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Abstract: Gully erosion triggers land degradation and restricts the use of land. This study assesses
the spatial relationship between gully erosion (GE) and geo-environmental variables (GEVs) using
Weights-of-Evidence (WoE) Bayes theory, and then applies three data mining methods—Random
Forest (RF), boosted regression tree (BRT), and multivariate adaptive regression spline (MARS)—for
gully erosion susceptibility mapping (GESM) in the Shahroud watershed, Iran. Gully locations were
identified by extensive field surveys, and a total of 172 GE locations were mapped. Twelve gully-related
GEVs: Elevation, slope degree, slope aspect, plan curvature, convergence index, topographic wetness
index (TWI), lithology, land use/land cover (LU/LC), distance from rivers, distance from roads,
drainage density, and NDVI were selected to model GE. The results of variables importance by RF
and BRT models indicated that distance from road, elevation, and lithology had the highest effect on
GE occurrence. The area under the curve (AUC) and seed cell area index (SCAI) methods were used
to validate the three GE maps. The results showed that AUC for the three models varies from 0.911 to
0.927, whereas the RF model had a prediction accuracy of 0.927 as per SCAI values, when compared
to the other models. The findings will be of help for planning and developing the studied region.

Keywords: gully erosion; environmental variables; data mining techniques; SCAI; GIS

1. Introduction

Today, reducing natural resources, especially soil and water, is one of the major problems and
major threats to human life and is one of the most important environmental problems worldwide that
has intensified in recent years, with increasing population and the alternation of human activities [1].
According to the data from United Nations research, the world’s population is growing at a rate of 1.8%
per year and it is expected to rise from 8 billion in 2025 to 9.4 billion in 2050 [2]. This increase in world
population would demand the need for food, water, forage, and others, which consequently would
add huge pressure on land exploitation, non-standard exploitation, and eventually lead to an increase
in erosion rates [1,3]. Soil erosion is one of the factors that endangers water and soil [1]. Soil erosion by
water, such as GE, is considered as a major cause of land degradation around the world [4,5]. It leads
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to a range of problems, such as desertification, flooding and sediment deposition in reservoirs [6,7],
the destructive effects on the ecosystem reducing soil fertility, and imposes huge economic costs [8].
GE is typically defined as a deep channel that has been eroded by concentrated water flow, removing
surface soils and materials [9,10]. The amount of moisture and its changes as a result of the dry
and wet seasons is a main parameter in creating cracks and grooves in fine-grained clay formations
containing clay and silt, and ultimately developing rilled erosion and gullies [10]. The alternation of
warm and dry seasons makes it possible to create cracks, in the formation of fine grains, in warm
seasons with the drying of the land and the wilting of the vegetation, and these cracks at the time of the
first sudden rainfall concentrate the runoff and therefore cause rill and GE to emerge [11]. GE occurs
when the erosion of the water flow or the erodibility of the sediments or the formation of the area
is higher than the geomorphological threshold of the area [11]. Mapping gully erosion systems is
essential for implementing soil conservation measures [6]. GEVs that influence gully occurrence are
rainfall, topography-derived factors such as elevation, slope degree, slope aspect, and plan curvature,
lithology [12], soil properties [13], and LU/LC [14]. The distribution of precipitation affects the
hydraulic flow and moisture content of the soil, and the erosion strength of the flow and soil resistance
to erosion is different before and after erosion [11]. Generally, the amount and volume of flow are
controlled by the topographic features of the area including slope, aspect, and drainage area of the area.
Depth and morphology of the cross section of the gullies are controlled by soil erodibility features of
the geological layers of the area. The characteristics of the region’s soil affect the subsurface flow and
the phenomenon of piping erosion, and the pipes cause a gully when their ceiling collapses [10].

Susceptibility maps of GE are essential for conservation of natural resources, and for evaluating
the relationship among gully occurrence and relevant GEVs [12]. Several models have been applied to
assess soil erosion and GE rate in a quantitative and qualitative way, such as the Universal Soil Loss
Equation (USLE) [1,15], Erosion Potential Method, Modified Pacific Southwest Interagency Committee
Model (MPSIAC) [16], Water Erosion Prediction Project (WEEP) [17], European Soil Erosion Model
(EUROSEM) [18], Ephemeral Gully Erosion Model (EGEM) [19], and Chemicals, Runoff, and Erosion
from Agricultural Management Systems (CREAMS) [20].

