extend the results to non-Gaussian spatial outcomes, with measurement error in
the covariate, within the framework of spatial generalized linear mixed models
(e.g., Diggle, Moyeed and Tawn (1998)).
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