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Spatial modeling of biological 
patterns shows multiscale 
organization of Arabidopsis 
thaliana heterochromatin
Javier Arpòn, Kaori Sakai, Valérie Gaudin* & Philippe Andrey*

The spatial organization in the cell nucleus is tightly linked to genome functions such as gene 
regulation. Similarly, specific spatial arrangements of biological components such as macromolecular 
complexes, organelles and cells are involved in many biological functions. Spatial interactions 
among elementary components of biological systems define their relative positioning and are key 
determinants of spatial patterns. However, biological variability and the lack of appropriate spatial 
statistical methods and models limit our current ability to analyze these interactions. Here, we 
developed a framework to dissect spatial interactions and organization principles by combining 
unbiased statistical tests, multiple spatial descriptors and new spatial models. We used plant 
constitutive heterochromatin as a model system to demonstrate the potential of our framework. 
Our results challenge the common view of a peripheral organization of chromocenters, showing that 
chromocenters are arranged along both radial and lateral directions in the nuclear space and obey a 
multiscale organization with scale-dependent antagonistic effects. The proposed generic framework 
will be useful to identify determinants of spatial organizations and to question their interplay with 
biological functions.

From macro-molecular complexes and organelles up to cells and tissues, living systems present complex spatial 
organizations, with speci�c arrangements of their elementary components. Deciphering these organizations is 
a major goal in biology because they are tightly related to biological functions. For example, at the sub-cellular 
level, the spatial distribution over the plasma membrane of a transporter involved in glucose homeostasis is 
altered during insulin stimulation and in insulin-resistant  context1. At the whole-cell level, the clustering of 
lysosomes is dynamic, coordinates metabolic responses to nutrient availability and determines their interactions 
with  endosomes2,3. At a tissular level, the spatial patterning of stomata is involved in leaf physiology, including 
carbon assimilation and water-use  e�ciency4. �e number and size of elementary components in a biologi-
cal system and the shape of the domains within which these objects are distributed are inherently variable. In 
addition, spatial organizations are most frequently three-dimensional and the underlying rules are generally 
impossible to detect visually from observed patterns. �ese are all major obstacles to the understanding of spatial 
organization principles.

Spatial interactions are major determinants of spatial organizations. Typically, they manifest themselves by 
mutual dependency in the positioning of objects, such as attraction (leading to clustering) or repulsion (leading 
to regular distributions). Spatial statistics o�er powerful methods to evaluate the existence and nature of such 
interactions by providing comparison tests between observed distributions and model distributions based on 
hypothetical rules of  organization5,6. �ese methods have been essentially developed for applications in domains, 
such as forestry, geography, and epidemiology, where the data consist of single observations, in two dimensions, 
within arbitrary observation windows and where individual objects are assimilated to points. By contrast, spatial 
data in biological imaging typically come as series of repeated observations, in three dimensions, within �nite 
domains and are related to objects that cannot be reduced to points. While it is essential to take into account 
these speci�c features of biological data for unbiased spatial analyses, they have been rarely considered, and 
only  separately7–13. In addition, spatial studies generally rely on the comparison between observed patterns and 
complete spatial randomness, which represents a basic reference model only. In this work, we address the need 
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for new spatial statistical approaches and for more elaborated reference models to �nely dissect spatial organiza-
tion rules in living systems from imaging data.

We choose the interphase cell nucleus as a unique and challenging model system for investigating spatial 
patterns and organization rules in biological systems. Indeed, it is a highly-organized and dynamic system that 
contains numerous structurally, biochemically, epigenetically or topologically de�ned compartments (reviewed 
 in14–19). Intricate links have been established between the spatial and compartmentalized organization of the 
cell nucleus and gene regulation, developmental processes, and  diseases20,21. Constitutive heterochromatin, one 
of the �rst described nuclear  compartments22,23, can form well-de�ned chromocenters (CCs) in several animal 
and plant species, such as Arabidopsis thaliana. �e polymorph appearance and dynamics of CCs according to 
cellular, developmental or physiological contexts and environmental  responses8,19,24–31 suggest functional roles 
of CCs. A better characterization of the CC spatial organization is required to evaluate their roles in nuclear 
organization and genome functions.

Here, we developed a framework to investigate spatial interactions and principles of organization in living 
systems and used it to reveal new distribution rules for plant CCs. Our framework relies on modeling the spatial 
distribution of real-sized objects within �nite 3D domains from multiple imaging observations. We previously 
demonstrated the more regular distribution of constitutive heterochromatic compartments than expected under 
randomness, and the conservation of this speci�c nuclear feature in animals and  plants32. We introduced in our 
new framework a series of models (sets of rules that describe the positioning of objects) that increasingly �t with 
the observed CC distribution. Our results challenge the classical view according to which interactions with the 
nuclear periphery are su�cient to account for CC distribution. We show that additional interactions are required 
to fully explain the spatial arrangement of CCs and highlight a multiscale organization of CCs with maximal 
repulsion at large scale. �e capacity of the proposed generic framework to unmask elaborate organizational 
rules o�ers new perspectives for analyzing spatial organizations in cell and developmental biology.

Testing departure from complete randomness shows a multiscale organization 
of chromocenters
�e framework we developed to investigate rules of organization in 3D domains consists in evaluating the 
goodness-of-�t between spatial models and sets of observed object patterns. �e input data, extracted from 
collections of segmented images (Fig. 1A–C), are 3D patterns of objects represented in the continuous space by 
their equivalent spheres and distributed within con�ned domains represented by their boundaries (Fig. 1D). Each 
observed pattern is quantitatively characterized using spatial descriptors (distance functions). Using continuous 
space representations allows to avoid distance measurement approximations that are inherent to discrete image 
representations we previously  used32. Patterns simulated according to the model to be tested are quanti�ed with 
the same spatial descriptors. �e adequacy between the observed pattern and the simulated patterns is quanti�ed 
using normalized measures called Spatial Distribution Indexes (SDI). �e goodness-of-�t between a model and a 
set of observed patterns is tested based on the uniformity of the SDI distribution (see Methods). Indeed, uniform 
SDI distributions are expected when comparing observed patterns to a model that �ts with their organization 
rules (Figure S1AB). Conversely, non-uniform SDI distributions are expected when the tested spatial model does 
not fully account for the spatial organization of the analyzed patterns (Figure S1CD and EF).