Within the soil conservation research field, the distribution of soil erosion is one of the primary
sources of information. This is also relevant for GE; however, in the above mentioned methods,
spatial distribution of gullies has not been addressed. Remote sensing-based methods to identify GE
have been developed [21], including with RF machine learning, though they serve more to validate
susceptibility models and to explain the actual erosion presence and distribution. In recent years,
scientific research for susceptibility analysis of GE, and work on the statistical relationships between
GEVs and the spatial distribution of gullies, have been addressed using various statistical and machine
learning methods including bivariate statistics (BS) [1], weights-of-evidence (WoE) [13], index of
entropy (IofE) [8], logistic regression (LR) [22–26], information value (IV) [24,25], random forest
(RF) [27], bivariate statistical models [28,29], maximum entropy (ME) [30,31], frequency ratio (FR) [28],
analytical hierarchy processes (AHP) [29], artificial neural network (ANN) [12,31], support vector
machine (SVM) [31], and boosted regression trees (BRT) [12]. For this purpose, various GEVs such as
topography (e.g., elevation, slope, aspect, plan curvature, profile curvature, slope length), lithology,
land use, soil properties (e.g., soil texture, soil type, erosivity, soil water content), land use, climate
(rainfall intensity, rainfall period, and spatial distribution of rainfall), infrastructures (road, bridge)
and hydrology (e.g., TWI, SPI, drainage density) were used.

A comprehensive literature review shows that there are still dimensions that require further
research, and that a large number of potentially useful methods have not yet been fully implemented
to provide GE susceptibility maps. The main objectives of this study are: (i) To determine the
relationship between gully occurrence and conditioning factors using Weights-of-Evidence Bayes
theory, (ii) assessing the capability of RF, MARS, and BRT data mining/machine learning models to
predict GE susceptibility; and (iii) validation of models using the AUC curve and SCAI methods. Study
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of the research background showed that using MARS, BRT, and RF data mining models in GE zonation
is very new. It will help managers in future planning to prevent human intervention in sensitive areas.

2. Materials and Methods

2.1. Study Area

The Shahroud watershed, with an area of about 848 km2 and elevation range from 1084 to 2131 m
a.s.l., is located in the northeastern part of Semnan Province, Iran (Figure 1). The study area receives
an average rainfall of less than 250 mm has an arid and semi-arid climate [32]. Various types of
lithological formations cover this watershed, and the landforms are mainly low level pediment fans
and valley terrace deposits. The dominant land use is rangelands, but irrigation farming and bare
lands are also present.

Figure 1. (a) Location of the Semnan provinces in Iran, (b) location of study area, and (c) gully erosion
locations with the digital elevation model map of the Shahroud watershed.

2.2. Data and Method

Figure 2 shows the methodological approach applied to map GE susceptibility in the Shahroud
watershed using BRT, MARS, and RF models. For preparing an accurate and reliable gully inventory
map, extensive field surveys with a DGPS device were performed in the study area to determine
the location of the Gullies [27,28]. Then, among 172 detected gully locations, randomly (70/30 ratio),
121 gully locations (70%) and 51 gully locations (30%) in the polygon format were used for training the
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testing models [28]. The locations of training and testing gullies are shown in Figure 1. Interventionary
studies involving animals or humans, and other studies require ethical approval must list the authority
that provided approval and the corresponding ethical approval code.

 

TWI = In Stan ∝

Figure 2. Flowchart of research methodology.

The tools used in present study are ArcGIS10.5, ENVI 4.8, SAGA-GIS 2.1.1, and a DGPS. The basic
maps used were geological maps [33], at a scale of 1:100,000, topographic maps, at a scale of 1:50,000,
satellite images acquired by Landsat8, and ASTER GDEM with spatial resolution of 30 m [34].
In this study, based on literature review [24,26,31] and local conditions of the study area, twelve factors
were selected. Elevation map was divided into six classes: <1200 m, 1200–<1350 m, 1350–<1450 m,
1450–1600 m, and >1600 m (Figure 3a). Slope degree affects surface runoff [35], soil erosion, and pattern
of drainage density. Slope degree map was classified into six classes [24,26]: <5◦, 5–<10◦, 10–<15◦,
15–<20◦, 20–<25◦, 25–30◦, and >30◦ (Figure 3b).

