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Spatial Mappings for Planning and
Optimization of Cellular Networks

David González G. , Member, IEEE, Harri Hakula, Antti Rasila , and Jyri Hämäläinen, Member, IEEE

Abstract— In cellular networks, users are grouped into
different cells and served by different access points (base stations)
that provide wireless access to services and applications. In gen-
eral, the service demand is very heterogeneous, non-uniformly
distributed, and dynamic. Consequently, radio access networks
create very irregular topologies with more access points, where
service demand is concentrated. While this dynamism requires
networks with the ability to adapt to time-varying conditions,
the non-uniformity of the service demand makes the planning,
analysis, and optimization difficult. In order to help with these
tasks, a framework based on canonical domains and spatial
mappings (e.g., conformal mapping) have recently been proposed.
The idea is to carry out part of the planning in a canonical
(perfectly symmetric) domain that is connected to the physical
one (real-scenario) by means of a spatial transformation designed
to map the access points consistently with the service demand.
This paper continues the research in that direction by introducing
additional tools and possibilities to that framework, namely the
use of centroidal Voronoi algorithms and non-conformal compos-
ite mappings. Moreover, power optimization is also introduced to
the framework. The results show the usability and effectiveness
of the proposed method and its promising research perspectives.

Index Terms— Cellular networks, network planning, conformal
mapping, power optimization, Voronoi tessellations.

I. INTRODUCTION

A. Context and Motivation

RADIO access planning and optimization are fundamental
tasks in cellular networks. Broadly speaking, planning

refers to the tasks of determining the number, location, and
configuration of access points to provide wireless access to
users (and things) to services and applications, with a certain
targeted Quality of Service (QoS). In particular, the problem
of finding the number of access points is also referred to
as dimensioning [1], and this initial step aims at providing
the required capacity for the service demand volume that is
expected. However, in practice, both dimensioning and sites
positioning are very difficult problems because the service
demand is not uniformly distributed and it is quite diverse
and dynamic. Nowadays, taking into account the continuous
evolution of radio access technologies, and the new concepts
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and paradigms that are expected for the fifth generation (5G)
of cellular networks, the boundary between planning and
optimization tasks becomes blurred. Indeed, according to the
excellent work presented in [1], planning and optimization are
iterative tasks that go hand-in-hand. In this line of thinking,
Wang and Ran [2] also pose the need for re-thinking planning.
They emphasize the importance of distributing the service
demand as evenly as possible among cells as a key criterion
to achieve effective planning; a goal that in the opinion of
Wang and Ran [2] (and in our’s) is a very valid way to
enhance system performance. Planning of small cells and
energy efficient operation of cellular infrastructure are indeed
very active research topics. Interested readers are referred
to [3] and [4], and the references therein, for an updated view
and treatment of the matter.

In our previous work [5], also motivated by the afore-
mentioned ideas, a novel framework for planning and opti-
mization based on the use of canonical domains and spatial
transformations was presented. Therein, planning is addressed
by breaking the problem into two parts: dimensioning and sites
positioning, as it is shown in Fig. 1. The central idea is to carry
out the dimensioning in a dual/canonical domain in which
the service demand is uniformly distributed. In this manner,
a regular network topology (Tc) with the required number of
access points is obtained (Step 2). Then, sites positioning is
performed by mapping the regular network topology (Tc) from
the canonical domain (R) onto the physical domain (A) by
means of a spatial mapping F−1 : R → A that corresponds
to the inverse of another (previously computed) mapping
F : A → R. The idea is that, if the mapping F is designed
(Step 1) such that it maps A onto R redistributing the service
demand uniformly, then F−1 will map (Step 3) the access
points from R onto A in a compatible manner with the service
demand, i.e., the network topology Tp. In [5], conformal
mapping [6], a mature field in Complex Analysis [7], but
previously unheard of in the context of cellular networks, was
proposed to obtain the mappings F and F−1.

The previous idea was a completely new approach to radio
access network planning. However, as a new methodology,
the scheme presented in [5] has two fundamental limitations:
first, it cannot be used to address arbitrary non-uniform service
demand distributions, and second, it lacks of means to adjust
the transmit power of the access points. As it will be seen
shortly, these are critical (required) enhancements to continue
the evolution of this idea, as it has happened with other
important techniques. We think that the development of this
idea can be compared with the early days of Multiple-Input
Multiple-Output (MIMO). First, well-acknowledged papers
at 90’s (e.g., paper by Foschini in 1996 [8]) introduced
the idea of transmitting different data streams from different
antennas and some simple reception methods (e.g., VBLAST).
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Fig. 1. Planning and optimization based on canonical domains and spatial mappings. The original problem introduced in [5] comprised Steps 1, 2, and 3
(direct and inverse mapping and analysis in the canonical domain). The proposed enhanced framework includes: generalizations for Step 1, alternative methods
for Step 3, and integration of Step 4 (power optimization).

Thereafter, especially the signal processing community has
made substantial efforts to further develop MIMO, but it has
taken until 3.5G and 4G when simple MIMO schemes have
been realized in commercial products. Network planning is
an integral part of the development of every mobile network.
Therefore, the authors believe that the idea proposed in [5]
and extended in this paper has great potential. Yet, as MIMO
in its early days, this concept needs a lot of methodological
developments before it can become a (practically viable)
mainstream approach. Part of the challenge is that some parts
of the mathematical framework (e.g., conformal mapping) are
not very well acknowledged within the signal processing and
communications communities, and only few researchers have
basic skills that would support research on this topic.

Finally, let us shortly discuss about the nature of the
contribution to make clear the main goal of this research
and its scope. We emphasize that our goal has not been
to create a technical methodology or algorithm that aims at
competing with existing network planning methods. There are
many effective heuristic network planning methods applying
e.g. genetic algorithms, and commercial tools that are routinely
used to create practically viable network deployments. Instead,
our main goal has been to develop a deterministic methodology
that provides a new general theoretical framework that can
be used to analyze and shed more light on the dependencies
between different factors (service demand, load, channels, etc).
We also note that in the applied approach, spatial mappings
carry the information about the cellular topology. In system
analysis this means that a rich mathematical machinery on
mappings becomes a viable tool while studying the properties
of the topology. Of course, it is also our goal that the algorith-
mic realization of the proposed methodology becomes in long
run competitive with mainstream heuristic algorithms, but at
this stage of research and development, synthetic scenarios,
capturing the irregular features of real-world deployments,
suffice as proof of concept.

B. Contribution

As mentioned before, the idea introduced in [5] is new
and it represents a novel approach to network planning and

optimization. However, as a technique in its infancy, it admits
(and requires) further improvements and evolution. Hence, we
continue the work on this research problem 1) by enhancing
the capabilities of the originally introduced scheme with new
concepts and tools (Steps 1 and 3 in Fig. 1), and 2) by adding
new optimization mechanisms (Step 4). To be precise, the
contributions of this paper can be summarized as follows:
� The direct mapping (Step 1 in Fig. 1) has been gener-

alized by introducing the notion of function composi-
tion [9]. With this novelty, it is possible to deal with
any arbitrary spatial service demand distribution defined
in the physical domain, a clear limitation of the original
scheme. Thus, the new direct mapping includes both
conformal and non-conformal transformations.