Domain size and shape, number and sizes of individual objects are confounding factors for the analysis of 
spatial interactions. For example, the distances between randomly distributed objects depend on the domain 
size. To ensure di�erences between observed patterns and model simulations only result from di�erences in 
organization rules, these factors are set in the model to observed values and shapes.

To demonstrate its potential, we applied our new framework to 3D patterns of chromocenters (CCs) within 
isolated nuclei of Arabidopsis thaliana seedlings. 3D confocal microscopy images of DAPI-stained nuclei were 
acquired and processed to extract nuclear boundaries, CC centroid positions and CC volumes (Fig. 1A–D). 
Measuring nuclear size and shape revealed morphological heterogeneity in the population of analyzed nuclei 
and showed that many nuclei departed from perfectly spherical shapes (Fig. 1E). �e distribution of the number 
of CC per nucleus was also spread. Many nuclei contained more than 10 CCs (Fig. 1F), showing a large propor-
tion of nuclei had undergo endoreduplication. Chromocenters were also morphologically variable (Fig. 1G). 
However, in contrast with nuclei, CC variability essentially a�ected their size, as shown by the large coe�cient 
of variation (CV) of CC volume (CV = 67.9%) compared to CC sphericity (CV = 16.4%). �e distribution of CC 
sphericity was concentrated near the maximal value 1.0, showing they could correctly be assimilated to spherical 
objects (Fig. 1G). Altogether, nuclear and CC features con�rmed that several parameters (domain size, domain 
shape, number of objects, size of objects) could potentially confound the analysis of CC spatial organization 
rules, and con�rmed the need for a methodology that can take into account these potential biases by appropriate 
normalization procedures.

Comparing observed patterns to a completely random model of object distribution, we previously showed 
that CCs in A. thaliana cell nuclei exhibit a more regular than random, repulsive-like spatial  distribution32. �is 
conclusion was based on short-range spatial descriptors (function F: cumulative distribution of the distance 
between a typical 3D position and its closest object; function G: cumulative distribution of the distance between 
each object and its nearest neighbor; Fig. 2B,C) that revealed negative spatial interactions at a local scale. Here, we 
examined whether such negative interactions were also present at larger scales by using an additional descriptor, 
function H (cumulative distribution of the distance between any pair of objects), which quanti�es inter-distances 
at all scales (Fig. 2D)5.

We �rst tested our new framework using functions F and G. �ese functions were computed for each observed 
pattern and compared to F̂rand and Ĝrand , the estimates of these functions under the completely random object 
model (Fig. 2A), which were obtained by averaging over model simulations. For each observed pattern, the 
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corresponding simulations were conditioned on the observed shape of the nucleus and on the number and 
individual sizes of CCs in the pattern. A similarly conditioned second set of simulations were performed to 
estimate the expected �uctuations around the averages under the model and to compute the SDIs (see Methods).

For most nuclei (as the one shown in Fig. 2A′), the observed function F was shi�ed to the le� of F̂rand 
(Fig. 2B′), showing that regions devoid of CCs were on average smaller than under a random distribution. 
�e slope of the observed function F was steeper, pointing to a more homogeneous size distribution of empty 
spaces between CCs. Function G was shi�ed to the right of Ĝrand (Fig. 2C′), corresponding to larger distances 

Figure 1.  Generation of 3D representations in continuous space from discrete image data and quantitative 
image analysis of Arabidopsis thaliana plantlet nuclei. (A) Confocal image of an A. thaliana DAPI-stained 
nucleus. Chromocenters appear as bright foci. Scale bar: 1 µ m. (B) Segmentation mask of the nucleus. 
(C) Segmentation masks of the chromocenters. ABC show maximum intensity projections of the corresponding 
3D images. (D) 3D reconstruction of the nucleus (triangular mesh) with chromocenters represented by their 
equivalent spheres. (E) Distribution of nuclear size and shape parameters. (F) Distribution of the number of 
chromocenters per nucleus. (G) Distribution of chromocenter size and shape parameters.
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Figure 2.  Completely random object distribution model and its application to chromocenters in A. thaliana 
cell nuclei. (A) Completely random object model in con�ned domain. Objects are placed at random positions, 
avoiding intersections with other objects or with domain boundary ∂D . pi : centroid position of object i; ri : 
equivalent radius of object i; p′

i : boundary point closest to pi . (A′, A”) Two sample nuclei from the analyzed 
population (scale bar: 5 µm). (B–D) Distance measurements used to compute functions F, G, and H, 
respectively. Black dots: object centroids; Gray dots: space positions. (B′, B”) Measured (Blue) and model (Black) 
functions F in the two sample nuclei shown in (A′, A”). Dotted lines: lower and upper limit of the 95% envelope 
(Grey) under the model. (B’’’) Distribution of the F-SDI in the population of nuclei. Dotted line: distribution 
expected under the completely random model. (C′, C”, C’’’) Same as (B′, B”, B’’’) with function G. (D′, D”, 
D’’’) Same as (B′, B”, B’’’) with function H.
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between each CC and its nearest neighbour than under the random model. In some nuclei (as the one shown 
in Fig. 2A”), the F and G functions exhibited a reverse behavior (Fig. 2B”,C”), suggesting that some CCs in these 
nuclei were closer than under complete randomness. At the population level, the bimodal F-SDI (Fig. 2B′′′) and 
G-SDI (Fig. 2C′′′) distributions con�rmed the mixed trend towards regularity or clustering at the local scale. We 
found no link between this heterogeneity of SDIs and the heterogeneity in nucleus morphology or number of 
chromocenters, suggesting no relation with ploidy levels (Figure S2). �e majority of F-SDI and G-SDI values 
were close to 0 and 1, respectively, showing the prevailing trend towards regularity. �ese results con�rm our 
previous results showing a more regular than random, repulsive-like organization of  CCs32.