The aspect map was classified into nine classes (Figure 3c). Positive and negative values of plan
curvatures define convexity and concavity of slope curvature, whereas zero is flat surface. The plan
curvature map was divided into 3 categories: Concave, Flat, and Convex. The TWI indicator is
important for identifying prone areas to GE [36]. TWI is calculated by Equation (1):

TWI = ln
(

S
tan ∝

)

(1)

TWI map of study area is divided into four classes [24,26,37] including <5, 5–<7.5, 7.5–11, and >11
(Figure 3e). The convergence index (CI) gives a measure of how flow in a cell diverges (convergence
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index in negative and positive values) [38]. The CI map was prepared in SAGA-GIS 2.1.1 and divided
into 3 classes: <0, 0–10, and >10 (Figure 3f). In this research, for the computation of the effect of
drainage network and infrastructures on GE, the distance from rivers and roads was considered [14]
and divided into four classes: <170 m, 170–<370 m, 370–650 m, and >650 m for rivers (Figure 3g)
and <500 m, 500–<1500 m, 1500–3000 m, and >3000 m for roads (Figure 3h). The line density tool
in ArcGIS 10.5 was used for calculating drainage density and then its map was divided into four
categories: <1.4, 1.4–<2.4, 2.4–3.7, and >3.7 km/km2 (Figure 3i). A geological map at a 1:100,000 scale
was used to prepare the lithological unit layer. The lithological units were classified into ten categories
based on their sensitivity to gully occurrence using expert knowledge method (Figure 3j and Table 1).
The advantage of this method is it is easy to use, however this method has certain disadvantages, such
as the possibility of a mistake by the expert.

Table 1. Lithology of the study area.

Code Lithology Geological Age

Murmg Gypsiferous marl Miocene
Qft2 Low level piedment fan and vally terrace deposits Quaternary
Ku Upper cretaceous, undifferentiated rocks Cretaceous

Jd
Well—bedded to thin—bedded, greenish—grey argillaceous
limestone with intercalations of calcareous shale (DALICHAI FM)

Jurassic

PeEz Reef-type limestone and gypsiferous marl (ZIARAT FM) Paleocene-Eocene
PlQc Fluvial conglomerate, Piedmont conglomerate and sandstone. Pliocene-Quaternary
Jl Light grey, thin—bedded to massive limestone (LAR FM) Jurassic-Cretaceous
E2c Conglomerate and sandstone Eocene
PlQc Fluvial conglomerate, Piedmont conglomerate and sandstone. Pliocene-Quaternary
E1c Pale-red, polygenic conglomerate and sandstone Paleocene-Eocene

The LU/LC map was obtained using Landsat 8 images [39–41]. The main LU/LC types identified
in the study area were range, irrigation farming, and bare lands (Figure 3k). The NDVI map was
also produced using Landsat 8 images and classified into 3 categories: <0.11, 0.11–0.25, and >0.25
(Figure 3l).

For multi-collinearity checking, the tolerance (TOL) and variance inflation factor (VIF) were used.
If during modeling there is collinearity among the variables, the accuracy of the model’s prediction
decreases. Values of TOL and VIF were ≤0.1 and ≥10, respectively, indicating that multi-collinearity
among parameters [28].

≤ ≥

  

Figure 3. Cont.
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Figure 3. Gully erosion conditioning factors: (a) Elevation, (b) slope, (c) aspect, (d) plan curvature,
(e) TWI, (f) convergence index, (j) geology, (h) distance from road, (i) drainage density, (g) distance
from road, (k) land use/land cover (LU/LC), and (l) NDVI.

