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Spatial Modeling and Analysis of Cellular Networks Using the

Ginibre Point Process: A Tutorial
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SUMMARY Spatial stochastic models have been much used for perfor-

mance analysis of wireless communication networks. This is due to the

fact that the performance of wireless networks depends on the spatial con-

figuration of wireless nodes and the irregularity of node locations in a real

wireless network can be captured by a spatial point process. Most works

on such spatial stochastic models of wireless networks have adopted homo-

geneous Poisson point processes as the models of wireless node locations.

While this adoption makes the models analytically tractable, it assumes

that the wireless nodes are located independently of each other and their

spatial correlation is ignored. Recently, the authors have proposed to adopt

the Ginibre point process — one of the determinantal point processes — as

the deployment models of base stations (BSs) in cellular networks. The

determinantal point processes constitute a class of repulsive point processes

and have been attracting attention due to their mathematically interesting

properties and efficient simulation methods. In this tutorial, we provide a

brief guide to the Ginibre point process and its variant, α-Ginibre point

process, as the models of BS deployments in cellular networks and show

some existing results on the performance analysis of cellular network mod-

els with α-Ginibre deployed BSs. The authors hope the readers to use such

point processes as a tool for analyzing various problems arising in future

cellular networks.

key words: spatial stochastic models, cellular networks, spatial point

processes, Ginibre point process, signal-to-interference-plus-noise ratio,

coverage probability

1. Introduction

Spatial stochastic models have been much used for perfor-

mance analysis of wireless communication networks and the

volume of the literature has been increasing rapidly, where

the wireless nodes are located at random on the two dimen-

sional Euclidean plane according to some stochastic point

processes (see, e.g., the tutorial articles [1]–[4] and mono-

graphs [5]–[8]). This is due to the fact that the performance

of wireless networks critically depends on the spatial con-

figuration of wireless nodes and the irregularity of node

locations in a real wireless network can be well captured by

a spatial point process. Even for cellular networks, many

researchers have proposed and analyzed the spatial stochas-

tic models to cope with various problems arising from the

current explosive growth of mobile data traffic, such as cog-

nitive radio [9], interference cancellation [10] and so on (a
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thorough survey on recent progress is found in [4]).

Most works on such spatial stochastic models of wire-

less networks have adopted homogeneous Poisson point pro-

cesses as the models of wireless node locations and this has

been the case for the cellular networks (see, e.g., [9]–[15]).

While this adoption makes the models analytically tractable,

it assumes that the wireless nodes are located independently

of each other and their spatial correlation is ignored. On the

other hand, the base stations (BSs), in particular macro BSs,

in a cellular network tend to be deployed rather systemati-

cally, such that any two BSs are not too close, and thus a

spatial model based on a point process with repulsive nature

seems more desirable (see [16]). Recently, the authors have

proposed to adopt the Ginibre point process and its variant,

α-Ginibre point process, as the models of BS deployments

in cellular networks and have derived some analytical and

numerical results ([17]–[23]). The Ginibre point process is

known as a main example of the determinantal point pro-

cesses, which constitute a class of repulsive point processes

and have been attracting attention due to their mathemati-

cally interesting properties and efficient simulation methods

(see, e.g., [24]–[27] for details). The α-Ginibre point pro-

cess is also one of the determinantal point processes and

is introduced in [28] for interpolating between the original

Ginibre and homogeneous Poisson point processes by a pa-

rameter α ∈ (0, 1]; that is, the original Ginibre point process

is obtained by taking α = 1 and it converges weakly to the

homogeneous Poisson point process as α → 0. Indeed, the

Ginibre and some other determinantal point processes have

been recognized as a promising class of BS deployment mod-

els for cellular networks due to the observations that they can

capture the spatial characteristics of actual BS deployments

(see [29]–[31]).

A purpose of this tutorial is to provide a brief guide

to the Ginibre and α-Ginibre point processes in order for

the readers to use them as a tool for analyzing the perfor-

mance of cellular networks and challenging themselves to

various new problems arising in modern cellular networks.

On this account, after reviewing some fundamental and use-

ful properties of these spatial point processes, we show some

existing results on the performance analysis of cellular net-

work models with α-Ginibre deployed BSs. For comparison,

we mention the results on the related Poisson deployed BS

models as well.

The organization of the paper is as follows. In the

next section, we provide a general spatial stochastic model

of downlink cellular networks and give a few examples.

Copyright © 2016 The Institute of Electronics, Information and Communication Engineers
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The signal-to-interference-plus-noise ratio (SINR) — that is

a key quantity for the connectivity in wireless networks —

for a typical user is defined there. In Sect. 3, we introduce the

α-Ginibre point process as a model of the BS deployments in

cellular networks, where we first give its definition and then

review its fundamental and useful properties. In Sect. 4, we

show some existing results on the coverage analysis of cellu-

lar networks with α-Ginibre deployed BSs; that is, we give

numerically computable forms of coverage probability — the

probability that the SINR for the typical user achieves a tar-

get threshold — for the example models provided in Sect. 2.