Function H was shi�ed to the right of Ĥrand (Fig. 2D′), suggesting that the negative spatial interactions were 
manifest up to the largest spatial scale. �e few nuclei showing a trend for clustering on a local scale (Fig. 2B”C”) 
exhibited the same shi� of H to the right of Ĥrand (Fig. 2D”). Hence, for these nuclei, there was a mix of both 
positive and negative interactions depending on the considered spatial scale. At the population level, the H-SDI 
had a unimodal distribution that was concentrated towards the right end of the SDI range (Fig. 2D′′′). Overall, 
the multiscale analysis resulting from the combination of functions F, G, and H reveals that (i) the distribution of 
CCs systematically exhibits regularity at a global scale and that (ii) the negative spatial interactions that subtend 
this regularity can be partially released or reversed on a local scale.

New descriptors demonstrate spatial interactions between chromocenters 
and nucleus boundary
�e repulsive-like distribution of CCs led us to examine their radial positioning. �e analysis of radial positioning 
is essential in spatial studies of biological objects because of the functional importance of domain boundaries 
such as cell membrane or nuclear envelope. �is type of analysis is based on distance measurements between 
objects and domain center or periphery, possibly including normalization scheme for variations in domain 
 size33. However, small distances to the border are not indicative of a preferential positioning at the periphery. 
For example, in a unit sphere, a uniformly random point has a probability of ∼.85 of being closer to the border 
than the center. Hence, evaluating spatial interactions with domain boundary cannot be based on measured 
distances only but requires appropriate statistical testing.

Because mutual exclusion between real-sized objects can in�uence their positioning, we �rst examined 
the impact of object size on radial distributions. Using the random object model, we simulated ensembles of 
non-intersecting spheres of varying radius within a spherical domain. We found that radial distributions were 
depending on object sizes. �e spacing to the border was on average smaller for large objects compared with 
small ones (Fig. 3A, Le�). Large objects were also relatively closer to the domain boundary than small objects 
(Fig. 3A, Right). �is shows that the reduced spacing between large objects and domain boundary was not just 
a simple consequence of their larger size but was also resulting from mutual exclusion between objects. �ese 
results highlight how important it is to take into account object sizes for an unbiased radial analysis.

We introduced two new spatial descriptors to evaluate the peripheral positioning of real-sized objects within 
con�ned domains, allowing to test the preferential positioning of objects towards or away from the domain 
boundary (function B) or center (function C). Function B is the cumulative distribution function of the distance 
between object centroid and the border of the domain (Fig. 3B). Function C is the cumulative distribution func-
tion of the distance between object and domain centroids (Fig. 3C). �ough they are based on classical distance 
measurements (distance to domain boundary or center), introducing functions B and C into our framework 
allows the unbiased testing of radial and peripheral positioning of objects. When the SDIs are computed using 
simulations from the completely random model, the null hypothesis in the population test based on function B 
or on function C is that object positions are independent from the domain boundary or center, respectively. For 
each function, the null hypothesis is rejected if the corresponding SDI distribution is not uniform. For example, 
signi�cantly small or large B-SDIs correspond to object distributions with preferential localization close to, or 
away from the domain boundary, respectively (Figure S1D and F).

For most nuclei, the individual functions B exhibited a trend towards smaller distances to the border com-
pared with a completely random distribution of CCs conditioned by actual CC sizes and domain shape (Fig. 3B′). 
�is was con�rmed at the population level by the strongly skewed distribution of B-SDIs towards 0, which was 
signi�cantly di�erent from the expected uniform distribution under the random model (Fig. 3B”). However, 
the B-SDI distribution was heterogeneous, with a large peak near 0 followed by a uniform distribution up to 1. 
A large proportion of nuclei were �at. If CCs are randomly distributed along the direction of �attening but are 
close to the domain periphery in the plane orthogonal to this direction, function B may fail to reveal signi�cant 
interactions between objects and domain boundary but function C should unmask the peripheral location. Con-
sistently, function C measured on individual nuclei was generally shi�ed towards higher distances as compared 
with the random distribution (Fig. 3C′). �is was con�rmed at the population level by the skewed distribution 
towards 1 of the C-SDI (Fig. 3C”). Overall, these results provided an unbiased demonstration of the preferential 
localization of CCs at the periphery of the nucleus in A. thaliana cells.

Orbital model reveals new spatial interactions beyond chromocenter peripheral 
positioning
Numerical simulations showed that a preferential localization at the periphery of the domain su�ces to induce 
a repulsive-like (more regular than random) organization: in patterns simulated with object attraction to the 
border, distances to nearest neighbors were larger than under complete randomness, as shown in individual 
plots of function G and in the population distribution of the G-SDI (Figure S1C). We thus asked if the spatial 
heterogeneity (non-homogeneous probability for a CC to be located at some position) demonstrated above in 
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the peripheral analysis was su�cient to explain the discrepancy between observed patterns and complete ran-
domness, or if additional spatial interactions between CCs were also involved.

We addressed this question by introducing an orbital model of object distribution, generalizing the orbital 
model of object pair introduced  in34. In our orbital model, each object is uniformly distributed at random over 
an orbit de�ned by a given distance between the object centroid and the domain boundary (Fig. 4A). Di�erent 
objects can be located on orbits with di�erent distances to the boundary. As in the completely random model, 
object sizes are taken into account to prevent intersections. �e null hypothesis of the population test is that 
the object distribution is fully determined by the orbital distances. �e alternative is that spatial interactions 
other than the interaction with domain boundary determine the positioning of objects. �e test is performed by 
comparing simulated orbital patterns to the observed ones based on SDI distribution uniformity.