� A new method for computing the inverse mapping (Step 3
in Fig. 1) using the centroidal Voronoi algorithms [10]
and power Voronoi diagrams [11] has been introduced.
As it will be explained later on, this approach does not
require the computation of the direct mapping F . This
is another substantial enhancement because, as it will be
shown and explained later on, depending on the scale
of the problem and some other features, one or other
approach is preferred for the inverse mapping. In addition,
this also provides means for comparisons, thus improving
our understanding of the problem.

� Power optimization, the new Step 4 in Fig. 1, has
been introduced. This was motivated by the need for
adjusting the transmit power of the access points once
they are mapped onto the physical domain. The optimiza-
tion formulation (more precisely, the proposed objective
function) is novel, and it is based in the well-accepted
model of load coupling [12] to represent in a quite
realistic manner the intercell interference and the cross-
effect caused by the load at different cells. As it will
be seen, the proposed formulation has several interesting
advantages from planning and network operation point of
view.

The rest of the paper is organized as follows: the next
section provides a high level description of the enhanced
framework. Generalizations and novelties for the spatial map-
pings are presented in Sections III and V. The analysis
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TABLE I

NOTATIONS

in the canonical domain is, for the sake of completeness,
briefly described in Section IV; it can be done following the
methodology presented in [5, Sec. IV]. The proposed power
optimization is described in Section VI. Numerical examples
are presented in Section VII. Section VIII closes the paper
with conclusions and future research directions.

II. FRAMEWORK DESCRIPTION AND SYSTEM MODEL

In general terms, planning aims at determining the number
and location of base stations and their corresponding cell
areas. The research framework under consideration, shown
in Fig. 1, is motivated by the notion of service demand and
capacity provision compatibility [13], in which more access
points (with smaller cell areas) are required where the service
demand is concentrated. Thus, if base stations have the same
amount of resources, the ideal system should be planned
and configured so that cells are equally loaded. However,
determining such network topology and configuration is not
an easy task because, in practice, the service demand is non-
uniformly distributed in the coverage area.

In the proposed framework, two domains are considered.
A physical domain A that corresponds to the real-world, and
a dual canonical domain represented by a rectangular area R.
The service demand in the physical domain is assumed to be
known in statistical terms, i.e., its spatial distribution given
by a probability density function δ defined over A, such
that

∫

A δ(a)da = 1, and a certain volume V , expressed in
terms of the average number of users, are known. Evidently,
both δ and V vary over time, but for planning purposes, it
can be fairly assumed that a given δ and V (well-known
by operators) capture the traffic behavior in representative
periods of time [14]–[16], i.e., morning, peak-hour, afternoon,
and so on.

As in [5], the target is to find a network topology T
(site’s locations and cell areas) with a certain configuration
(e.g., power allocation) that is compatible with the service
demand and satisfies both coverage and capacity requirements.
The proposed framework is composed of the four main steps
indicated in Fig. 1 and explained next:

1) Direct Mapping: The objective is to determine a map-
ping function F : A → R, such that the service demand
that is non-uniformly distributed (according to δ)
in A becomes uniform in R. The uniform service
demand distribution in R is denoted by δu, and hence,
δu(r) = 1

|R| , ∀r ∈ R. Therefore, the function F must
be a function of δ. The novel direct mapping proposed
herein (Step 1), based on composition of conformal and
non-conformal mapping, is discussed in Section III.

2) Analysis in the Canonical Domain: The goal is to
determine the number L of uniformly distributed access
points required to satisfy the uniformly distributed ser-
vice demand in R. Hence, L depends on V , i.e., the
larger the volume, the higher the density of the uniform
topology Tu. Note that the same volume V is considered
in both domains. A description of the analysis in the
canonical domain (Step 2) is provided in Section IV.

3) Inverse Mapping: The target is to find a spatial trans-
formation F−1 : R → A to map the access points
from the canonical domain onto the physical domain.
If F has been defined, F−1 corresponds to its inverse
function, and hence, it also depends on δ. However,
one of the novelties introduced herein allows to obtain
the mapping F−1 directly from δ, i.e., without need
for inverting F . Thus, new possibilities are available.
In any case, the important point is that the inverse
mapping conveys the information stored in δ (the spatial
service demand distribution). Thus, the mapping F−1

guarantees that the resulting network topology T in
the physical domain is spatially compatible with the
service demand, and on the other hand, the L access
points, previously calculated for Tu, provide the required
capacity to deal with the service demand volume. The
aforementioned alternatives for the computation of the
inverse mapping (Step 3) are presented in Section V.

4) Power Optimization: Depending on the amount of non-
uniformity of δ (how much traffic is concentrated in
the areas with high demand) and the network density
(proportional to L), power optimization is required to
compensate the high interference that would be gener-
ated in the hot spots. As indicated, regions with higher
demand require smaller cells, and hence, the transmit
power needs to be adjusted to avoid unfeasible inter-
ference levels, and to equalize the load of the different
cells. The proposed power optimization (Step 4) aims
at equalizing load levels network-wise. It is presented
in Section VI.

In order to facilitate the reading of the rest of the article, the
notation is presented in Table I.

III. DIRECT MAPPING

The objective of the direct mapping F is to uniformly
distribute the service demand from the physical domain onto
the canonical domain. To do that, the mapping is required to
stretch or compress the space according to δ, i.e., if δ admits
high values in some region of A, then that region needs to be
mapped onto a larger image in R, and viceversa. This idea
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Fig. 2. The direct mapping re-distributes the service demand uniformly in the canonical domain. (a) Space deformation produced by the mapping.
(b) Mapping composition: polygon ↔ rectangle.

is illustrated in Fig. 2a, where the spatial service demand
distribution is represented by a grid in both domains. Each
subregion of the grid has the same amount of traffic. Note
that in R, the grid is uniform, and hence, service demand δu is
also uniform, while in A is not, i.e., the traffic is concentrated
where the grid is denser. In the example, two regions of each
domain are connected through the mappings (F and F−1),
therefore, they are images of each other. It can be seen that,
the regions with high traffic density in A are mapped to larger
regions in R, and viceversa. Thus, the mappings not only
connect (bijectively) both domains preserving notions such
as locality and proximity, but also carries information about
the service demand distribution. In [5], the analysis through
canonical domains was presented by implementing the direct
mapping F by means of conformal mapping [17], to be pre-
cise, a mapping from polygon onto rectangle using modified
Schwarz-Christoffel transformations [18]. In order to proof
the concept, δ was assumed to be proportional to the natural
deformation of the space produced by the conformal mapping
used to connect A and R. However, despite a certain flexibility
to model δ when defining the mapping (by conveniently
modifying the boundaries and vertices in A, and selecting the
corners of the generalized cuadrilateral [6]), the method has
limitations. Thus, an improved solution is provided herein to
address the more general case when an arbitrary δ is defined in
the physical domain. Given that, to the best of the knowledge
of the authors, there are not known methods to conformally
map polygons onto rectangles and at the same time redistribute
uniformly an arbitrary spatial service demand distribution
defined on it; the solution presented herein essentially divides
the problem into two pieces as shown in Fig. 2b. The idea is
to construct the mapping F : A → R as a composition of two
mappings: an initial conformal mapping f : A → R0, and a
second one g : R0 → R, such that F = g◦f . The first mapping
focuses on the problem of mapping the physical domain
(a given polygon) onto the canonical domain (a rectangle), for
which complex analysis, i.e., conformal mapping, is required.
In general, an arbitrary spatial service demand distribution δ
defined over A will be transformed into another non-uniform
distribution δ0 defined over R0. Therefore, a second mapping
g is required to homogenize δ0. However, this second mapping
has a fundamental difference with respect to the first one: it
is a mapping between rectangular domains (indeed, R and R0

can be identical), and hence, complex analysis is not longer
required.

