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Abstract

Background: Many animals must locate odorant point sources during key behaviors such as reproduction, foraging

and habitat selection. Cues from such sources are typically distributed as air- or water-borne chemical plumes,

characterized by high intermittency due to environmental turbulence and episodically rapid changes in position and

orientation during wind or current shifts. Well-known examples of such behaviors include male moths, which have

physiological and behavioral specializations for locating the sources of pheromone plumes emitted by females. Male

moths and many other plume-following organisms exhibit “counter-turning” behavior, in which they execute a

pre-planned sequence of cross-stream movements spanning all or part of an odorant plume, combined with

upstream movements towards the source. Despite its ubiquity and ecological importance, theoretical investigation of

counter-turning has so far been limited to a small subset of plausible behavioral algorithms based largely on classical

biased random walk gradient-climbing or oscillator models.

Results: We derive a model of plume-tracking behavior that assumes a simple spatially-explicit memory of previous

encounters with odorant, an explicit statistical model of uncertainty about the plume’s position and extent, and the

ability to improve estimates of plume characteristics over sequential encounters using Bayesian updating. The model

implements spatial memory and effective cognitive strategies with minimal neural processing. We show that

laboratory flight tracks ofManduca sextamoths are consistent with predictions of our spatial memory-based model.

We assess plume-following performance of the spatial memory-based algorithm in terms of success and efficiency

metrics, and in the context of “contests” in which the winner is the first among multiple simulated moths to locate the

source.

Conclusions: Even rudimentary spatial memory can greatly enhance plume-following. In particular, spatial memory

can maintain source-seeking success even when plumes are so intermittent that no pheromone is detected in most

cross-wind transits. Performance metrics reflect trade-offs between “risk-averse” strategies (wide cross-wind

movements, slow upwind advances) that reliably but slowly locate odor sources, and “risk-tolerant” strategies (narrow

cross-wind movements, fast upwind advances) that often fail to locate a source but are fast when successful. Success

in contests of risk-averse vs. risk-tolerant behaviors varies strongly with the number of competitors, suggesting

empirically testable predictions for diverse plume-following taxa. More generally, spatial memory-based models

provide tractable, explicit theoretical linkages between sensory biomechanics, neurophysiology and behavior, and

ecological and evolutionary dynamics operating at much larger spatio-temporal scales.
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Background
The problem of locating sources of odorant plumes is a

key component of foraging and reproductive behaviors

in diverse taxa [1-4]. Among the most impressive and

best-studied examples of these behaviors are reproduc-

tive behaviors of male moths, such as Manduca sexta,

that are often able to locate pheromone-emitting females

rapidly even when they are distant and visually cryptic

[5,6]. M. sexta males are capable of this behavior due to

specializations in both physiology and behavior. Physio-

logical specializations include, for example, olfactory sys-

tems that can detect and identify highly diluted mixtures

of pheromone and air molecules, and that appear to be

specialized to encode the complex structure of turbulent

plumes [7-13]. Behavioral specializations include move-

ment strategies such as “counter-turning” and “casting”,

which are currently thought to be pre-programmed in the

central nervous system of plume tracking insects [14,15].

In counter-turning, moths make systematic, stereotyped

lateral (cross-wind) excursions in the presence of odor-

ant so that their trajectories repeatedly oscillate across the

plume as they progress upwind. In casting, most species

of moths studied to date respond to loss of chemosensory

signals by widening their lateral movements and halting

or reversing upwind advances, in an effort to relocate the

plume [16-18]. This is thought to function as a mecha-

nism to relocate the plume. In one instance male gypsy

moths, Lymantria dispar, were observed to re-contact the

odor plume closer to the source than where they lost it.

This unusual behavior could be explained by a relatively

slow shift in wind direction coincident with the rapid

re-orientation of the moth to the new wind direction [19].

Adroit alternation between counter-turning and cast-

ing appears to be central to the moths’ effectiveness at

odor source location. Because they are prominent ele-

ments of the biology of most moth species studied to

date [5], and they are analogous to important behaviors in

many other taxa [3,4,20], the mechanisms underlying the

generation of these looping zigzagging flight tracks have

long been a subject of study [21-25]. However, important

physiological and behavioral elements of odorant source

location – in particular, which signal processing pathways

are present, how their outputs translate into movement

decisions, and how realized movement decisions compare

in various performance metrics to hypothetical alterna-

tives – remain poorly understood.

The physical properties of odorant plumes under typ-

ical atmospheric conditions make location of female

moths and other odorant sources difficult. For exam-

ple, a field study using male Plodia interpunctella moths

showed that the maximum downwind detection distance

of plumes released from arrays of artificial pheromone

sources scaled with the square root of the number of

sources, from roughly 15 m for a 2 × 2 array to roughly

75 m for a 10 × 10 array [26]. Their meta-analysis of

pheromone trap data, after excluding extremely high sat-

urating pheromone emission rates, found a similar square

root dependence across a diversity of insect taxa. These

observations demonstrate that moths’ source location

success rates are strongly limited by the concentration

and spatial structure of pheromone plumes under natu-

ral conditions, a conclusion that has also emerged from

laboratory studies [23,27,28].

The critical challenge in odor source location imposed

by typical real-world atmospheric conditions is that an

odorant plume, which would have a coherent, relatively

smooth distribution in steady laminar flow, is disrupted

and spread by atmospheric turbulence and shifting winds.

Plumes in steady, laminar flows (and in many laboratory

flight tunnels) are typically narrow and continuous, pre-

senting a clear and largely uninterrupted “trail” that can

be tracked directly to the source. In general, under steady

laminar flow conditions even simple searching behaviors

are often sufficient to quickly and reliably locate odorant

sources. For example, recent studies of blue crabs, Cal-

lenectes sapidus, tracking plumes in laminar flow tanks

have shown lateral steering controlled by differences in

odor concentration detected by chemosensors arrayed

near the tips of the legs, together with upcurrent walking

speed controlled independently by odor encounter rate

detected by the antennules, reliably delivers the crabs to a

food source [29,30].

However, most plume-following in nature occurs under

unsteady conditions in which the direction and speed of

the wind, and thus odorant molecule transport, is con-

stantly shifting. Furthermore, the flow regime is typically

complicated by turbulent eddies over a wide range of

length scales, and is frequently obstructed by vegetation

or other obstacles, so that odorant is widely dispersed and

local odorant concentration is irregular and highly unpre-

dictable. As a result, the odor concentrations encountered

by amoth during any single transit through a plume in tur-

bulent flowmay be a highly misleading indicator of overall

plume geometry.

Previous studies suggest strong selection for maximally

effective use of the information encoded in the spatial

patterns of pheromone detection [31,32]. It is clear that

male moths detect and alter behavior in response to odor

plume structure, and that their tracking performance dif-

fers in plumes of different chemical composition and

spatial/temporal structure [24,27,28,33,34]. Because of the

inherently faster speed of flight, moths encounter odor

plumes at a much higher rate than walking plume track-

ers like crabs, and their behavioral control systems appear

to be adapted accordingly. Perhaps because moths are

moving through odor fields too rapidly for the brain to

process the input, the steering of their counterturning

track is thought to be pre-programmed, and is triggered
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and maintained by encounters with odor filaments in

the plume [1]. In a manner similar to blue crabs, moths

are thought to modulate their upwind steering according

to characteristics of the plume’s structure such as odor

encounter rate [24,33]. It is currently unknown to what

extent turning might be informed by asymmetric stimula-

tion of the two antennae. In both of the above examples

cues indicating direction to the source are indirectly pro-

vided by the wind direction [1,2].

The apparent selective importance of rapid, accurate

odor source location creates an expectation that moth

behaviors are highly evolved and may, within biological

constraints, approach nearly optimal performance. This

expectation has motivated a number of simulation studies

aimed at understanding the basic biological requirements

for effective plume-following behaviors, and the specific

algorithms adopted by mate-seeking moths [35-39]. It has

also inspired a number of robotics studies and other engi-

neering applications of odor source location algorithms,

many of them either explicitly biomimetic or incorporat-

ing behavioral elements previously observed in moths and

other animals [40,41].

In previous models of moth behavior, responses to

pheromone have been assumed to belong to one of two

classes: (i) endogenous patterns such as oscillations with

frequencies that are fixed or modulated according to

plume structure, or (ii) time-dependent responses at the

receptor or neuron level that process encounters with

detectable levels of pheromone [14,22,42,43]. Previously

proposed behavioral algorithms for plume-tracking that

are based on these instantaneous responses to odorant

detection typically have low success rates under challeng-

ing atmospheric conditions, compared to success rates

observed in real moths [35,36]. This suggests that key ele-

ments of moths’ plume-following behaviors may be absent

in these simulation studies.

In this paper, we pose the question, what would plume-

following behavior look like if moths made the “best pos-

sible” use of spatial and temporal information contained

in their encounters with odorant plumes? Consideration

of the information-gathering problem faced by the moths,

together with analysis of real moth behavior in the lab-

oratory and field, suggest to us that a spatial memory

encoding times and positions of previous encounters with

olfactory signals, coupled with simple algorithms exploit-

ing this memory to estimate their source location, would

both greatly increase the effectiveness of proposed plume-

following behaviors and also parsimoniously explain some

observed features of moth trajectories. Although spa-

tial memory is well known to underly insect orientation

and navigation [44], it has never been proposed, or been

tested, to function in the context of odor plume tracking.