Figure 3.  Testing spatial interactions between objects and domain boundary with application to the peripheral 
positioning of chromocenters in A. thaliana cell nuclei. (A) Radial positioning of spherical objects uniformly 
distributed at random within a unit sphere (averages over 10,000 simulated patterns containing 10 objects 
of radius r). Le�: spacing between objects and sphere boundary. Right: distance to sphere center following 
normalization of maximum distances to 1. (B) Distance measurement between object centroid and its closest 
point on domain boundary used for function B. Same notations as in Fig. 2. (B′) Function B (Blue) measured 
in a sample nucleus (Inset; scale bar: 2 µm). Black and Grey: average function and 95% envelope, respectively, 
under the completely random model. (B”) Distribution of the SDI computed using function B in the population 
of nuclei. Dotted line: distribution expected under a random organization. (C) Distance measurement between 
object and domain centroids used for function C. M: domain centroid. (C′, C”) Same as (B′, B”) with function 
C.
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We applied the orbital model to CCs, setting the orbital distance of each CC in model simulations to its 
measured distance to the nuclear boundary. As above for the comparison to the random model, the other model 
parameters (nuclear size and shape, number and individual sizes of CCs) were all taken from experimental obser-
vations. �e three distance functions F, G and H all revealed a marked di�erence between the observed patterns 
and model predictions. �e F-SDI distribution was concentrated near 0 (Fig. 4B) and conversely, the G- and 
H-SDI distributions were concentrated near 1 (Fig. 4C,D), all suggesting a more regular (repulsive-like) spatial 
distribution of CCs as compared with the orbital model. We concluded that the apparent repulsion between 
CCs (Fig. 2) cannot result only from their preferential positioning at the periphery. Additional, negative spatial 
interactions (direct or indirect) govern the distribution of CCs in A. thaliana nuclei.

Maximal repulsion accounts for the large scale distribution of chromocenters
Confronting observed CC distributions to the completely random and to the orbital models showed a trend 
towards regularity that manifests repulsive spatial interactions. �is raises the question of the strength of these 
interactions, and in particular to what extent the apparent repulsion between CCs, and hence the regularity of 
their distribution, is maximal or not.

To address this question, we de�ned a maximal repulsion model, which corresponds to the distribution in 
which the average distance between each object and its nearest neighbor is maximized. We combined this model 
with the orbital model. �e resulting orbital maximal repulsion model was obtained from the maximal repulsion 
model by introducing the additional constraints that objects should be maintained over their orbits (Fig. 5A). �e 
input parameters for the orbital maximal repulsion model are the same as for the orbital model (domain shape, 
number of objects, individual object sizes and orbital distances). For each individual CC pattern we analyzed, 
these parameters were set in model simulations to the values measured on the pattern.

At the local scale, as assessed using functions F and G, there was a strong discrepancy between observed CC 
patterns and model predictions. For most nuclei, the observed function F showed an excess of large distances 
compared with the model (Fig. 5B). �is showed that regions devoid of CCs were larger in the observed pat-
terns than expected under the orbital maximal repulsion model, thus corresponding to less repulsive patterns. 
Symmetrically, the observed function G was almost systematically shi�ed to the le� of the distribution expected 
under the model, revealing smaller nearest neighbor distances (Fig. 5C). �ese individual observations were 
corroborated by the population distribution of the F-SDI (Fig. 5B′) and of the G-SDI (Fig. 5C′), which were 
concentrated near 1 and 0, respectively. �ese results show that spatial interactions between CCs at short range 
are not maximally repulsive.

For most nuclei, function H exhibited a di�erential behavior depending on the distance between CCs. In 
the small distance range, there was a strong excess of CC inter-distances as compared with the orbital maximal 
repulsion model (Fig. 5D), which was consistent with the behavior of function G. However, in the intermediate 
to long distance ranges, the observed function H was much closer to the average distribution expected under the 
model, and for most nuclei it was generally enclosed within the 95% envelope (Fig. 5D). �is biphasic behavior 
of function H was re�ected at the population level by the bimodality of the H-SDI distribution (Fig. 5D′). To 

Figure 4.  Testing the contribution of spatial heterogeneity (interaction between objects and domain border) 
to object distributions in con�ned domains, with application to A. thaliana chromocenters. (A) Orbital model: 
object positions are randomly positioned over orbits (Green), avoiding overlaps between objects. Same notations 
as in Fig. 2. (B–D) Evaluation of the orbital model on the distribution of chromocenters in A. thaliana cell nuclei 
using the SDI method and functions F (B), G (C) and H (D).
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examine more closely the patterns in the long distance range, we introduced a new spatial descriptor, function 
Z, de�ned as the cumulative distribution function of the distance between each object and its farthest neighbor 
(Fig. 5E). For most nuclei, function Z was very close to the distribution expected under the model (Fig. 5E′). 
At the population level, the Z-SDI covered the whole range between 0 and 1 (Fig. 5E”, Blue). �is widely spread 
distribution radically di�ered from the Z-SDI distributions obtained with the completely random and orbital 
models (Fig. 5E”, Magenta and Orange), showing that the orbital maximal repulsion model was on average better 
capturing the long distance range organization of CCs.

Figure 5.  Orbital maximal repulsion model of object distribution and its application to the distribution of 
chromocenters in A. thaliana cell nuclei. (A) Orbital maximal repulsion model: objects are positioned as far 
as possible from their nearest neighbor while moving over their respective orbits. (B) Measured (Blue) and 
model (Black) functions F in a sample nucleus (Inset; scale bar: 2 µm). Dotted lines: lower and upper limit of the 
95% envelope (Grey) under the model. (B′) Distribution of the F-SDI in the population of nuclei. Dotted line: 
distribution expected under the orbital maximal repulsion model. (C, D) Same as (B) for functions G and H. 
(C′, D′) Same as (B′) with the G and H-SDIs. (E) Distance measurements used to compute function Z. (E′, E”) 
Same as (B, B′) for function Z. Magenta and Orange: Z-SDI histograms for the completely random and orbital 
models, respectively.
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To assess the amplitude of di�erences between observed and modeled patterns, we compared average distances 
under the three tested spatial models. �e average nearest neighbor distance con�rmed the signi�cant depar-
ture at the local scale between observed CC distributions and each of the three models (Fig. 6A; for all models, 
P−value < 2.2 10

