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SPATIAL MIXTURE MODELS BASED ON EXPONENTIAL

FAMILY CONDITIONAL DISTRIBUTIONS

Mark S. Kaiser, Noel Cressie and Jaehyung Lee

Iowa State University, The Ohio State University and Iowa State University

Abstract: Spatial statistical models are applied in many problems for which de-

pendence in observed random variables is not easily explained by a direct scientific

mechanism. In such situations there may be a latent spatial process that acts to

produce the observed spatial pattern. Scientific interest often centers on the latent

process and the degree of spatial dependence that characterizes it. Such latent pro-

cesses may be thought of as spatial mixing distributions. We present methods for

the specification of flexible joint distributions to model spatial processes through

multi-parameter exponential family conditional distributions. One approach to the

analysis of these models is Monte Carlo maximum likelihood, and an approach based

on independence pseudo-models is presented for formulating importance sampling

distributions that allow such an analysis. The methods developed are applied to a

problem of forest-health monitoring, where the numbers of affected trees in spatial

field plots are modeled using a spatial beta-binomial mixture.

Key words and phrases: Beta-binomial, hierarchical models, Markov random fields,

Monte Carlo maximum likelihood.

1. Introduction

Observations of random variables taken in a geographical context often ex-
hibit spatial dependence even though there is no obvious spatial mechanism to
explain it. For example, data on infant mortalities categorized as due to Sud-
den Infant Death Syndrome (SIDS) in North Carolina from 1974 to 1984 exhibit
spatial structure (e.g., Cressie and Chan (1989)) even though SIDS is not an in-
fectious disease. Similarly, the rate of lip-cancer incidence in Scotland has been
analyzed using spatial statistical models (e.g., Clayton and Kaldor (1987); Stern
and Cressie (1999)). The presence of spatial dependence in such applications can
often be due to an unspecified or missing covariate.

Two common ways to model spatial dependence are through the covariances
between spatial random variables (geostatistical models), or through the set of
conditional distributions of each spatial variable given all others (Markov ran-
dom field models). We are concerned in this article with spatial mixture (i.e.,
hierarchical) models for non-Gaussian data. There have been recent papers that
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address this problem using geostatistical models; specifically DeOliveira, Kedem,
and Short (1997) and Diggle, Tawn, and Moyeed (1998) use a fully Bayesian anal-
ysis, and Heagerty and Lele (1998) and Cressie (2000) use an empirical Bayes
analysis. In contrast, this article addresses the problem using Markov random
field (MRF) models. Up to now, models for spatial dependence have generally
assumed a Gaussian MRF after a nonlinear transformation (e.g., Clayton and
Kaldor (1987); Breslow and Clayton (1993); Knorr-Held and Besag (1998)). Our
basic objective in this article is to present results that allow the construction of
spatial mixture models that do not restrict the spatial mixing distribution to be
Gaussian. The data model is one of conditionally independent random variables,
conditional on parameters that are distributed according to a spatial process on a
lattice. It is this latent spatial process that is the focus of our investigation, and
in what is to follow we model this process as a finite MRF having exponential
family conditional distributions. We do not restrict the conditional distributions
to be Gaussian or to follow a one-parameter auto-model (e.g., Besag (1974)).

The remainder of the article is organized as follows. After laying out the
general structure of spatial mixture models in Section 2, we address the formu-
lation of flexible mixing distributions in Section 3. Results are given that allow
multi-parameter exponential families, such as the beta, to be used in forming
multivariate mixing distributions on the basis of conditional specifications. Our
estimation approach is empirical Bayesian; Section 4 contains a Monte Carlo
method for maximum likelihood estimation of unknown parameters for a general
class of spatial mixture models. In Section 5, a spatial beta-binomial model is
fitted to the number of trees in spatial field plots that exhibit foliar damage.
Discussion and concluding remarks are in Section 6.

2. Spatial Mixtures

We assume a finite collection of random variables Y ≡ {Y (si) : i = 1, . . . , n}
with geographical locations {si : i = 1, . . . , n}. For example, in Section 5,
si ≡ (ui, vi), where ui denotes the longitude and vi the latitude of the cen-
troid for a forest monitoring plot in the northeastern United States. Given a set
of parameters θ ≡ {θ(si) : i = 1, . . . , n}, the density or mass function of Y (si) is
assumed to depend only on θ(si) and is denoted fi(y(si)|θ(si)), for y(si) ∈ Ωi.
Often, we will have Ω1 = . . . = Ωn, but this is not necessary and will not be true
for the example presented in Section 5. Let Ω ≡ Ω1 × . . . × Ωn denote the joint
sample space.

In all that is to follow, the response vector Y is taken to have conditionally
independent components given θ, so that the data model is given by,

f(y|θ) =
∏
i

fi(y(si)|θ(si)); y ∈ Ω. (1)
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The collection of factors that influence the distribution of Y are assumed to
include one or more spatial processes, to be modeled by assigning a joint dis-
tribution to θ that incorporates dependence. In this article, we formulate such
distributions through conditional specification of the density or mass functions
{gi(θ(si)|{θ(sj) : j �= i}); θ(si) ∈ Θi : i = 1, . . . , n}. We assume a neighbor-
hood structure on the spatial locations is available and define, for i = 1, . . . , n,
θ(Ni) ≡ {θ(sj) : sj is a neighbor of si}. Then the Markov random field (MRF)
assumption on the spatial process {θ(si) : i = 1, . . . , n} is expressed through
gi(θ(si)|{θ(sj) : j �= i}) = gi(θ(si) | θ(Ni);λ); θ(si) ∈ Θi, where λ is a p-
dimensional parameter associated with the joint probability measure of θ.

In Section 3, we show how the {gi(·|·) : i = 1, . . . , n} that come from expo-
nential families may be used, under appropriate conditions, to specify the joint
distribution for θ. For the purpose of this article, we write this joint distribution
through a negpotential function of θ as,

g(θ|λ) =
exp{Q(θ|λ)}∫

Θ exp{Q(t|λ)} dt ; θ ∈ Θ. (2)

Thus, from (1) and (2), the marginal distribution of Y is the spatial mixture
model,

m(y|λ) =
∫

Θ
f(y|θ) g(θ|λ) dθ; y ∈ Ω, (3)

in which the degree of spatial dependence is captured by the parameter λ. Notice
that the data y depend on λ through the intermediary latent spatial process θ.
Prediction of θ depends on knowledge of λ; estimation of λ is one of the problems
we address.

3. Joint Mixing Distributions

The development of MRFs through specification of conditional distributions
can be found in the seminal paper by Besag (1974), who took as an example
the ‘auto-models’ obtained from one-parameter exponential family conditional
distributions. Kaiser and Cressie (2000) provide some generalizations of the
basic theory, and give a theorem that allows construction of a joint distribution,
up to an unknown normalizing constant, from any set of specified conditional
distributions that satisfy minimal regularity conditions. In particular, Theorem
3 of Kaiser and Cressie (2000) allows construction of multi-parameter MRF auto-
models for θ.

Given that a neighborhood structure has been specified through the sets
{Ni : i = 1, . . . , n}, let θ∗ ≡ {θ∗(s1), θ∗(s2), . . . , θ∗(sn)} be any particular value
in the support Θ. Although not necessary in general, it will be convenient here
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to assume that the components of θ∗ are all equal. We further assume that the
‘positivity condition’ of Besag (1974) holds, namely that θ ∈ Θ = Θ1 × . . .×Θn,
although this is stronger than what is needed (see Kaiser and Cressie (2000)).