While concentration in turbulent plumes is highly

unpredictable in an instantaneous sense, it is relatively

much more predictable in a longer term sense that

“averages” over many turbulent eddies and filaments

[45,46]. Consequently, behavioral algorithms that accu-

mulate information over a sequence of encounters with

a plume should in principle be more effective at locating

its source than related behaviors that discard information

contained in previous encounters. In previous investiga-

tions, it has been assumed that flying male moths move

through the plume too fast to sense average odorant con-

centration values that would provide information useful

for steering [45]. Thus, neither the biological basis of such

memory-based steering algorithms nor the mathematical

formulations that would allow them to be systematically

studied have been sufficiently investigated in the literature

to establish whether behaviors with spatial memory are

present in plume-tracking animals, or whether they are in

fact more effective than alternative types of odor source

location behaviors.

Here, we derive plume-tracking algorithms inspired by

observations of maleM. sextamoths that incorporate spa-

tial memory and movement decision-making based on

accumulated information as central elements of odorant

source location behaviors. More specifically, we hypoth-

esize that moths possess a limited short-term mem-

ory of the lateral positions of previous encounters with

pheromone in absolute “geostationary” coordinates (i.e.,

in fixed coordinates that do not change when the moth

moves or the plume shifts). We use simulations to show

that this resampling over recurrent plume encounters is

a potentially effective way both to improve estimates of

turbulent plume geometries and also to detect changes in

geometry caused by wind shifts. Thus, the availability of

a spatial memory, even in a simplified form, can substan-

tially increase the speed and accuracy of odorant source

location. From a statistical perspective, this type of mem-

ory represents one approach towards understanding “best

use” of spatial patterns in pheromone plumes.

To implement our model, we conceive of moths’

plume-following behaviors as composed of two interact-

ing behavioral modules: a module responsible for spatial

memory of encounters with pheromone and for deriving

estimates about possible plume locations and intensities

relative to instantaneous wind direction, and a separate

module responsible formovement decisions based on cur-

rent source location estimates. In this framing of the odor

source location problem, we focus exclusively on how

moths utilize spatial data, without considering in detail

specify sensory processes (vision, inertial navigation, etc.)

by which spatial data are obtained. These modules reflect

bi-directional feedbacks we hypothesize to be present in

moth behaviors: the spatial memory provides the basis for

movement decisions, and movement decisions determine

the subsequent encounters with pheromone that augment

spatial memory.
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Our analysis approaches odor source location essen-

tially as a cognitive process deriving strategic decisions

from spatial memory. A concern about this approach

is whether it is plausible that moths are capable of the

information processing and retention required to acquire

and exploit a functional spatial memory. To gain per-

spective on what specific capabilities are necessary, we

develop a mathematical formulation for the estimation

module based on Bayesian statistical theory via conju-

gate priors [47]. In our model, all spatial and temporal

elements of memory are encoded as a small number of

Bayesian conjugate prior hyperparameters. Moths’ esti-

mates of plume geometry are updated upon new encoun-

ters with pheromone by simple arithmetic operations.

This approach endows simulated moths with the capacity

to integrate information about when and where odorant

was detected over iterated encounters with the plume,

with surprisingly modest demands on memory and infor-

mation processing. We argue that the feasibility – with

minimal neural processing – of effective cognitive spa-

tial strategies for odor source location make these and

related algorithms high priorities for future experimental

and theoretical investigation.

We also implement some simplified examples of the

movement decisionmodule. In our simulations, this mod-

ule determines the inter-related geometrical character-

istics of transits across the plume, such as flight and

track angles, time delays between turns, lateral extent and

up/down-wind excursions of transits, etc. We defer to

another paper a serious attempt to assess which specific

algorithms and parameter values best reflect behaviors

used by male moths. Instead, here we take a heuristic

approach, using pre-existing laboratory observations of

plume-seeking movements to look for previously unde-

tected statistical patterns in moth plume-tracking behav-

ior. Spatial memory-based behavioral hypotheses suggest

testable predictions for patterns of variation in tran-

sit geometries of M. sexta males. We show below that

some of these predicted patterns are consistent with

observed moth trajectories. We simulate behavioral mod-

ules inspired by these patterns and show that, in com-

bination with spatial memory encoded by the Bayesian

estimation scheme, they constitute relatively successful

odor source location algorithms under challenging condi-

tions of sparse chemical signals and strong atmospheric

disturbances.

Finally, we use several metrics of performance to con-

duct an initial exploration of how odor source location

success varies as a function of behavioral parameters.

In nature, odor source location for male moths is typi-

cally “successful” for a moth that traces the plume to the

female before she stops emitting pheromone and before

she is found by another male. Thus, male moths must

avoid both of two distinct modes of failure: They must

minimize losses of contact with the plume; such losses

are reduced by behaviors in which the moths make small

upwind excursions with large lateral extents. They must

also minimize the probability of arriving behind a com-

petitor, by advancing towards the odor source as quickly

as possible; rapid advances are facilitated by behaviors

in which moths undertake large upwind excursions with

small lateral extents. We find that performance metrics

reflecting these two modes of failure are enhanced by

different behavioral traits. Hence, no single set of behav-

ioral parameters excels at all of our performance metrics,

suggesting female-seeking male moths and other animals

locating the sources of odor plume are likely to adjust

their behaviors to cope with complex, context-dependent

performance tradeoffs.

Results and discussion
Analysis of observed moth trajectories in the context of

spatial memory

To inform our behavioral models, we reanalyzed a set of

movement trajectories of male M. sexta moths seeking

the source of an artificial pheromone plume in a lab-

oratory wind tunnel (see experimental details in [48]).

Each of 19 individuals was observed four times dur-

ing a single experimental day, and the experiment was

conducted over several days. Thus, 76 plume tracking

flight trajectories were analyzed with a total of 458 cross-

plume transits (i.e., excursions). Analysis of these tra-

jectories with a one-way repeated measures analysis of

variance showed that there were no statistically signif-

icant differences in any movement parameter (e.g., air

speed, ground speed, course angle, track angle, etc.) across

experimental treatments, no evidence of systematic dif-

ferences across successive trials, and no indications of

learned responses to experimental conditions. The moth

movement data are 3-dimensional; however, data analyses

presented here reflect 2-dimensional projections onto the

horizontal plane for ease of comparison with our simula-

tion results. Relationships between vertical and horizontal

movements are described elsewhere [49].

Despite some important differences between labora-

tory plumes and natural mate-seeking conditions, males

exhibited characteristic counter-turning flights (Figure 1).

Under experimental conditions, male moths’ cross-wind

transits typically lasted approximately 0.5s [48]. Figure 2

shows mean lateral acceleration and the lateral extent of

transits as a function of position relative to the plume,

averaged over all trajectories of all observed moths. While

the ensemble includes some transits with exceptionally

wide or narrow lateral excursions, most transits ended

relatively close to the point of departure from the time-

averaged plume. Also, in most transits, lateral accelera-

tions towards the plume centerline initiated very close

to or inside the time-averaged plume boundary. These
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Figure 1 Typical trajectory of a maleManduca sextamoth in an experimental wind tunnel. Wind direction is from right to left (in the negative

x-direction) at 100 cm/s; moth flight direction is from left to right (in the positive x-direction). Small black circles indicate the raw path digitized from

sequences of video frames, at 30 frames per second (see [49] for other experimental details). The blue line represents a corrected path after filtering to

remove frame-rate noise. The red dots indicate maximum lateral excursions. The analyses in Figure 3 are based on straight-line connections between

these excursion endpoints, shown here as red line segments. The semicircle at right is the pheromone source position. Black lines indicate the

approximate edges of the time-averaged pheromone plume, as determined by titanium oxide smoke visualizations and electroantennogram assays.

statistical features suggest that moths may be relatively

accurate in estimating time-averaged plume geometry.

If so, this accuracy is remarkable in light of other

data, which suggest the instantaneous pheromone distri-

bution is so sparse and variable that information from

any given transit poorly constrains the time-averaged

plume geometry. These data, obtained in a different

study but with the same experimental configuration and

protocols, were obtained using electroantennograms, in

which electrodes monitor neural responses to pheromone

detected by antennae surgically removed frommalemoths

[26,49]. Under typical experimental conditions, those

measurements showed that males encountered detectable

pheromone “puffs” – localized pheromone concentra-

tions sufficient to trigger discrete, above-threshold neural

responses – at an average rate of approximately 2 Hz

[48]. Hence, under experimental conditions, moths likely

encountered on average approximately one puff per cross-

plume transit.