We finally suggest a problem and the promising direction for

future development in Sect. 5.

2. Spatial Model of Downlink Cellular Networks

We first define a general spatial stochastic model of downlink

cellular wireless networks and then give two examples; one

is the most basic model of a homogeneous single-antenna

network and the other is of a heterogeneous multi-tier multi-

antenna network.

Let Φ denote a point process on R2 and Xi , i ∈ N,

denote the points of Φ, where the order of X1, X2, . . . is

arbitrary. Each point Xi , i ∈ N, represents the location of

a BS in a cellular network and we refer to the BS located

at Xi as BS i. Assuming that the point process Φ is simple

almost surely (a.s.) and stationary with positive and finite

intensity, we focus on a typical user located at the origin o =

(0, 0). The transmission power of signal from BS i, i ∈ N,

is denoted by Pi . The random propagation effect of fading

and shadowing on the signal from BS i to the typical user is

denoted by Hi , i ∈ N, when the BS i works as a transmitter

to the typical user while it is denoted by Gi when the BS i

works as an interferer for the typical user, where Hi and

Gi , i ∈ N, are nonnegative random variables. The path-

loss function representing the attenuation of signals with

distance from BS i is given by Li (r), r > 0, where each Li

is a randomly chosen nonincreasing function on (0,∞). Our

network model is then described as the stationary marked

point process Φ̃ = {(Xi, (Pi, Hi,Gi, Li))}i∈N.

The downlink SINR for the typical user at the origin is

defined by

SINRo =
So (η(o))

Io (η(o)) + wo

, (1)

where η(x) denotes the index of the BS associated with

the user located at x ∈ R2 and is determined by a certain

association rule (see, e.g., Examples 1 and 2 below), So (i) =

Pi Hi Li ( |Xi |), i ∈ N, denotes the desired signal power when

the typical user is served by the BS i and Io (i) denotes the

cumulative interference power from all the BSs except BS i

received by the typical user; that is,

Io (i) =
∑

j∈N\{i }
Pj G j L j ( |X j |). (2)

Also, wo in (1) denotes a nonnegative constant representing

the noise power at the origin.

Example 1 (Homogeneous single-antenna network): The

most simple and basic model is that of the homogeneous

single-antenna network, where all the BSs have the same

level of transmission power denoted by a constant p (i.e.

Pi = p, i ∈ N). The propagation effects (Hi,Gi), i ∈ N, are

independent and identically distributed (i.i.d.), and also inde-

pendent of Φ = {Xi }i∈N. We often assume the Rayleigh fad-

ing and ignore the shadowing for {Hi }i∈N; that is, each Hi is

an exponentially distributed random variable with unit mean,

denoted by Hi ∼ Exp(1). The path-loss function is also com-

mon to all the BSs such that Li (r) = ℓ(r), which we have

in mind is, for example, ℓ(r) = r−2 β or ℓ(r) = min(1, r−2 β )

with β > 1. Each user is served by the nearest BS; that is

{η(x) = i} = {|x − Xi | ≤ |x − X j |, j ∈ N} for x ∈ R2. Due

to the homogeneity of the BSs, the nearest BS association

is now equivalent to the maximum average received power

association since E(So (i) | Xi) = p E(Hi)ℓ( |Xi |), where

E(Hi) is identical for all i ∈ N and ℓ is nonincreasing.

Example 2 (Multi-tier multi-antenna network): Let K de-

note a positive integer and K = {1, 2, . . . , K }. Each BS is

classified into one of K distinct tiers (classes) and a BS of

tier k ∈ K has the specific transmission power pk , the num-

ber of antennas mk , the number of users to be served ψk (≤
mk) and the path-loss function ℓk (r). This model repre-

sents the multi-input multi-output (MIMO) transmission in

a heterogeneous network (HetNet). Assuming the Rayleigh

fading on all links and the single receiving antenna for each

user, the discussion in [32] (see, e.g, [33] also) enables us

to suppose that the channel power distributions of both the

associated and interfering links follow the Erlang distribu-

tions with different shape parameters; that is, when the BS i

is of tier k, Hi ∼ Gam(δk, 1) with δk = mk − ψk + 1 and

Gi ∼ Gam(ψk, 1), where “Gam” denotes the Gamma distri-

bution. Let ξi denote the tier of BS i. This model is then

described as the marked point process Φξ = {(Xi, ξi)}i∈N
since (Pi, Li) = (pξi , ℓξi ), and (Hi,Gi), i ∈ N, are condi-

tionally mutually independent given ξi , i ∈ N. As for the BS

association, we introduce another parameter bk > 0, k ∈ K ,

called the bias factor, and adopt the flexible cell association

rule (see [13], [34]); that is, each user is served by the BS

that supplies the maximum biased-average-received-power;

{η(x) = i} = {

bξi pξi δξi ℓξi (|x − Xi |)
≥ bξj pξj δξj ℓξj ( |x − X j |), j ∈ N}

,

where pkδkℓk ( |Xi |) = E(So (i) | Xi, ξi = k) represents the

average received signal power for the typical user from the

BS i when this BS is of tier k.