−16 , Wilcoxon signed rank test). �e average inter-chromocenter distance con�rmed the more 
repulsive organization of CCs compared with the completely random and orbital models ( P−value < 2.2 10

−16 ), 
and the closer organization to that predicted by the orbital maximal repulsion model (Fig. 6B; P−value = 0.66 ). 
�e average distance to the farthest CC was in perfect agreement between observations and predictions under the 
orbital maximal repulsion model (Fig. 6C; P−value = 0.99 ), thus con�rming the scale-dependent behavior of 
CC organization. Overall, our results strongly suggest a multiscale organization of CCs with a maximally regular 
organization at the global scale and, simultaneously, a non-maximally regular organization at the local scale.

Discussion
Because space matters in biological processes, we developed a new statistical framework to evaluate advanced 
spatial models that could account for biological object 3D distribution and help to understand functional cor-
relations and identify determinants of spatial arrangements. As a study case, we explored the organizational rules 
underlying the nuclear distribution of the constitutive heterochromatin compartment in interphase nucleus of the 
A. thaliana plant model. With our framework, we could address new questions and reveal several new features 
in the spatial arrangement of A. thaliana chromocenters.

An objective demonstration of chromocenter peripheral location. It is commonly accepted that 
CCs are located preferentially at the nuclear  periphery35,36. Observing proximity alone is not su�cient to con-
clude to a signi�cant interaction, since there is a high probability for a point to be located by pure chance close 
to the  periphery19. Methods have been proposed to test the statistical signi�cance of spatial interactions between 
positions and nuclear  boundary37–40 and more generally between positions within a domain and the domain 
 boundary41. Because CCs are real-size objects that cannot be assimilated to points, these methods cannot be 
applied to evaluate their peripheral positioning. It is well known that neglecting object size in spatial analysis can 
cause spurious detection of spatial  interactions42–44. We show here that in a con�ned domain, randomly distrib-
uted objects are located relatively closer to the periphery when their size increases, as a result of mutual exclu-
sion. Hence, comparing observed CCs patterns with a uniform distribution of points could lead to erroneously 
conclude to a signi�cant peripheral positioning. �e framework we propose avoids these pitfalls by integrating 
unbiased statistical tests coupled to spatial distance functions B and C. We corroborate previously reported 
 observations38,40 by presenting the �rst objective demonstration of a peripheral positioning of CCs at the nuclear 
boundary. Our approach provides the basis for sound assessments of dynamics at the nuclear periphery under 
various physiological, genetic or environmental conditions.

Recent works have put forward the role of phase separation in the compartmentalization of chromatin and the 
importance of tethering at the periphery in the conventional nuclear  organization45–48. �ough physical interac-
tions between plant heterochromatin domains and nuclear periphery have been  reported49–52, the molecular basis 
of the peripheral localization of CCs remains unknown. In addition, increased distance between CCs and nuclear 
border have been reported in mutants of nuclear envelope  components40, but it remains unknown whether the 
preferential positioning is also a�ected. �e ability of our methodology to quantitatively assess spatial interac-
tions with nuclear boundary will be useful to address these questions.

New dimensions in the spatial organization of chromocenters. We found that the CC distribution 
was more repulsive than expected under the orbital model we introduced, thus showing that the peripheral posi-
tioning of CCs is not su�cient to explain their apparent repulsion. Hence, our results lead to a reassessment of 

Figure 6.  Observed and predicted average distances under the completely random (Magenta), the orbital 
(Green), and the orbital maximal repulsion (Orange) models. (A) Average distance between each chromocenter 
and its closest neighbor. (B) Average distance between pairs of chromocenters. (C) Average distance between 
each chromocenter and its farthest neighbor.
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the common view of the peripheral location of CCs and suggest that they organize instead along two directions 
in the nuclear space, one radial (peripheral positioning) and one lateral (regular positioning at the periphery). 
In addition, our new orbital maximal repulsion model was close to the observed distribution of CCs at the larg-
est spatial scale. Hence, spatial interactions between CCs depend on the considered spatial scale, with close to 
maximally repulsive spatial interactions at long range. Overall, our study highlights complex, multi-scale spatial 
interactions inside the cell nucleus with new interactions between CCs beside their putative interactions with 
the nuclear periphery (Fig. 7).

�e organization principles we revealed seem robust and shared, since they were independent from the 
observed diversity in nuclear morphology and number of CCs. �e observed nuclear heterogeneity re�ects the 
diversity of cell type and size present in plantlet  tissues53,54, and also suggests variability in ploidy levels since 
DNA content, nuclear size, and cell size are  correlated55,56. Some nuclei contained more than 10 CCs, con�rming 
a signi�cant amount of polyploidy was present in the analyzed population, given in addition that the propor-
tion of such nuclei only provides an under-estimate of the actual level of polyploidy. �is heterogeneity had no 
counterpart in the SDI distributions obtained under di�erent models and spatial descriptors and we found no 
relation with CC spatial organization. �e ploidy-independent CC organization thus suggested by our spatial 
analyses is consistent with previous studies reporting independence between nuclear size and morphology of CC 
patterns in leaf  nuclei57, conserved spatial organization of A. thaliana chromosome territories between nuclei of 
di�erent morphologies and cell  types58 or ploidy  level59, and similar HiC maps in diploid and polyploid  nuclei51. 
We previously demonstrated that the non-random distribution of CCs was shared between plant and animal 
 species32. Whether the new principles shown here are also more widely conserved remains to be elucidated.