Besag (1974) showed that an existing joint density or mass function for θ

may be written as in equation (2), where Q(θ|λ) =
∑

C HC(θ|λ) and C denotes
the set of all cliques, defined as singletons or sets of locations such that all
members of a set are neighbors of all other members of the same set. Theorem
3 of Kaiser and Cressie (2000) shows that a MRF joint density or mass function
can be constructed from a set of conditional specifications, if and only if the
HC functions are invariant to permutation of their associated indices and the
denominator of (2) is finite. In the case of ‘pairwise-only dependence’, where
only cliques containing two or fewer locations contribute to Q(θ|λ) , C = {i} or
C = {i, j} and one may define

Hi(θ(si)|λ) ≡ log
[
gi(θ(si)|θ∗(Ni);λ)
gi(θ∗(si)|θ∗(Ni);λ)

]
; i = 1, . . . , n, (4)

Hi,j(θ(si), θ(sj)|λ) ≡

log

[
gi(θ(si)|θ(sj),θ∗(Ni−j);λ)
gi(θ∗(si)|θ(sj),θ∗(Ni−j);λ)

]
−Hi(θ(si)|λ) ; i �= j ∈ Ni. (5)

In (5), Ni−j denotes the set of neighbors of site si, excluding sj, and Hi,j is
defined to be zero if j �∈ Ni.

In the pairwise-only dependence case, third- and higher-order HC functions
do not contribute to Q(·), and permutation invariance of the HC functions is
equivalent to each function Hi,j(θ(si), θ(sj)|λ) being symmetric in its indices.
Under such symmetry, the spatial mixing distribution g(θ|λ) may be written as
in (2), with

Q(θ|λ) =
∑

1≤i≤n

Hi(θ(si)|λ) +
∑

1≤i<j≤n

Hi,j(θ(si), θ(sj)|λ), (6)

provided Q(θ|λ) is integrable over Θ.
Here we specify the conditional distributions associated with θ to be of multi-

parameter exponential family form with densities or mass functions, for i =
1, . . . , n,
g(θ(si)|θ(Ni); λ) =

exp
[ q∑

k=1

{Ai,k(θ(Ni);λ)Ti,k(θ(si))} −Bi(θ(Ni);λ) +Ci(θ(si))
]
; θ ∈ Θ. (7)
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To be useful in statistical model building, we must have explicit forms for the
functions Ai,k(θ(Ni);λ) that play the role of natural parameters in (7). Besag
(1974) gave a necessary parameterization for one-parameter exponential family
conditional distributions (i.e., q = 1), but an analogous result is not possible
with multi-parameter families, as noted by Cressie and Lele (1992). We give
three ways that Ai,k(θ(Ni);λ) may be parameterized so that the functions Hi,j

of equation (5) are symmetric in the indices i and j. Upon substituting (7) into
(4) and (5), we obtain for all i,

Hi(θ(si)|λ)

=
q∑

k=1

[Ai,k(θ∗(Ni);λ){Tk(θ(si)) − Tk(θ∗(si))}] + Ci(θ(si)) −Ci(θ∗(si)), (8)

and for all i and j,

Hi,j(θ(si), θ(sj)|λ) =
q∑

k=1

[
{Ai,k(θ(sj),θ∗(Ni−j);λ) −Ai,k(θ∗(sj),θ∗(Ni−j);λ)}

×{Tk(θ(si)) − Tk(θ∗(si))}
]
. (9)

We present three propositions that yield functions Hi,j(·) symmetric in the
indices i and j.

Proposition 1. Let λ = {αi,k, ηi,j : i, j = 1, . . . , n; i �= j; k = 1, . . . , q}, and
specify

Ai,k(θ(Ni);λ) = αi,k +
∑
j∈Ni

{
ηi,j

q∑
h=1

Th(θ(sj))
}
. (10)

If ηi,j = ηj,i for all i �= j, then Hi,j(·) = Hj,i(·).
Proof. Substitution of (10) into (9) gives

Hi,j(θ(si), θ(sj)|λ)

= ηi,j

[ q∑
k=1

{Tk(θ(sj)) − Tk(θ∗(sj))}
][ q∑

k=1

{Tk(θ(si)) − Tk(θ∗(si))}
]
.

The result follows because ηi,j is symmetric in i and j.

Proposition 2. Let λ = {αi,k, ηi,j,k : i, j = 1, . . . , n; i �= j; k = 1, . . . , q}, and
specify

Ai,k(θ(Ni);λ) = αi,k +
∑
j∈Ni

ηi,j,k Tk(θ(sj)). (11)

If ηi,j,k = ηj,i,k for all i �= j, and k = 1, . . . , q, then Hi,j(·) = Hj,i(·).
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Proof. Substitution of (11) into (9) gives

Hi,j(θ(si), θ(sj)|λ)=
q∑

k=1

ηi,j,k [{Tk(θ(sj))−Tk(θ∗(sj))}{Tk(θ(si))−Tk(θ∗(si))}] .

The result follows because ηi,j,k is symmetric in i and j.

Proposition 3. Let λ = {αi,k, ηi,j,k : i, j = 1, . . . , n; i �= j; k = 1, 2}. Specify

Ai,1(θ(Ni),λ) = αi,1 +
∑
j∈Ni

ηi,jT2(θ(sj)),

(12)
Ai,2(θ(Ni), λ) = αi,2 +

∑
j∈Ni

ηi,jT1(θ(sj)).

If ηi,j = ηj,i for all i �= j, then Hi,j(·) = Hj,i(·).
Proof. Substitution of (12) into (9) gives,

Hi,j(θ(si), θ(sj)|λ) = ηi,j {T1(θ(sj)) − T1(θ∗(sj))}{T2(θ(si)) − T2(θ∗(si))}.
The result follows because ηi,j is symmetric in i and j.

We have presented Proposition 3 in the case of a two-parameter exponential
family. More general versions are possible, with Proposition 3 used to model
pairs of natural parameters and any remaining parameters modeled using a com-
bination of Propositions 1 and 2. Also note that one might set ηi,j,k = 0 for
certain values of k (and all i, j) in Proposition 2. In the case of two-parameter
exponential families (e.g., the Gaussian), setting ηi,j,2 ≡ 0 would give the param-
eterization for one-parameter exponential families that Besag (1974) showed was
necessary.

Typically, we reduce the number of free parameters in (10), (11), or (12) by
placing additional restrictions on {αi,k : i = 1, . . . , n; k = 1, . . . , q} and {ηi,j,k :
i, j = 1, . . . , n; i �= j; k = 1, . . . , q}. For example, in the application of Section
5 there are two sufficient statistics (q = 2); there, we take αi,k ≡ αk and use
Proposition 3 with ηi,j ≡ η.

From Kaiser and Cressie (2000), Theorem 3, if the denominator of (2) is finite
for the Q(θ|λ) implied by (10), (11), or (12), then a valid MRF model has been
constructed. Therefore, the parameter space of α’s and η’s consists of all such in
(10), (11), or (12) that yield a finite denominator in (2). General results are not
apparent, and conditional specifications in particular exponential families (e.g.,
beta or gamma) need to be considered separately. Nevertheless, Propositions 1,
2, and 3 provide considerable flexibility in the development of statistical models.
We investigate one type of exponential family, the beta family, in more detail in
Section 5.
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Each of (10), (11), or (12) imply a distinct form for the negpotential function
Q(θ|λ). For a model constructed using (10) in Proposition 1, we have (up to an
additive constant),

Q(θ|λ) =
n∑

i=1

{
Ci(θ(si)) +

q∑
k=1

αi,kTk(θ(si))
}

+
∑∑
1≤i<j≤n

[
ηi,j

{ q∑
k=1

Tk(θ(si))
}{ q∑

h=1

Th(θ(sj))
}]
, (13)

where, in the double summation, ηi,j = ηj,i for all i, j, and ηi,j = 0 if sj �∈ Ni.
For a model constructed using (11) in Proposition 2, we have (up to an additive
constant),

Q(θ|λ) =
n∑

i=1

{
Ci(θ(si)) +

q∑
k=1

αi,kTk(θ(si))
}

+
∑∑
1≤i<j≤n

q∑
k=1

{ηi,j,kTk(θ(si))Tk(θ(sj))} , (14)

where, in the double summation, ηi,j,k = ηj,i,k for all i, j, k, and ηi,j,k = 0 if
sj �∈ Ni. For a model constructed using (12) in Proposition 3, and q = 2, we
have (up to an additive constant),

Q(θ|λ) =
n∑

i=1

{
Ci(θ(si)) +

2∑
k=1

αi,kTk(θ(si))
}

+
∑∑
1≤i<j≤n

ηi,j {T1(θ(si))T2(θ(sj)) + T2(θ(si))T1(θ(sj))} , (15)

where, in the double summation, ηi,j = ηj,i for all i, j and ηi,j = 0 if sj �∈ Ni.