3. α-Ginibre Point Processes and Their Properties

In this section, we give a brief introduction to the Ginibre

and α-Ginibre point processes. Since these point processes

belong to a class of the determinantal point processes on
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the complex plane C ≃ R2, we first define a general deter-

minantal point process on Rd. Readers are referred to e.g.

[24]–[27] for further details.

3.1 Determinantal Point Processes

Let Φ denote a simple point process on Rd and let ρ(n)

denote its nth product density functions (joint intensities)

with respect to a locally finite measure ν on Rd; that is,

for any symmetric and continuous function f with bounded

support on Rd×n,

E

[
∑

X1,...,Xn ∈Φ
Xi,Xj,i,j

f (X1, X2, . . . , Xn)

]

=

∫ ∫

· · ·
∫

Rd×n
f (x1, x2, . . . , xn)

× ρ(n) (x1, x2, . . . , xn)

n
∏

i=1

ν(dxi). (3)

The point process Φ is then said to be a determinantal point

process on Rd with kernel K : Rd × Rd → C with respect to

the reference measure ν if the product density function ρ(n)

in (3) is given by

ρ(n) (x1, x2, . . . , xn) = det
(

K (xi, x j )
)n
i, j=1, (4)

where “det” denotes the determinant. In order for the point

process Φ to be well-defined, we usually assume that (i) the

kernel K is continuous on Rd ×Rd, (ii) K is Hermitian in the

sense that K (x, y) = K (y, x) for x, y ∈ Rd, where z denotes

the complex conjugate of z ∈ C and (iii) the integral operator

on L2(Rd) corresponding to K is of locally trace class with

the spectrum in [0, 1]; that is, 0 ≤ (K f , f ) ≤ ( f , f ) for any

f ∈ L2(Rd), where the inner product is given by ( f , g) =
∫

Rd
f (x) g(x) ν(dx), and for any bounded set C ∈ B(Rd),

the restriction KC of K on C has eigenvalues κC,i , i ∈ N,

satisfying
∑

i∈N κC,i < ∞. Under these conditions, κC,i ∈
[0, 1] holds for any bounded C ∈ B(Rd) and i ∈ N (see, e.g.,

[26, Chap. 4]). Then the number of points of Φ falling in

C has the distribution of the sum of independent Bernoulli

random variables BC,i with P(BC,i = 1) = κC,i , i ∈ N; that

is,

Φ(C)
d
=

∑

i∈N
BC,i, (5)

where “
d
=” denotes equality in distribution. This immediately

leads to the expectation and variance of Φ(C);

EΦ(C) =
∑

i∈N
κC,i, VarΦ(C) =

∑

i∈N
κC,i (1 − κC,i),

where it should be noted that VarΦ(C) ≤ EΦ(C) < ∞ for

any bounded C ∈ B(Rd).

The Palm distribution is a basic concept in the point

process theory and formalizes the notion of the conditional

distribution of a point process given that it has a point at a

specific location. The following proposition states that the

class of determinantal point processes is closed under the

operation of taking the reduced Palm distribution†.

Proposition 1 ([25]): Let Φ denote a determinantal point

process on Rd with kernel K with respect to the reference

measure ν. Then, for almost every x0 ∈ Rd with respect

to the measure K (x, x) ν(dx), Φ is also determinantal under

the reduced Palm distribution given a point at x0 and the

corresponding kernel K x0 is given by

K x0 (x, y) =
K (x, y) K (x0, x0) − K (x, x0) K (x0, y)

K (x0, x0)
,

(6)

whenever K (x0, x0) > 0.

3.2 α-Ginibre Point Processes

For α ∈ (0, 1], a determinantal point processΦα onC (≃ R2)

is said to be an α-Ginibre point process when its kernel Kα

on C × C is given by

Kα (z, w) = ezw/α, z, w ∈ C, (7)

with respect to the modified Gaussian measure

να (dz) =
1

π
e−|z |

2/α µ(dz), (8)

where µ denotes the Lebesgue measure on (C,B(C)).

The choice of pair (Kα, να) is not unique and the ker-

nel K̃α (z, w) = π−1 e−( |z |2+ |w |2)/(2α) ezw/α with respect to

the Lebesgue measure µ defines the same process as Φα.

The process with α = 1 gives the original Ginibre point

process.