If we assume that pheromone puffs are encountered

randomly (as Poisson points) this average per-transit

encounter rate (ρpuff ≈ 1) suggests that slightly more

than one in three transits results in no puff detections. A

comparable fraction of transits result in one puff detec-

tion, and only slightly more than one in four transits

results in two or more puff detections (corresponding to

k = 0, k = 1, and k ≥ 2 in Equation 15; see Section

“Estimates of puff density within the plume” for additional

details, and Tables 1 and 2 for mathematical symbols

and their interpretations). Under field conditions, with

larger-scale 3-dimensional turbulent eddies and gusts, the

frequency of transits with few or no pheromone puff

encounters is likely to be even higher. These probabili-

ties suggest a potential mismatch between the apparent

accuracy with which moths estimate pheromone plumes’

time-averaged puff distributions, and the small sample

size of puffs available to perform this estimate during any

single cross-plume transit.

An implication of these estimates in the context of

Figure 1 is that moths likely confront substantial uncer-

tainty in estimating the lateral positions of pheromone

plumes. In both laboratory and field odorant plumes,

the probability distribution of puffs in the cross-stream

direction occurring at any given streamwise position is

often relatively well approximated by a Gaussian distribu-

tion (Section “Simulated plume geometry”). The mean of

this distribution is an indicator of the cross-stream posi-

tion of the pheromone source, some distance upstream.

Hence, uncertainty about source position is closely asso-

ciated with uncertainty in the cross-wind location of

the corresponding downstream Gaussian distribution of

pheromone puffs.

Bayesian estimation using conjugate priors provides an

indirect means to assess howmoths’ uncertainty may vary
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Figure 2 Positions and lateral accelerations observed in male moths during location of the source of a laboratory pheromone plume. Data are from

19 moths, with four digitized trajectories per moth. (Top) Average lateral acceleration of moths as a function of binned position, indicated with a

color map (blue: −150 cm/s2 , red: 150 cm/s2). Bins with no data are plotted with value zero (green). (Bottom left) x-averaged probability density

functions (pdfs) of lateral (y-direction) position relative to the plume source (blue line), and of excursion endpoints (black line). (Bottom right)

x-averaged lateral acceleration plotted as a function of binned lateral position (blue line). Also shown are medians (solid red lines) and 25th and 75th

percentiles (dashed red lines) of binned data. Note that moths’ lateral acceleration towards the plume centerline typically begins before they exit

the time-averaged plume, suggesting that the decision to turn has already been made or anticipated.

across different types of pheromone puff distributions. In

Bayesian estimation, the probable centerline position after

the ith transit is described by a t-distribution, with loca-

tion μi and scale σi/
√

κi. Here, κi is the effective sample

size of pheromone puffs encountered by the end of the ith

transit, and μi and σ 2
i are the sample mean and variance

of those puffs’ lateral positions (for details, see Section

“Conjugate prior analysis for plume geometry” and refer-

ences therein).

We conjecture that M. sexta moths’ processing of spa-

tial information is analogous to Bayesian estimation of

the probability distribution of the plume centerline. This
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Table 1 Summary of symbols for the primary variables in

physical units and their interpretations

Symbol Interpretation

t∗ Time

x∗ , y∗ Down- and cross-stream positions, respectively

x∗source Upwind position of source

Q∗ Emission rate of detectable puffs

Ū∗ Constant component of wind speed

K∗ Eddy diffusivity

σ ∗2 Plume width parameter

U∗
gust Magnitude parameter for gusts

r∗gust Mean rate of changes in gust direction

V∗ Moth flight speed

ρ∗
puff

Mean number of puffs detected per transit

r∗
puff

Detection radius for puffs

r∗source Detection radius for source

Symbols used in only one section of the analysis are defined in that section and

omitted from this table.

conjecture suggests that κi is a potentially useful metric of

moths’ certainty, and that the lateral extent of cross-plume

transits may have an approximately square-root depen-

dence on this metric. Unfortunately, we cannot at present

experimentally quantify the locations and times of moths’

in-flight encounters with odorant puffs. Hence, we cannot

directly assess whether moths’ movements are statistically

Table 2 Summary of the primary rescaled (i.e.,

non-dimensional) variables in our analyses and their

interpretations

Symbol Interpretation

x, y Down- and cross-stream positions, respectively

t Time

xsource Upwind position of source

Q Emission rate of detectable puffs

Ū ≡ 1 Constant component of wind speed

K ≡ 1 Eddy diffusivity

σ 2 ≡ x Plume width parameter

Ugust Magnitude parameter for gusts

rgust Mean rate of changes in gust direction

V Moth flight speed

ρpuff Mean number of puffs detected per transit

rpuff Detection radius for puffs

rsource Detection radius for source

Symbols used in only one section of the analysis are defined in that section and

omitted from this table. Scaling is with respect to the length scale, L = K∗

Ū∗ and

the time scale T = K∗

Ū∗2
. See Section “Simulated plume geometry” for additional

details.

related to κi. Nonetheless, if our conjecture is valid, we

predict that (to a useful approximation), the lateral extent

of the ith transit, �yi, varies as

�yi = |ystarti − yendi | = c∗0κ
− 1

2
i . (1)

Here, ystarti and yendi are the starting and ending lateral

positions of the ith transit. c∗0 is a (presently unmeasur-

able) constant of proportionality that reflects geometrical

properties of the plume which are invariant in the labora-

tory observations.

Cross-stream transits also vary in whether they are

upwind or downwind of the previous cross wind track leg

(i.e., in up- or down-stream excursion). In the observed

trajectories, these excursions varied significantly as a

function of �y (Figure 3). Streamwise distances traveled

during transits are determined by the angles relative to

the wind flown by moths, and by their lateral excur-

sions. We conjecture that a moth’s course angle relative

to wind direction depends on its certainty in a way sim-

ilar to cross-stream distances (i.e., through a power-law

dependence on κi) but with an unknown exponent. We

also conjecture, consistent with observations, that course

angle varies continuously between nearly perpendicular to

the wind when certainty is low (i.e., “casting” when few or

no puffs have been recently detected) and almost directly

upwind when certainty is high. A simple functional form

which conforms to these conjectures is

|φi| =
π

2

1

1 + c∗1κ
q
i

. (2)

In (2), |φi| is absolute value of the course angle of the ith
transit measured from the positive x-direction. The sign

of φi is determined by the phase of the counter-turning

sequence. q is an unknown exponent, and c∗1 is another

unmeasurable constant of proportionality.

While (1) and (2) both contain unmeasurable constants,

it follows from our conjectures that lateral excursion and

course angle are related to each other by

|φi| =
π

2

1

1 + c1�y
−2q
i

(3)

where c1 = c∗1c
∗
0
2q is a constant. With algebraic manipula-

tion, (3) yields

2q log(�yi) − log(c1) = − log

(

π

2|φi|
− 1

)

(4)

in which q and c1 can be determined by linear regres-

sion over the ensemble of observed transits. The resulting

curve-fit (q = 0.225, c1 = 0.0416, r2 = 0.43, p ≪ 0.01,

n = 458) has encouraging explanatory power over the

large variations observed in air course angles and lat-

eral excursions (Figure 3). By comparison, variation in

observed airspeeds was relatively small (mean 112 cm/s,

standard deviation 9.9 cm/s), and a regression of airspeed



Grünbaum and WillisMovement Ecology  (2015) 3:11 Page 8 of 21

Figure 3 Geometrical characteristics of cross-plume transits in maleM. sextamoths seeking a pheromone source in a laboratory wind tunnel. (Top)

Up/down-stream excursions, �x, plotted against lateral excursions, �y, for all observed transits (n = 458). A linear regression (blue line,

slope = -0.38, intercept = 15.0) is highly significant (p ≪ 0.01) but explains little of the variance (r2 = 0.07). (Middle) Log of the transformed course

angle, φ∗ = π
2|φ| − 1, plotted against log(�y). The analysis leading to Equation 4 predicts a linear relationship between these quantities. A

regression (blue line, slope = -0.45, intercept = 3.18) is highly significant (p ≪ 0.01) and explains a substantial part of the variance (r2 = 0.43).

(Bottom) Lateral excursion, �y, plotted against course angle, |φ|. The solid blue curve represents Equation 3 with parameters emerging from the

regression, q = 0.225 and c1 = 0.0416. To illustrate effects of parameter variation on this functional form, Equation 3 is plotted with c1 increased

and decreased by a factor of 2 (dot-dashed blue lines) and with q increased and decreased by a factor of 1.5 (dashed blue lines). Also shown in all

three plots are medians (solid red lines) and 25th and 75th percentiles (dashed red lines) of binned data.
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against lateral excursion (slope=-0.366, intercept=116.5)

was significant (p ≪ 0.01) but explained little of the

variance (r2 = 0.072).

Results of this reanalysis suggest two important impli-

cations for understanding source-seeking behaviors. First,

to a useful approximation, lateral excursion and course

angle relative to the wind may be the primary behavioral

parameters regulated by source-seeking moths. Second,

observed trajectories are consistent with the hypothesis

that this regulation reflects puff encounters aggregated via

a simple spatial memory.

Algorithms for spatial memory-based behaviors

The foregoing analysis of observed trajectories of maleM.

sexta moths suggests many potentially feasible and effec-

tive algorithms for odor source location based on spatial

memory. Here, we present one such algorithm, and sim-

ulation results partially characterizing the performance

of this algorithm on simplified but nonetheless challeng-

ing model pheromone plumes. In this section, we briefly

sketch our approach and present simulation results. We

provide additional mathematical details and algorithmic

variations in Section “Methods”.