The mapping f is identical to the one described
in [5, Sec. III-B], that was originally proposed in [18].

Details on the computation of f and its inverse f−1 can
be found therein. Additional useful information on conformal
mapping, Schwarz-Christoffel transformations, and equiva-
lence among quadrilaterals can be found in [6] and [19].

Focusing on the non-conformal mapping (g and g−1, see
Fig. 2b), it is important to indicate that the main reason for
calculating the direct mapping g is to obtain its inverse g−1.
Recall that in the proposed framework, the inverse mapping is
the one used to create the network topology Tp in the physical
domain (sites positioning) once the analysis in the canonical
domain is completed. However, if g−1 can be obtained directly
by means of δ0, then g can also be computed by finding the
inverse of g−1, but in this case it is not strictly necessary.
This is the approach used herein, and hence, the computation
of g−1 is presented in Section V.

It should be noticed that since the network topology created
in R0 and the spatial distribution δ0 are both non-uniform,
R0 can be regarded as an intermediate physical domain
in which the use of the power optimization proposed in
Section VI can be illustrated without loss of generality.

IV. ANALYSIS IN THE CANONICAL DOMAIN

The analysis in the canonical domain addresses the dimen-
sioning part of the planning problem, i.e., to determine how
many access points L are required to cope with the ser-
vice demand, and more precisely with the given volume V .
A full description of the method can be found in [5, Sec IV].
Nevertheless, a brief description is also provided herein for
the sake of completeness. One of the key objectives in [5]
is to perform and simplify part of the planning process by
carrying out part of the job in a dual domain, referred to
as canonical domain, that is 1) perfectly regular in terms of
the geometry of the network topology, 2) uniform in terms
of spatial service demand distribution, and 3) homogeneous
in terms of interference. In this manner, independently of
the density (proportional to L) that is considered, cells are
identical in terms of coverage area, service demand, and
interference, hence, the analysis of one single cell suffices.
In order to do that, a rectangular domain was selected because
it is topologically equivalent to the flat torus, a 2D mani-
fold [20], in which the condition of periodicity can be applied
to avoid border effects. Thus, cells become equally loaded
and the dimensioning is conservative since the wrap-around
produced by the periodicity implies the worst case in terms of
interference. The analysis presented in [5] takes into account
the cell load coupling model originally presented in [12], but
simpler assumptions such as full load can also be considered.
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Fig. 3. Required service demand redistribution (mapping) in one dimension. (a) Notation and baseline assumptions. (b) Mapping in 1D with δ′(x′) as a
linear function.

V. INVERSE MAPPING

In this work, two alternatives for finding F−1 are presented.
The first option is to express F−1 in terms of a composition of
two functions as indicated in Fig. 2b, i.e., F−1 = f−1 ◦ g−1.
As mentioned before, the computation of the conformal map-
ping f−1 is described in [5] and [18], and the references
therein. Hence, with this approach, the task is reduced to
obtain g−1. The second alternative is to use an algorithmic
solution to estimate F−1. In this work, this approach is based
on Centroidal Voronoi Tessellations [10]. The idea and method
was originally proposed for planning purposes in [21].1 Both
methods are described next.

A. Non-Conformal Mapping

In order to introduce the proposed mapping, let us to
consider the mapping in one dimension g1 : X 0 → X
between two linear domains X and X 0 as illustrated in Fig. 3a.
The density function δ0 ∈ R+ is defined over X 0 and the
mapping g1 is such that it uniformly re-distributes that demand
in X . Its inverse, g−1

1 : X → X 0, on the other hand,
must create δ0 when mapping a uniform density δu from X
onto X 0. Note that, if K = 1, δ0 and δu in Fig. 3a can be
regarded as probability density functions. Therefore, without
loss of generality, hereafter K is assumed to be equal to 1.
The mapping must fulfill the following conditions: 1) the
total volume in each domain must be preserved, and hence,
∫

X ′ δ0(x0)dx0 =
∫

X
δu(x)dx = 1, and 2) x1 = g1(x

0
1) and

x2 = g1(x
0
2). Intuitively, the function g−1

1 has to map the
points from X onto X 0 in such a way that the area between
two mapped points is the same in both domains as it is shown
in Fig. 3b, where δ0 is assumed to be linear. Thus, the space
is compressed in X 0 if δ0 is high and streched is δ0 is low.
In Fig. 3b, red points are images of each other to illustrate
this idea. The required mapping x0 = g−1

1 (x) can be obtained
by solving for x0 in the following expression:

∫ x′

x′
1

δ0(x0)dx0 =

∫ x

x1

δu(x)dx =
x − x1

x2 − x1
. (1)

Depending on δ0, x0 = g−1
1 (x) can be expressed in closed

form, but in general the mapping g−1
1 can be evaluated numer-

ically. Although the one-dimensional case is presented herein
as a constitutive part of a the more general two-dimensional
one, it can be used in practice in cases where the network
deployment can be fairly represented in one dimension,
e.g., road-side networks.

1The Short Paper format used in [21] only allowed to introduce the main
idea and basic/preliminary results.

Fig. 4. Required service demand redistribution (mapping) in two dimensions.

In two dimensions, the goal of the mapping is the same,
i.e., to uniformly distribute a non-uniform service demand
(volume) from a rectangular domain R0 onto another rectan-
gular domain R, as shown in the Fig. 4. In this case, there are
two possibilities: 1) the spatial service demand distribution δ0

can be expressed as a product of two independent functions
of x0 and y0 (δ0x(x

0) and δ0y(y
0), respectively), as follows:

δ0(x0, y0) = δ0x(x
0)δ0y(y

0), i.e., there is statistical independence
between x0 and y0, and 2) δ0(x0, y0) is given as a joint
probability density function that cannot be expressed as a
product of independent functions of x0 and y0. In the first case
the mapping of each coordinate can be obtained independently
by considering each dimension as the one-dimensional (linear)
problem previously discussed, i.e., obtaining the mapping
through (1). Thus, the mapping g−1 can be written as follows:

(x0, y0) = (u(x), v(y)) , (2)

where x0 only depends on x and y0 only depends on y.
If there is no statistical independence between the coordi-

nates, there is no direct way to obtain the required mapping
directly from δ0(x0, y0). However, the solution for the one-
dimensional case, using (1), can be employed if the joint
probability density function is marginalized [22]. In this case,
the required mapping is not unique as it depends on the
variable that is selected first, but in any case it fulfills the
requirement of preserving the service demand volume between
regions of both domains that are images of each other. The
required mapping (assuming without loss of generality that the
mapping for x0 is taken first) can be obtained as follows:

1) Marginalize δ0(x0, y0) with respect to y0 to obtain the
function δ0x(x

0), which is given by

δ0x(x
0) =

∫

δ0(x0, y0)dy0. (3)

2) Obtain the mapping x0 = u(x) by means of (1)
and δ0x(x

0).
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3) Use δ0x(x
0) to build δ0y(y

0, x) as follows:

δ0y(y
0, x) =

δ0(x0, y0)

δ0x(x
0)

=
δ0(u(x), y0)

δ0x(u(x))
. (4)

4) Obtain the mapping y0 = v(x, y) by means of (1)
and δ0y(y

0, x).
Thus, the mapping g−1 can be written as follows:

(x0, y0) = (u(x), v(x, y)) . (5)

Analogously, and following the previous procedure, if y0 is
taken first, the mapping g−1 would be given by

(x0, y0) = (u(x, y), v(y)) . (6)

In both cases, in contrast to (2), one of mappings (either u
or v) is a function of two variables as indicated in (5) and (6).

