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Spatial maps of prostate cancer transcriptomes
reveal an unexplored landscape of heterogeneity
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Intra-tumor heterogeneity is one of the biggest challenges in cancer treatment today. Here

we investigate tissue-wide gene expression heterogeneity throughout a multifocal prostate

cancer using the spatial transcriptomics (ST) technology. Utilizing a novel approach for

deconvolution, we analyze the transcriptomes of nearly 6750 tissue regions and extract

distinct expression profiles for the different tissue components, such as stroma, normal and

PIN glands, immune cells and cancer. We distinguish healthy and diseased areas and thereby

provide insight into gene expression changes during the progression of prostate cancer.

Compared to pathologist annotations, we delineate the extent of cancer foci more accurately,

interestingly without link to histological changes. We identify gene expression gradients in

stroma adjacent to tumor regions that allow for re-stratification of the tumor micro-

environment. The establishment of these profiles is the first step towards an unbiased view of

prostate cancer and can serve as a dictionary for future studies.
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P
rostate cancer (PCa) is the most common type of cancer
among men worldwide1, causes annually over 250,000
deaths, and advances via clonal evolution2. Frequently,

multiple competing clones with independent tumor origins exist
within the primary tumor3–5. Moreover, acquired somatic events
by the clones increase the probability for metastasis6. Conse-
quently, PCa contains substantial intratumoral heterogeneity with
genetic alterations present both in the original tumor and in
distant metastases7,8. Subclonal diversity can be analyzed with
DNA-sequencing of a bulk tumor sample7,9 or more precisely by
using laser capture technology3. While genetic changes are
important to track cancer heterogeneity and clonal evolution they
may also be of clinical relevance. This is exemplified by the high
proportion of castration-resistant PCa cases being DNA repair
deficient10. In these cases frequent mutations in BRCA2 and
ATM genes are linked to successful treatment with PARP inhi-
bitors11. Furthermore the tumor microenvironment in the form
of reactive stroma plays a functional role during inflammation
and in neoplastic transformation12.

By using single-cell RNA-Seq (scRNA-Seq), intra-tumor gene
expression heterogeneity has been documented at the level of
individual cells13–15 and advancements in droplet microfluidics
and barcoding have made it possible to analyze thousands of
cells16. The lack of spatial information for scRNA-Seq data can, to
a certain extent, be circumvented by computational inference17,18.
Current in situ sequencing techniques have, until recently, been
limited to measuring small numbers of genes19,20 and the spatial
dimensions of entire transcriptomes remain unexplored in PCa,
along with the tumor microenvironment.

Pathological severity of prostate adenocarcinoma, despite
progress with molecular markers and MRI, is generally scored
according to the Gleason grading (Gs) system, which uses his-
tological data only, frequently complemented with PSA mea-
surement in blood and tumor staging21. However, this
classification method has limitations and new alternatives have
been proposed22.

Here we investigate for the first time a multifocal PCa simul-
taneously at tissue- and transcriptome-wide scale using the
recently introduced Spatial Transcriptomics (ST) method23,
which allows for quantification of the mRNA population in the
spatial context of intact tissue. We use a novel computational

procedure to elicit spatial, transcriptome-wide expression pat-
terns enabling deconvolution of molecular events in cancer and
associated microenvironment.

Results
Measuring spatial gene expression in prostate cancer tissue
sections. The study design involves twelve spatially separated
biopsies taken from a cancerous prostate after radical prosta-
tectomy (Gs 3+ 4, pT3b, PSA= 7.1)(Fig. 1a). We measured
spatial gene expression throughout twelve tissue sections using
the ST methodology (Fig. 1b, Supplementary Fig. 1a). Supple-
mentary Table 1 contains a summary of the data evaluation.
Overall, 5 910 tissue regions within the 12 sections were analyzed.

Transcriptome heterogeneity in the spatial vicinity of a cancer.
We initially analyzed one tissue section containing a tumor
(sample 1.2, Gs 3+ 3, Supplementary Fig. 1b). We used a novel
factor analysis method (Supplementary methods) to infer activity
maps (Fig. 2a, Supplementary Fig. 2a, Supplementary Data 1) and
expression profiles (Supplementary Fig. 3, Supplementary
Data 1). The factors’ activity maps generally exhibit spatial pat-
terns that closely mirror histologically identifiable structures, such
as normal glands and stroma (Fig. 2a, Supplementary Fig. 2a).
Others overlap with regions annotated as cancerous or prostatic
intraepithelial neoplasia (PIN) (Fig. 2a, b). Remaining factors are
annotated by combined analysis of listed top genes, histology and
calculated proportion of stroma, epithelium and lumen (Supple-
mentary Fig. 2a, Supplementary Table 2). Notably, the “cancer”
factor is active in a region that encompasses the annotated cancer
region. Hierarchical clustering of the ST read count data (Sup-
plementary Fig. 4a) is consistent with the factor activity patterns
(Fig. 2a). In addition, principal component analysis (PCA) con-
firms clear separation between regions (Fig. 2d). The gene
expression profiles (Supplementary Fig. 3) generally reflect the
expression phenotype of the prostate as tissue of origin or the
functional requirements of the respective tissue components. For
example, KLK3, KLK2, MSMB, and ACPP are among the highest-
expressed genes in many of the factors. In the “stromal” factor the
top-expressed genes have functions related to cytoskeleton,
smooth muscle and cell-adhesion. Known PCa-related genes

a

Normal glands
Inflammation 

Cancer Gs 3+4

Cancer Gs 3+3

Cancer Gs 3+3

1.2

1.3
2.1

1.1 2.3 2.4

3.1 3.3

3.2

4.1 4.3

4.2

4
0
 m

m

50 mm

Cancer Gs 3+4

100 µm

1007 spots

200 µm

6
.6

 m
m

6.2 mm

F
a
c
to

r 
a
n
a
ly

s
is

Gene expression profiles

ACTB

MYH11

FLNA

KLK3

MYL9

TAGLN

b Prostate cancer tissue

on ST microarray

Whole prostate overview Activity maps

ST

Gene maps

Fig. 1 Study design for spatial transcriptomics (ST) in prostate cancer. a Location of sections used in this study and annotations made by a pathologist. The

sections are colored according to annotation. Scale bars indicate size of the prostate. b Spatial microarrays have 1007 spatially barcoded spots of 100 μm

diameter and 200 μm center-to-center distance. Spots denoted by filled circles are used for orientation, and lack spatial barcodes. The ST procedure yields

matrices with read counts for every gene in every spot, which are then decomposed by factor analysis resulting in a set of factors (“cell types”), each

comprising one activity map and one expression profile

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04724-5

2 NATURE COMMUNICATIONS |          (2018) 9:2419 | DOI: 10.1038/s41467-018-04724-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


(SPON2, TFF3, SPINK1) are among the highest-expressed genes
in the “cancer” factor.