In our focal algorithm, we assumed that moths execute a

search for a pheromone source by undertaking a sequence

of transits across the wind in the horizontal plane (sim-

ilar to the red lines in Figure 1). This specific behavior

has not been observed in any flying moth species but has

recently been observed in the desert ant Catglyphis for-

tis. The ants perform this behavior when searching for

wind-borne plumes of food odor [50]. In airborne animals

like moths, a more mechanistic model of turning aero-

dynamics would translate this point-to-point translation

into a continuously curved trajectory corresponding more

closely to observations.

The simulated plume we used to test our algorithm

is a modified Gaussian puff model, described in Section

“Simulated plume geometry”, in which discrete detectable

pheromone puffs with a Gaussian lateral distribution

were advected under the influence of a mean wind and

episodically shifting lateral gusts. Using the normalization

scheme described in that section (see Tables 1 and 2 for a

summary of symbols and their interpretations) plumes of

arbitrary mean wind speed (Ū∗) and eddy diffusivity (K∗)
were rescaled to a standard plume Ū = K = 1. As noted

in Section “Simulated plume geometry”, this rescaling

has the advantage of reducing the number of parameters.

However, a consequence is that typical parameter values

differ from their unscaled analogs. For example, in lab-

oratory experiments typical values for emission rates of

detectable puffs are often Q∗ ≥ 1s−1, while the rescaled

emission rate Q = Q∗ K∗

Ū∗2 may (depending on wind speed

and turbulence) be substantially lower. Moths detected

pheromone puffs only when within detection distance

rpuff , and located the source only when within detection

distance rsource. Moths stopped flying when they detected

the source.

We assumed that moths maintain a spatial memory

in the form of Bayesian conjugate prior hyperparam-

eters, such that at the beginning of each transit they

possess updated estimates of the plume’s centerline posi-

tion and width (Section “Estimates of plume centerline

position”), and the density of pheromone puffs within it

(Section “Estimates of puff density within the plume”)

from previous transits. For simplicity, we assumed that

moths decide where a transit will end at the start of that

transit, based on information then available (that is, the

endpoint of the i + 1st transit is decided based on puffs

encountered during transits i and before, but cannot be

modified mid-transit). We assumed that moths adjust the

lateral extent of each transit to maintain a fixed probabil-

ity, Pcross, that the transit extends past the plume center-

line. The cross-stream location at which this probability

is achieved is determined by a t-distribution specified

by Bayesian hyperparameters, as described above and in

Section “Estimates of plume centerline position”.

We assumed that moths determine their angle of flight

relative to the surrounding air using the functional form

(2), with the constants c∗1 and q as behavioral parameters.

In particular, this algorithm ensures that low certainty

(i.e., low values of κi) results in casting-like behavior, with

movement oriented primarily in the cross-wind direc-

tion. Higher certainty (i.e., higher values of κi) results in

movements closer to directly upwind.

If the plume centerline position has moved (e.g., due

to gusts or wind shifts), spatial memory of previous puff

encounters is likely to be imprecise or downright erro-

neous as a basis for future movement decisions. In this

case, a moth needs to “forget” previous puff encounters

and place increased weight on new puff encounters in

assessing the new plume position.We assumed that, at the

end of each transit, a moth assesses the probability that

the plume has moved, Pmove, by comparing the number

of pheromone puffs actually encountered to the previ-

ously estimated puff density distribution (see Equation 19,

Section “Estimates of puff density within the plume”).

We assumed that moths discount hyperparameters asso-

ciated with previous puff encounters (particularly κi) in

proportion to Pmove, i.e., by a factor of

1 −
1

τ
Pmove, τ ≥ 1. (5)

Here, τ is a timescale parameter that determines the

maximum rate at which previous observations are dis-

counted. For example, if Pmove = 1 over a sequence of

transits (the extreme case, in which the moth is “cer-

tain” that it has lost the plume), previous information

about plume characteristics is depreciated and the moth
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reverts to a substantially uncertain state (i.e., casting

behavior) over approximately τ transits. We note that if

the simulated moth has moved upwind of the source,

this algorithm similarly responds to loss of contact with

the expected number of pheromone puffs, by decreasing

certainty and ultimately reverting to downwind casting

movement until the plume is relocated. Real moths that

experience decreases in plume encounters due to shifting

wind directions or loss of contact with the plume also gen-

erate tracks that increase in width with increasing post-

plume contact intervals [51,52]. In some species as the

post-plume encounter interval increases the moths begin

to drift downwind as they increase their track widths [16].

Simulations of spatial memory-based behaviors

In our simulations, moths’ were assumed to initially

encounter the plume during a cross-stream transit. Each

individual’s downstream position was drawn from a

Gaussian distribution, with mean determined by the

pheromone puff nearest a prescribed initial downstream

position (here, x = 500), and standard deviation equal to

the puff detection distance, rpuff . The lateral starting and

ending positions of the initial transit were drawn from a

Gaussian distribution with a mean and standard deviation

matching the local plume geometry.

Typical simulated moth movements within a shifting

plume are shown in Figure 4 (also see an animation

of simulated movement sequences in Additional file 1).

Moth trajectories in our simulations were quite sensi-

tive to stochastic variations in initial encounters with

puffs and, when simulated “gusts” were strong, to stochas-

tic variations in plume meander. This is reflected in

the substantially different trajectories flown by moths

whose randomized initial positions differed only slightly

(≤ rpuff ). Similar apparently stochastic differences typi-

cally occurred among replicate flights of M. sexta moths

in the laboratory.

A general feature of moth trajectories in our simulations

is that they responded to sharp drops in puff encoun-

ters (due to plume shifts, or to moving upstream of the

source) in ways qualitatively similar to casting in real

moths (that is, by successively widening lateral sweeps,

and by decreasing upwind advance and ultimately moving

downwind, in an attempt to relocate a lost plume). Simu-

lated moths also responded to increases in puff encoun-

ters in ways qualitatively similar to real moths, directing

their movements more narrowly upwind. We note that

this occurred in our algorithm simply as a consequence of

decreased certainty (as quantified in the sample size κi).

That is, there was no behavioral “switch” in the underlying

algorithm, but only in the quantitative values of the reg-

ulatory hyperparameters associated with spatial memory.

Thus, the spatial memory-based behavior we developed

here effectively unified these diverse movements along

an axis of variation in a single cognitive variable, the

uncertainty metric κi.

Searching performance in sparse pheromone puff

distributions

To assess searching algorithms, we calculated three per-

formance metrics reflecting distinct aspects of searching

effectiveness. We calculated “search success probability”,

Psuccess, as the fraction of moths arriving at the source

within a fixed (relatively large) time window. Psuccess pri-

marily reflects accuracy in following a stochastic plume to

its source, a small target compared to the spatial extent of

the plume and the distance of the downwind starting posi-

tions: Psuccess ≈ 1 indicates behaviors that nearly always

located the plume (within the time constraint imposed by

the duration of the simulation), and Psuccess ≪ 1 indi-

cates behaviors that rarely located the plume. For the

subset of moths that were successful, we also calculated

two search efficiency metrics: We calculated a time-based

efficiency, Etime, as the mean straightline flight time from

the starting point to the source, divided by the actual time

required to locate the source. We calculated a distance-

based efficiency, Edistance, as the mean straightline dis-

tance between moths’ starting position and the source,

divided by the actual distance traveled. Etime,Edistance ≈ 1

indicate behaviors enabling moths to travel in a nearly

direct line to the source, while Etime,Edistance ≪ 1 indicate

behaviors causing moths to take highly indirect routes to

the source.

A keymotivation in our behavioral analysis was to assess

whether a simple spatial memory can confer an ability to

track plumes with low signal (sparse pheromone puffs)

and high noise (significant turbulence and gust-driven

shifts). To quantify sensitivity to signal and noise, we eval-

uated the three performance metrics to simulated moths

in replicated plumes with two gust regimes across a range

of puff emission rates (Figure 5). By our assumptions, a

hypothetical instantaneous crosswind transit across the

full extent of the plume would, on average, result in

2rpuffQ puff detections (see Equation 7, in Methods).