B. A Method Based on Centroidal Voronoi Tessellations

A Voronoi diagram is a partition of a domain A ⊂ R
2 into

L regions (Al, l = 1, 2, · · · , L) that are associated to a subset
of distinct points L = {a1, a2, · · · , aL} ⊂ A ⊂ R

2 where

Al � {a ∈ A|ka − alk2 ≤ ka − akk2, ∀l 6= k}. (7)

The notation ka1−a2k2 (the L2-norm) indicates the Euclidean
distance between the points a1 and a2. The points
in L are known as generators of the Voronoi diagram. Voronoi
diagrams have extensively been used in the analysis of cellular
networks [23]–[25] because the definition of the Voronoi
regions is consistent with the coverage areas (cells) of different
Base Stations (BSs), i.e., under the assumption that BSs trans-
mit pilots (used for cell selection [26]) with the same power,
cells would correspond to regions defined by (7). If pilots
are transmitted with different power levels, power Voronoi
diagrams [11] can be used to determine cell regions. Power
Voronoi diagrams can be regarded as a generalization of classic
Voronoi diagrams by assigning weights to the generators
(in this case BSs), thus locally defining the distance metric.
The relation between the pilots’ transmit power can be cap-
tured by the weights. In Power Voronoi diagrams, cell regions
are defined as follows [11]:

Al � {a ∈ A|ka−alk2−wl ≤ ka−akk2−wk, ∀l 6=k}. (8)

A network topology (T ) in the domain A is defined as
a set of BSs whose locations are indicated by the points
L = {a1, a2, · · · , aL} ⊂ A and their corresponding cells
(Al’s) are obtained by means of (8), with the weights
W = {w1, w2, · · · , wL} ⊂ R. Thus, T � {L,Al=1,··· ,L}.

The idea introduced in [21] is the joint use of Centroidal
Voronoi Tessellations [10] and Power Voronoi diagrams [11]
to obtain the topology Tp (see Fig. 1) from the number
of cells L (obtained through the analysis in the canoni-
cal domain, Section IV) and δ; thus achieving the goal of
the mapping F−1, i.e., to place the L access points in A
in a compatible manner with the spatial service demand
distribution.

Before introducing the proposed heuristic, two notions
are required: tessellation and mass centroid. A tessellation
defined in a domain A corresponds to a set of regions
Al ⊂ A, l = 1, · · · , L, such that ∪Al = A and ∩Al = ∅.
Thus, the sets defined by (7) and (8) correspond to tessellations

in A. The mass centroid cl of a region Al ⊂ A (evidently,
cl ∈ Al) is defined as follows:

cl �

∫

Al
aδ(a)da

∫

Al
δ(a)da

�

(
∫∫

Al
xδ(x, y)dxdy

∫∫

Al
δ(x, y)dxdy

,

∫∫

Al
yδ(x, y)dxdy

∫∫

Al
δ(x, y)dxdy

)

, (9)

where δ is a density defined over A. In this context,
δ corresponds to the spatial service demand distribution
(see Fig. 1).

In centroidal Voronoi based algorithms, the idea is to start
with an initial set of generators LR ={aR

1 , aR
2 , · · · , aR

L} ⊂ A,
which can be selected randomly, and compute the correspond-
ing Voronoi diagram and mass centroids cl of each cell Al

according to (9). Then, at each iteration, the L centroids Ci =
{ci

0, c
i
1, · · · , ci

L} of the ith iteration are used as generators
of the next Voronoi diagram, i.e., Li+1 ← Ci, till ai+1

l =
ci

l , ∀l. The iterative mechanism is required because, in general,
Voronoi generators and mass centroids do not match. Hence,
the objective is to repeat this process till the generators of the
Voronoi diagrams and mass centroids are the same [10].

If the spatial service demand is non-uniform, the centroidal
Voronoi algorithm concentrates the access points where the
demand is concentrated, i.e., where δ is high. Thus, the
generators of the last Voronoi diagram (and their cells) define
a network topology that is compatible with the service demand
and that can be used for planning purposes. However, in [21]
an improvement based on Power Voronoi diagrams was pro-
posed to obtain network topologies with the service demand
uniformly distributed among cells, i.e., Vl ≈ Vk, ∀l 6= k. The
service demand in the lth cell is given by

Vl = V

∫

Al

δ(a)da. (10)

Thus, for a given network topology T , the service demand
share V is defined as follows: V = {V1, V2, · · · , VL}. In gen-
eral, centroidal Voronoi algorithms do not produce network
topologies with uniform service demand share; however,
power Voronoi diagrams allow independent calibration of cells
by adjusting weights, as in (8). Thus, Algorithm 1 employs
both mass centroids and power Voronoi diagrams to obtain
network topologies in which the service demand is uniformly
distributed among cells, which requires network topologies
with different cell sizes.

Algorithm 1 requires as inputs a random set of L points
LR ⊂ A, a density function δ, and a set of parameters that
controls the operation of the algorithm as described next.
Line 3 indicates the execution of N iterations of the standard
Centroidal Voronoi Algorithm [10] in order to obtain a good
starting point for the loop between Lines 5 and 14. At each
iteration, the centroids are recalculated from the previous net-
work topology (Line 5), generators are updated (Line 6), power
Voronoi diagrams are computed (Line 7), and the service
demand share V of the new topology is calculated (Line 8).
At each iteration, the weight of the cell with the highest
demand is updated (Line 10) and the reduction factor ∆ is
updated every T iterations to control the stability/convergence
of the algorithm (Line 12). The algorithm finishes when the
Coefficient of Variation (CoV)2 of the service demand share is

2The CoV is a standardized measure of dispersion and it is defined as the
ratio of the standard deviation to the mean.
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Algorithm 1 Network Planning Based on Centroidal and
Power Voronoi Diagrams

Inputs : Random network topology:
LR = {aR

1 , aR
2 , · · · , aR

L} ⊂ A, spatial service
demand distribution: δ, algorithm parameters:
N ∈ N, ∆ < 0, 0 < κ < 1, T ∈ N, �.