Since observed patterns did not show maximal repulsion in the short distance range, the close to maximally 
negative interactions at long range cannot be interpreted as resulting from the propagation of repulsive short 
range interactions. Simple geometric constraints generated by nuclear partitioning can be invoked when ques-
tioning the mechanistic basis and functional relevance of CC regular arrangements. �e partitioning of the 
nuclear space into CTs, which was previously hypothesized to restrain CC  associations60, could indeed contribute 
to their spatial regularity. Whether the con�nement of CCs to CTs would be su�cient to account for observed 
regularity in both the short and long distance ranges could be tested within our framework based on the simul-
taneous labeling of all CTs and CCs. �e distribution of CCs can alternatively be interpreted as driving, rather 
than resulting from, the arrangement of CTs. For instance, numerical experiments showed that attachments of 
chromosomal regions at the nuclear envelope can impact global chromosome organization and intra- as well 
as inter-chromosome contacts, with CTs being more territorial and establishing less contacts with others when 
the number of attachments  increased61. Given the anchoring of chromatin loops at CCs in Arabidopsis36, the 
regular distribution of CCs at the periphery could similarly contribute to limiting the intermingling and contacts 
between chromatin loops.

Beyond putative interactions with nuclear envelope and constrains imposed by CTs, several nuclear com-
partments and factors may also participate to CC spatial organization. For example, speci�c genomic regions 
(Nucleolus Associated Domains) including centromeric and pericentromeric regions were found associated 
with the  nucleolus16, which was recently shown to subtend high-order interactions across regions from di�er-
ent  chromosomes62. However, much less is known about nuclear organization in plants than in mammals and 
profound di�erences may exist between the two reigns. In A. thaliana, telomeres preferentially associate with 
the nucleolus, while centromeres and CCs are excluded from it except for chromosome 4, which bears the active 
 NOR35,36,63. Our methodology is a statistical one that addresses organization principles on a population of objects. 
It is thus unclear to what extent the sole association of NOR4 with the nucleolus may be determinant in the 
spatial organization traits we reveal here, given in addition that interaction with the nucleolus should probably 
favor a clustered rather than a regularly dispersed distribution of CCs. �ough positive spatial interactions with 

Figure 7.  Schematic summary of elements involved in the 3D organization of heterochromatin. �e three 
spatial models (random model, orbital model and maximal repulsion orbital model), combined with functions 
B, C, F, G, H and Z, unraveled new properties of Arabidopsis chromocenter distribution. A complex, multiscale 
and multiaxis organization of chromocenters was revealed using the proposed framework.
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the nucleolus are unlikely to subtend our observations, the recently reported increased association of centro-
meric regions with the nucleolus in the nuc1 nucleolin  mutant63 raises the question of whether negative spatial 
interactions between CCs and the nucleolus may participate to the repulsive organization shown here. Other 
nuclear factors are likely involved, as suggested for example with recent studies reporting increased centromere 
association in mutants of plant condensin II  subunits64,65.

A new framework for spatial modeling of biological patterns. �e spatial analysis of biological 
point patterns in biological imaging generally rely on single patterns, with a single spatial descriptor, and on 
complete spatial randomness as reference model. �e proposed framework extends these limits by allowing 
analysis over collections of patterns, combining several classical and new descriptors, and by introducing several 
new models.

Testing complete spatial randomness of points or objects is generally considered as a �rst step for spatial 
 analyses5, allowing to evaluate the existence of non-random organization rules and to reveal attractive or repul-
sive trends. However, the completely random model does not allow to question the origin of non-randomness. 
Spatial heterogeneity (non-uniform probability for an object of being located at some position) and spatial inter-
actions (mutual dependence between object positions) are the two possible, non exclusive causes of departure 
from complete randomness in a con�ned domain. Spatial heterogeneity alone can cause spurious interactions, 
as highlighted in our numerical experiments where interactions with the border induced apparent interactions 
between objects that were actually independently positioned. In addition, interactions between objects can also 
superimpose to interactions between objects and domain boundary. Our framework allows to evaluate the exist-
ence and the separate contributions of di�erent interactions, as illustrated here using the orbital model. Similarly, 
the amplitude of repulsion between objects could be assessed using the maximal repulsion model. Beyond the 
models introduced here, the framework can be extended using any spatial model that can be simulated within 
con�ned 3D domains, thus allowing to �nely dissect the rules that underlie spatial organizations.

Most recent studies of biological point patterns rely exclusively on the use of Ripley’s function K, a spatial 
descriptor closely related to function H. However, function K captures only part of the spatial information 
and di�erent processes can exhibit the same function K66. In line with other  authors5,67, we advocate using a 
combination of spatial descriptors to test a model on a data set. One drawback is the need to perform multiple 
goodness-of-�t tests with di�erent descriptors, which may lead to incorrect type-I error if correction  methods68,69 
are not considered. In the present work, the strong departures between most observed SDI distributions and 
uniformity provide su�cient con�dence that our conclusions were not simply due to multiple testing. In addition, 
this potential drawback is moderate compared with the bene�ts. Combining new distance functions (B, C, and 
Z) with classical ones (F, G, and H) was essential to reveal the multiple dimensions of CC spatial organization 
(Fig. 7). First, the objective demonstration of CC peripheral positioning could not have been achieved without 
combining functions B and C, because B was not sensitive to the peripheral positioning in �at nuclei. It has been 
proposed that nucleus �attening should be taken into account by performing analysis in 2D instead of  3D70. We 
believe that combining complementary descriptors is a more suitable alternative, in particular when analyzing 
heterogeneous samples, as it fully exploits the available 3D image information. Second, while functions G and Z 
capture information also quanti�ed by function H, the bene�t of evaluating models using each of these descrip-
tors is to focus on di�erent spatial scales. Since the SDI only captures the largest deviation from the model, using 
multiple descriptors is useful when there are di�erent, possibly antagonist e�ects depending on the spatial scale.

�e expansion of techniques that provide unprecedented spatial information, such as single molecule locali-
zation microscopy, and the concomitant recognition of spatial patterning as a key feature of biological systems 
makes statistical methods for assessing spatial models essential in biological image analysis. In the current era 
of high-throughput data acquisition and analysis, we anticipate increasing needs for analyzing large collections 
of object patterns from subcellular to tissular scales. Because it accommodates for sample heterogeneity with 
respect to domain geometry and object numbers and sizes, we believe our generic framework represents a useful 
contribution for future large-scale analyses of biological spatial patterns.