Thus, the metrics in Figure 5 represent variations from

a potential average of 2.5 puffs per transit at the highest

puff emission rate (Q = 0.125) to 0.3125 puffs per tran-

sit at the lowest puff emission rate (Q = 0.015625). In

these simulations, simulated moths had generally lower

success in larger lateral displacements of the plume pro-

duced by more persistent gusts (rgust = 0.0125) than with

smaller lateral displacements produced by more transient

gusts (rgust = 0.05). However, in both gust regimes, sim-

ulated moths maintained remarkably consistent success

as reflected by all three performance metrics, even when

puff emission rates were so low that almost three quarters

of instantaneous cross-plume transits likely resulted in no

pheromone puff encounters.
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Figure 4 Sample trajectories of simulated male moths seeking a pheromone source. Graphics represent intervals of 250 nondimensional time

units, beginning after the initial encounters of 8 moths (τ = 2.5, Pcross = 0.25, c∗1 = 0.8, V = 1.15) with a simulated plume (Q = 0.125, rgust = 0.05,

Ugust = 0.5, rpuff = rsource = 10). Red circles represent current moth positions; gray lines represent flight tracks, including the current transit. The

plume source is located at x = 1000, y = 0. The widely divergent trajectories reflect strong dependence on the location and number of puffs

encountered in the initial transit across the pheromone plume, at downstream position x = 500. In this simulation, the plume of pheromone puffs

(blue circles) has been transported by gusts in the positive y-direction at the time of encounter. Shortly afterwards, the wind shifts towards the

negative y-direction, leaving simulated moths well outside the plume. Depending on the level of certainty they attained before the wind shift,

moths either advance slowly upwind or begin “casting” while drifting downwind. Upon regaining contact with the plume, moths resume upwind

advance. The sequence of images shows several moths “overshooting” the source while undertaking large lateral and upwind excursions; other

moths locate and track the plume centerline more closely, and consequently move more directly towards the source. One overshooting moth is

shown to revert to casting behavior in response to detecting loss of the plume. At the last time shown, this moth is on a trajectory leading to the

source during a sequence of downwind movements.

From a physiological perspective, themetrics in Figure 5

also suggest more limited benefits from heightened sensi-

tivity (e.g. threshold changes enabling eight-fold increases

or decreases in puff detection rates) than might have been

expected. For a pheromone-emitting female, these results

also suggest limited benefits to dramatically increased

investment in chemical signaling, in terms of the metrics

evaluated here. Our results are an interesting counter-

point to the analysis of Andersson et al. [26]. The data

they analyzed represent scenarios in which pheromone

was emitted at relatively constant rates for long periods

relative to source-seeking flight times. Because these

insects had a functionally almost unlimited amount of

time to locate odorant sources, Andersson et al.’s analy-

sis effectively quantified initial encounter rates of casting

insects with pheromone plumes. In contrast, our sim-

ulations assumed almost-certain initial contact with at

least one pheromone puff, but we imposed time lim-

its on plume duration. Hence our results theoretically

assess post-encounter performance, finding that spatial

memory-based behaviors substantially reduce impacts of

low rates of pheromone puff emission, while Andersson
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Figure 5 Variation of moth odor source location performance with pheromone puff emmission rate. The lines represent three performance metrics

for source location by simulated moths for two different gust rates (blue circles: rgust = 0.05; cyan squares: rgust = 0.0125) across a range of puff

emission rates (Q =[ 0.015625, 0.03125, 0.0625, 0.125]). Lower rgust corresponds to more persistent gusts, and hence larger lateral plume

displacements. Moth behavior parameters are as in Figure 4. Solid lines represent search success probability, Psuccess – that is, the fraction of moths

arriving at the source within a fixed simulated time interval (left axis). Dashed lines represent Etime , a time-based efficiency metric for successful

moths, i.e., the straightline flight time from the moth’s starting point to the source, divided by the actual travel time (right axis). Dotted lines

represent Edistance , a distance-based efficiency metric for successful moths, i.e., the straightline distance from the moth’s starting point to the source,

divided by the actual distance traveled (right axis). Of the three metrics, only Psuccess varies strongly between gust conditions; the effects on Etime and

Edistance are weaker. Variation across a wide range of puff emission rates has relatively weak effects on all three metrics.

et al. experimentally assessed pre-encounter performance,

finding significant impacts of low rates of pheromone

puff emission. Additional, complementary studies –

theoretical assessments of pre-encounter performance,

and experimental assessments of post-encounter perfor-

mance – are needed to clarify which factors most strongly

limit odor source location under natural conditions.

The role played by spatial memory in enabling moths

to locate the sources of sparse plumes can be put in con-

text by estimating the effective sample size, κ . Assuming

the maximum “forgetting” rate corresponding to Pmove ≈
1 in (5), the effect of memory over a long sequence of

transits is to increase cumulative effective sample size by

(minimally) a factor of

1 +
(

1 −
1

τ

)

+
(

1 −
1

τ

)2

+ · · · = τ

relative to the expected encounter rate for a single tran-

sit. For the simulations in Figure 5, in which the memory

parameter was τ = 2.5, effective sample size with spa-

tial memory was at least close to one even for the lowest

puff emission rates, and potentially (for transits in which

Pmove ≪ 1) much higher. We note that these are only

rough estimates: In our simulations, actual puff encoun-

ters varied widely both lower and higher than these esti-

mates (including, e.g., transits that entirely missed the

plume, and transits with long upwind excursions through

the densest parts of plumes). Nonetheless, these esti-

mates provide useful insight into the degree to which

spatial memory might facilitate locating sources of sparse,

meandering odorant plumes.

Variations in behavioral parameters

To assess how effectiveness of the spatial memory algo-

rithm varied with key behavioral parameters, we evalu-

ated our performance metrics across a replicated series

of simulations, each with a unique randomly generated

plume. In each plume, we simulated a matrix of behavioral

parameters, ranging across relevant ranges of τ and c∗1,
with 8 replicated moths for each parameter set. Figure 6

graphically summarizes the occurrences of three out-

comes in these simulations: “successes”, in which moths

flew within detection distance of the source during the

simulation; “undershoots”, in which moths failed to find

the source and were downwind of it at the end of the

simulation; and, “overshoots”, in which moths failed to

find the source and were upwind of it at the end of the

simulation. In these plots, moths that moved upstream

of the source and subsequently returned downstream are

counted as undershoots. However, these were infrequent,

because moths re-encountering the plume during down-

stream casting usually advanced upwind relatively quickly,

either locating the source or overshooting it again.

In Figure 6, behaviors with the highest success rates

occurred in a roughly diagonal band in parameter space,

from the upper left (small τ , large c∗1) to the lower right

(large τ , small c∗1). Above this band, successes are rarer

and most failures are overshoots. Below the band, suc-

cesses are also rarer but most failures are undershoots.

These results lend themselves to intuitive interpreta-

tions of the interactions between behavioral parameters

τ and c∗1: According to our model, the magnitudes of

upwind excursions increase monotonically with c∗1, and
with effective sample size κi. Increases in τ result in larger
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Figure 6 Tabulated outcomes of simulated male moths seeking a pheromone source: variation with memory timescale, τ , and advance parameter,

c
∗

1
. The array of graphs represents a matrix, with columns corresponding to memory timescales τ = [ 1, 1.5, 2, 2.5, 3, 4, 6, 8] and rows corresponding

to advance parameters c∗1 = [ 0.2, 0.265, 0.4, 0.8, 1.1, 1.6]. Data comprise 59 replicate plumes (Q = 0.125, Ugust = 0.5, rgust = 0.05), with 8 replicated

moth trajectories in each plume for each combination of τ and c∗1 , for a total of 22656 moth trajectories. For all moths, Pcross = 0.25. Moths were

initially 500 nondimensional length units downstream of the source. Simulations were terminated at nondimensional time t = 12288. In each plot,

the horizontal axis represents distances traveled by simulated moths, and the vertical axis represents frequency of trajectories falling into each of 64

bins regularly spaced between 1000 and 12000. Trajectories outside this interval are not shown. Blue indicates moths that successfully found the

source; yellow represents unsuccessful moths that “undershot”, i.e., were found downwind of the source at the end of the simulation; red represents

unsuccessful moths that “overshot”, i.e., were found upwind of the source at the end of the simulation. These plots suggest combinations of these

two parameters that lead to relatively high plume source location probability, centered roughly along a diagonal line from the upper left to near the

lower right of the plot matrix. Source location is much less successful both above and below this line, but for different reasons: Above the line,

simulated moths are most likely to have overshot the source. Below the line, moths are most likely to have undershot the source.

κi’s (because puff encounters are “remembered” longer).

Hence, for a given set of puff encounters, increased τ has

broadly the same effect as increased c∗1 – both result in

more rapid upwind advances. If there is a finite range

of upwind advance rates within which source location is

most effective, we would expect that increases in τ can be

substantially canceled by reductions in c∗1, and vice versa.

Higher τ increases certainty metric κi for any given

sequence of encounters with pheromone puffs, by extend-

ing the longevity of spatial information, while increas-

ing the risk of retaining information that is outdated

or misleading due to wind shifts or other stochastic

events. Higher c∗1 increases the upwind advances for any

given level of certainty, enhancing the upwind progress

extracted from available information, while increasing

the risk of missing the source or losing contact with

the plume during extended upwind excursions. In this

sense, a high-τ , high-c∗1 behavior for locating sources

of odorant plumes can be characterized in cognitive

terms as a “risk-tolerant” strategy, while a low-τ , low-c∗1
behavior can be characterized as “risk-averse”. Simulation

results suggest that both behavioral extremes are likely to

be unsuccessful, relative to behaviors with intermediate

characteristics.