Output: Network topology compatible with δ: Tp.
1 W ← 0; /* Initialization */

2 i ← 1;
3 T 0 ←CVA( LR, δ, N); /* Baseline topology:

std. centroidal Voronoi algorithm */

4 repeat

5 Ci−1 ←MassCentroids(T i−1, δ); /*

Centroids */

6 Li ← Ci−1; /* Update generators */

7 T i ←PowerVoronoiDiagram(Li,W); /*

Power Voronoi diagram: see (8) */

8 V i ←ServiceDemandShare(T i,δ); /*

Service demand share: see (10) */

9 j ←MaxIndex(V i); /* Index of the cell

with the highest demand volume */

10 wj ← wj + ∆; /* Reduce weight cell j */

11 if ( mod(i, T)==0 ) then

12 ∆ ← ∆ · κ; /* Convergence: reduce ∆
every T iterations */

13 end

14 i ← i + 1;
15 until � ≤CoefficientOfVariation(V i);
16 return Tp ← T i; /* Return network

topology */

smaller than a threshold � (Line 15), i.e., the service demand is
well distributed among cells. As it will be seen, Algorithm 1
allows the adjustment of network topologies to homogenize
the service demand share; and indeed, a simple variation of
it (without updating the site locations) could also be used for
fixed/existing networks.

VI. POWER OPTIMIZATION

The need for power optimization is intuitively justified
by the fact that, when the spatial service demand is very
irregular, access points are concentrated in high demand areas
(to increase the spatial frequency reuse); leading to very high
levels of interference if power is not adjusted proportion-
ally to cell sizes. In the context of Orthogonal Frequency
Division Multiple Access (OFDMA) networks, the effect of
interference on the load of each cell is accurately described
by the load-coupling model introduced in [12]. As in [5],
this model is adopted and briefly described here (for the
sake of completeness) as a starting point for the optimization
framework that is proposed. The load α of a cell is defined as
the fraction of resources that is required, on average, to satisfy
the service demand. Thus, following [5], [12], the load αl in
the lth cell is given by

αl =
V Rminlog(2)

B

∫

Al

δa

log (1 + γa(α, p))
da. (11)

Here, the factor V Rminlog(2)
B

is a constant, B is the system
bandwidth, Rmin is the target rate, Al is the coverage of the
lth access point, and δa is the relative service demand in the
ath area element (given by the spatial service demand distri-
bution (δ) under consideration). The network coverage area is
A =

⋃Al, with Ai ∩Aj = ∅, ∀i 6= j. The function γa(α,p)
is the SIR in the ath area element. It is a function of the load
in other cells and the power allocation, α ∈ R

L
+ and p ∈ R

L
+,

respectively. The SIR can be expressed as follows:

γa(α,p) =
p

l̂
G

l̂,a

L
∑

l=1,l 6=l̂

plGl,aαl

, (12)

where l̂ is the index of the serving access point, pl is the
transmit power in the lth access point, and Gla is the average
channel gain between the ath area element and the lth access
point. Note that interference coming from neighbors is scaled
by the corresponding load factors (αl’s). Thus, the so-called
Non-linear Load Coupling Equations (NLCE), f : R

L → R
L
+,

can be written as follows [12], [27]:

α = f(α,p; δ,G, V, B, Rmin), (13)

where
∫

A
δada = 1 and G ∈ R

L×A contains information on
the network geometry, i.e., the average channel gain between
each area element and access point, and a = 1, 2, · · · , A.
Hereafter, for the sake of clarity, (13) is simply written as:

α = f(α,p). (14)

As indicated, mathematical properties of (14) including exis-
tence and uniqueness of solutions are presented in [12], under
the assumption that p is given. The recent papers [27]–[29]
include the power vector p as an optimization variable to
achieve several goals, such as minimization of the sum of
the loads (

∑

αl) or minimization of the transmit power
(the product α · p). Recent improvements in the required
algorithmic has also been introduced in [30] and [31]. All
these excellent contributions have increased our understanding
about load-coupling in OFDMA-based cellular networks and
provide useful optimization frameworks.

In [27], for instance, notions such as rate satisfiability
and load implementability are developed. Essentially, while
for every power allocation p there is a corresponding load
pattern α, the converse is not true. The authors present
important results regarding the existence and computation of p
for a given load pattern α (as long as α is implementable).
To that end, an Iterative Algorithm for Power (IAP) [32] is also
presented, and its convergence is shown. It was also proven
that α = 1 is optimal from the energy efficiency point of view.
However, having cells operating at full capacity/load could be
not advisable from a practical point of view.

In this work, and as a part of the framework presented
herein, a different power optimization formulation is presented
and studied. In order to be aligned with [13], where a notion
of irregularity is defined in terms of the dispersion of the load
vector α, the proposed power optimization aims at minimizing
the variance of α, i.e., Var{α}, using p as optimization vari-
able. This simple, yet interesting, approach has the following
important and convenient features:

1) Solving the proposed power optimization results in a
uniform load pattern ᾱ · 1, with ᾱ ∈ R+. The scalar
ᾱ corresponds to the uniform (common to all cells)
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Fig. 5. Examples to illustrate the use of the proposed spatial mappings. (a) δ′
1
(x′, y′) = x′e−y

′
. (b) δ′

2
(x′, y′) = x′+y′. (c) Synthetic network topology: Tc.

(d) Mapping: Tc

g
−1

1m
−→ T

′

1m
. (e) Mapping: Tc

g
−1

1c
−→ T

′

1c
. (f) Mapping: Tc

g
−1

2m
−→ T

′

2m
. (g) Mapping: Tc

g
−1

2c
−→ T

′

2c
.

load level obtained when (15) is solved, i.e., once p⋆

is applied. This means that cells are equally loaded.
As remarked in [2], this is a very important target
in planning, where distributing the service demand as
evenly as possible is desirable. Indeed, the approach
provides a better result because having uniform service
demand share does not imply a uniformly loaded net-
work. The proposed optimization does provide the power
allocation that is required to achieve the aforementioned
important network planning target; and it is done taking
into account the load-coupling model (including service
demand spatial distribution, interference, and so on).
In addition, as it is discussed in [13], achieving the pre-
vious goal also maximizes the service demand volume
the network is able to manage.

2) No α needs to be specified beforehand. The optimization
converges to a resulting uniform load pattern ᾱ·1, where
ᾱ does not need to be known in advance.

3) The spare capacity is maximized, thus providing robust-
ness as the maximum network-wide protection against
instantaneous traffic variations is obtained.

The proposed power optimization can be written as
follows:

minimize
p

Var{α},
subject to : α = f (α,p),

p ∈ R
L
+. (15)

Thus, by applying p⋆, the load of each cell becomes equal
to ᾱ. Once p⋆ is applied, the network load level, i.e., the
value of ᾱ, can be modified by varying the variables V , B,
and Rmin. Analogously, any power allocation κ · p⋆, with
κ ∈ R+, is also a solution of (15). In practice, actual levels
must consider coverage criteria, as a minimum received power
is required. Problem (15) can be addressed by means of solvers
based on interior-point methods [33] or through heuristics,
such as IAP [27], [32]. Convergence and uniqueness aspects
are discussed in Appendix VIII. It is important to point
out that solving (15) provides the power allocation for the
data channels, while keeping the cells (the regions Al) fixed.