4. Estimation

Our approach to estimation of λ in this article is maximum likelihood. Recall
from Section 1 that the underlying spatial process θ is the focus of interest.
Estimation of its parameters λ is informative for the spatial properties of the
process. While it would be entirely reasonable to develop a hierarchical Bayesian
model including a prior for λ, we believe it can be helpful in the early stages of
investigation to avoid questions of prior influence on estimation. Therefore, we
take an empirical Bayesian approach and estimate λ by (Monte Carlo) maximum
likelihood. In this section, we give a new method that is applicable to general
MRF spatial mixture models, with mixing distributions that include those given
by (13), (14), and (15).
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4.1. Monte Carlo maximum likelihood

Consider a mixture model with f(y|θ) as given in (1) and with the mixing
distribution g(θ|λ) as given in (2). Without loss of generality, we can write,

f(y|θ) =
exp{Q1(y|θ)}∫

Ω
exp{Q1(t|θ)} dt

≡ exp{Q1(y|θ)}
k1(θ)

,

(16)
g(θ|λ) =

exp{Q0(θ|λ)}∫
Θ

exp{Q0(t|λ)} dt
≡ exp{Q0(θ|λ)}

k0(λ)
,

where y ∈ Ω and θ ∈ Θ. The log likelihood formed from the marginal density or
mass function of Y , given in (3), may then be written as

L(λ) = log
{ ∫

Θ
exp[Q1(y|θ) +Q0(θ|λ) − log{k1(θ)}] dθ

}
− log{k0(λ)}, (17)

where λ is the p-dimensional parameter over which (17) is to be maximized.
One way to accomplish estimation for such a model is through the Monte

Carlo maximum likelihood (MCMLE) approach of Geyer and Thompson (1992),
which is based on maximizing a sequence of Monte Carlo approximations to
L(λ). The log likelihood (17) is of the general form considered in the context
of constrained and missing data problems by Gelfand and Carlin (1993); in our
case θ constitutes the missing ‘data’, y the observed data, and λ the param-
eter of interest. The log likelihood (17) may be viewed as the log of a ratio
of normalizing constants, since the integral appearing in the first term of (17)
is the normalizing constant for the density p(θ|y;λ). Monte Carlo estimation
of a ratio of normalizing constants has been addressed by a number of authors
(e.g., Newton and Raftery (1994); Chib (1995); Meng and Wong (1995); Ogata
(1996)). Gelfand and Carlin (1993) consider estimating such a ratio of integrals
for the entire likelihood surface. Our interest is rather in finding the value of
λ that maximizes the likelihood using Monte Carlo methodology. We develop
a new method for the selection of importance sampling distributions for MRF
spatial mixture models based on independence pseudo-models.

A key to successful application of MCMLE is the choice of appropriate sam-
pling distributions (from which to generate Monte Carlo samples) for evaluation
of the two n-dimensional integrals (k0(λ) is an n-dimensional integral) appear-
ing in (17). The strategy proposed by Geyer and Thompson (1992), and elabo-
rated on in subsequent articles for non-mixture models (e.g., Geyer (1994); Geyer
(1996)) and missing-information models (Gelfand and Carlin (1993)), is to choose
a sampling distribution so that a given Monte Carlo approximation to (17) does
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not depend on λ (in practice, the current estimate of λ). One sample may then
be used both to form, and to maximize over λ, a given approximation to L(λ).
In the approaches proposed in the literature, a sampling distribution is formed
using the statistical model under analysis, evaluated at parameter values other
than the current estimate, or as a finite mixture using several such parame-
ter values (e.g., Torrie and Valleau (1977); Marinari and Parisi (1992); Gelfand
and Carlin (1993); Geyer (1994), (1996)). Our experience with spatial mixture
models, which involve complex patterns of dependence, is that using importance
sampling distributions formed from the model itself can produce Monte Carlo
estimates of the integrals in (17) that can take ‘jumps’ in value even after large
Monte Carlo samples (e.g., of size 200, 000) have been used. Such jumps seem
to be caused by the failure of the sampling mechanism to mix rapidly over the
relevant sample space. We believe this failure is related to the presence of com-
plex dependence in the sampling distribution, due to the spatial dependence in
the mixing distribution g(θ|λ).

Green (1992) suggested that sampling distributions having forms other than
that of the statistical model might be appropriate in some problems. We pursue
this idea here for our situation, where we have MRF spatial mixture models. The
two terms in the log likelihood (17) will be approximated by selecting samples of
size M from each of two known sampling distributions having densities m0(θ|ψ0),
θ ∈ Θ, and m1(θ|ψ1), θ ∈ Θ, which we describe below. Let {θ(0)

r : r = 1, . . . ,M}
denote the samples from m0(θ|ψ0) and {θ(1)

r : r = 1, . . . ,M} denote the samples
from m1(θ|ψ1). Note that each element of these sets is n-dimensional. A Monte
Carlo approximation to (17) is then

LM (λ)=log
{ 1
M

M∑
r=1

( 1
m1(θ(1)

r |ψ1)
exp

[
Q1(y|θ(1)

r )+Q0(θ(1)
r |λ)−log{k1(θ(1)

r )}
])}

− log
{ 1
M

M∑
r=1

( 1
m0(θ(0)

r |ψ0)
exp

[
Q0(θ(0)

r |λ)
] )}

. (18)

For the moment consider the second term in (18), which requires samples
from m0. Our strategy for defining m0 is to construct an “independence pseudo-
model”, which relies on first having a sample from the MRF g(θ|λ) for some
starting value of λ. Such a sample is easily produced using a Gibbs algorithm
and the conditional specifications {gi(θ(si)|θ(Ni); λ) : i = 1, . . . , n}. Given a
sample of size S0 from g(θ|λ), let {µ̂0(si), σ̂2

0(si) : i = 1, . . . , n} denote the
sample means and sample variances at each location resulting from these S0

simulated values. Choose, for i = 1, . . . , n, densities m0,i(θ(si)|ψ0,i), θ(si) ∈ Θi,
by selecting values of ψ0,i to produce expectations and variances equal to µ̂0(si)
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and σ̂2
0(si), respectively. Recommendations for the choice of m0,i are given below.

Then, for ψ0 ≡ (ψ0,1, . . . , ψ0,n), construct the sampling density

m0(θ|ψ0) =
n∏

i=1

m0,i(θ(si)|ψ0,i); θ ∈ Θ. (19)

We call such a sampling distribution an independence pseudo-model because
it is constructed as a product of densities, which corresponds to a ‘model’ for
θ that assumes independence. This structure renders sampling relatively easy.
Nevertheless, m0(θ|ψ0) does reflect dependence in the actual model up to the
effect of that dependence on the first two moments of the marginal distribution
for each location. The principal value of forming the sampling density m0(θ|ψ0)
as in (19) is that its product form allows sampled values to cover the range
of possible realizations in Θ more rapidly than they would by using the actual
model.