2.3. Gully Erosion Modelling

2.3.1. WoE Model

WoE is according to the Bayesian probability framework, to predict the significance of effective
factor classes through a statistical approach [42–51]. In this method, the spatial relationship between
GE areas and GEVs are identified. The WoE model is based on the calculation of positive (W+) and
negative (W−) weights. This model computes the weight of each GEVs according to the existence or
absence of the gully inventory [52] as follows:

W+
i = ln

(

p{B|L}

P
{

B
∣

∣L
}

)

(2)

W−
i = ln

(

P
{

B
∣

∣L
}

P
{

B
∣

∣L
}

)

(3)

C = W+ + W− (4)

S(C) =
√

S2(W+) + S2(W−
)

(5)

S2(W+
)

=
1

N{B ∩ L}
+

1
{B ∩ L}

(6)

S2(W−
)

=
1

{

B ∩ L
} +

1
{

B ∩ L
} (7)

W =

(

C
S(C)

)

(8)

where ln is the natural log function and P is the probability, B and B indicate the presence and absence
of the gully geo-environmental factor, respectively, L is the presence of gully, and L is the absence of
a gully. W+ and W− are positive and negative weights, with W+ indicating that a geo-environmental
factor is present in the gully inventory. S2(W+

)

is the variance of the W+ and S2(W−
)

is the variance
of W−. C indicates the overall association between GEVs and gully occurrence. S (C) is the standard
deviation of the contrast and W is final weight of each class factor.

2.3.2. RF Model

RF is a controlled learning method that uses multiple trees in the classification [21]. The RF
algorithm, by replacing and continuously changing the factors that affect the target, leads to the creation
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of a large number of decision trees, then all trees are combined to make decisions [21]. The RF consists of
3 user-defined parameters, which include: (1) The number of variables used in the construction of each
tree, which expresses the power of each independent tree; (2) number of trees in RF; and (3) minimum
number of nodes [43]. RF prediction power increases with the increasing strength of independent trees
and reducing the correlation between them [44]. This algorithm uses 66% of the data to grow a tree
called Bootstrap, and then a predictor variable is introduced randomly during the growing process to
split a node in the tree construction. The remaining 33% of the data is also used to evaluate the fitted
tree [45]. This process is repeated several times and the average of all predicted values is used as the
final prediction of the algorithm. In this model, two factors, including the mean decrease accuracy and
mean decrease Gini, are used to prioritize of each of the effective factors. The use of the mean decrease
accuracy in comparison to mean decrease Gini index is more effective in determining the priority
of effective factors, especially in the context of the relationship between environmental factors [46].
The RF analyses were carried out in R 3.3.1, using the “Randomforest” package [21].

2.3.3. BRT Model

BRT is one of several techniques that can help improve the performance of a single model by
combining multiple models [47]. BRT uses two algorithms for modeling: Boosting and regression [48].
Boosting is a way to increase the accuracy of the model, and based on this, the construction,
combination, and averaging of a large number of models are better and more accurate than
an individual model on its own [49]. BRT overcomes the greatest weakness of the single decision
tree, which is relatively weak in data processing. In BRT, only the first tree of all the training data is
constructed, the next trees are grown on the remaining data from the tree before it; trees are not built
on all data and only use a number of data [50]. The main idea in this method is to combine a set of
weak predictor models (high predictive error) to arrive at strong prediction (low predictive error) [51].
Thus, in this study, BRT was used for GE spatial modeling using GMB (Generalized Boosted Models)
and dismo (Species Distribution Modeling) packages in R 3.3.1.3.

2.3.4. MARS Model

The MARS model is a form of regression algorithm that was introduced by Friedman in 1991 to
predict continuous numerical outputs [52]. This technique generates flexible regression models for
predicting the target variable by means of dividing the problem space into intervals of input variables
and processing a basic function in each interval.

The base function represents information in relation to one or more independent variables. A base
function is defined in a given interval, in which the primary and end points are called knote. The knote
is the key concept in this method and represents the point at which the behavior of the function
changes at that point. The base function expresses the relationship between the input variables and the
target variable and is in the form of Max (0, X − c) or Max (0, c − X), in which c is threshold value and
X is the impute variable. The general form of the MARS model is as follows:

f (x) = β0 +
P

∑
j=1

B

∑
b=1

[

β jb(+)Max
(

0, xi − Hbj

)

+ β jb(−) Max
(

0, Hbj − xJ

)]

(9)

where x = input, f (x) = output, P = predictor variables, and B = basis function. Max (0, x − H) and Max