Let ρ̃
(n)
α , n ∈ N, denote the product density functions

of Φα with respect to the Lebesgue measure. For example,

the first two product densities are then given by (4) as

ρ̃(1)
α (z) = K̃α (z, z) = π−1, (9)

ρ̃(2)
α (z, w) =

1 − e−|z−w |
2/α

π2
. (10)

Note that both the product densities are motion invariant

(invariant under translation and rotation). In fact, one can

show that the nth product density is motion invariant for

each n ∈ N, and hence the α-Ginibre point process is mo-

tion invariant; that is, stationary and isotropic. We further

see that ρ̃
(2)
α (z, w) → π−2 as α → 0, converging to the

second-order product density of the homogeneous Poisson

point process with intensity π−1. Again, one can show that

Φα converges weakly to the homogeneous Poisson point pro-

cess with intensity π−1 as α → 0 (see [28]). This suggests

†The reduced Palm distribution formalizes the notion of the
conditional distribution of a point process given that the process
has a point at a specific location but excluding this point on which
the process is conditioned.
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Fig. 1 Samples of the Poisson (α → 0, left), α-Ginibre (α = 0.5, center) and original Ginibre (α = 1,

right) point processes with the same intensity. [19]

that the α-Ginibre point process constitutes an intermediate

class between the original Ginibre and homogeneous Pois-

son point processes by the parameter α ∈ (0, 1]. Figure 1

shows samples of the Poisson and α-Ginibre point processes

with the same intensity. We can see that the configuration of

the points becomes more regular as the value of α becomes

larger.

Remark 1: As seen in (9), the α-Ginibre point process has

the intensity π−1 with respect to the Lebesgue measure; that

is, for C ∈ B(C),

EΦ(C) =

∫

C

ρ(1)
α (z) να (dz) =

µ(C)

π
.

However, we can consider the process with an arbitrary fixed

intensity λ ∈ (0,∞) by scaling. The kernel and reference

measure of the scaled α-Ginibre point process with inten-

sity λ are respectively given by Kα,λ(z, w) = eπλzw/α and

να,λ(dz) = λ e−πλ |z |
2/α µ(dz). Or equivalently, the ker-

nel K̃α,λ(z, w) = λ e−πλ( |z |2+ |w |2)/(2α) eπλzw/α with respect

to the Lebesgue measure µ defines the same process.

We next see the nonzero eigenvalues and the corre-

sponding eigenfunctions of the integral operator correspond-

ing to the kernel Kα. Let

ϕα,i (z) =
zi−1

√

(i − 1)! αi
, i ∈ N. (11)

Then we can check that ϕα,i , i ∈ N, are the orthonormal

eigenfunctions of Kα corresponding to the eigenvalue α sat-

isfying

∫

C

ϕα,i( z) ϕα, j (z) να (dz) =

{

1 for i = j,

0 for i , j.

Thus, Mercer’s spectral expansion ([35]) holds such that

Kα (z, w) =

∞
∑

i=1

α ϕα,i (z) ϕα,i (w), z, w ∈ C.

Now, let Dr denote the disk on C centered at the origin

with radius r . Then ϕα,i , i ∈ N, in (11) are also orthogonal

eigenfunctions (but not normal now) of the restriction Kα,Dr

of Kα on Dr corresponding to the eigenvalues

κα,Dr ,i = α P(i, r2/α) = α
γ(i, r2/α)

Γ(i)
, i ∈ N, (12)

where P(x, y) = γ(x, y)/Γ(x) denotes the regularized

lower Gamma function with the lower incomplete Gamma

function γ(x, y) =
∫ y

0
tx−1 e−t dt and the usual Gamma

function Γ(x) = γ(x,∞). Let χi , i ∈ N, denote i.i.d.

Bernoulli random variables with P( χi = 1) = α and let Yi ,

i ∈ N, denote mutually independent random variables with

Yi ∼ Gam(i, α−1), where { χi }i∈N and {Yi }i∈N are also inde-

pendent of each other. Then, since P(Yi ≤ r2) = P(i, r2/α),

(5) and (12) imply

Φα (Dr )
d
=

∑

i∈N
χi 1{Yi ≤r2 } .

This observation is closely related to the following

proposition, which is a generalization of Kostlan’s re-

sult [36] for the original Ginibre point process (see also

[26, Theorem 4.7.1]).

Proposition 2: Let Xi , i ∈ N, denote the points of the α-

Ginibre point process. Then, the set {|Xi |2}i∈N has the same

distribution as Y̌ = {Y̌i }i∈N, which is extracted from Y =

{Yi }i∈N such that Yi , i ∈ N, are mutually independent with

Yi ∼ Gam(i, α−1) and each Yi is added in Y̌ with probability

α and discarded with 1 − α independently of others.