This can be regarded as a form of load balancing [34] that, in
contrast to existing methods based on cell range adjustments
(cell-breathing like schemes), do not transfer traffic from one
cell to another, but compensate the load pattern by adjusting
interference conditions in the network.

VII. NUMERICAL RESULTS

In this work, a generalization of the direct mapping F (see
Fig. 1) in terms of the composition of two functions has
been presented. As it is explained in Section III, and shown
in Fig. 2b, the direct mapping F can be written as follows:
F = g ◦ f , where f is a conformal mapping and g is a
non-conformal (rectangle-onto-rectangle) mapping. Given that
computation and use of the conformal mapping f (and its
inverse f−1) has been fully addressed in [5], the numerical
examples illustrate the computation, use, and performance of
the new components of the mapping F , i.e., the mappings g
and g−1 (see Figs. 2b and 4) between the domains R and R0,
in Sections VII-A and VII-B. Section VII-C presents the
results regarding power optimization, and finally, a compar-
ative perspective is provided in Section VII-D.

A. Spatial Mappings

The setting used in the examples is shown in Fig. 5, where
Figs. 5a-5c illustrate the domains R0 and R. The spatial
service demand distributions δ01 and δ02 are represented in
Figs. 5a and 5b, respectively; while the synthetic network
topology Tc is shown in Fig. 5c. The topology Tc was obtained
through the dimensioning analysis in the canonical domain
(Section IV). For that, the following assumptions were made:

• Service demand volume: V = 90s/130ms = 692.3 users
(on average); based on the average session time and
average inter-arrival time, 90s and 130ms, respectively.

• System bandwidth: B = 20.0MHz.
• Minimum user rate: Rmin = 1.0Mbps.
• Average channel gain: G = d−β ; d is the distance and

β = 3 is the propagation exponent.
• Uniform power allocation: p = 1, and uniform service

demand distribution.
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Fig. 6. Illustration of the non-conformal mappings used in the examples.

Fig. 7. Operation of Algorithm 1 with δ′
2

. (a) Topology after standard CVA. (b) Topology after Algorithm 1. (c) Share and cells adjustment. (d) Resulting
weights. (e) Load balancing. (f) Reduction of ∆.

A target load was ᾱc ≈ 0.9 for the canonical domain.
Then, a number of base stations L = 30 was found using
a rectangular cell layout as shown in Fig. 5c. Recall that
the same parameters are assumed for the domain R0, but
service demand distribution is obtained according to δ01 and
δ02. The different mappings of the topology Tc onto R0 are
illustrated in Figs. 5d-5g. The subscripts of the mappings g−1

are composed of one number (1 or 2) to refer to the spatial
service demand distribution (δ01 or δ02) that is used to create the
mapping, and one letter to indicate the method, i.e., ‘m’ for
non-conformal mapping (Section V-A) and ‘c’ for centroidal
Voronoi algorithms (Section V-B). For instance, g−1

1m (Fig. 5d)
indicates the non-conformal mapping of Tc from R onto R0,
for δ01. The same subscripts are used to refer to the non-
uniform topologies (T 0’s, Figs. 5d-5g) created in each case.

Note that δ01 (Fig. 5a) corresponds to a case of statistical
independence between x0 and y0, while δ02 (Fig. 5b) does not.
Hence, g−1

1m can be expressed as (2) and g−1
2m can be expressed

as either (5) or (6).
The mapping g−1

1m is given by

x0 = u(x) =
√

6x, (16)

and

y0 = v(y) = − log
(

1 − y

4

(

1 − e−4
)

)

. (17)

The mapping g−1
2m is given by

x0 = u(x) =
1

2

(

−4 +
√

16 + 40x
)

, (18)

and

y0 = v(x, y) = −u(x) +

√

[u(x)]
2

+ y [2u(x) + 4]. (19)

Both g−1
1m and g−1

2m are illustrated in Fig. 6. It becomes clear
how the mappings compress the space (in R0) where the
service demand is high. Thus, we obtain service provision
that is compatible with the service demand, i.e., more access
points where the demand is concentrated.

Regarding the mappings g−1
1c and g−1

2c , evidently they can-
not be expressed in closed form as resulting topologies are
obtained after the execution of Algorithm 1. However, it
is recalled that the key step is the calculation of the mass
centroids for each cell at each iteration according to (9). This is
the mechanism by which Algorithm 1 achieves higher density
of access points where the service demand is concentrated. The
operation of Algorithm 1 is illustrated in Fig. 7 using the func-
tion δ02 as example. Similar operation pattern is obtained for δ01.
Figs. 7a corresponds to the network topology obtained after
the execution of 200 iterations the standard centroidal Voronoi
algorithm (Line 3 in Algorithm 1). In general, centroidal
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Fig. 8. Service demand share and load pattern (under uniform power allocation). (a) Share: Tc. (b) Share: T
′

1m
. (c) Share: T

′

1c
. (d) Share: T

′

2m
.

(e) Share: T ′

2c
. (f) Load: Tc. (g) Load: T ′

1m
. (h) Load: T ′

1c
. (i) Load: T ′

2m
. (j) Load: T ′

2c
.

Voronoi algorithms do not result in homogeneous service
demand share (Vl ≈ Vk, ∀l 6= k), however, they provide a good
starting point for Algorithm 1. The network topology after the
execution of Algorithm 1 is shown in Fig. 7b. Fig. 7c shows
a comparative perspective between the standard Centroidal
Voronoi Algorithm (CVA) and Algorithm 1, associated in
the figure to squares and circles, respectively. Cumulative
Distribution Functions (CDFs) of cells size (solid patterns) and
service demand share (dash patterns) are shown. All the CDFs
are normalized, and hence, x-axis also goes from 0 to 1. CDFs
of cells size indicate diversity in terms of cells area size, and
CDFs of service demand share indicate how well distributed
among cells the service demand is. Clearly, Algorithm 1
succeeds in achieving uniform service demand share, while
CVA does not. As explained earlier, Algorithm 1 gradually
adjusts the weights of the power Voronoi diagram (Fig. 7d),
such that the cell with the highest share reduces its coverage,
while cells with less demand tends to increase its coverage.
The net result is an increase in cell size range (with respect
to CVA), as it is shown in Fig. 7c. Note that the CDF of
cells size for the CVA indicates higher cell size homogeneity,
which can be verified visually by looking at Figs. 7a and 7b.
Fig. 7e shows the evolution of the highest and lowest cell
share in the network. In the example, Algorithm 1 reduces
in 200 iterations the gap between the cells with highest and
smallest share in less than 1.5%. The figure illustrates the
asymptotic convergence of Algorithm 1. As mentioned, the
reduction factor ∆ (see Algorithm 1) is gradually decreased to
enhance the convergence of the algorithm as shown in Fig. 7f.

B. Service Demand Share and Load Patterns

The service demand share and load patterns of the topolo-
gies illustrated in Figs. 5c-5g are shown in Fig. 8. The
service demand share and load pattern of the canonical domain
(Fig. 5c) are shown in Figs. 8a and 8f, respectively. As indi-
cated earlier, the conditions of the canonical domain (uniform
spatial service demand distribution, uniform service demand
share, and same amount of received interference per cell),
result in a flat load pattern, i.e., αl = αk, ∀l 6= k. In the

example, each one of the 30 cells has a share of 3.33% of the
service demand, which always results in a load equal to 0.91.