Methods
Synthetic spatial data. Patterns of 10 spherical objects each were simulated within a spherical domain of 
radius 30 voxels. Object radius was the same for all objects and set to 5 voxels. Patterns were simulated accord-
ing to the completely random model of object distribution (see below), or with attraction to the border of the 
domain, or with repulsion from the border of the domain. Each pattern was simulated by introducing the objects 
one a�er the other. For each new object, a valid candidate position (i.e., a position for which no intersection with 
the border or with previously positioned objects occurred) was selected uniformly at random within the spheri-
cal domain. For the model with attraction to the border, the position was accepted if its distance d to the border 
was smaller than a �xed distance µ . Otherwise, the position was accepted with a probability that decreased when 
the distance to the border increased:

In case the position was not retained, a new candidate position was selected. For the model with repulsion from 
the border, the procedure was symmetrical: the position was retained with the above probability if closer than µ 
from the border, and systematically accepted otherwise. We set µ to 5 voxels for the border attraction model and 
to 15 voxels for the border repulsion model. For both models, we set σ to 5 voxels. For the completely random 
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model, the candidate position was systematically accepted. For each of the three spatial models, we generated 
100 images of simulated patterns.

Biological material. Seeds of Columbia (Col-0) A. thaliana accession were sown on sterile  medium71 and 
grown in vitro at 20 ◦

C , 70% humidity, 36 µmolm
−2

s
−1 light intensity and under short day conditions (8 h 

light/16 h dark). Young seedling (18-day-post-germination) were harvested, �xed in 4% paraformaldehyde in 1 
× PBS bu�er and used to prepare a nuclei suspension as described  in32. �e �xed plantlets were chopped in 500 
µ l of extraction bu�er (10 mM Tris–HCl pH 7, 4 mM spermidine, 1 mM spermine, 5 mM MgCl2 , 0.1% triton 
X-100, 5 mM β-mercaptoethanol). A�er �ltration through a 50 µ m nylon mesh, the suspension was centrifu-
gated (5000g, 3 min) and the pellet washed in 1 × PBS, treated with 0.5% triton X-100 in 1 × PBS and washed in 
1 × PBS. Nuclei were resuspended in 30 µ l 1 × PBS. An aliquot was spotted on a slide, le� to evaporate at 4 ◦

C for 
20 min. Counterstaining was performed to visualize the CCs independently from their chromosomal origin by 
mounting samples in VECTASHIELD antifade mounting medium (Vector laboratories) with 1 mg/ml of DAPI. 
A total of 210 nuclei were analyzed.

Nucleus imaging. Images of isolated nuclei were acquired on a Leica SP2 AOBS or a LSM ZEISS 710 confo-
cal microscope both equipped with a 405 nm diode and with a 63 × HCX PL APO (NA 1.2, WD 220 µ m) and a 
63 × Plan-APOCHROMAT (NA 1.4, WD 190 µ m) objectives, respectively. �e 3D image stacks were acquired 
with a voxel size of 0.05–0.01 µ m in the XY plane and of 0.01–0.02 µ m along the Z-axis. �e anisotropy of voxel 
sizes in XY-Z was taken into account in all subsequent size, shape, and distances measurements.

Image processing and analysis. Nuclei and chromocenters were segmented from 3D DAPI images 
(Fig. 1A) as detailed  previously32. In short, binary masks of nuclei were obtained by �ltering then thresholding 
images using Otsu’s method followed by threshold correction. Morphological operators were applied to �ll holes 
and to regularize nuclear contours (Fig. 1B). A Marching Cubes algorithm was applied to the binary mask of 
each nucleus to generate a triangular mesh of the nuclear boundary (Fig. 1D, Grey mesh). Segmented images 
of chromocenters were obtained using the watershed transform run on the Gaussian gradient of the intensity 
image, followed by morphological operators on region adjacency graphs and thresholding on region constrast 
(Fig. 1C). �e centroid and equivalent spherical radius of each chromocenter were computed and used to rep-
resent the chromocenter by its equivalent sphere (Fig. 1D, Color spheres). Detailed procedures and algorithms 
are given  in72.

Distance distribution functions. Object patterns were quantitatively characterized using classical (F, G, 
and H;5) and new (B, C, and Z) distance distribution functions. We note P a pattern of N objects represented by 
their centroid positions p1, . . . , pN within a �nite domain D.

Function F is the cumulative distribution function (CDF) of the distance between any point position q ∈ D 
and the centroid of the closest object (Fig. 2B):

where η(q) = argminp∈P �p − q� . Function F quanti�es the void spaces between objects. Large spaces are 
expected in the case of object aggregation, while smaller and more regular spaces are expected in the case of a 
repulsive-like distribution.

F was estimated by �rst de�ning a set of L positions {q1, q2, . . . , qL} inside the nucleus and by then comput-
ing the distances to their nearest chromocenters. �e estimation F̂(x) of F(x) was the observed proportion of 
distances inferior to x:

where 1{E} is the indicator function of event E. �e positions q1, . . . , qL were taken as the set of voxel centers in 
the nucleus binary mask.

Function G is the CDF of the distance between any object p and its nearest neighbor (Fig. 2C):

Small (large) distances to the nearest neighbor are expected in the case of attraction (repulsion) between objects.
Function G was estimated using the empirical distribution of this distance:

Function H is the CDF of the distance between any two object centroids pi and pj (Fig. 2D):

Function H captures the spatial correlations between objects depending on their distances.
Function H was estimated from the empirical distribution:

(1)F(x) = P(�q − η(q)� < x)

(2)F̂(x) =
1

L

L∑

k=1

1{�qk−η(qk)�<x}

(3)G(x) = P(�p − η(p)� < x)

(4)Ĝ(x) =
1

N

N∑

i=1

1{�pi−η(pi)�<x}

(5)H(x) = P(�pi − pj� < x)
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Function B is the CDF of the Euclidean distance between the centroid of any object and the closest point on the 
border ∂D of the domain (Fig. 3B):

where p′ = argminq∈∂D �p − q� . �is distance should be smaller than under randomness if objects are prefer-
entially located close to the border, and larger if objects tend to avoid peripheral locations (Figure S1D and F).