Indeed, theα-Ginibre point processΦα is obtained from

the original Ginibre process Φ = Φ1 by retaining each point

of Φ with probability α (removing it with 1 − α) indepen-

dently, and then applying the homothety of ratio
√
α to the

retained points in order to maintain the original intensity of

the Ginibre process Φ ([28]). Proposition 2 is useful for

analyzing the cellular network models described in the pre-

ceding section since the path-loss function usually depends

only on the distance from a BS. When we consider the scaled

α-Ginibre point process with intensity λ ∈ (0,∞) as in Re-

mark 1, Gam(i, α−1) in the above proposition is replaced by

Gam(i, πλ/α).

We can extend Proposition 2 to the process under the

Palm distribution. Applying (6) to (7), the kernel Ko
α of the

α-Ginibre point process under the reduced Palm distribution
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given a point at the origin is

Ko
α (z, w) = ezw/α − 1, (13)

with respect to the same reference measure να in (8). Thus,

the first product density is given by

ρo(1)
α (z) να (dz) = Ko

α (z, z) να (dz)

=

1

π
(1 − e−|z |

2/α) µ(dz).

Note that the α-Ginibre point process is no longer stationary

under the Palm distribution and the intensity function is

increasing according to the distance from the origin. The

following Proposition is obtained by applying the kernel (13)

to Theorem 4.7.1 of [26].

Proposition 3: Let Xo
i

, i ∈ N, denote the points of the α-

Ginibre point process under the reduced Palm distribution.

Then, the set {|Xo
i
|2}i∈N has the same distribution as Y̌

o
=

{Y̌o
i
}i∈N, which is extracted from Y = {Yo

i
}i∈N such that Yo

i
,

i ∈ N, are mutually independent with Yo
i
∼ Gam(i + 1, α−1)

and each Yo
i

is added in Y̌
o

with probability α and discarded

with 1 − α independently of others.

Note that Y̌
o

in Proposition 3 is obtained from Y̌ in

Proposition 2 by removing the exponentially distributed ran-

dom variable Y1 ∼ Gam(1, α−1) if it is retained with proba-

bility α (see [28]).

4. Coverage Analysis

In this section, we show some existing results on the coverage

analysis of the cellular network models described in Sect. 2;

that is, we give the numerically computable forms of the

coverage probability for the two examples in Sect. 2. Here,

the coverage probability is defined as the tail probability

P(SINRo > θ), θ > 0, of the SINR in (1), which represents

the probability that the SINR for the typical user achieves a

target threshold θ.

4.1 Homogeneous Single-Antenna Network

We here derive a numerically computable form of the cover-

age probability for the homogeneous single-antenna network

model in Example 1, where the BSs are deployed according

to the α-Ginibre point process with intensity λ ∈ (0,∞). The

corresponding result for the model with Poisson deployed

BSs is also derived. The proof for the Poisson deployed

BS model mainly follows [11] while that for the α-Ginibre

deployed BS model does [17], [19].

Theorem 1 ([11], [17], [19]): Consider the homogeneous

single-antenna cellular network model in Example 1 with

the path-loss function ℓ(r) = r−2β , r > 0, for β > 1, where

Hi ∼ Exp(1), i ∈ N, (Rayleigh fading) and Gi , i ∈ N, are

i.i.d. When the point process Φ is the homogeneous Pois-

son point process with intensity λ ∈ (0,∞), the coverage

probability for the typical user is given by

P(SINR
(PPP)
o > θ)

=

∫ ∞

0

exp

{

− θ wo

p

(

t

π λ

)β

− t
(

1 + τ(θ, β)
)

}

dt,

(14)

where

τ(θ, β) =
θ1/β

β

∫ ∞

1/θ

(

1 − LG (u−1)
)

u−1+1/β du, (15)

and LG denotes the Laplace transform of Gi , i ∈ N. On

the other hand, when Φ is the α-Ginibre point process with

intensity λ,

P(SINR
(α-GPP)
o > θ)

= α

∫ ∞

0

exp

{

−t − θ wo

p

(

α t

πλ

)β}

× Mα (t, θ, β) Sα (t, θ, β) dt, (16)

where

Mα (t, θ, β) =

∞
∏

i=0

[
1 − α + α Ji (t, θ, β)

]
, (17)

Sα (t, θ, β) =

∞
∑

i=0

ti

i!

[
1 − α + α Ji (t, θ, β)

]−1
, (18)

with

Ji (t, θ, β) =
1

i!

∫ ∞

t

e−u ui LG

(

θ

(

t

u

)β)

du. (19)

For the proof of (14)–(15) for the Poisson deployed BS

model, we use the probability generating functional for point

processes.

Definition 1: Let Φ = {Xi }i∈N denote a point process on

R
d with intensity measureΛ; that is, EΦ(C) = Λ(C) for C ∈
B(Rd). For any measurable function v: Rd → [0, 1] such

that
∫

Rd

(

1 − v (x)
)

Λ(dx) < ∞, the probability generating

functional of the point process Φ is defined as

GΦ(v) = E

[
∏

i∈N
v (Xi)

]
.