A similar strategy may be used for selection of m1(θ|ψ1), although com-
pletely general prescriptions for doing so are not available. For many models,
such as the spatial beta-binomial model of Section 5, it will be reasonable to
choose data model densities fi(y(si)|θ(si)) and conditional densities of the spa-
tial mixing distribution gi(θ(si)|{θ(sj) : j �= i}) to be conjugate forms. Suppose
that we can write the exponent of the joint data model f(y|θ) in (16) as

Q1(y|θ) =
n∑

i=1

[ q∑
k=1

{hk(y(si))Tk(θ(si))} +Ri(y(si))
]
,

and that g(θ|λ) in (16) has conditional distributions that are of multiparameter
exponential family form. Then the integral in (17), to be approximated using
samples from m1(θ|ψ1), has integrand:

exp [Q1(y|θ) +Q0(θ|λ) − log{k1(θ)}]

∝ exp
[ n∑

i=1

{ q∑
k=1

[{hk(y(si)) + αi,k}Tk(θ(si))] + Ci(θ(si))
}

+
∑∑
1≤i<j≤n

{W (θ(si), θ(sj))} − log{k1(θ)}
]
, (20)

where
∑∑

W (θ(si), θ(sj)) corresponds to the double summation in the negpo-
tential functions (13), (14), or (15), depending on how one has specified the
spatial mixing distribution g(θ|λ). For example, for a model formulated using
Proposition 3, the terms of this double summation would be W (θ(si), θ(sj)) =
ηi,j {T1(θ(si))T2(θ(sj))+ T2(θ(si))T1(θ(sj))}. The importance of (20) lies in its
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similarity to the negpotential functions (13), (14), and (15), suggesting that a
preliminary sample for selection of m1(θ|ψ1) may be produced from a Gibbs al-
gorithm using the conditionals gi(θ(si)|{θ(sj) : i �= j}) with αi,k of (10), (11), or
(12) replaced with αi,k + hk(y(si)). Given a sample of size S1 produced in this
manner, the first two sample moments are computed for each location, yielding
the values {µ̂1(si), σ̂2

1(si) : i = 1, . . . , n}. A sampling distribution m1(θ|ψ1) is
then formed in like manner to (19), namely

m1(θ|ψ1) =
n∏

i=1

m1,i(θ(si)|ψ1,i); θ ∈ Θ, (21)

where the set of parameters {ψ1,i : i = 1, . . . , n} are chosen to match expectations
and variances with the sample moments.

The forms of the component distributions {m0,i(θ(si)|ψ0,i), m1,i(θ(si)|ψ1,i) :
i = 1, . . . , n} are very flexible since, in m0(θ|ψ0) and m1(θ|ψ1), the values ψ0

and ψ1 need not lie in the same parameter space as λ (e.g., Geyer (1994)).
The distributions {m0,i(θ(si)|ψ0,i) : i = 1, . . . , n} may often be chosen to have
the same form as {gi(θ(si)|θ(Ni); λ) : i = 1, . . . , n} but, particularly if the
sample moments {µ̂0(si), σ̂2

0(si) : i = 1, . . . , n} do not exhibit a relation near
that of the original conditional specifications, a different distribution with the
same support may be chosen instead. For example, if the conditional densities
{gi(θ(si)|θ(Ni); λ) : i = 1, . . . , n} were specified as gamma, but a substantial
number of locations have sample moments such that σ̂2

0(si) > C µ̂2
0(si) for some

constant C, inverse Gaussian distributions may be used for the mi,0(·). Similar
considerations apply to selection of the component distributions {m1,i(θ(si)|ψ1,i) :
i = 1, . . . , n}.

Given a pair of importance sampling distributions, samples {θ(0)
r : r =

1, . . . ,M} may be taken from m0(θ|ψ0) and {θ(1)
r : r = 1, . . . ,M} taken from

m1(θ|ψ1), and a Monte Carlo approximation to the log likelihood can be com-
puted as in (18). Any of a number of optimization techniques may be used to
maximize this approximation. We consider Newton-Raphson, which involves
taking first and second derivatives of the Monte Carlo log likelihood (18), see
Appendix A. One advantage of using importance sampling distributions that do
not depend on λ is that first and second derivatives of (18) are the corresponding
Monte Carlo approximations of derivatives of the actual log likelihood (17). Such
approximations may then be calculated from the same samples used in evalua-
tion of (18). Further, an estimate of the observed information matrix is available
along with the MCMLE of λ, upon convergence of the Newton-Raphson MCMLE
estimation procedure.
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For notational purposes, define the first integrand in (17) as I1(y,θ,λ) ≡
exp[Q1(y|θ) +Q0(θ|λ) − log{k1(θ)}], and the second implicit integrand in (17)
as, I0(θ,λ) ≡ exp{Q0(θ|λ)}. Also define

J (k)
u,v (y,λ) ≡

∫
Θ

∂Qu(θ|λ)
∂λk

Iv(y,θ,λ) dθ; u, v = 0, 1, k = 1, . . . , p,

where it should be noted that I0, and hence J (k)
u,0 , has no argument in y. Then

first derivatives of the log likelihood (17), for k = 1, . . . , p, may be written as,

∂L(λ|y)
∂λk

=
[∫

Θ
I1(y,θ,λ) dθ

]−1

J
(k)
0,1 (y,λ) − [k0(λ)]−1 J

(k)
0,0 (λ), (22)

and the second derivatives, for k, h = 1, . . . , p, may be written as,

∂2L(λ|y)
∂λk ∂λh

=
∫
Θ

[
∂2Q0(θ|λ)
∂λk ∂λh

+
∂Q0(θ|λ)
∂λk

∂Q0(θ|λ)
∂λh

]
I1(y,θ,λ) dθ

−
[∫

Θ
I1(y,θ,λ) dθ

]−2

J
(k)
0,1 (y,λ)J (h)

0,1 (y,λ)

+
∫
Θ

[
∂2Q0(θ|λ)
∂λk ∂λh

+
∂Q0(θ|λ)
∂λk

∂Q0(θ|λ)
∂λh

]
I0(θ,λ) dθ

− [k0(λ)]2 J (k)
0,0 (λ)J (h)

0,0 (λ). (23)

Monte Carlo approximation of all integrals appearing in (22) and (23) may be ac-
complished using the importance sampling distributions m0(θ|ψ0) (for integrals
involving I0(θ,λ)) and m1(θ|ψ1) (for integrals involving I1(y,θ,λ)). Following
Geyer and Thompson (1992), we produce an MCMLE of λ by forming and max-
imizing a sequence of Monte Carlo log likelihoods as in (18). An outline of the
entire algorithm is given in Appendix A.