In order to identify interactions between the factors, we
performed hierarchical clustering (Supplementary Fig. 2b) of all
ten factors. The clustering yielded three main groups. Among the
ten factors, inflammation, PIN and cancer, could delineate one of
the groups, while being seperated from normal glands. This
further indicate inflammation as a critical component of tumor
initiation and progression. As expected, factors containing mainly
stroma cells cluster together. Factor 1 contained high levels of
MSMB and annotated as “normal glands signature”. MSMB is
known to be downregulated in prostate cancer24.

The gene expression within each region (normal, cancer, PIN)
obtained from the preceding factor analysis was investigated to
identify region-specific markers (Supplementary Fig. 4b). In the
cancer region we for instance observe enrichment of SPINK1 and
PGC, and depletion of ACPP (Fig. 2c, Supplementary Data 2).
Another noteworthy observation is elevated levels of NPY in the
PIN region (Fig. 2c). To validate these findings we investigated
the concordance between gene expression and staining of the
corresponding proteins within the tissue. Immunostaining of
SPINK1 was coincident with the defined cancer region and

immunostaining of NPY was mostly localized to that of the PIN
region (Fig. 2e, f).

Spatial expression patterns common to cancer tissue sections.
Next, we carried out a factor analysis for three tissue sections
containing annotated cancer foci (Fig. 3). The resulting gene
expression profiles (Supplementary Fig. 5, Supplementary Data 3)
are similar to the preceding analysis. The activity maps (Fig. 3b,
Supplementary Fig. 6a, Supplementary Data 3) again show pat-
terns corresponding to annotated or histologically identifiable
structures (Fig. 3a), but now group regions with similar pheno-
type across tissue sections, and for tissue section 1.2 are virtually
identical to the preceding analysis. In particular, the “cancer”
factor now includes in section 2.4 a region annotated as suspected
cancer and also shows slight activity in Section 3.3 (Fig. 3b).
SPON2, TFF3, and SPINK1 are again among the highest-
expressed genes for this factor (Supplementary Fig. 5). The
gene expression profile of another factor reflects processes
observed in reactive stroma (“reactive stroma”, Supplementary
Fig. 5) and surrounds that of the “cancer” factor in samples 2.4
and 3.3 (Fig. 3b). Although the pathologist marked section 3.3
with cancer and few PIN and normal glands, we detected
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relatively large areas containing both normal and PIN glands
within the cancer annotated region (“normal glands” and “PIN
glands”, Fig. 3b). This heterogeneity within the cancer area is
supported by PCA and hierarchical clustering of spots taken from
the annotated cancer area in sample 3.3 (Supplementary Fig. 7).

Notably, hierarchical clustering (Supplementary Fig. 6b) of the
factors was similar to the preceding one (Supplementary Fig. 2b).
Importantly, inflammation is once again linked to cancer and
PIN, and a clear separation of normal glands (with and without
MSMB) from stroma and malignant cells was observed.
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Interestingly, we identified factor 1 to be a mix of stroma and
normal epithelial cells expressing high levels of RACK1 and
FTH1. Studies has shown that RACK1 is part of the tyrosine
kinase signaling, facilitating transcriptional activity of the
androgen receptor (AR)25.

In addition to our genome-wide measurements, we investi-
gated pathways in normal, PIN and cancer epithelium (Fig. 3c,
Supplementary Fig. 8, Supplementary Data 4). Higher expression
of cancer-related pathways was observed in cancer and PIN
compared with normal epithelium. We observed increased
expression of cell cycle, DNA replication, homologous recombi-
nation, Fanconi anemia and p53 signaling in the cancer and PIN
areas. Notably, Wnt signaling was only detected in the PIN factor.
This suggest that Wnt signaling plays an important role in the
initiation and progression of PIN. Studies have shown association
of Wnt signaling/β-catenin expression with tumor evolution26.
All of the above mentioned pathways differentiate benign from
malignant tissue and with this in mind, they could be particularly
important in characterizing normal or pre-neoplastic tissue
(PIN). It also opens up the possibility to develop anticancer
treatments to target these pathways, for example cell cycle arrest
that hinder progression of cells from the G1 to S phase27,28 or
targeting DNA repair with PARP inhibitors11. Moreover, tumors
with deficiencies in homologous recombination or Fanconi
anemia proteins are known to respond to platinum-based
chemotherapy29.

Disappearance of basal cells from prostatic glands is one of the
hallmarks of PCa, and the protein P63 is a well-established
marker for basal cells30. We validated by IHC that presence or
absence of P63-stained glands co-incident with pathological
annotation and the ST factor analysis results (Supplementary
Figs. 9–12). Notably, the absence of P63 staining in sample 1.2 is
coincident with the “cancer” factor’s activity, and extends further
than indicated by the pathologist (Supplementary Fig. 10). In
sample 2.4, no P63-stained glands are observed throughout an
area that comprises the annotated and suspected cancer foci
(Supplementary Fig. 11). While P63 staining is mostly absent in
the large annotated cancer area of sample 3.3, some stray glands
show P63 staining (Supplementary Fig. 12). Closer inspection
reveals flat glands with P63 staining (Supplementary Figs. 9 and
12), consistent with PIN characteristics31. To confirm the ST
expression data for several genes of interest, we performed
immunohistochemistry (IHC) and found concordance between
the spatial expression patterns of protein and mRNA (Supple-
mentary Figs. 13–14).