Proposition 4 (e.g., [37, Sec. 9.4]): For the Poisson point

process Φ on Rd with intensity measure Λ, its probability

generating functional is given as

G (PPP)

Φ
(v) = exp

{

−
∫

Rd

(

1 − v (x)
)

Λ(dx)

}

. (20)

Note that, ifΦ is stationary with intensity λ, thenΛ(dx)

above is replaced by λ dx.

Proof of Theorem 1: In the definition of the SINR in (1),

each Hi is independent of Φ = {Xi }i∈N and {G j }j∈N\{i }.
Also, η(o) is determined by Φ = {Xi }i∈N. Thus, con-

ditioning on Φ = {Xi }i∈N and {G j }j∈N\{η(o) }, and using

Hi ∼ Exp(1), i ∈ N, we have
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P(SINRo > θ) = P

(

Hη(o) > θ
Io (η(o)) + wo

p ℓ(|Xη(o) |)

)

= E

[
exp

{

−θ Io (η(o)) + wo

p ℓ(|Xη(o) |)

}]
.

Furthermore, the definition of the interference (2) and the

Laplace transform of G j , j ∈ N, lead to

P(SINRo > θ)

= E

[
exp

{

− θ wo

p ℓ(|Xη(o) |)

}

∏

j∈N\{η(o) }
LG

(

θ
ℓ( |X j |)
ℓ(|Xη(o) |)

)]
,

(21)

which is the starting point for the coverage analysis of both

the Poisson and α-Ginibre deployed BS cellular network

models.

We first show (14)–(15) for the Poisson deployed BS

model. For the homogeneous Poisson point process Φ on

R
2 with intensity λ, the distribution for the distance to the

nearest point from the origin is given by

P( |Xη(o) | > r) = P
(

Φ(Dr ) = 0
)

= e−λπr
2

, (22)

where Dr denotes the disk centered at the origin with ra-

dius r . Given |Xη(o) | = r , other points of Φ also follow

the Poisson point process on R2 \ Dr , and thus applying the

probability generating functional (20), we obtain

E

[
∏

j∈N
LG

(

θ
ℓ( |X j |)
ℓ(r)

) ���� X j ∈ R2\Dr, j ∈ N
]

= exp

{

−λ
∫

|x |>r

[
1 − LG

(

θ
ℓ( |x |)
ℓ(r)

)]
dx

}

= exp

{

−2πλ

∫ ∞

r

[
1 − LG

(

θ
ℓ(s)

ℓ(r)

)]
s ds

}

. (23)

Hence, applying (22), (23) and ℓ(r) = r−2β to (21) yields

(14)–(15) after some manipulations.

On the other hand, for the α-Ginibre deployed BS

model, we use Y = {Yi }i∈N in Proposition 2 such that Yi ,

i ∈ N, are mutually independent and each Yi is retained

with probability α independently of others. Thus, dividing

the cases in each of which the point corresponding to Yi
is retained and associated with the typical user, (21) with

ℓ(r) = r−2β reduces to

P(SINR
(α-GPP)
o > θ)

= α
∑

i∈N
E

[
exp

{

− θ wo

p
Yi
β
}

×
∏

j∈N\{i }

{

1 − α + αLG

(

θ

(

Yi

Yj

)β)

1{Yj ≥Yi }

}]
.

Finally, applying Yi ∼ Gam(i, πλ/α), i ∈ N yields (16)–(19)

after some manipulations. □

Figure 2 shows the comparison result of the coverage

probability with different values of α. Each plot indicates

the coverage probability for a given value of θ in the case of

Fig. 2 Comparison of coverage probability in terms of α in the single tier

model (ℓ(r ) = r−4, no noise). [19]

wo = 0 (noise-free) and β = 2 (i.e., ℓ(r) = r−4). It seems

that the coverage probability is increasing in α. However, a

numerical result in [18] shows that the coverage probability

is not always monotone in α as θ → ∞.

4.2 Two-Tier Ginibre-Poisson Overlaid Network

In this subsection, we consider the case of K = 2 in Exam-

ple 2, where the BSs of tier 1 are deployed according to the

α-Ginibre point process Φ1 with intensity λ1 while the BSs

of tier 2 follow the homogeneous Poisson point process Φ2

with intensity λ2. This represents the heterogeneous two-tier

cellular network where the macro BSs are deployed rather

systematically while the femto BSs are located in an oppor-

tunistic manner. We assume that the two point processes Φ1

and Φ2 are independent of each other. In the coverage of

users, the target thresholds can differ for the two tiers; that

is, the SINR should be larger than θk when a user is served

by a BS of tier k for k = 1, 2.

For the ease of understanding, we impose some extent

of simplifying setting (see [23] for a general setting). First,

we ignore the noise power and set wo = 0, in this case, the

SINR in (1) is called the signal-to-interference ratio (SIR).