4.2. Monte Carlo asymptotics

A number of large-sample properties relevant to assessing behavior of the
MCMLE are readily available from the ‘independence pseudo-model’ formed by
the two sampling distributions m0(θ|ψ0) and m1(θ|ψ1). In particular, evaluation
of the Monte Carlo error may be accomplished on the basis of asymptotic nor-
mality of the difference between the Monte Carlo log likelihood in (18) and the
actual log likelihood in (17).
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Recall that {θ(�)
r : r = 1, . . . ,M} are a random sample from the importance

sampling distribution m�(θ|ψ�); � = 0, 1. Define

D�,r ≡ 1
m�(θ(�)

r |ψ�)
I�(y,θ(�)

r ,λ); r = 1, . . . , ,M, � = 0, 1,

where I0 and I1 are defined in Section 4.1. Given that the component distri-
butions of m1 and m0 have finite means and variances, D�,r, r = 1, . . . ,M , are
independent and identically distributed with mean E� and variance V�, � = 0, 1.
A Central Limit Theorem can be applied to (18) yielding,

M1/2 [LM (λ) − L(λ)] d→ N(0, V2), as M → ∞, (24)

where ‘d’ denotes convergence in distribution and V2 ≡ V1/E
2
1 + V0/E

2
0 . Note

that V2 will depend on y, λ, ψ1, and ψ0. The fundamental importance of (24) is
that it allows an estimate of the Monte Carlo error in approximation of the log
likelihood (17). Let the sample mean and sample variance of D�,r, r = 1, . . . ,M ,
be denoted as D̄� and s2D,�, respectively, � = 0, 1. Then the variance V2 can be
estimated as

V̂2 =
s2D,1

D̄2
1

+
s2D,0

D̄2
0

. (25)

Geyer (1994, Theorem 7) gives sufficient conditions for asymptotic normal-
ity of the difference between the MCMLE estimate λ̂M and the maximum like-
lihood estimate λ̂. The most difficult of these conditions to verify in practice
is asymptotic normality of the gradient of the Monte Carlo log likelihood. De-
fine �LM (x) ≡ (∂LM (λ)/∂λ1 |λ=x, . . . , ∂LM (λ)/∂λp |λ=x)T . Then Geyer’s
condition becomes

M1/2 � LM (λ̂) d→ N(0,Σ), as M → ∞, (26)

for some covariance matrix Σ. Note that in (26) the gradient of the Monte Carlo
log likelihood, �LM (·), is evaluated at the actual maximum likelihood estimate
λ̂. Fortunately, the independence pseudo-model allows condition (26) to be easily
checked, see Appendix B.

Given that the remaining conditions of Theorem 7 of Geyer (1994) are sat-
isfied for our particular model, we may conclude that

M1/2[λ̂M − λ̂] d→ N(0, H−1ΣH−1), as M → ∞, (27)

where H = −�2 L(λ) is the negative Hessian matrix of the true log likelihood
and Σ is given by (B.5) in Appendix B. For practical use of this result we propose
to estimate H with −�2 LM(λ̂M ), and likewise obtain empirical versions of Σ
as described in Appendix B.
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4.3. Maximum Likelihood asymptotics

The asymptotics of Section 4.2 are with respect to the Monte Carlo sample
size M , for fixed y, in contrast to traditional likelihood asymptotics, which are
with respect to the statistical sample size n and random y. In models with com-
plex dependence structures, standard asymptotic results for maximum likelihood
estimation may not apply. Nevertheless, as a first approximation, we could use
H−1 in (27), the inverse of the negative Hessian matrix, as a covariance ma-
trix for the maximum likelihood estimate λ̂. This matrix could be estimated
through Monte Carlo approximation of the second derivatives of L(λ) given in
(23), yielding Ĥ−1 = (−�2LM (λ̂M ))−1. Alternatively, one could use a paramet-
ric bootstrap to estimate the sampling distribution of λ̂ (e.g., Geyer and Møller
(1994)).

To obtain asymptotic confidence intervals for λ based on the MCMLE, we
need to consider asymptotics as both M → ∞ and n→ ∞. For this purpose, we
choose to feature the sample size n in the notation of this section. Let λ̂

(n)
be

the MLE and λ̂
(n)
M the MCMLE for a sample of size n.

Proposition 4. Let {Y (n) : n = 1, 2, . . .} be a sequence of random variables for
which Y (n) d→ Y ∼ F , as n → ∞. For each n, let {X(n)

M : M = 1, 2, . . .} be a
sequence of random variables defined on the same probability space as Y (n). If,
for any ε > 0, limn→∞ lim supM→∞ Pr

[
| Y (n) −X

(n)
M |≥ ε

]
= 0, then X(n)

M
d→ Y .

Proof. See Appendix C.

To apply the result to spatial mixture models, replace Y (n) with n1/2[λ̂
(n) −

λ] and X
(n)
M with n1/2[λ̂

(n)

M − λ]. While the proposition tells us that, for M

sufficiently large, λ̂
(n)
M and λ̂

(n)
have the same asymptotic distribution, in practice

we must rely on observation of the relative magnitudes of estimates of H−1ΣH−1

and H−1. That is, if tr(H−1ΣH−1)/tr(H−1) is estimated to be “small”, then
MCML can form the basis of our inference on λ. In practice, we interpret “small”
to mean that,

tr{(−�2 LM (λ̂
(n)
M ))−1 Σ̂ (−�2 LM (λ̂

(n)
M ))−1}

tr{(−�2 LM (λ̂
(n)
M ))−1}

≤ 0.01. (28)

If condition (28) does not hold, the Monte Carlo sample size M should be in-
creased in the estimation procedure. If condition (28) is met, Wald-theory ap-
proximate confidence regions for subsets of the components of λ are formed
using the MCMLE λ̂

(n)

M and its estimated covariance matrix, Ĥ−1 = (− �2

LM(λ̂
(n)
M ))−1.
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5. A Spatial Beta-Binomial Model

We apply the theory and methodology of the previous sections to a problem
involving a spatially dependent latent process of probabilities of an event. It is
natural to model probabilities with beta distributions, but the theory of Markov
random fields has, until now, been unable to produce spatial versions. In this
section, we define a spatial beta process and apply it to a problem concerned
with forest health.

5.1. Motivating example – forest health

A cooperative, multi-agency program, jointly managed by the US Environ-
mental Protection Agency and the US Forest Service, began in 1990 to monitor
the condition of forests in the northeastern United States. The program consists
of site visits to permanent sample plots selected on the basis of a systematic-grid
survey design (Conkling and Byers (1992); Tallent-Halsell (1994)). One of the
variables recorded during site visits is ‘crown dieback’, a measure of visible injury
to the foliated portion of a tree. Crown dieback is related to the potential of a
tree for carbon fixation and nutrient storage, and high values of dieback indicate
physiological damage to photosynthetic cells (Pye (1988)). Crown dieback mea-
sures the response of a tree to environmental conditions and is not inherently a
spatial phenomenon, that is, it is not infectious. But, environmental processes
that are inherently spatial, such as atmospheric pollution and insect infestation,
are often underlying causes of this type of damage to the photosynthetic portion
of trees. Thus, it is appropriate to fit these data with a spatial mixture model.

We used one set of data from 1993, provided by the US Environmental Pro-
tection Agency, to illustrate the theory and methodology presented in this article.
Because the spatial processes that influence crown dieback may vary for different
species of trees (e.g., sensitivity of foliage to atmospheric pollution, specificity of
insect infestation) we modeled one particular species, namely sweet birch, Be-
tula lenta. Sweet birch is somewhat habitat specific, requiring moist woodland
conditions to flourish. It occurs principally in a region from southern Maine
and southwestern Quebec to Delaware and Kentucky (Gleason and Cronquist
(1963)).

To define whether or not a tree was affected in terms of crown dieback, we
computed the 75th percentile of crown dieback for records of all 722 trees of any
species in the data set. This value provides a benchmark from which we can
investigate foliar damage to sweet birch trees in the northeast United States.
We defined a binary random variable for each sweet birch tree in a sample plot,
equal to 1 if crown dieback for that tree was greater than the 75th percentile,
and equal to 0 otherwise. Only sampling plots with at least five sweet birch trees
were considered.
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5.2. Model formulation

Let m(si) denote the number of birch trees in the sample plot with centroid
si. Let Y (si) denote a random variable representing the number of affected
birch trees in that plot; i = 1, . . . , n. The spatial locations of the n = 36 sample
plots used in this analysis are given in Figure 1, and the data for those plots
are presented in Table 1. Also listed in Table 1 is the neighborhood structure
assumed for the analysis. Here site sj was considered to be a neighbor of site
si if ‖si − sj‖ ≤ 48 km, i, j = 1, . . . , n. The value of 48km was selected based
on a previous spatial analysis (using a number of neighborhood definitions) of
locations at which sweet birch was found to occur. Notice from Table 1 that,
using this neighborhood definition, some sites do not have any neighbors (e.g.,
site 1).
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Figure 1. Locations of Forest Health Sampling Plots. Data were obtained in
an area with coordinate system given in the map on the right (the scale is km
×103). Numbers correspond to the site indices {si} in Table 1. The exact
geographic location of the origin of this coordinate system was not given; the
map on the left gives the region within which the area on the right lies.