We similarly replicated simulations of moth behaviors

across relevant ranges of τ and Pcross (Figure 7). In this

figure, behaviors with the highest success rates occurred

in a band just below the lower left to upper right diag-

onal. Undershoots predominated above this band, with

overshoots becoming more frequent below the band in

the bottom right corner. Intuitively, larger values of Pcross
lead to greater lateral excursions, as transits are required

to extend over a greater part of the estimated probabil-

ity distribution for the plume centerline. Larger values of

τ contract the estimated centerline probability distribu-

tion (by increasing the level of certainty, κ), leading to

narrower lateral excursions during transits. Lower Pcross
decreases the flight time and energy expended on cross-

wind movements, while increasing the risk that transits

will miss the densest and most informative part of the

plume. Hence, in cognitive terms, a high-τ , low-Pcross
behavior for locating sources of odorant plumes can be

characterized as a “risk-tolerant” strategy, while a low-τ ,

high-Pcross behavior can be characterized as “risk-averse”.
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Figure 7 Tabulated outcomes of simulated male moths seeking a pheromone source: variation with memory timescale, τ , and plume-crossing

probability, Pcross . The array of graphs represents a matrix, with columns corresponding to memory timescales τ = [ 1, 1.5, 2, 2.5, 3, 4, 6, 8] and rows

corresponding to plume-crossing probability, Pcross = [ .125, .25, .5, .75, 0.85, 0.95]. For all moths, c∗1 = 0.4. Data comprise 28 replicate plumes, with 8

replicated moth trajectories in each plume for each combination of τ and Pcross , for a total of 10752 moth trajectories. Otherwise, interpretation of

plots is the same as in Figure 6. These plots suggest combinations of these two parameters that lead to relatively high plume source location

probability lie below a diagonal line extending roughly from the lower left to the upper right of the plot matrix. Source location is much less

successful above this line, due to the prevalence of “undershoots”. The increasing incident of “overshoots” (red bars) at the bottom right of the plot

matrix suggests that the corresponding parameters may be at or near the limits of effective source-seeking behaviors.

Behaviors intermediate to these extremes again appear to

be the most successful.

Performancemetrics and “contests”

To gain additional perspectives on odor source location

using spatial memory, we evaluated the three performance

metrics from Section “Searching performance in sparse

pheromone puff distributions” across the τ -c∗1 and τ -Pcross
behavioral matrices of Section “Variations in behavioral

parameters”. In simulations with moderate puff densities

(Q = 0.125) and moderately strong and persistent gusts

(Ugust = 0.5, rgust = 0.05), the search success probability

performance metric varied from almost always successful

(Psuccess ≈ 1) to almost always unsuccessful (Psuccess ≈ 0)

over relatively narrow ranges of behavioral parameters

(Figures 8, 9). These results suggest that tuning of behav-

ioral parameters, probably with strong dependencies on

plume characteristics, is both possible and necessary for

algorithms of the type we investigated.

Notably, the shortest memories timescales we simulated

(τ ≈ 1) had uniformly low Psuccess. In most regions of

parameter space, increasing τ increased success Psuccess,

suggesting longer memory is usually beneficial. This is in

line with the general message of our paper. However, there

were exceptions, particularly in the upper right of the

τ -c∗1 matrix, where overshoots were the dominant mode

of failure (Figure 8). In the τ -Pcross matrix, increasing τ

broadens the range of Pcross with high success probabil-

ities. We believe this is because, at higher levels of τ ,

moths’ estimates of the centerline probability distribution

become increasingly narrow. Hence, differences in Pcross
have relatively weaker effects on transits flown when τ is

high.

In general, we found close correspondence between

time-based and distance-based efficiency metrics. How-

ever, parameter combinations with high efficiencies

occurred in regions of very low success probability in

the τ -c∗1 matrix (Figure 8), and moderately low success

probability in the τ -Pcross matrix (Figure 9). These plots

highlight tradeoffs in source-seeking behavior: Success

probabilities are maximized by behaviors with relatively

low efficiencies. Conversely, high efficiency behaviors are

usually unsuccessful. No single behavior approaches the

maximum in both metrics simultaneously.
What is the relationship of metrics like Psuccess, Etime,

and Edistance to costs and benefits of alternative moth

behaviors in a natural, competitive environment? To put

the tradeoffs illustrated in Figures 8 and 9 in context,

we conducted “contests” in which moths with different

behavioral parameters were started within a plume at the

same downstream position. The first moth arriving at the

source in each contest was the “winner”; if no moth found
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Figure 8 Performance metrics of simulated male moths seeking a pheromone source: variation with memory timescale, τ , and advance parameter,

c
∗

1
. Data and simulation parameters are as in Figure 6. Left: Search success probability, Psuccess ; middle: time-based efficiency, Etime ; right:

distance-based efficiency, Edistance . Values near 1 (warm colors) indicated good performance; values near 0 (cool colors) indicate poor performance.

In all three plots, the horizontal axis represents memory timescale parameter, τ , and the vertical axis represents the advance parameter c∗1 . Note the
tradeoffs among metrics: The regions of this parameter space maximising success probability corresponds to behaviors with poor efficiency metrics.

Conversely, behaviors maximizing the two efficiency metrics (for successful searches) substantially overlap; however, both correspond to regions of

relatively low success probabilities.

the source, that contest had no winner. To understand

potential consequences of population density, we con-

ducted two-, three- and four-way contests, in which every

combination of the corresponding number of moths com-

peted in each replicated plume.We used equal numbers of

all parameter combinations represented in Figures 8 and

9.We assessed success by normalizing the number of con-

tests actually won by the number expected if winners had

been drawn at random.

Our contest results suggest restricted ranges of behav-

ioral parameter combinations that were clearly more

successful than alternative behaviors (Figures 10, 11).

Behaviors that were most successful in contests did not

necessarily maximize any of the performance metrics.

Instead, contest-winning behavioral strategies generally

reflected a balance of the search success probability and

search efficiency performance metrics. Different out-

comes for contests with different numbers of contestants

illustrated what are likely more general density-dependent

trends in odor source location performance. One such

trend is the overall increase in our contest-winning metric

with competitor number. This reflects the lower number

of contests with no winner (i.e., in which all entrants failed

to find the source) as the number of contestants increased.

A related trend is the apparent shift in contest-winning

strategies to higher weighting for efficiency metrics

(Etime, Edistance) relative to searching success metrics

(Psuccess) with increasing number of contestants, when

Figure 9 Performance metrics of simulated male moths seeking a pheromone source: variation with memory timescale, τ , and plume-crossing

probability, Pcross . Data and simulation parameters are as in Figure 7. Left: Search success probability, Psuccess ; middle: time-based efficiency, Etime ;

right: distance-based efficiency, Edistance . In all three plots, the horizontal axis represents memory timescale parameter, τ , and the vertical axis

represents the plume-crossing probability, Pcross . Note that success probabilities are maximized by intermediate values of Psuccess . Both efficiency

metrics are maximized by lower values of this parameter. Longer memory timescales (higher values of τ ) broaden the range of Psuccess
corresponding to good source location performance, as indicated by all three metrics.
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Figure 10 Results of “contests” between simulated male moths seeking a pheromone source: variation across memory timescale, τ , and advance

parameter, c∗
1
, with fixed plume-crossing probability, Psuccess = 0.25. In contests, a subset of simulated moths is released within a plume at the

same time and downstream position. Analogously to searching by male moths for pheromone-releasing females, the first moth to locate the source

“wins”. The plots represent the number of contests won by simulated moths with corresponding parameters, normalized by the expected number if

outcomes were random, with two, three or four contestants (left, middle and right, respectively). The overall higher winning metrics for three- and

four-way contests reflect the relatively smaller frequency of contests with no winners (i.e., all contestants failed to locate the source). Depending on

the number of contestants, two types of odor source location strategies are most successful. One successful strategy corresponds roughly to

parameter values (c∗1 ≈ 0.4, τ ≥ 6) with long search times but nearly maximal search success probability (Figure 8), i.e., to “risk-averse” behaviors.

The other successful strategy (roughly c∗1 ≈ 1, τ ≈ 3) maximizes neither search success probability nor search efficiency, but occupies a region of

parameter space in which these metrics are balanced effectively. Because these behaviors fail in locating the source more frequently than

risk-averse behaviors, but are faster when they do succeed, they reflect a more “risk-tolerant” strategy. The plots illustrate a shift in contest-winning

behaviors away from risk-averse towards risk-tolerant strategies, as the number of contestants increases. This trend reflects strong

density-dependence in performance metric tradeoffs: Risk-averse, low efficiency behaviors are likely to win only if there are no successful

contestants with risk-tolerant behaviors. As the number of contestants increases, the likelihood that at least one risk-tolerant contestant is successful

also increases, shifting the tradeoffs between performance metrics.

these metrics are not maximized in the same regions of

parameter space. This is particularly evident in Figure 10,

where two disjunct regions of the τ -c∗1 parameter space

are relatively successful in three-way contests.

One of these regions represents what might be termed

a “slow-but-sure”, risk-averse strategy, corresponding

closely to Psuccess-maximizing but relatively inefficient

behaviors. The other region represents what might be

termed a “hail Mary”, risk-tolerant strategy, significantly

shifted towards high efficiency but lower Psuccess behav-

iors. At least two interpretations are possible to explain

the duality of successful strategies reflected in Figure 10.