To explore observation across tumors, we analyzed two more
tumors from two patients (corresponding to an additional 750
tissue regions) and compared the transcriptional profiles of the
tumor areas from the first patient (Supplementary Fig. 15a,
Supplementary Data 5). We detect extensive tumor heterogeneity
between patients as determined by the factor analysis. To further
investigate, at the gene level, we could confirm some observations
obtained from patient 1. Interestingly, we identified NPY
(enriched in PIN regions), SPON2 (enriched in cancer regions)
and NR4A1 (enriched in reactive stroma, see below) also in
patient 2 and 3 (Supplementary Fig. 15b), while EEF2, NEAT1,
and TPT1 (established interaction with p53)32 were uniquely
expressed in patient 3 (Supplementary Fig. 16).

The transcriptome wide data for patient 2 looked quite distinct
compared to patient 1 and 3. Among the highest genes, we found
SERPINA3 and TPT1 (Supplementary Fig. 16).

Gene expression differences in the center and the periphery of
cancer. We sought to in more detail investigate functional dif-
ferences in gene expression between the center and the periphery

of the cancer, respectively and how the signals from the tumor
stimulates the adjacent endothelium. Abnormal tissues adjacent
to tumors were first described in 1953, also called the “field
cancerization”33. Previous studies have suggested that breast
cancer tissue close to cancer undergoes extracellular matrix
remodeling, fibrosis, and an epithelial-to-mesenchymal transition
(EMT)34. Other studies, focusing on prostate cancer investigated
the gene expression differences among prostate cancer tissue,
adjacent prostate cancer tissue and normal prostate tissue35. They
found that the tumor vs. normal expression profile was more
extensive than the tumor vs. adjacent normal profile. Also, tumor
and adjacent tumor tissues emerged with higher response of
inflammatory and immune than normal tissues, which was in
agreement with previous report that inflammation was closely
related to cancer. A recent study conducted on many different
cancer types revealed that the adjacent tumor tissue represents an
intermediate state between normal and cancer tissue36. They also
uncovered activation of pro-inflammatory response in the adja-
cent tissue. However, no evaluation with spatial resolution of
cancer and adjacent cancer tissue has been performed to date. We
therefore aimed for discover differences between the cancer and
the periphery of the cancer samples 1.2 (Gs 3+ 3), 2.4 (suspected
cancer) and 3.3 (Gs 3+ 4) (Fig. 4 and Supplementary Figs. 17–18).

The pathways activated in the center of sample 1.2 (Fig. 4d) are
mainly linked to altered cellular metabolism (Oxidative phos-
phorylation, Pentose phosphate pathway37, Citrate cycle); meta-
bolic alteration is a hallmark of cancer38. The activated TCA cycle
pathway is essential for a neoplastic prostate cell to evolve into a
malignant tumor cell39 and its activations in the center suggests
that the malignant center cells with high energy consumption are
surrounded by pre-malignant cells. On the other hand, for sample
3.3 (Fig. 4h), higher levels of metabolism is seen in the periphery
of the cancer. Furthermore, sample 3.3 expresses higher levels of
Endocytosis, Phagosome and Lysosome in the central area. These
pathways are known to be high in necrotic areas, in which they
clear cell debris and dead cells40. Notably, we also observe
enrichment of the HIF-1 signaling pathway. As a tumor grows, it
causes abnormalities in tumor blood vessels, leaving region of the
tumor with lower oxygen concentration compared to normal
tissue41. The best understood mechanism of how cancer cells
adapt to a hypoxic environment is through elevated levels of HIF-
1 and HIF-242.

Notably, the activated pathways in the periphery of 1.2 are
mainly related to stress, inflammation (NF-kappa B signaling,
Toll-like receptor signaling, NOD-like receptor signaling)
(Fig. 4d). Such theory is supported by other studies35,36. We
confirmed that the presence of immune pathways was due to
presence of immune cells in the nearby tissue by asking a
pathologist to annotate if inflammation exists (Supplementary
Fig. 17a). We also found high levels of immune-related genes in
the periphery (e.g., IRF7, HLA-C and NFKBIA) (Supplementary
Fig. 17a).

Both tumors showed high levels of pathways linked to cell
proliferation (MAPK signaling, ECM-receptor interaction, PI3K-
Akt signaling) and cell motility (regulation of the actin
cytoskeleton, focal adhesion), although they were found in
different regions of 1.2 and 3.3 (either the center or periphery
of the cancer) (Fig. 4d, h).

We see higher expression of some genes in the periphery
compared to the center in all three cancer areas (Fig. 4 and
Supplementary Figs. 17–18). For example, TAGLN (tumor
suppressor)43, HLA (linked to the immune system in humans)
44, ACTG2 and ACTB (involved in cell motility)45. Genes that are
higher expressed in the center in all three cancer areas are for
example, NUPR1, ASAH1 PDLIM5, KLK4 and PSCA. All are
known to be highly expressed in PCa46. Additionally noteworthy
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are EGR1 and KLK3 in sample 3.3 (Gs 3+ 4). EGR1 is up-
regulated in the center of the cancer area of sample 3.3 and there
is evidence suggesting that this gene is directly linked to the
transition of the cancer into invasive carcinoma and a potential
target for cancer treatment47,48. KLK3 is to date the best prostate
cancer biomarker. However, its downregulation as observed in
sample 3.3 (Gs 3+ 4) is linked to more aggressive tumors and
recent studies have shown that the stimulation of KLK3
expression can indirectly reduce the proliferation rate and
decrease the risk of metastasis49.

The cancer area of sample 2.4 shows similarities with the one in
sample 1.2 (Fig. 4 and Supplementary Fig. 18). The center of 2.4 is
dominated by enriched pathways linked to altered cellular
metabolism (Glycolysis/Gluconeogenesis, Pyruvate metabolism,
Amino sugar and nucleotide sugar metabolism)38, whereas the
periphery is marked by enriched pathways involved in stress,
inflammation and immune system (B cell receptor signal-

ing, T cell receptor signaling, Tolllike receptor

signaling)35,36. Consistent with the factor intensities, the
cancer area of sample 2.4 shows more pathway similarities with
sample 1.2 than with sample 3.3 (Fig. 4 and Supplementary
Fig. 18). The pathway Protein processing in endoplasmic
reticulum is the most significantly enriched pathway in all three
cancer centers. Due to increased cellular metabolism and cell
proliferation rate, cancer cells activate this pathway to obtain
correct protein synthesis and modifications and overcome ER
stress50.