Following the development in Sections 2 and 3, a spatial beta-binomial model
for these data can be defined. Assume that, given values for θ ≡ {θ(si) : i =
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1, . . . , n}, the random variables {Y (si) : i = 1, . . . , n} are independent binomi-
als. Then the joint binomial data model is given by (1) with probability mass
functions, for y(si) ∈ Ωi ≡ {0, 1, . . . ,m(si)}, and i = 1, . . . , n,

fi(y(si)|θ(si)) =
m(si)!

y(si)!(m(si) − y(si))!
{θ(si)}y(si){1 − θ(si)}m(si)−y(si). (29)

Table 1. Data from 36 field plots in the northeastern United States: number
of birch trees, m(si), and number of damaged trees, y(si), in sampling plot
located at si; i = 1, . . . , 36. Neighbors are specified as locations within 48 km
of the location of interest.

si m(si) y(si) Neighbors si m(si) y(si) Neighbors
1 5 3 19 14 2 32
2 11 2 3 20 22 3 18,21
3 6 2 2 21 6 2 18,20,22
4 13 3 5 22 7 1 21
5 7 2 4,6,8,9 23 16 12 24
6 7 1 5,7,14 24 7 3 23
7 13 2 6,9 25 8 1
8 5 2 5,9 26 8 2 15,16
9 5 1 5,7,8 27 5 1 28

10 8 3 28 7 2 27
11 9 1 29 5 3 30
12 6 3 30 11 2 29,31
13 5 1 31 8 5 30
14 15 3 6 32 11 4 19
15 18 8 16,17,26 33 13 5
16 6 3 15,17,26 34 26 20
17 13 1 15,16 35 6 3
18 7 2 20,21 36 11 2

The {θ(si) : i = 1, . . . , n} are assumed to follow a joint distribution that we
construct from beta conditionals, with neighborhood structure given by Table
1. That is, the Markov random field is constructed from conditional densities
of the form given in (7) with q = 2, Ti,1 = log{θ(si)}, Ti,2 = log{1 − θ(si)},
Ci(θ(si)) = 0, and Bi(θ(Ni);λ) = log[Γ{Ai,1(θ(Ni);λ) + 1}Γ{Ai,2(θ(Ni);λ) +
1}]−log[Γ{Ai,1(θ(Ni);λ)+Ai,2(θ(Ni);λ)+2}]. The natural parameter functions
must satisfy −1 < Ai,k(θ(Ni);λ) < ∞; i = 1, . . . , n; k = 1, 2. Subject to
suitable restrictions ensuring values in these ranges, any of the three propositions
of Section 3 may be used to form valid models.
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For describing positive spatial dependence, a model formed from Proposition
3 is the most useful of three possibilities. Furthermore, by defining

Ai,1(θ(Ni); λ) = α1 − η
∑
j∈Ni

log{1 − θ(sj)}
(30)

Ai,2(θ(Ni); λ) = α2 − η
∑
j∈Ni

log{θ(sj)},

we reduce λ to (α1, α2, η). To ensure integrability of the conditional density
functions, we require η ≥ 0 and αk > −1, k = 1, 2. To see that this model
reflects positive spatial dependence, consider the conditional expectation for a
particular random variable θ(si) as a function of κi,1 ≡ η

∑
j∈Ni

log{θ(sj)} and
κi,2 ≡ η

∑
j∈Ni

log{1− θ(sj)} : E{θ(si)|θ(Ni)} = (α1 −κi,2 +1)/(α1 −κi,2 +α2 −
κi,1 + 2), which is increasing in κi,1 and decreasing in κi,2. Large values of the
elements in {θ(sj) : j ∈ Ni} increase κi,1 and decrease κi,2 and, thus, increase
E{θ(si)|θ(Ni)}.

Using (8) and (9), this spatial model with beta conditionals has a joint
density given by (2) with λ ≡ (α1, α2, η) and, modulo an additive constant not
depending on λ,

Q0(θ|λ) =
∑

1≤i≤n

[α1 log{θ(si)} + α2 log{1 − θ(si)}]

−η
∑

1≤i<j≤n

[log{θ(si)} log{1 − θ(sj)} + log{1 − θ(si)} log{θ(sj)}]. (31)

5.3. MCML estimation

We write the spatial beta-binomial data model as in (16) with

Q1(y|θ) = exp
[ n∑

i=1

y(si) log{θ(si)} − (m(si) − y(si)) log{1 − θ(si)}
]
,

(32)
k1(θ) =

n∑
i=1

log{m(si)!} − log{y(si)!} − log{(m(si) − y(si))!},

and the function Q0(θ|λ) is given in equation (31). Notice from (31) and (32)
that, considered as a function of θ, exp{Q1(y|θ)+Q0(θ|λ)−k1(θ)} has the same
form as Q0(θ|λ), with the value of α1 replaced by α1 + y(si) and the value of
α2 replaced by α2 + m(si) − y(si), illustrating (20). Thus, to generate values
from g(θ|λ), from which the sample moments {µ̂0(si), µ̂1(si), σ̂2

0(si), σ̂2
1(si) : i =

1, . . . , n} are computed, Gibbs samples with the same form of conditional distri-
butions may be used. In addition, the individual densities appearing in m0(θ|ψ0)
in (19) may be of the same form as those appearing in m1(θ|ψ1) in (21). Here,
beta densities were used throughout so that the sampling distributions used in



SPATIAL MIXTURE MODELS 467

evaluation of the Monte Carlo approximation (18) and its derivatives were, for
� = 0, 1,

m�(θ|ψ�) =
1

k∗(ψ�)
exp

[ n∑
i=1

(ψ�,i,1 log{θ(si)} + ψ�,i,2 log{1 − θ(si)})
]
, (33)

where k∗(ψ�) =
∏n

i=1 Γ(ψ�,i,1) Γ(ψ�,i,2)/Γ(ψ�,i,1 + ψ�,i,2). In (33), the parameters
{ψ�,i : i = 1, . . . , n} are chosen to match the first two sample moments at each
location, {µ̂�(si), σ̂2

� (si) : i = 1, . . . , n}, that result from samples of size 200, 000
generated via the �th Gibbs sampler, for � = 0, 1.