One is that increasing numbers of contestants generally

devalue risk-averse strategies. Another is that risk-averse

Figure 11 Results of “contests” between simulated male moths seeking a pheromone source: variation across memory timescale, τ , and

plume-crossing probability, Pcross , with fixed advance parameter, c∗
1

= 0.9. Other details are as in Figure 11. The plots represent the number of

contests won by simulated moths with corresponding parameters, normalized by the expected number if outcomes were random, with two, three

or four contestants (left, middle and right, respectively). The overall higher winning metrics for three- and four-way contests reflect the relatively

smaller frequency of contests with no winners (i.e., all contestants failed to locate the source). These contest outcomes suggest advantages, at least

under simulated conditions, for behaviors with longer memory timescales (larger values of τ ): In two-, three and four-way contests, success

increases with memory timescale.
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and risk-tolerant strategies are effectively specializations

for plumes that (due to stochasticity in turbulence and

gusts) present functionally different characteristics to

source-seeking moths. Our simulations suggest that the

scope for risk-averse behaviors contracts as the number

of contestants increases, but we cannot at present deter-

mine whether risk-averse behaviors maintain an advan-

tage even with many contestants for a subset of plume

geometries. Both interpretations suggest a diversity of

behavioral types, and/or modulation of individual moths’

plume-climbing behaviors as a function of local popula-

tion density, are likely to be favored under natural condi-

tions. Figure 11 illustrates a complementary case, where

(among a different set of behavioral variations) there is

broad overlap between performance metrics, and con-

sequently less-pronounced trade-offs between efficiency

and search success.

Conclusions
A comprehensive understanding of odor source loca-

tion by male M. sexta moths and other animals requires

validated, quantitative descriptions across a spectrum

of organismal levels. At one end of this spectrum are

“microscopic” models, describing first-principles biologi-

cal mechanisms and constraints such as the biomechanics

of odorant transport and contact with sensory organs, and

the neurophysiology of sensory transduction and motor

control. On the other end are “macroscopic” models,

describing dynamics at large ecological and evolutionary

spatio-temporal scales. In our view, cognitive models of

the type developed in this paper, in which behaviors are

described in conceptual and statistical terms but are read-

ily identified with microscopic and macroscopic descrip-

tions, occupy intermediate positions on this spectrum,

potentially playing useful and necessary roles unifying

otherwise disjunct modeling approaches.

Experimental and theoretical studies of mate-seeking

behaviors in male M. sexta moths, and of analogous

behaviors in many other taxa, suggest that odor source

location in natural environments is frequently charac-

terized by odorant plumes that are highly patchy and

undergo rapid changes. In many, perhaps most, of these

cases, encounters with odorant patches are at least inter-

mittently so sparse that information characterizing plume

geometry is a potentially important factor limiting search-

ing success. In searching connected with mating, foraging

and other key ecological functions, there appear to be

strong benefits to “best use” of available information.

From a human perspective, “best use” of encounters with

plumes suggests statistical approaches involving spatial

memory of puff encounters over multiple passes. We con-

jecture that moths make similar best use, indeed that

their counter-turning and casting behaviors are tuned for

two equally important objectives: sequentially “sampling”

pheromone puff positions, to augment and update spa-

tial memory of plume geometry; and, moving upwind as

rapidly as possible while maintaining contact with the

plume.

We showed here that implementing effective spatial

memory-based searching algorithms for odor source

location is theoretically feasible with surprisingly few

demands on memory and neural processing. This does

not constitute proof that moths employ spatial memory-

based searching behaviors, but it does lower the threshold

of neural capabilities apparently necessary to make such

behaviors possible. We believe the minimal memory and

computation requirements of our behavioral scheme sub-

stantially erode the a priori assumption that such behav-

iors are impossible within reasonable bounds on moth

sensory and information-processing capacities. We also

showed that moth movements observed in the lab are

consistent with some predictions emerging from our con-

jectures. In particular, assuming a hidden "uncertainty”

metric (the effective sample size, κi) yielded an interpreta-

tion of the relationships among transit geometrical traits

that is intuitive and statistically powerful.

The behavior we simulated in this paper represents

one of the simplest spatial memory-based searching algo-

rithms. We do not suggest that male M. sexta moths

use this specific algorithm. Numerous variations of this

behavioral theme are easily implemented, some of which

are likely more effective or more consistent with observa-

tions than the illustrative example presented here. Instead,

we emphasize the potential analogies between the neu-

rophysiology of moth sensing and movement; statistical

approaches to spatial memory implemented concisely via

Bayesian updating and conjugate priors; and, interpreta-

tion of behavioral parameters in cognitive terms such as

“risk-tolerant” and “risk-averse” strategies. This modeling

approach makes it possible to assess, in intuitively and

conceptually clear terms, the consequences of changes

in hydrodynamic conditions, in females’ chemical signal-

ing behavior, in males’ pheromone detection thresholds,

in moth population densities, and in many other factors

involved in moths’ odor source location.

For the behavioral variant we simulated, we used perfor-

mance metrics and “contests” between behavioral variants

to assess moth searching success across parameter space.

Performance varied strongly over the parameter ranges we

investigated. No single set of parameters maximized per-

formance in all metrics. The strong tradeoffs indicated by

these results suggest that diverse behaviors may be most

successful, at any given instance within the expected spec-

trum of plume characteristics. Here, our objective was

to demonstrate the feasibility of effective source-seeking

behaviors with minimal capabilities. We find it plausible,

however, that moths and other animals for which source-

seeking conveys substantial benefits are endowed with
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much greater cognitive capabilities, and use those to exe-

cute much more flexible, complex and effective search

strategies.

Methods
Simulated plume geometry

To provide our simulated moths with a geometrically

challenging but easily replicated and computationally

manageable pheromone distribution, we used a simple 2-

dimensional variant of Gaussian plumemodel. This model

mimics transport of discrete, detectable “puffs” of odor-

ant at large time and space scales by an unsteady external

flow, and at short time and space scales by correlated ran-

domwalks that are simplified representations of transport

by turbulent eddies. Approximating pheromone distri-

butions as discrete puffs is motivated by fluid mechan-

ical studies of turbulent odorant plumes, which show

that odorant remains concentrated in identifiable, dis-

crete blobs and filaments of relatively high concentration

(i.e., puffs) far downstream of the source [42,53,54], and

that this plume structure is central to source location

behaviors [31,32].

Gaussian plumes are widely used to approximate advec-

tion due to turbulent environmental flows in both

research and applications such as prediction of pollu-

tant distribution (see [55] for a general discussion). These

models are typically based on assumptions that down-

stream transport is dominated by the steady streamwise

flow velocity component, and cross-stream transport is

dominated by turbulent mixing that can be approximated

as acting like a greatly augmented diffusion. From these

assumptions it follows that the advected material (female

pheromone, in this case) has time-averaged cross-stream

concentrations – and, in the case of discrete detectable

odorant puffs, probability densities of puff occurrence –

that follow Gaussian distributions. Specifically, for odor-

ant puffs dispersed by a constant advection velocity ¯U∗n
in the x∗-direction and a turbulent eddy diffusivity K∗, the
Gaussian plume model can be expressed as

S∗(x∗, y∗) =
Q∗/Ū∗

√
2πσ ∗2

exp

[

−
1

2

(

y∗ − ȳ∗2

σ ∗2

)]

(6)

where Q∗ is the rate of puff release (in
puffs
s ) and σ ∗2 =

K∗x∗

Ū∗ is the width parameter (in m2) of the position x∗

downstream of the plume source. ȳ∗ is the centerline of

the plume in the y∗-direction [55]. Asterisks denote quan-

tities in physical units; see Table 1 for a summary of these

dimensional symbols.

In (6), as in many Gaussian plume models, it is assumed

that the total concentration of odorant puffs integrated in

the cross-stream direction over the entire lateral extent of

the plume is constant in the streamwise direction (that is,

there are no downstream sources or sinks of pheromone).

We simplify the complex process of pheromone puff

detection by assuming that moths detect pheromone puffs

if and only if their centers lie instantaneously within a

detection radius r∗puff . The expected number of puffs,

ρpuffs, detected by a moth transiting rapidly across the

plume at downstream position x is then approximately

ρ∗
puffs(x

∗, r∗puff ) =
∫ x∗+r∗

puff

x∗−r∗
puff

∫ ∞

−∞
S∗(x∗, y∗)dy∗dx∗. (7)

A “nondimensional” form of (6) can be derived by nor-

malizing space and time variables with the length scale

L = K∗

Ū∗ and the time scale T = K∗

Ū∗2 . This form is given by

S(x, y) =
Q

√
2πx

exp

[

−
1

2

(y − ȳ)2

x

]

, (8)

where x = x∗
L = x∗Ū∗

K∗ , y = y∗

L = y∗Ū∗

K∗ and t = t∗
T = t∗Ū∗2

K∗

are rescaled space and time variables, and Q = K
U2Q

∗

is the rescaled puff release rate (Table 2). Equation (8)

has fewer parameters because the rescaled mean velocity

and eddy diffusivity are both unity. In the nondimensional

scaling, the expected number of puff encounters for a

moth during a rapid lateral transit across the plume is

ρpuffs(x, rpuff ) =
∫ x+rpuff

x−rpuff

∫ ∞

−∞
S(x, y)dy dx. (9)

Equation (8) represents a plume resulting from tur-

bulence in a steady external flow, that does not reflect

meander of the plume caused by wind gusts. Meander is

a key element of male moths’ odor source location prob-

lem. In our Gaussian plume variant, we assume that gusts

act only in the cross-stream direction, and are piecewise

constant in time and uniform in space. In this case, the

centerline position of the plume is ȳ∗(t, x), a function of

time and streamwise position. Consistent with the under-

lying simplification of the Gaussian plume approach, we

neglect unsteady velocity fluctuations in the streamwise

direction. To generate a distribution of odorant puffs, we

begin with a large ensemble of nondimensional random

positions in the horizontal plane, xi, yi, i = 1, 2, . . . ,Npuffs.