Spatial expression patterns in the microenvironment of cancer
and inflammation. To examine whether we could identify
inflammation, we performed analysis of all 12 samples. The data
revealed a factor (“inflammation” factor, Supplementary Fig. 19,
Supplementary Data 6) that was active across inflammation-
annotated regions of sample 3.1 and 4.2. A more granular factor
analysis of only these two samples decomposes several stromal
and glandular factors (Fig. 5, Supplementary Fig. 20, Supple-
mentary Data 7). We detect spatial proximity of areas consisting
of apparent cancer glands (“FOSB-enriched”), inflammation
(“AQP3-enriched”) and reactive stroma (“NR4A1-enriched”)
(Fig. 5b). A novel gene (NR4A1) was highly expressed in reactive
stroma. We confirmed the spatial expression pattern of NR4A1 by
its protein by IHC (Supplementary Fig. 21). Among the factors
not shown in Fig. 5, some contained stroma cells or normal
glands (with or without MSMB) (Supplementary Fig. 22). KRT13
was upregulated in one of the factors and has recently been
associated with poor prognosis in metastatic patients51.

Interestingly, both samples exposes stromal expression gradi-
ents adjacent to tumor regions (Fig. 5c) which are likely due to
stromal cell-type heterogeneity. For the inflammation containing
samples, hierarchical clustering of the factors revealed three
distinct groups (Supplementary Fig. 22b). Stroma and normal
cells separate from inflammation, however, compared to the
previous clustering (Supplementary Fig. 2b, Supplementary
Fig. 6b) reactive stroma is more similar to inflammation and
cancer glands (“FOSB enriched”) than stroma cells.

Whereas molecular alterations drive the progression from low-
Gleason grade to invasive cancer, tumor microenvironment and
tumor cells are co-dependent and progress alongside. Hence, we
compared both the gene expression on stroma close to tumor and
inflammation with that of normal stroma (Fig. 5d, Supplementary
Data 8-9). The results display different enriched pathways
between the two regions. Normal stroma was associated with
cell movement and adhesion (actin cytoskeleton and regulation of
Actin-based Motility by Rho), as well as androgen signaling and
the complement system. Several studies have suggested that the

complement system is involved in the immuno-surveillance
against tumors (anti-tumor effect)52. On the other hand, the
complement has also been implicated in tumor growth53. Our
results elucidated that the complement pathway is enriched in
stroma cells close to normal epithelium. The reactive stroma was
enriched for oxidative stress and ILK signaling. Studies have
shown that ILK expression and activity is significantly up-
regulated in several types of cancers (pro-tumor effect)54.

To further study cancer and inflammatory microenvironments,
we selected samples based on activity of the “reactive stroma”
factor in the 12 sample analysis (Supplementary Fig. 19),
Supplementary Data 6). A factor analysis of the four identified
samples, and subsequent dimensionality reduction, reveal once
again cancer, reactive stroma and inflamed glands in close
proximity to each other (Supplementary Figs. 23–25, Supple-
mentary Data 10).

In order to enable other reserachers to study their gene of interest
on the tissue, a Shiny application was built and is freely available at
https://spatialtranscriptomics3d.shinyapps.io/STProstateResearch/
(Supplementary Methods).

Deletions and amplification are spread locally. In order to
complement the spatial gene expression patterns, we examined
the copy number from whole genome sequencing data (Supple-
mentary Fig. 26). We analyzed the affected base pairs in exonic
regions per copy number values below two for each sample to
gain insights about the genetic structure of each sample and to
link deletions to cancerous areas. Sample 3.3 (Gs 3+ 4) shows
more deleted base pairs above a CNV of 0.8 (15.6 kbp affected).
We conclude that up to 50% of the cells in the tissue are affected
by deletions if homozygous deletions are assumed. For sample 2.4
(Gs 3+ 4 and suspected Gs), higher number of deleted base pairs
occurs with copy number of 1.3 (18 kbp affected) which appro-
priates 25% of the cells if only homozygous deleted segments are
considered. The number of cells with deletions in the samples 2.3
and 3.1 is 35% and 25% respectively. Sample 1.2 (Gs 3+ 3) shows
no higher number of deleted base pairs. None of the samples
considered as histological normal show an increased occurrence
of deleted segments. The samples that show an increased occur-
rence of deleted base pairs in exonic regions per copy numbers
contain either cancerous or larger inflamed areas.

A similarity tree based on Euclidean distance and hierarchical
clustering was created (Supplementary Fig. 27). The tree reflects
the relation of deleted and amplified segments within the whole
genome of the twelve tissue sections. Four clusters were revealed
and each cluster contains one cancerous sample. We conclude
that the genetic structural variations appear unique for each
cancer sample. Sample 3.3 shows the largest difference to
germline and contains the highest number of genetic structural
variations of the twelve samples. Interestingly, we observe that the
four cancer samples do not share many deletions or amplifica-
tions pointing to independent tumor origins. We compared the
samples and their assigned clusters with their physical position
within the prostate (Supplementary Fig. 27). For three clusters we
observe that the samples, which belong to one cluster, are
physically close to each other. It can be concluded that the
deletions and amplifications are mostly spread locally.