Using λ ≡ (α1, α2, η) and importance sampling distributions as given in
(33), the MCML estimation procedure of Section 4 was carried out on the forest-
health data of Table 1. Results of this procedure are presented in Table 2. The
starting value of λ(0) = (3.582, 5.774, 3.733) was determined by maximizing a
first approximation of the log likelihood formed from Laplace approximations
to each of the two integrals of (17). Details of this procedure are contained in
Lee (1997). The starting value λ(0) was used to obtain sampling distributions,
and values {θ(1)

r : r = 1, . . . ,M} and {θ(0)
r : r = 1, . . . ,M} were generated

from these distributions using M = 800, 000. The resulting Monte Carlo ap-
proximation (18) to the log likelihood, evaluated at λ = λ(0), had the value
−210.6008. Maximization of the Monte Carlo log likelihood in λ, using 4 it-
erations of a numerical Newton-Raphson algorithm with convergence criterion
δN = 10−6 (see Appendix A), yielded the new value λ(1) = (4.118, 6.549, 4.484);
the resulting Monte Carlo log likelihood value was L(1)

M (λ(1)) = −210.5746. New
sampling distributions were chosen using the value λ(1), samples of size 800, 000
were again generated from these sampling distributions, and so forth. In this
case, the MCML convergence criterion of ξM = 0.005 (see Appendix A) was
met for L(3)

M (λ(3)) − L
(3)
M (λ(2)) = 0.0037, where λ(3) = (4.121, 6.524, 4.489). The

MCMLE is thus taken as λ̂M = λ(3), and the Monte Carlo log likelihood value
is LM (λ̂M ) = −210.5656. For comparison, a traditional beta-binomial model,
having the same conditional binomial model as used here and a mixing distri-
bution constructed from independent and identical beta distributions, yielded a
maximized log likelihood of −213.2654.

Table 2. Iteration history for estimation of parameters in the spatial beta-
binomial model.

Newton Raphson Value of Value of
Cycle Iterations λ LM (λ)

1 Start (3.582, 5.774, 3.733) −210.6008
End 4 (4.118, 6.549, 4.484) −210.5746

2 Start (4.118, 6.549, 4.484) −210.5525
End 2 (4.127, 6.433, 4.548) −210.5458

3 Start (4.127, 6.433, 4.548) −210.5693
End 2 (4.121, 6.524, 4.489) −210.5656
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5.4. Inference and interpretation of spatial dependence

Using λ̂M ≡ (α̂1,M , α̂2,M , η̂M ), the estimated covariance matrix in (27) is
0.021 0.033 0.039

0.033 0.055 0.061
0.039 0.061 0.078


 .

The estimated inverse negative Hessian matrix Ĥ−1 = (−�2 LM (λ̂M ))−1 is
5.165 7.250 6.793

7.250 12.023 7.372
6.793 7.372 13.657


 .

The estimated value of tr(H−1ΣH−1)/tr(H−1) as given in condition (28) is
0.005 < 0.01, and hence we are willing to use Ĥ−1 as an approximation to the co-
variance matrix of maximum likelihood estimates. Estimated correlations among
parameter estimators are quite high, with r(α1, α2) = 0.92, r(α1, η) = 0.81 and
r(α2, η) = 0.56. These correlations are reflected in the joint confidence regions
shown in Figure 2, where the three pairwise approximate 90% confidence ellip-
soids formed from the Wald statistic (e.g., Serfling (1980, p.157)) are presented.
In the lower right panel of Figure 2, univariate 90% marginal confidence inter-
vals are also presented. There is evidence of spatial dependence in a comparison
of the maximized log likelihoods for an independence model with 2 parameters
(−213.2654) and the spatial beta-binomial model with 3 parameters (−210.5656);
a standard likelihood ratio test results in a test statistic of 5.3996 and a nominal
p-value of 0.0201. Figure 2 also shows that there is some evidence for positive
spatial dependence, although the regions and interval for η include the value
η = 0. Formal likelihood inference based on asymptotic distributions may not
be entirely satisfactory for use with this spatial mixture model, and would tend
to be overly conservative in favor of the hypothesis of no dependence. The true
significance levels of such procedures is an area of investigation that we do not
pursue here.

To investigate the level of spatial dependence represented by this fitted
model, we examined sample correlations obtained from simulation and calcu-
lation. It is straightforward to show that

corr{Y (si), Y (sj)} =
m(si)m(sj)Cov {θ(si), θ(sj)}

v(si) v(sj)
,

where for i = 1, . . . , n, v(si) ≡
[
m(si)E{θ(si) − θ(si)2} +m(si)2Var {θ(si)}

]1/2.
First and second moments of θ were estimated from a Gibbs sample of size 2, 000
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from g(θ|λ), using λ = λ̂M . The results are summarized in Table 3, in which the
smallest, largest, and median pairwise correlations are presented for both values
of the mixing random variables {θ(si) : i = 1, . . . , n} and the observable random
variables {Y (si) : i = 1, . . . , n}.
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Figure 2. Approximate Confidence Regions and Intervals. Joint 90% confi-
dence regions are shown for pairs of parameters in the spatial beta-binomial
mixture model. Marginal 90% intervals are given in the lower right panel of
the figure.

Table 3. Correlations (from simulations) for latent (θ) and observable (Y )
random variables.

Correlation
Site i Site j Distance (km) {θ(si), θ(sj)} {y(si), y(sj)}

20 22 55.9 0.258 (L) 0.114
29 30 26.9 0.498 (M) 0.170
15 16 26.5 0.588 (H) 0.210
6 9 48.3 0.306 0.060 (L)

27 28 28.1 0.532 0.169 (M)
19 32 28.5 0.528 0.260 (H)

The correlations among the {(Y (si), Y (sj)) : i < j; i = 1, . . . , n} are weaker
than those among the { (θ(si), θ(sj)) : i < j; i = 1, . . . , n}, due to the presence of
the binomial variability in the former. Further, the smallest, largest, and median
values occur at different pairs of locations for these random variables because
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of the influence of the {m(si) : i = 1, . . . , n}, the number of birch trees at
each location. Overall, the estimated spatial dependence using this spatial beta-
binomial mixture model is seen to be substantial. Although correlations among
pairs of observed random variables Y are indicative of the type of ‘weak’ spatial
dependence typically expected in field studies, the estimated correlations among
pairs of latent random variables θ implies a much stronger spatial dependence in
the latent spatial process.

6. Discussion

Although we have not addressed prediction, the issue of predicting the latent
process θ is an important one. By modeling θ directly (rather than a transfor-
mation of it) through spatial mixture models, there is no need for ‘correcting’
back-transformed predictions to render them interpretable on a meaningful scale.
With squared error loss, the optimal predictor for the latent process at a loca-
tion s0 is θ̂(s0) ≡ E[θ(s0)|y], where y ≡ {y(si) : i = 1, . . . , n}. Assuming
that the location s0 belongs to the same model structure as the observed lo-
cations, the form of the predictor θ̂(s0) is available from the conditional spec-
ifications used to formulate the joint mixing distribution g(θ|λ). In addition,
for the data models considered, E{Y (s0)|θ(s0)} will be a function of θ(s0), say
t(θ(s0)). This allows the development of an optimal predictor for the observable
process Y , which may be useful for cross-validation purposes. Such a predictor is
ŷ(s0) ≡ E[Y (s0)|y] = E [E{Y (s0)|θ(s0)} | y] = E [t(θ(s0)) | y]. Markov Chain
Monte Carlo methods can be used to sample from the conditional density p(θ|y)
and thus allow evaluation of this predictor.

While the methodology presented in this article is computationally intensive,
and despite a number of open questions, we have demonstrated how non-Gaussian
latent spatial processes can be modeled, estimated, and used to investigate spatial
dependence. This ability will increase the relevance of statistical models for many
problems, including those in the environmental sciences and epidemiology.
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Appendix A. Estimation Algorithm

Choose a starting value λ(0). Set L(0)
M (λ(0)) = −∞ and begin with cycle

q = 1.
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1. Choose sampling distributions m0(θ|ψ(q)
0 ) and m1(θ|ψ(q)

1 ) as described in Sec-
tion 4.1. Select Monte Carlo samples of size M from each distribution; in the
example of Section 5 we use M = 800, 000.

2. Maximize L(q)
M (λ) in λ by taking λ(w,q) = λ(q) for w = 0.

(a) Compute the Monte Carlo log likelihood (17), its first derivatives (22),
and its second derivatives (23). Denote the Monte Carlo log likelihood as
L

(q)
M (λ(w,q)), the vector of first derivatives as �L(q)

M (λ(w,q)) and the matrix
of second derivatives as H(q)

M (λ(w,q)).
(b) Let

λ(w+1,q) = λ(w,q) − [H(q)
M (λ(w,q))]−1 � L

(q)
M (λ(w,q)).