Furthermore, we only consider the case where the number of

users served at each BS is equal to the number of antennas;

that is, mk = ψk for k = 1, 2. This case reduces to the

single-input single-output (SISO) transmission when mk =

ψk = 1 or the full form of space-division multiple access (full

SDMA) transmission when mk = ψk > 1. In this setting,

Hi ∼ Exp(1), i ∈ N, since δk = 1 for each k ∈ K , and they

are mutually independent.

Theorem 2: Consider the two-tier multi-antenna cellular

network model in Example 2 with K = 2, ℓ1(r) = r−2β1 and

ℓ2(r) = r−2β2 . Then, under the setting described above, the

coverage probability for the typical user is given by

P(SIR
(MIMO)
o > θξη (o)

)

= α

∫ ∞

0

Mα (t, θ1, β1) Sα (t, θ1, β1) (24a)
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× exp

{

−t − C (1,2)
α (t)

(

1 + τ1,2(θ1, β2

)

}

dt (24b)

+

∫ ∞

0

M (2,1)
α (t, θ2, β1, β2) (24c)

× exp
{
−t

(

1 + τ(θ2, β2)
)

}
dt (24d)

where Mα (t, θ, β) and Sα (t, θ, β) are the same as in (17) and

(18) respectively with LG (s) = LG,1(s) = (1 + s)−ψ1 in Ji
in (19). Moreover,

C (1,2)
α (t) = πλ2

(

b2p2

b1p1

)1/β2
(

αt

πλ1

)β1/β2

,

τ1,2(θ, β) =
θ1/β

β

∫ ∞

1/θ

[
1 −

(

u

u + b1/b2

)ψ2
]

u−1+1/β du,

and

M (2,1)
α (t, θ, β1, β2) =

∞
∏

i=0

[
1− α + α J

(2,1)

α,i
(t, θ, β1, β2)

]
,

where

J
(2,1)

α,i
(t, θ, β1, β2)

=

1

i!

∫ ∞

C
(2,1)
α (t)

e−u ui
[
1 + θ

p1

p2

(t/πλ2)β2

(αu/πλ1)β1

]−ψ1

du,

with

C (2,1)
α (t) =

πλ1

α

(

b1p1

b2p2

)1/β1
(

t

πλ2

)β2/β1

.

τ(θ, β) is also the same as in (15) with LG (u−1) =

LG,2(u−1) =
[

u/(u + 1)
]ψ2 .

The proof is placed in the appendix and we here make

a short remark on Theorem 2. The formula of the coverage

probability in the theorem consists of two parts (24a)–(24b)

and (24c)–(24d). The first part corresponds to that the typical

user is served by a BS of tier 1, so that the term in (24a)

is given as the same form as in (16). The term in (24b)

corresponds to the cumulative interference from all the BSs

of tier 2, which can be seen similar to the second term

in the exponential in (14). The second part (24c)–(24d)

corresponds to that the typical user is served by a BS of

tier 2, so that the term in (24d) has the same form as the

second term in the exponential in (14). The term in (24c)

corresponds to the cumulative interference from all the BSs

of tier 1, so that M
(2,1)
α has a similar form to Mα in (17) (the

term corresponding to Sα does not appear in this case).

5. Conclusion

In this tutorial, we have introduced the α-Ginibre point pro-

cess as the model of BS deployments in cellular networks.

First, we have reviewed the definition and some useful prop-

erties of this process, and then we have seen the two existing

results on the coverage analysis of cellular network models,

where the BSs are deployed according to the α-Ginibre point

processes. The authors now hope that the readers will use

the (α-)Ginibre point process and challenge themselves to

various problems arising in future cellular networks.

Finally, when we use the Ginibre and other determi-

nantal point processes as the models of BS deployments,

we might face to a computation problem. Although the ob-

tained formulas are indeed numerically computable, as seen

in (16)–(19) and (24a)–(24d), they include infinite sums and

infinite products, which may lead to the time-consuming

computation. One direction to avoid this problem could be

some kinds of asymptotics and/or approximation (see, e.g.,

[18], [21], [38]–[40] for this direction).
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Appendix: Proof of Theorem 2

We divide the coverage probability into two cases according

to the tier of the BS associated with the typical user;

P
(

SIR
(MIMO)
o > θξη (o)

)

= P
(

SIR
(MIMO)
o > θ1, ξη(o) = 1

)

+ P
(

SIR
(MIMO)
o > θ2, ξη(o) = 2

)

,

(A· 1)

and consider the two terms separately.

(1) Case of ξη(o) = 1:

Let N1 and N2 denote the random partition of N such that

Nk = {i ∈ N : ξi = k} for k = 1, 2. Then, the interference (2)

for i ∈ N1 is written as

Io (i) =
∑

j∈N1\{i }
p1 G j ℓ1( |X j |) +

∑

j∈N2

p2 G j ℓ2(|X j |).