Finally, we sought to assess the relationship of copy number
and gene expression. Concerning amplifications and deletions,
each cancerous or inflamed tissue sample shows a unique genetic
structure (Fig. 6). In general, sample 1.2 is rather shaped by
expressed genes with amplifications, sample 3.3 by deletions, and
sample 2.4 harbors both, deletions and amplifications. Further,
genes with amplifications or deletions are expressed primarily in
small regions within the tissue mirroring a genetically hetero-
geneous tissue.
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Discussion
Here we investigate tissue-wide gene expression heterogeneity
throughout a multifocal PCa using the ST technology which
quantify an array of transcriptomes across a tissue section. To
ensure that patient genotype do not confound the analysis, we
have selected a single prostate that is analyzed in a comprehensive

manner, analyzing >6000 tissue regions. Compared to the spot
diameter, the lateral RNA diffusion is negligible under the tissue
slide, ensuring that the measured gene expression stems from the
local tissue. The number of mRNA molecules obtained is in line
with previous reports23, and on average we sequence 2 million
unique reads on a tissue slide. Hence, we measure, for the first
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time, spatial gene expression in PCa tissue sections. Further evi-
dence for the accuracy of the spatial gene expression measure-
ments is presented by concordance between gene expression and
staining of the corresponding protein within the tissue.

We have developed an unsupervised probabilistic framework
to analyze spatial transcriptomics data. The strength of this
method lies in that the method takes the spatial position into
account, which is lost in other used methods such as PCA and t-
SNE. We identify factors corresponding to the different parts of
tissue architecture, such as cancer, inflammation, normal or
reactive stroma and normal or PIN glands, etc. Interestingly, we
observe that distinct cancer expression regions can extend beyond
the boundaries of annotated tumor areas. Similarly, the dis-
covered gene expression profiles may be used to predict further
regions of potential cancer, PIN or inflammation. From a clinical
perspective, we suggest that our analysis may be used to alert
pathologists to give extra attention to “high risk” areas based on
localized, transcriptome-wide data. Furthermore, we observe clear
separation of gene expression patterns between normal prostate
epithelium and cancer areas with elevated Gs (3+ 3 and 3+ 4),
as expected55, suggesting that this approach may be useful to gain
further understanding of human tumor in situ. Importantly, we
report on heterogeneity within one patient as well as hetero-
geneity between patients. Thus, this study highlights the value of
focusing on individual profiling.

The current investigation also provides new insights into gene
expression differences between cancer core and periphery and
pose significant questions that have important implications for
the development of prostate cancer. A related question is whether
the periphery of the tumor promotes tumor initiation and pro-
gression and if so may provide new tools for early detection.

Finally, we argue that a new landscape is revealed by spatially
mapping gene expression and analyzing it in an unsupervised
manner. For instance, it enables de-novo characterization and
delineation of reactive stroma in the proximity of cancer and
inflammation (Fig. 5) to elucidate the role of the microenviron-
ment for PCa. Our study extends previous suggestions that
inflammation and reactive stroma are evident at the earliest stages
of neoplastic progression, stimulating development of the
tumor56 to demonstrate spatially confined gene expression gra-
dients. Indeed, changes in the microenvironment may even pre-
cede genetic alteration in the tumor core. This study uncovers
high levels of oxidative stress and ILK signaling within the
reactive stroma whereas normal stroma was associated with cell
movement and adhesion (actin cytoskeleton). High levels of
oxidative stress in reactive stroma indicate that the cancer is
dependent upon that the stroma releases energy to fuel cancer
cells and enable growth and survival. Our spatial analysis
describes reactive stroma as an emerging hallmark of cancer
initiation and progression.

Taken together, our results have revealed that an analysis of
tumor gene expression in a spatial context dramatically increases
the granularity compared to a bulk analysis. Sampling different
parts of the same tumor showed remarkable differences on the
transcriptome level of the cancer cells at each site. Thus this
massive tissue region analysis could serve as a foundation for a
transcriptome-based clinical evaluation of cancer tissues as well as
provide insight into gene expression in the tumor micro-
environment. In summary, we propose that expression profiles
based on spatial factor analysis can serve as a tissue-
transcriptome dictionary as basis for a wide range of new scien-
tific discoveries in prostate cancer.
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Methods
Collection and preparation of prostate cancer tissue. Radical prostatectomy was
performed on a patient with adenocarcinoma (Gs 3+ 4, pT3b, PSA 7.1). The whole
prostate was snap-frozen in liquid nitrogen and twelve sections covering half of the
prostate were cryosectioned at 10 µm thickness. Sections were placed on prepared
glass slides and incubated at 37 °C for 1 min, fixated in 16% methanol-free for-
maldehyde (#8906, Thermo Fisher Scientific) and washed in PBS. We applied the
current ST protocol to all sections, yielding both traditional H&E images amenable
to annotation by pathologists, as well as gene expression profiles for every
microarray spot23. Tissue sections were annotated for pathological status and four
were judged to exhibit tumor foci. Three of the tumor foci are situated in tissue
regions covered by array spots.

The study was performed according to the Declaration of Helsinki and Good
Clinical Practice. The study was approved by the Reginal Ethics Committee before
study start (Application number, Dnr 2013/1869-31/1). All subjects were provided
with full and adequate verbal and written information about the study before their
participation. Written informed consent was obtained from all participating
subjects before enrollment in the study.

Preparation of quality control arrays and spatially barcoded arrays. In short,
for quality control tests poly-T20VN oligonucleotides (IDT) were consistently
spread onto Codelink activated microscope glass slides, as per guidelines by the
manufacture. Array production for experiments with spatial investigation was
described previously23. The arrays were designed to have 1007 unique barcoded
oligonucleotides with poly-T20VN capture areas. They were printed in areas of size
6200 × 6600 µm2 on Codelink activated glass slides with a total of 1007 single spots.
In order to keep the orientation, a frame with oligonucleotide (Eurofins) was
printed as a border around the barcoded oligonucleotides, containing 148 single
spots. Printed spots had a diameter of 100 µm and a center-to-center distance of
200 µm (center to center) from each other.

Staining and imaging. These steps were described previously23. Tissue was
incubated in Mayer’s Hematoxylin for 5 min and in eosin (1:20 in Tris buffer, pH
6) for 20 s.

Quality control array experiments and detection of fluorescent cDNA “foot-

print”. Prior to spatial barcoding experiments, permeabilization conditions were
optimized in a quality control experiment for maximal mRNA yield in PCa tissue
(Supplementary Fig. 28). The fluorescent cDNA was consistent with the tissue
structure shown by histology.