Iterate steps 2(a) and 2(b) (over w) until L(q)
M (λ(w+1,q)) − L

(q)
M (λ(w,q)) ≤ δN ;

in the example of Section 5, we use δN = 10−6. Each subsequent evaluation of
L

(q)
M (·), �L(q)

M (·), and H
(q)
M (·) uses the same Monte Carlo samples selected in

step 1. Let the value of λ that maximizes L(q)
M (λ) be denoted as λ(q) and the

value of the Monte Carlo log likelihood at this value be denoted as L(q)
M (λ(q)).

3. If L(q)
M (λ(q)) − L

(q)
M (λ(q−1)) ≤ ξM , declare λ(q) to be the MCMLE of λ. Oth-

erwise, update q to (q + 1) and return to step 1; in the example of Section 5
we used ξM = 0.005.

Appendix B. Asymptotic Normality of �LM(λ̂)

Begin with the notation of Section 4.2 and let D(k)
�,r ≡ ∂Q0(θ

(�)
r |λ)

∂λk
D�,r; � =

0, 1. Averaging over r = 1, . . . ,M yields D̄(k)
� . Then using (18), components of

�LM(λ) may be written as Monte Carlo approximations to (22), for k = 1, . . . , p,

∂LM (λ)
∂λk

=
D̄

(k)
1

D̄1
− D̄

(k)
0

D̄0
. (B.1)

If the following integrals exist for a particular model, we define for � = 0, 1 and
k = 1, . . . , p,

µ
(k)
� ≡ E{D(k)

�,r } =
∫
Θ

∂Q0(θ(�)
r ,λ)

∂λk
I�(y,θ(�)

r ,λ) dθ(�)
r ,

µ
(k,h)
� ≡ E{D(k)

�,r D
(h)
�,r } =

∫
Θ

∂Q0(θ(�)
r ,λ)

∂λk

∂Q0(θ(�)
r ,λ)

∂λh

I2
� (y,θ(�)

r ,λ)
m�(θ(�)

r | ψ�)
dθ(�)

r , (B.2)

µ
(0,k)
� ≡ E{D�,r D

(k)
�,r } =

∫
Θ

∂Q0(θ(�)
r ,λ)

∂λk

I2
� (y,θ(�)

r ,λ)
m�(θ(�)

r | ψ�)
dθ(�)

r ,

where it should be noted that I0 has no argument in y.
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Let Γ� be the (p+ 1) × (p+ 1) matrix,

Γ� =




V� µ
(0,1)
� µ

(0,2)
� . . . , µ

(0,p)
�

µ
(0,1)
� µ

(1,1)
� µ

(1,2)
� . . . , µ

(1,p)
�

...
µ

(0,p)
� µ

(1,p)
� µ

(2,p)
� . . . , µ

(p,p)
�


 , � = 0, 1, (B.3)

where recall that V� ≡ Var (D�,r).
Then the 2(p + 1) vector D̃ ≡ (D̄0, D̄

(1)
0 , . . . , D̄

(p)
0 , D̄1, D̄

(1)
1 , . . . , D̄

(p)
1 )T is

asymptotically normal with mean Ẽ ≡ (E0, µ
(1)
0 , . . . , µ

(p)
0 , E1, µ

(1)
1 , . . . , µ

(p)
1 )T and

variance
1
M

Γ =
1
M

(
Γ0 0
0 Γ1

)
.

Define the transformation g(D̃) = (g1(D̃), . . . , gp(D̃)) where, for k = 1, . . . , p,
gk(D̃) gives the kth element of �LM (λ) as in expression (B.1). Hence,

g(Ẽ) =
(µ(1)

1

E1
− µ

(1)
0

E0
, . . . ,

µ
(1)
p

E1
− µ

(p)
0

E0

)T
=
(∂L(λ | y)

∂λ1
, . . . ,

∂L(λ | y)
∂λp

)T
.

Also, we have that, for � = 0, 1, and k = 1, . . . , p,

G
(0,k)
� =

∂gk(D̃)
∂D̄�

∣∣∣
D̃=Ẽ

=
(−1)�µ(k)

�

E2
�

G
(k,k)
� =

∂gk(D̃)

∂D̄
(k)
�

∣∣∣
D̃=Ẽ

=
(−1)�+1

E�
. (B.4)

Using the two (p× (p+ 1)) matrices G� = [(G(0,1)
� , . . . , G

(0,p)
� )T : diag(G(1,1)

� , . . .,
G

(p,p)
� )] to construct the (p× (2p + 2)) matrix G = [G1 : G0]; � = 0, 1,

M1/2[�LM (λ) − L(λ)] d→ N(0,Σ) as M → ∞, (B.5)

where Σ = GΓGT . The elements of Γ and G in expression (B.5) may be estimated
by replacing the expectation operators in (B.2) by averages over sampled values
θ(�)

r , r = 1, . . . ,M , � = 0, 1.
Thus, because of our approach using independent pseudo-models, Theorem

7 of Geyer (1994) reduces from establishing Markov chain central limit theorems
to simply insuring that the integrals in (B.2) exist. For many choices of m0 and
m1 the existence of these integrals is easy to establish.

Appendix C. Proof of Proposition 4

The proof is a modification of the proof of Theorem 25.5 in Billingsley (1995).
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Let {X ≤ b} ≡ {ω : X(ω) ≤ b} for singletons ω of the probability space
common to X(n)

M and Y (n), take ε > 0, and suppose that (x− ε, x+ ε) is in the
continuity set of F . Then

Pr
[
X

(n)
M ≤ x

]
= Pr

[(
X

(n)
M ≤ x

)
∩ (|Y (n) −X

(n)
M | ≥ ε)

]
+Pr

[(
X

(n)
M ≤ x

)
∩ (|Y (n) −X

(n)
M | < ε)

]
. (C.1)

The first right hand side (rhs) term of (C.1) is bounded above by Pr[|Y (n) −
X

(n)
M | ≥ ε]. For the second rhs term, {(X(n)

M ≤ x) ∩ (|Y (n) − X
(n)
M | < ε)} ⊂

{(X(n)
M ≤ x) ∩ (Y (n) − X

(n)
M < ε)} ⊂ {Y (n) < x + ε}, hence the term is

bounded above by Pr[Y (n) < x + ε]. Lower bounds may be developed in a
similar manner: Pr[X(n)

M ≤ x] ≥ Pr[Y (n) ≤ x − ε] − Pr[|Y (n) − X
(n)
M | ≥ ε];

Pr[X(n)
M ≤ x] ≤ Pr[Y (n) ≤ x + ε] + Pr[|Y (n) − X

(n)
M | ≥ ε]. Let M → ∞

followed by n → ∞, and recall that Y (n) d→ Y ∼ F . Then F (x − ε) −
limn→∞ lim infM→∞ Pr[|Y (n) − X

(n)
M | ≥ ε] ≤ lim infn→∞ lim infM→∞ Pr[X(n)

M ≤
x] ≤ lim supn→∞ lim supM→∞ Pr[X(n)

M ≤ x] ≤ limn→∞ lim supM→∞ Pr[|Y (n) −
X

(n)
M | ≥ ε] + F (x + ε). From the assumed condition, F (x − ε) ≤ lim infn→∞

lim infM→∞ Pr[X(n)
M ≤ x] ≤ lim supn→∞ lim supM→∞ Pr[X(n)

M ≤ x] ≤ F (x + ε).
Now, let ε→ 0; since x is a continuity point of F , we obtain the desired result.
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