Function B was estimated using:

where p′

i is the closest point to pi on the observed boundary ∂D̂ (Fig. 3A).
Function C is the CDF of the distance between the centroid of any object and the centroid M(D) of the 

domain (Fig. 3C):

�is distance should be larger than under randomness if objects are preferentially located close to the border, 
and smaller if objects tend to avoid peripheral positions.

Function C was estimated using:

where M(D̂) is the centroid of the observed domain.
Function Z is the CDF of the distance between the centroid of any object and the centroid of its farthest 

neighbour (Fig. 5E):

where η∗(p) = argmaxq∈P �p − q� . Large values of this distance are expected if there are negative interactions 
between object positions in the long distance range. Conversely, smaller values than under complete randomness 
are expected if objects form a single cluster.

Function Z was estimated as:

Completely random model of object distribution. �e completely random model of object distribu-
tion in a bounded domain of the 3D space was de�ned as a model wherein each object is uniformly distributed 
in the domain and where the positions of di�erent objects are independent, under the constraint that objects 
cannot intersect and cannot intersect with the domain boundary. �e input parameters of the model are the 
domain boundary, the number of objects, and the size (radius) of each object.

We designed an algorithm for generating completely random object patterns, in which objects are added 
one a�er the other, taking care not to intersect previously placed objects and domain boundary. Noting pi and 
ri the position and radius of object i, and p′

i its closest point on domain boundary ∂D , these conditions translate 
respectively to �pi − pj� ≥ ri + rj and �pi − p′

i� ≥ ri (Fig. 2A). Depending on the position of already placed 
objects, it can happen that the next object cannot be placed without causing an intersection. We incorporated 
two mechanisms to prevent the algorithm from being stuck in such a con�guration: (i) when the number of failed 
attempts to place an additional object had reached a threshold, the process was restarted from the �rst object; 
(ii) the order of introduction of the objects into the algorithm was randomized before placing the �rst object.

Orbital model. �e algorithm we designed for generating object patterns according to the orbital model 
was similar to the algorithm used for complete randomness, with the additional constraint that the centroid 
of each object was constrained to remain on its orbit (Fig. 4A). �e additional input parameters in the orbital 
model, compared to the completely random model, were the distances to the domain boundary that de�ned the 
individual orbits of the objects.

Maximal repulsion models. Algorithms are available for simulating classical repulsion models such as 
Matérn’s Poisson hard core processes and Gibbs point  processes73,74. A procedure for simulating repulsive pat-
terns was also proposed  in75 based on simulating a number of completely random patterns and selecting the 
one with maximum average nearest neighbor distances. �ese models and algorithms, however, do not guar-
antee that maximal repulsion and regularity are achieved. We therefore designed an algorithm to simulate pat-

(6)Ĥ(x) =
2

N(N − 1)

N∑

i=1
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terns with maximal repulsion. �e algorithm minimizes an energy function de�ned on the space of possible 
object con�gurations. �e energy of any object con�guration, corresponding to a set of object centroid positions 
p1, . . . , pN , was de�ned as the opposite average distance from each object to its nearest neighbor:

Drawing a realization of the maximal repulsion model started from a completely random object con�guration. 
�e Metropolis  algorithm76 was then used to iteratively converge towards a con�guration minimizing E. At each 
step, one object was picked up at random and randomly moved within the neighborhood of its current position, 
avoiding intersection with domain boundary and with other objects. �e energy di�erence �E corresponding 
to this con�guration change was computed. �e move was systematically accepted if �E < 0 . Otherwise, the 
move was accepted with probability exp(−β�E) . �e procedure was repeated until convergence, as de�ned by 
the stabilization of energy.

�e orbital maximal repulsion model was obtained by combining the orbital model and the maximal repulsion 
model. �e algorithm for simulating a realization of this model started with a realization of the orbital model 
and then applied the energy minimization procedure used for the maximal repulsion model, with the additional 
constraint that the distances between object centroids and domain boundary were kept constant.

Statistical tests. For each input pattern (synthetic or experimental) and each distance function (F, G, etc.), 
the estimate of the function expected under the model (e.g., F̂rand , Ĝrand , etc. for the completely random model) 
was computed by averaging over 99 model simulations. For all models, the domain boundary, the number of 
objects and the object sizes used in simulations were taken from the input pattern. For the orbital model and 
the maximally repulsive orbital model, the orbital distances were set to their values measured in the input pat-
tern. �e maximal signed vertical distance S between the observed pattern function and the model function was 
measured. For function F, for example:

where x∗ is given by:

A second set of 99 simulations was computed. �e Spatial Distribution Index (SDI) was de�ned as the proportion 
of these simulations for which S was below the measured one.

�e uniformity of SDI distributions was tested by applying the two-sided Kolmogorov-Smirnov test under 
the R so�ware version 3.4.477. For all SDI distributions reported from Figs. 2, 3, 4 and 5, the P value of the uni-
formity test was below machine precision.

Observed and model-predicted average distances were compared using Wilcoxon signed rank test for matched 
samples in the R so�ware.

Data availability
�e data set of 3D nuclear images generated and analyzed in this study has been deposited in the Data INRAE 
portal and is publicly available at https:// doi. org/ 10. 15454/ 1HSOIE.

Code availability
�e C++ source code of the program for simulating synthetic patterns, quantifying segmented images of 3D pat-
terns and for evaluating spatial models has been deposited on the Data INRAE portal and is available at https:// 
doi. org/ 10. 15454/ UCRGED. A compiled version of the program running on Ubuntu 18.04 is also included.
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