Quality control experiments were carried out as described in section
permeabilization and reverse transcription, except for some minor changes. This
test was performed in order to study the optimal permeabilization conditions. The
array was printed to have all sequences necessary for capture of mRNA but without
a spatial barcode. The release step of the surface probes was not performed and the
reverse transcription mixture contained the same reagents except for 0.5 mM of
each dATP/dGTP/dTTP, 12.5 µM dCTP and 25 µM Cy3-dCTP. The procedure
involved testing times of 8, 10, and 12 min. Glass slides were scanned in an
InnoScan 910 scanner (Innopsys) with 5 µm resolution and gain at 10%. Signal
intensities were investigated using the Mapix software.

Permeabilization and reverse transcription. These steps were described pre-
viously23. Exonuclease pre-permeabilization was performed at 37 °C for 30 min,
followed by an incubation in pepsin at 37 °C for 10 min. Reverse transcription was
performed at 42 °C overnight. In order to remove and degrade the prostate tissue, a
mix of 1% β-mercaptoethanol in RLT buffer was added to the samples and incu-
bated at 56 °C for 1 h and 15 min. A second removal mix containing Proteinase K
in PDK Buffer was added to each well and incubated at 56 °C for 1 h and 15 min.
The release step was done at 37 °C for 1 h and 15 min. Once the surface probes
were de-attached, 65 µl from each well was collected. After probe release, the
features with non-released DNA oligonucleotide fragments were detected by
hybridization and imaging, as previously described23, in order to obtain Cy3-
images for alignment. The bright field images and fluorescent images were
manually aligned using Adobe Photoshop CS6 (Adobe) by utilizing the visible
spots and structures from both images.

Library preparation of cDNA for sequencing. The steps were performed as
earlier described23. Finished libraries were diluted to 4 nM and sequenced on the
Illumina HiSeq or NextSeq platform using paired-end sequencing. Typically, 31 or
101 bases were sequenced on read one to determine the spatial barcode, and 121 or
101 bases were sequenced on read two to cover the genetic region. ST sequencing
reads were mapped against the human genome (GRCh38), and Ensembl (release
85) transcripts were quantified, as described previously57

Dissecting spatial gene expression patterns with factor analysis. We have
developed a core model to perform factor analysis applicable for spatial gene
expression data. The full model is described in Supplementary Note 1. This method
(unsupervised) needs no prior knowledge of reference expression data. It seeks to

factor the gene expression into spatial factor activity maps and gene expression
profiles. The factor activity maps reflect the amount of mRNA contributed by a
given factor in every spot and are useful for visual inspection and comparison to
morphological features. The expression profiles quantify how strongly each gene is
expressed in a given factor and are thus informative about biological processes. The
discovered “factors” correspond to cell types, but aside from biological effects, the
analysis method also captures technical effects (such as sequencing depth of the
libraries) and can allow for correction of such unavoidable artifacts. This enables us
to quantify gene-expression differences between individuals, genotypes, develop-
mental stages and disease states. Throughout the manuscript we name factors
according to histological features co-incident with a factor’s spatial activity or
according to highly- and specifically-expressed genes.

Poisson factorization core model. Here, we give a high-level description of the
core model to perform factor analysis on count matrices such as applicable for
spatial gene expression data. The mathematical and computational aspects of the
full model, including some extensions, are described in a separate supplement on
mathematical methods (Supplementary Note 1)

We assume that the observed count xgs for gene g in spot s is the sum of count
contributions xgts due to T different factors ("cell types"), xgs=

PT
t¼1 xgts , and that

these in turn are Poisson distributed, xgts ~ Pois(μgts). The Poisson rate parameter
μgts is the product of a gene- and type-dependent gene expression value ϕgt and a
type- and spot-dependent spatial activity value θts, μgts= ϕgtθts. Notably, the gene
expression ϕgt is independent of the spot, while the spatial activity θts is
independent of the gene. Then, the Poisson factorization core model is given by

xgs ¼
X

t

xgts ð1Þ

xgts � Pois μgts

� �

ð2Þ

μgts ¼ ϕgtθts; ð3Þ

where the distributions of the non-negative random variables ϕgt and θts still need
specification. A graphical representation of the Poisson factorization core model is
displayed in Supplementary Fig. 27, and parameters are learned by Monte-Carlo
Markov chain (MCMC) sampling.

In Poisson factorization the expected observations are given by the matrix
product of the gene expression and spatial activity matrices, E X½ � ¼ ΦΘ, because
xgs= ∑txgts ~ Pois(∑tμgts)= Pois (∑tϕgtθts) and thus E½xgs� ¼

P

t ϕgtθts .
The full model is described in a separate mathematical methods supplement

(Supplementary Note 1) and comprises extensions not mentioned here. The
extensions include spot-dependent scaling variables, spatial smoothing, as well as
capabilities to perform joint analyses for multiple samples.

Summarizing and visualizing patterns of gene expression and factor activ-

ities. In order to visually summarize spatial patterns present in thousands of genes
or across multiple factors, we make use of t-distributed stochastic neighbor
embedding (t-SNE)58. Specifically, we reduce matrices that have rows for every spot
and columns for every gene (or columns for the activities of multiple factors) to
matrices that have three columns so that these three dimensions can be used as
coordinates in color space. When spots are colored in this way, similar colors
indicate similar gene expression. Such colored spots are then overlaid on the his-
tological image for a joint presentation of histologic and transcriptome-wide
information.

Hierarchical clustering for sample 1.2. The bright field image was converted into
grayscale in Photoshop and loaded in R using the “jpeg”-library. The image was
converted to binary dots using the “base”-library. A virtual grid was generated
across the tissue and each binary dot was assigned to a grid-cell using the “sp”- and
“raster”-library. The values from the spatial spots were used to generate a linear
interpolation, using the “Akima”-library, across the array. Hierarchical clustering
was carried out based on Euclidean distance between the spots and each cluster was
assigned a color. The colors were further assigned to all grid-cells and each binary
dot was assigned the color that corresponded to the grid-cell it was localized in.
Areas in between clusters were made transparent using the “scales”-library.