The service demand share of the topologies T 0
1m and

T 0
2m created by the non-conformal mapping are shown

in Figs. 8b and 8d, respectively. In these cases, there is a small
unbalance in the service demand share due to the fact that the
mappings are only used to map the access points (and not the
boundaries) from R to R0. Once in R0, cells are defined using
standard Voronoi diagrams, i.e., each point is associated to its
closest access point.3 A perfect service demand share could be
attained, for instance, by using Algorithm 1 to adjust the cells
sizes of these topologies; however, they are intentionally kept
in this manner to show that the power optimization proposed
in Section VI does not require uniform service demand share.
Their resulting load patterns, when uniform power allocation
(cells transmit in data channels with the same power) is
assumed, are shown in Figs. 8g and 8i. Note that, as expected,
uniform power allocation is not a good idea for topologies with
very different access points densities, such as T1m, due to the
high interference that is created. In Fig. 8g, most of the cells
get load factors greater than one (which in practice means
outage), indicated by red circles. In Fig. 8i only one cell has
load larger than one, but still the load pattern is very irregular,
i.e., the network is far from being uniformly loaded.

The topologies obtained using Algorithm 1 feature uniform
service demand share as it can be seen from Figs. 8c and 8e.
The corresponding load patterns (under uniform power alloca-
tion) are shown in Figs. 8h and 8j. In the light of these exam-
ples, it becomes clear that the more irregular the topology is,
the less feasible the uniform power allocation assumption, and
hence, the larger the need for power optimization. However,
the average network load obviously depend on the service
demand volume (V ), but it is important to recall that this
dependency is highly non-linear. Note that, while in case of T1c

(Fig. 8h), there are two cells in outage, in case of T2c (Fig. 8j),
the average cell load is around 0.6, with no outage. Evidently,
the assumption of uniform power allocation is much less valid

3Two additional methods, along with their pros and cons, are explained
in [5, Sec. V-C].
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Fig. 9. Use of power optimization to obtain uniformly loaded networks with the highest spare capacity. (a) Optimized power for T2m. (b) Spatial power
allocation pattern for T2m. (c) Uniform load pattern. (d) Optimized power for T2c. (e) Spatial power allocation pattern for T2c. (f) Uniform load pattern.

for T1c than for T2c, as the former is much more irregular
than the latter, see Figs. 5e and 5g. The following examples
illustrates the use of power optimization.

C. Load Balancing Through Power Optimization

As indicated before, optimizing the power allocated to
the data channels is a convenient alternative to achieve load
balancing, without need for transferring service demand from
one cell to another; for instance, by adjusting the power of cell-
specific reference signals [26] that are used for cell-selection.
In order to illustrate the use of power optimization, the
topologies T2m and T2c (Figs. 5f and 5g), produced in R0 by
the mappings g−1

2m and g−1
2c , respectively, and the non-uniform

spatial service demand distribution δ02 are considered. This
does not imply any loss of generality with respect to its use in
the physical domain A, as the power optimization proposed in
Section VI is topology and domain agnostic. Figs. 9a and 9d
show the optimized power vector p⋆ in both cases. A visual
representation is also provided in Figs. 9b and 9e, where the
power allocated to each cell is normalized (with respect to
the highest value) and expressed in dB. Both figures have
the same scale: from 0dB (the highest power) to −16dB.
It can be observed that there is a certain correlation between
the power allocated to each cell and its size, i.e., smaller
cells tend to be allocated with less power. However, this
is not a rigid rule as shown in the figures, but a trend
that is just intuitively expected. The actual optimal power
allocation depends on the spatial service demand distribution
and network topology/geometry (site locations and cells). The
resulting uniform load patterns are shown in Figs. 9c and 9f,
where it is evident that the proposed power optimization
succeeds in finding a power allocation able to homogenize
the load pattern in both cases. Thus, finding the solution
of (15) not only leads to a power allocation in which the cells
are uniformly loaded (a nice feature from network planning

perspective), but also maximizes the spare capacity in the
network. Indeed, the resulting uniform load level ᾱ is the mini-
mum possible for a given V , Rmin, and B. In Appendix VIII,
uniqueness aspects are discussed. This is important because
spare capacity, indicated in Figs. 9c and 9f, provides a natural
protection against instantaneous service demand variations
that would appear in real deployments.4 If we look at these
results from a comparative point of view, taking the network
topology T2 as reference, we can observe not only the per-
formance difference between the two schemes (mapping and
iterative algorithm), but also the remarkable performance gap
with respect to the original scheme proposed in [5] that lacks
of power optimization. Focusing on Figs. 8i and 9c, it is
clear that in the former case (Fig. 8i) the network is quite
unbalanced in terms of cell load with cells in outage and
several others about to be in outage if minor service demand
variations occur. In the later case (Fig. 9c), the load of the cells
is 0.79, meaning that every cell has a spare capacity of 21%,
on average. A similar analysis holds between Figs. 8j and 9f,
although in this case, the gain is only in terms of homogeneity
since the power optimization achieves uniform cell load and
the service demand volume considered is relatively low. Based
on this analysis, it can be concluded that power optimization
is a substantial enhancement from the practical point of view.

D. Final Remarks

All in all, the results have shown the effectiveness and
usability of both spatial mappings and centroidal-based algo-
rithms with power Voronoi diagrams (Algorithm 1). As in
many other instances, different approaches have advantages
and drawbacks, and in this context the word ‘better’ is
not really suitable. The use of one or another depends
on preferences, requirements, available resources, and the

4Recall that load values calculated using (11) are average figures.
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characteristics of the particular problem to be addressed.
A short list of practical rules-of-thumbs are provided next:
� Scale of the Problem: Based on our experience, if the

problem requires the deployment of a large number
of cells (e.g., L ∈ [75, 1000]), operating with spatial
mappings is most like a good choice, because the exe-
cution of centroidal Voronoi algorithms could be very
expensive, as centroids need to be computed for each
cell at each iteration. In these cases, the compactness of
spatial mappings is really a desirable feature, as it was
shown in the examples provided in [5]. For relatively
small deployments (L < 75), obtaining perfect service
demand share is a nice plus that can be obtained by
means of Algorithm 1. However, as it was shown, uniform
service demand share is not a requirement for power
optimization.

� Context Variables/Assumptions: The spatial service
demand distributions used herein have been selected to be
functions leading to closed-form mappings and centroid
solutions. They also exemplify statistical independence
and non-statistical independence. As indicated in [5],
conformal mapping as well as the mappings introduced
herein not only admit, but require numerical solution in
most of the practical problems. Examples allowing ana-
lytic solutions, such as δ01 and δ02, are essentially reserved
for theoretic/academic purposes. Therefore, more com-
plex functions used to approximate the spatial service
demand distribution would require numerical evaluation,
same as spatial distributions completely given in numeri-
cal terms. The particular structure of the δ that is assumed
could be more suitable for one approach or another. It is
also important to look at the definition of the physical
domain. While conformal mapping provides a general
setting for mapping arbitrary polygons onto rectangles,
the assumption of defining A as a rectangle would be
valid in many practical contexts as well.