Here, yi is chosen from a standard normal distribution,

and xi is chosen from a sorted list of samples from a

uniform distribution on the interval [ 0, 1]. Npuffs is an

ensemble size large enough to exceed the number of

puffs leaving the source during the source-seeking sim-

ulation. A distribution of nondimensional gust arrival

times tj, j = 1, 2, . . . ,Ngusts is similarly chosen from a

sorted list of samples from a uniform distribution on the

interval [ 0, 1]. Corresponding nondimensional gust mag-

nitudes vi (that is, gust magnitudes rescaled by L and

T) are chosen from a semicircular distribution with unit

radius.

To implement gust-induced meander in our plume

model, we rescale these random variables so as to mimic
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key characteristics of odorant puffs released at a fixed

source location at random time intervals, and advected by

a spatially uniform wind field whose direction is episodi-

cally modified by changes in gust direction. Rescaled puff

release times are given by t̃j = Ngusts

rgust
tj − xsource. Rescaled

streamwise puff positions are given by x̃i = Npuffs

Q xi. At

time t, only puffs for which x̃i < xsource + t have emerged

from the source; the streamwise positions of those puffs is

given by Xi = x̃i − t. Rescaled cross-stream positions are

given by ỹi =
√
xsource − Xi yi. Rescaled puff magnitudes

are given by Vj = Wgustvj. The cross-stream positions of

emerged puffs are Yi = ỹi + ydisp(t), where ydisp(t) =
ȳ(t) − ȳ(t − xsource + Xi). ȳ(t) is linearly interpolated from

ydisp(t̃k) =
∑

j<k Vj+1(t̃j+1 − t̃j), k = 1, 2, . . . ,Ngusts.

This plume model does not explicitly represent fluid

dynamics. However, it does incorporate the type of short-

and long-term fluctuations in fluid flow that make the

source-location problem difficult. Because it is extremely

quick to simulate, and because the data files required

to fully reconstruct a plume realization are small, this

plume model makes a good test-bed on which to assess

behavioral algorithms. In particular, this algorithm makes

it easy to explicitly modulate intermittency and cross-

streammeander, the key characteristics that make plume-

following challenging to organisms under real-world

conditions.

Conjugate prior analysis for plume geometry

Estimates of plume centerline position

To model moths’ estimation of plume geometry, we drew

on standard Bayesian theory [47] by adopting a conjugate

prior probability density for mean μ and variance σ 2 of

puff position in the Gaussian puff distribution after the ith

transit,

P{μ, σ 2}i = NInvχ2
(

μi, σ
2
i /κi; νi, σ

2
i

)

∝ N
(

μi, σ
2
i /κi

)

Invχ2
(

νi, σ
2
i

)

.
(10)

In (10), Invχ2(νi, σ
2
i ) is an Inverse-χ2 distribution with

degrees of freedom νi and scale σi, representing the

marginal probability density of the variance, σ 2, after

the ith transit. N(μi, σ
2
i /κi) is a normal distribution with

mean μi and variance σ 2
i /κi, representing the probability

density of the plume centerline, μ, conditional on vari-

ance σ 2, after the ith transit. After the i + 1st transit in

which ni+1 puffs were detected at lateral positions yi, i =
1, 2, . . . , ni+1 with sample mean ȳi+1 and sample variance

s2i+1, the updated posterior distribution is

P{μ, σ 2}i+1 = NInvχ2
(

μi+1, σ
2
i+1/κi+1, νi+1, σ

2
i+1

)

,

(11)

where

μi+1 =
κiμi + ni+1ȳi+1

κi + ni+1
, κi+1 = κi + ni+1, νi+1 = νi + ni+1,

νi+1σ
2
i+1 = νiσ

2
i + (ni+1 − 1)s2i+1 +

κini+1

κi + ni+1
(ȳi+1 − μi)

2.

(12)

Themarginal distribution of plume centerline ȳi+1 given

the posterior distribution after the i + 1st transit is then,

P{ȳi+1} = tνi(ȳi+1|μi, σ
2
i /κi), (13)

i.e., a t-distribution with degrees of freedom νi+1, location

μi+1, and scale σi+1/
√

κi+1.

We assume moths modulate lateral excursions such that

transits cross the plume centerline with probability Pcross.

This is achieved by selecting the endpoint of the i + 1st

transit to be equal to the more distant limit of the central

posterior interval, CPI, of the distribution in (13),

yendi+1
= CPI(P{ȳi},Pcross) − yendi , (14)

i.e., the limit that maximizes |CPI(P{ȳi},Pcross) − yendi |.
Here, the ending location of the ith transit is the starting

location of the i + 1st transit, ystarti+1 = yendi .

Estimates of puff density within the plume

To model moths’ estimation of plume density, we assume

puff encounters are Poisson-distributed random events

with mean ρpuff , such that the probability of encountering

k puffs on a given transit is

P{k|ρpuff } =
ρk
puff

e−ρpuff

k!
. (15)

The conjugate prior probability density for plume den-

sity, ρpuffs, is

P{ρpuff }i = Gamma(αi,βi). (16)

Here, αi corresponds to the cumulative number of puffs

detected, βi to the cumulative number of transits, and

αi/βi to the mean of the prior distribution for ρpuffs. After

the i + 1st transit, the updated posterior distribution is

P{ρpuff }i+1 = Gamma(αi+1,βi+1),

αi+1 = αi + ni+1,βi+1 = βi + 1.
(17)

The marginal probability of puffs encountered in the ith

transit, ki, is a negative binomial distribution,

P{ki} = Neg − bin(αi,βi). (18)

The probability that, given the history of puff encoun-

ters encoded in the hyperparameters αi and βi, ki or fewer

puffs are encountered in a given transit is the Cumulative

Distribution Function of (18), CDF. Here, we assume that

moths use the CFD to quantify the probability, Pmove, that

the plume has shifted due to wind gusts (or, equivalently,

that the moth has lost the plume due to overshooting or

poor movement choices),
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Pmove = CDF(Neg − bin(αi,βi), ki). (19)

Detecting wind shifts and overshoots

The Bayesian conjugate prior hyperparameters associated

with plume geometry and puff density are derived assum-

ing that the distributions being estimated are statistically

stationary. The increased precision with which stationary

plume characteristics can be estimated as successive puffs

are encountered are reflected by the hyperparameters κi,

νi and βi. As these hyperparameters get larger, the corre-

sponding distributions (10) and (18) become increasingly

constrained, while the marginal effects of additional sam-

ples become smaller.

Under field conditions, transients such as gusts and

wind-shifts often cause pheromone plumes to undergo

significant changes in geometry duringmales’ searches for

females. In addition, moths can “overshoot” the source,

or be misled by incomplete sampling of the puff distri-

bution or by stochastic variations in puff encounters. In

these cases, moths need a mechanism to decrease their

reliance on previous puff encounters, and increase their

responsiveness to new puff encounters. This corresponds

to discounting the effective sample size hyperparameters,

through multiplication with a discounting factor, 0 < f ≤
1. To insure that this discounting lowers certainty without

altering current estimates of plume geometry and density,

the cumulative variance, νiσ
2
i , and total puffs encoun-

tered, αi, must be similarly discounted. Hence, “forget-

ting” of obsolete or erroneous estimates of plume density

are made possible by a modification of (17), such that

αi = f αi + ni+1,βi = f βi + 1, (20)

and of (12), such that

κi+1 = f κi + ni+1, νi+1 = f νi + ni+1,

νi+1σ
2
i+1 = f (νiσ

2
i )+(ni+1−1)s2i+1+

κini+1

κi+ni+1
(ȳi+1−μi)

2.

(21)

A number of schemes are plausible to determine the

discounting factor. For example, an algorithm in which

the memory is discounted as a function of elapsed

time is

f = e−δt/τ ,

where �t is the duration of the previous transit and τ is a

memory timescale. Discounting of this form was used by

[56] to model spatial memory and cognition in schooling

fish.

An algorithm in which the memory is discounted as a

function of transit number is given by

f = 1 −
1

τ
.

Here, we assume that moths use (19) to assess the prob-

ability that the plume has moved (or that they have lost it),

adjusting the discount factor as

f = 1 −
1

τ
Pmove. (22)

With this algorithm, discounting is strongest when indi-

cations are present that the plume has moved (Pmove ≈ 1),

while discounting is almost entirely absent when no such

indications are present.

Additional file

Additional file 1: Moth simulation animations. An animation of the

simulated moth trajectories in Figure 4 can be viewed at this URL: faculty.

washington.edu/random/movie2_g0.5_q0.125.avi.
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