Method description for factor trees. The expression profiles of each factor were
used to calculate the Jaccard distance between them59. Hierarchical clustering
agglomeration method ward.D2 was applied to build the tree (R packages “vegdist”,
“ape”, and “stats”)60–62.

Gene expression analysis for sample 1.2. Intra-replicates were extracted from
each region (normal= green color, cancer= red color and PIN= blue color in
Supplementary Fig. 4b) within the 1.2 cancer tissue sample, and contained between
4–5 spots. At least 3 sets of intra-replicates were created for each area of interest.
Count data was generated with HTSeq-count (version 0.6.1)63. The -m parameter
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was set to union and the count data was imported into the statistical software R. A
heatmap was made of the most variable genes, across all regions’ replicates, using
regularized log (rlog) transformed count values (DESeq2, version 1.12.3)64. Prin-
cipal components were calculated based on the 500 most variable gene counts after
rlog transformation. Individual genes signatures were plotted in concurrence with
their location on the spatial array. The sizes of dots are proportional to normalized
counts per million (CPM) values for the specific gene for visualization purposes.

Gene expression analysis for sample 3.3. Gene counts were extracted from each
spot belonging to the specified conditions (normal, cancer or PIN contained
between 3–6 spots per replicate) of interest as determined by the ST analysis. The
gene counts were imported into R and CPM values were computed. A matrix was
created with rows corresponding to genes and columns corresponding to samples.
Row variances were computed across all genes to extract the top 500 genes with
highest variance across all regions’ replicates. The CPM values for these genes were
visualized in a heatmap (Supplementary Fig. 7, Supplementary Data 11).

Immunohistochemistry. Frozen tissue sections stored in −80 °C were thawed in
RT to be fixated with 3% freshly made paraformaldehyde in TBS for 10 min in RT.
Tissues were then permeabilized for 10 min in TBS+ 0.1%Triton-X100, rinsed
three times in TBS for 5 min/ rinse. Blocking with 2% bovine serum albumin in
TBS for 2 h was performed before the tissues were incubated with primary anti-
bodies overnight at 4 °C. After rinsing with 3 × 5 min with TBS the tissues were
incubated with the secondary antibodies donkey anti-mouse immunoglobulin G
(IgG)-AlexaFluor 568 (1:500 Molecular Probes) and donkey anti-rabbit IgG-
AlexaFluor 647 (1:500 Molecular Probes) for 1 h at RT in darkness. DNA was
counterstained with DAPI (Molecular Probes) and slides were mounted with
Prolong Gold (Molecular probes). Tissues were stained with antibodies against
SPINK1 (1:50, H00006690-M01, 4D4, Novus), TFF3(1:200, HPA 035464, Sigma),
SPON2 (1:100, A-10, st cruz), PGC (1:50, NBP1-91011, Novus), NPY (1:100,
ab48789, Abcam), Aquaporin (1:100, ab168387, Abcam), NR4A1 (1:100, ab48789,
Abcam), ACPP (1:100, Biologicals), P63(1:150, ab53039, Abcam), Vimentin (1:150,
ab8069, Abcam). Fluorescence images were obtained with a Zeiss LSM 780 inverted
confocal microscope, using a Plan Apochromat 20 × /NA (numerical aperture) 0.7
objective. Tiled images were acquired from optical sections of 5 micrometer.

Pathway analysis in Fig. 3. The gene expression profiles of each factor are the
basis for the pathway annotation. We performed outlier detection genewise of the
normalized expected values to extract differences in expression between the factors.
For each gene in each factor a z-score was calculated based on fitting a normal
distribution to the gene’s expression in the other factors. We defined significant
outliers as genes with a z-score > 2.5 and where the distribution passed the
Komolgorov–Smirnov normality test at the 0.05 alpha level. The resulting gene list
per factor was submitted to PathwAX65 on the KEGG database66 (Fig. 3c, Sup-
plementary Data 4)

Comparison of expression in cancer center and cancer periphery for samples

1.2, 2.4, and 3.3. We used the normalized ST-counts per gene and spot. Starting
from the size of the area where the “cancer” factor is active, we chose 42 spots
(sample 1.2), 403 spots (sample3.3), and 17 spots (sample 2.4) respectively, com-
prised of this area.

To ensure quality we removed spots with a log-library size lower than 3 median
absolute deviations below the median log-library size (R package “scater”)67.
Additionally, we removed low-abundance genes with zero or near-zero counts. The
filtered data set is normalized using the deconvolution method which is based on
pool-based size factors and the assumption that most genes are not differentially
expressed. The counts from cells were pooled to calculate the size-factors which are
used for a cell-specific normalization (R package “scran”)68. We utilize the
quickCluster method from the R package “scan” to identify optimal pool sizes.

The resulting normalized counts per gene and spot within the tumor region
were used to compare expression in the tumor periphery with the center.

Spots located in the periphery and in the center were defined based on the
pathologist’s annotation and the active cancer factor. Spots with mainly stroma
cells were removed. The fold change per gene was calculated as gene expression
mean of center spots divided by gene expression mean of periphery spots. P-values
per gene were calculated with a two sample t-test69 at confidence level 0.95. Genes
with a p-value < 0.05 were submitted to PathwAX65 on the KEGG database66

(Supplementary Data 12–14).

Pathway analysis in Fig. 5. Ingenuity Pathway Analysis software (Build version
456367 M, Content version 39480507 release date 20170914) (Ingenuity Systems,
Redwood City, CA) was used to identify significantly enriched pathways. To cal-
culate significance of enrichment (Fisher´s exact test, performed within the soft-
ware) the reference molecule set was Ingenuity Knowledge Base (Genes only).
Input data was extracted from the “Stroma—PTGDS enriched” and “Reactive
stroma” factors in Fig. 5, using the top 200 genes (Supplementary Data 8 and 9).

Shiny application. The HE and Cy3 images were aligned and the spots under the
tissue stain detected. These spots’ coordinates and the corresponding transcript
counts were used in the further analysis and image processing. In order to ensure
quick data visualization, a Shiny application was built and is freely available at
https://spatialtranscriptomics3d.shinyapps.io/STProstateResearch/. The application
visualizes spatial gene expression as an interpolation of a regular grid70 of the
coordinate points previously discussed. Then, a tissue mask is placed on top of the
interpolated grid to create the final heatmap image presented in the application.