� Network Fine-Tuning: The proposed framework is a tool
for planning and optimization purposes; and it is a
complementary approach to existing methods, such as
system level simulations or stochastic geometry. Hence,
it is perfectly valid to fine-tune the resulting/obtained
network topologies using the methods proposed herein,
i.e., adjusting cells coverage by means of power Voronoi
diagrams or power optimization for load balancing as
proposed in Section VI; or to resort to other alternatives,
such as the power optimization for energy efficiency
proposed in [27] or existing load balancing methods [34].
Planning and radio access optimization is a difficult
problem, and hence, there is not a unique recipe. The
framework presented herein provides additional effective
tools to aid at these tasks.

� Intercell Interference Coordination and Signaling: It is
worth noting that changes in the interference statistics due
to use of e.g. Intercell Interference Coordination (ICIC)
may have some impact on the optimal network deploy-
ment especially when service demand distribution is
irregular and very dense in some locations. ICIC could
be modelled through channel gains in equation (12).
In this work, such modelling has not been considered
since it could unnecessarily move the focus from net-
work planning to interference coordination. Accordingly,
signalling related to ICIC is also out of the scope of this
paper.

It is good to acknowledge that the presented deterministic
network planning concept is primarily developed to serve as a
tool for analytic investigations with aim to make dependencies
between different parameters/factors visible. We note that
similar planning result can be obtained using good heuristic
methods. Furthermore, the current computational efficiency of
the first algorithmic realizations of the methodology is not
very high (it takes some tens of minutes to run algorithms in a
baseline laptop). Yet, the computation time is not a bottleneck
in traditional network planning that is made offline. In future
networks with moving small cells (e.g., relays in buses)
network planning may become a more dynamic task and
computation time becomes a more important factor. Finally,
the computational burden heavily depends on the size of the
network and the service demand ‘irregularity’ that reflects also
to the properties of the spatial mappings. It is a future research
topic to design principles for the network partition to allow
parallel and more effective algorithm realizations.

VIII. CONCLUSIONS AND RESEARCH DIRECTIONS

Planning and optimization are tasks that certainly need
to go hand-in-hand to maximize the profit and performance
of current and future cellular systems. In this work, key
contributions to the planning and optimization framework
based on canonical domains and spatial mappings, originally
introduced in [5], have been presented. These novelties include
more general and versatile mappings, new algorithmic tools,
and power optimization schemes. The results confirm the
potential and promising research perspectives of the proposed
framework, in which having an statistical description of the
spatial service demand distribution, is of utmost importance.
As it was explained, planning is a very tough problem, and
to address it in the context of future 5G systems, several
tools need to be combined to achieve the expected outcomes.
In this sense, our framework is complementary to well-known
existing methods, such as system level simulations or stochas-
tic geometry, each of which has advantages and drawbacks.
However, the proposed framework provides not only another
methodology (with pros and cons as well), but also a new angle
to look at this problem. Because this idea is in its infancy, the
authors are confident that many enhancements are to come and
this contribution will benefit both academy and industry.

Our current research efforts are aligned in the following
directions:

1) Indoor network planning. The goal is to evolve the
proposed framework for planning and optimization of
indoor deployments, using cutting-edge mapping tech-
niques developed by the authors, such as [35].

2) Service demand in 3 dimensions. Provide means to
use the current art to study realistic cases where the
service demand is given in 3 dimensions, e.g., to include
buildings.

3) HetNets: Heterogeneous networks is another direction to
be addressed. Methods based on the idea of composition
and separation of tiers are currently under study. One
clear application of this is to consider cases where net-
work already exist, but some capacity enhancements are
pursuit by means of additional access points, i.e., opti-
mal Radio Access Network expansion. Also, integrating
more general metrics to account with sectorization is
another clear extension of this work.

4) Uplink : To explicitly take into account within the opti-
mization framework the particularities of both downlink
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Fig. 10. Toy example: small cellular network composed of two cells.

and uplink is a natural research question to be considered
within the evolution of the proposed scheme.

5) Unmanned Aid Vehicles (UAVs): Due to its nature, the
proposed framework is highly suitable to be used in
the positioning of UAVs, where mobility can also be
assumed for the access points. The temporal evolution
of the service demand is another clear path to go.

APPENDIX

POWER OPTIMIZATION: CONVERGENCE AND UNIQUENESS

In this appendix, convergence and uniqueness aspects of the
following minimization problem are discussed:

minimize
p

Var{α},
subject to : α = f(α;p)

p ∈ R
L
+, (20)

where α ∈ R+, p ∈ R+, and the lth element of α, αl, is
given by

αl = fl(α,p) = K
∑

a∈Al

δa

log

(

1 +
plGl,a�

L
i=1,i�=l

piGi,aαi

) , (21)

with
∑L

l=1

∑

a∈Al
δa = 1, K ∈ R+, and Gl,a ∈

[0, 1)∀
(

l ∈ {1, 2, · · · , L} ∧ a ∈ A =
⋃L

l=1 Al

)

. The previous
problem is a discrete version of (15), where the coverage
region of each access point (i.e., the sets Al’s) is divided
into many small area elements. For the sake of clarity, and
without loss of generality, a basic network composed of two
cells (L = 2), as shown in Fig. 10, is considered.

A. Guaranteed Convergence of Interior Point Methods

The problem (20) is quadratic. The gradients of the con-
straint functions αl − fl(α,p) = 0 and pl > 0 are linearly
independent, since by construction the matrix of gradients
is diagonally dominant. Notice, that the diagonal elements
are identically = 1. Thus, the convergence of interior point
methods is guaranteed.

B. Remark on Uniqueness of Minimal Load Vector

Let us next focus on the discrete formulation of the simple
configuration given above:

α1 = f1(α,p) = K
∑

a∈A1

δa

log
(

1 + 1
α2

p1G1a

p2G2a

) , (22)

α2 = f2(α,p) = K
∑

a∈A2

δa

log
(

1 + 1
α1

p2G2a

p1G1a

) . (23)

Let us assume equilibrium and set ᾱ = α1 = α2 with
naturally ᾱ ∈ R+. Next we consider a scaling ᾱ → cᾱ, where
1/ᾱ > c > 0 is a constant, in order to investigate whether
for any value c < 1 there exists a power vector p̂ which
also minimizes the problem (20). Inserting the scaling into
equations we get

cᾱ = K
∑

a∈A1

cδa

log
(

1 + 1
ᾱ

p1G1a

p2G2a

) , (24)

cᾱ = K
∑

a∈A2

δa

log
(

1 + 1
cᾱ

p2G2a

p1G1a

) . (25)

Setting p1 and p2 to values obtained in the non-scaled
minimization in (24) but rewriting (25) as

cᾱ = K
∑

a∈A2

δa

log
(

1 + 1
cᾱ

p̂2G2a

p̂1G1a

) , (26)

we can search for a solution (minimizer) to an equation
(24) = (26), with c, p̂1, and p̂2 as free parameters. This
equation has only one fixed point with c = 1 and p1/p2 =
p̂1/p̂2 and we conclude that the obtained ᾱ is optimal and
unique up to scaling of the components of p.
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