Applying this to the first term on the right-hand side of (A· 1)

yields

P
(

SIR
(MIMO)
o > θ1, ξη(o) = 1

)

= E

[
exp

{

−θ1

Io (η(o))

p1 ℓ1( |Xη(o) |)

}

1{ξη (o)=1}

]

= E

[
∏

j∈N1\{η(o) }
LG,1

(

θ1

( |Xη(o) |
|X j |

)2β1
)

×
∏

j∈N2

LG,2

(

θ1

p2

p1

|Xη(o) |2β1

|X j |2β2

)

1{ξη (o)=1}

]
, (A· 2)

where ℓ1(r) = r−2β1 and ℓ2(r) = r−2β2 are also used. Note

here that {η(o) = i} with i ∈ N1 implies {|X j | ≥ |Xi |} for
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j ∈ N1 while for j ∈ N2,

{b1p1 |Xi |−2β1 ≥ b2p2 |X j |−2β2 } = {|X j | ≥ R1,2( |Xi |)},

with R1,2(r) = (b2p2/(b1p1))1/(2β2)rβ1/β2 . Thus, using Y =

{Yi }i∈N in Proposition 2, (A· 2) further reduces to

P
(

SIR
(MIMO)
o > θ1, ξη(o) = 1

)

= α
∑

i∈N
E

[
∏

j∈N\{i }

{

1 − α + αLG,1

(

θ1

(

Yi

Yj

)β1
)

1{Yj>Yi }

}

×
∏

j∈N
LG,2

(

θ1

p2

p1

Yi
β1

|X2, j |2β2

)

1{ |X2, j | ≥R1,2 (Yi
1/2) }

]
,

(A· 3)

where {X2, j }j∈N follows the homogeneous Poisson point pro-

cess with intensity λ2. Conditioning on Yi and applying the

generating functional (20) to the second infinite product on

the right-hand side of (A· 3), we have

E

[
∏

j∈N
LG,2

(

θ1

p2

p1

Yi
β1

|X2, j |2β2

)

1{ |X2, j | ≥R1,2 (Yi
1/2) }

�����
Yi

]

= exp

{

−λ2

∫

R2

[
1−LG,2

(

θ1

p2

p1

Yi
β1

|x |2β2

)

1{ |x | ≥R1,2 (Yi
1/2) }

]
dx

}

= exp

{

−πλ2

(

b2p2

b1p1

)1/β2

Yi
β1/β2

(

1 + τ1,2(θ1, β2)
)

}

, (A· 4)

where

τ1,2(θ, β) =
θ1/β

β

∫ ∞

1/θ

[
1 −

(

u

u + b1/b2

)ψ2
]

u−1+1/β du.

Hence, substituting (A· 4) to (A· 3) and applying Yi ∼
Gam(i, πλ1/α), i ∈ N, we obtain (24a)–(24b) after some

manipulations.

(2) Case of ξη(o) = 2:

Similar to the above, the second term on the right-hand side

of (A· 1) is given as

P
(

SIR
(MIMO)
o > θ2, ξη(o) = 2

)

= E

[
∏

j∈N1

LG,1

(

θ2

p1

p2

|Xη(o) |2β2

|X j |2β1

)

×
∏

j∈N2\{η(o) }
LG,2

(

θ2

( |Xη(o) |
|X j |

)2β2
)

1{ξη (o)=2}

]
.

(A· 5)

Now, {η(o) = i} with i ∈ N2 implies that

{b2p2 |Xi |−2β2 ≥ b1p1 |X j |−2β1 } = {|X j | ≥ R2,1( |Xi |)},

with R2,1(r) = (b1p1/(b2p2))1/(2β1)rβ2/β1 for i ∈ N1 while

{|X j | ≥ |Xi |} for j ∈ N2. Therefore, using the distribution of

|Xη(o) | in (22) and also Y = {Yi }i∈N in Proposition 2, (A· 5)

reduces to

P
(

SIR
(MIMO)
o > θ2, ξη(o) = 2

)

=

∫ ∞

0

2πλ2 r e−λ2πr
2

× E

[
∏

j∈N

{

1 − α + αLG,1

(

θ2

p1

p2

r2β2

Yj
β1

)

1{Yj ≥R2,1 (r )2 }

}]

× E

[
∏

j∈N
LG,2

(

θ2

(

r

|X2, j |

)2β2
) �����
|X2, j | ≥ r, j ∈ N

]
dr,

(A· 6)

where by applying (20), the second expectation in the inte-

grand of (A· 6) is equal to

E

[
∏

j∈N
LG,2

(

θ2

(

r

|X2, j |

)2β2
) �����
|X2, j | ≥ r, j ∈ N

]

= exp

{

−2πλ2

∫ ∞

r

[
1 − LG,2

(

θ2

(

r

s

)2β2
)]

s ds

}

.

Hence, substituting this to (A· 6) and applying Yi ∼
Gam(i, πλ1/α), i ∈ N, we obtain (24c)–(24d) after some

manipulations. □
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