Shiny application access information:
Login with a Google account: Username: 3dstresearch@gmail.com, Password:

AIK2017!

Extraction and fragmentation of DNA. DNA was extracted from adjacent sec-
tions to each of the twelve sections used for the spatial barcoded array. In order to
give a total amount of 100 µm, a total of five sections per bulk sample were
cryosectioned at 20 µm. PCa tissue was put in Lysing Matrix D tubes (#116913050,
MP Biomedicals) and homogenized in a FastPrep (MP Biomedicals). All the
samples were then prepared with the AllPrep DNA/RNA Micro Kit (#80284,
Qiagen). DNA extracted from blood was included as germline control using the
Gentra Puregene Blood kit (#158445, Qiagen).

Library preparation for whole genome sequencing. Whole genomes libraries
were made from extracted DNA (both from tissue and blood) using the NeoPrep
Library Prep System (Illumina TruSeq Nano) according to the manufacturer’s
protocol. Libraries were sequenced with at least 30 × (tissue) or 42 × (blood) cov-
erage on HiSeqX (HiSeq Control Software 3.3.39/RTA 2.7.1) with a 2 × 151 setup
using HiSeq X SBS chemistry.

DNA sequence alignment. The reads of each sample were aligned with
Burrows–Wheeler Aligner (BWA) against the human assembly GRCh38
(ensemble) release 84. BWA mem was performed since it is recommended for high-
quality queries and longer sequences71. The reads in our whole genome sequence
(WGS) data have a read length of 151 bp. Furthermore, we used Samtools72 for
converting sam to bam format, sorting, indexing, and for converting the
alignments to bed files.

Copy number calling. Copy numbers were inferred with the R package “Read-
Depth”73 based on WGS data of the twelve tissue samples, which was aligned with
BWA. Firstly, “ReadDepth” was applied with default values but with annotations
computed for our read length of 151 bp and GRCh38. The copy number values
were inferred for each sample independently. Secondly, we matched the segments
and corresponding copy numbers inferred by “ReadDepth” to GRCh38 release 84
to compare copy number variations (CNVs) in coding regions. We filtered all
exons of protein coding genes from the reference genome. If start and end position
of an exon is located within a segment, we applied the corresponding copy number.
In the rare case of two or more segments that span an exon (1608 out of 343,705
exons; 0,46%), we assigned two (1606 exons) or more (2 exons) copy numbers,
however, considered the segment length per copy number within these exons.

For the CNV analysis we needed to know which copy number value is normal.
In our samples the peak of base pairs per rounded copy number value for each
sample is at 1.8. Therefore, we set a CNV of 1.8 as normal instead of 2.0. The
chromosomes X and Y were excluded since here the normal copy number value is
one and the borderline for deletions and amplifications is different from the
autosomes.

Similarity tree building. The smallest bin size of the calculated segments and copy
numbers by “ReadDepth” is 1200 bp for each of the twelve samples. In other words,
each segment start, end, and length of the twelve samples is a multiple of 1200 bp.
Therefore, we sliced the genome in segments of 1200 bp length and assigned the
corresponding copy number values of each sample. This results in ~2.5 Mio seg-
ments (3088 Mbp genome length/1200 bp) and a copy number value vector
per segment containing one copy number for each sample. To build the tree we
filtered for clear deletions and amplifications by only accepting the CNV vector as
input data if the CNV was below 1.6 or above 2.3. Furthermore, we excluded the
1200 bp segments that contain the centromere since centromeres are difficult to
sequence reliably. We also excluded the X and Y chromosomes since their normal
CNV value is one. Finally, only unique CNV vectors were chosen to reduce the
data space. The data set for the tree contains 287 unique CNV vectors. The tree was
built with the R package “Pvclust”74 based on Euclidean distances, the hierarchical
clustering agglomeration method ward.D2, and 1000 bootstraps.

Copy number variation correlation with gene expression. Copy numbers were
inferred as described earlier with he R package “Readdepth” and the segments were
mapped to GRCh38 release 84. To display clear deletions and amplification, the
copy numbers were corrected by a scaling summand of 0.2 in order to recenter the
values (compare Copy number calling). Genes with a break point were excluded.

In addition, the chromosomes X and Y were excluded since their normal copy
number is one. The expression spot mean is presented as relative to the sample
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expression spot mean and cut at 2000% to emphasize genes with a copy number
below or above two. The figures were generated with R package “Scatterplot3d”75.

Probes and primers. Surface reverse transcription oligonucleotide for quality
control experiments

[AmC6]UUUUUGACTCGTAATACGACTCACTATAGGGACACGACGCT
CTTCCGATCTNNNNNNNNTTTTTTTTTTTTTTTTTTTTVN

Surface reverse transcription oligonucleotides with spatial barcodes:
[AmC6]UUUUUGACTCGTAATACGACTCACTATAGGGACACGACGCTC

TTCCGATCT[18mer_Spatial_Barcode_1to1007]WSNNWSN
Surface frame oligonucleotide:
[AmC6]AAATTTCGTCTGCTATCGCGCTTCTGTACC
aRNA ligation adapter:
[rApp]AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC[ddC]
Second reverse transcription primer:
GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
PCR primer InPE1.0 primer:
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG

CTCTTCCGATCT
PCR primer InPE2.0 primer:
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
PCR Index primer:
CAAGCAGAAGACGGCATACGAGATXXXXXXGTGACTGGAGTTC
Cy3 anti-A probe:
[Cy3]AGATCGGAAGAGCGTCGTGT
Cy3 anti-frame probe:
[Cy3]GGTACAGAAGCGCGATAGCAG

Code availability. The factor analysis software is available under the GNU General
Public License v3 at https://github.com/maaskola/spatial-transcriptome-
deconvolution.

Data availability. Count matrixes are available at http://www.
spatialtranscriptomicsresearch.org/. Sequencing data are deposited at the European
Genome–Phenome Archive (EGA), hosted by the European Bioinformatics Insti-
tute (EBI), under the accession number EGAS0000100300
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