(0, H − x) are basis function and do not have to be present if their coefficients are 0. β0 is constant,
β jb is the coefficient of the jth base function (BF), and the H values are called knots. The MARS
model includes three main steps: (1) A forward stepwise algorithm to select certain spline basis
functions, (2) a backward stepwise algorithm to delete base functions (BFs) until the best set is
found, and (3) a smoothing method which gives the final MARS approximation a certain degree of
continuity [52]. First, the MARS model estimates the value of the target function with a constant value,
and then generates the best processing in the forward direction by searching among the variables.
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The search process continues as long as all possible (BFs) are added to the model. At this stage, a very
complex model with a large number of knotes is obtained. In the next step, through the process of
pruning backward, BFs that are less important are identified and deleted by using the generalized
cross-validation (GCV) criterion [27]. GCV is a criterion for data fitting and eliminates a large number
of BFs and reduces the probability of overfitting. This indicator is obtained by using Equation (10):

GCV =
1
2

N

∑
i=1

[yi − f (xi)]
2/
[

1 −
C (B)

N

]2

(10)

where N is the number of data and C (B) is a complexity penalty that increases with the number of BF
in the model and which is defined as:

C (B) = (B = 1) + dB (11)

where d is a penalty for each BF included into the model. This process continues until a complete
review of all the basic functions, and at the end of the optimal model is obtained by applying base
functions [52]. MARS model is an adaptive approach, since the selection of BFs and node locations is
based on the data and type of purpose. After determining the optimal MARS model, the analysis of
variance (ANOVA) method can be used to estimate the participation rate of each of the input variables
and BFs. A detailed description of the MARS model can be found in [45]. MARS was run with R 3.3.1
and the “Earth” package [53].

2.4. Validation of GESMs Using Three Data Mining Models

A single criterion is not enough to select the best model among a large number of models,
and judging about choosing a superior model by one criteria. It is not a suitable approach and it
raises the chance of mistake in choosing the suitable model [27,37,54]. In this study, to compare the
performance between data mining models and select the appropriate model, AUC and SCAI were
used [28,36,55]. For calculating AUC, different thresholds were considered from 0 to 1, and for each
threshold, the number of cells detected by the model as gully erosion was compared with observed
gully erosion cells and positive and negative ratio indicators was calculated. After calculating these
two indicators, we arranged them in ascending order, then they were plotted to calculate AUC.
The AUC values range from 0.5 to 1. If a model cannot estimate the occurrence of an event better than
a probable or random viewpoint, its AUC is 0.5 and therefore it will have the least accuracy, while if
the AUC is equal to one, the model will have the highest accuracy [56,57]. The quantitative–qualitative
relationship between AUC value and prediction accuracy can be classified as follows: 0.5–0.6, poor;
0.6–0.7, average; 0.7–0.8, good; 0.8–0.9, very good; and 0.9–1, excellent. SCAI is the ratio of the
percentage area of each of the zoning classes to the percentage of gullies occurring on each class.
Based on the SCAI indicator, the values of SCAI in very high sensitivity class are lower than very low
sensitivity class.

3. Results

3.1. Multi-Collinearity Analysis

Multicollinearity is a condition of very high inter-correlations or inter-associations among the
independent variables. Therefore, it is a type of disturbance in the data, and if present in the data,
the statistical conclusions of the data may not be reliable [27]. A TOL value less than 0.1 or a VIF value
larger than 10 indicates a high multicollinearity [56]. The outcomes of the coherent analysis among the
12 GEVs are shown in Table 2. The outcomes showed that the TOL and VIF of all GEVs were ≥0.1 and
≤5, respectively. As a result, no multi-collinearity is seen among the GEVs.
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Table 2. Multi-collinearity of effective factors using tolerance (TOL) and variance inflation factor (VIF).

Conditioning Factors
Collinearity Statistics

Tolerance VIF

Constant Coefficient - -
Slope degree 0.998 1.002

Distance from road 0.672 1.489
Distance from river 0.323 3.094

Plan curvature 0.674 1.483
Lithology 0.945 1.058

LU 0.864 1.158
Drainage density 0.826 1.211

Elevation 0.920 1.087
Convergence index 0.666 1.503

Aspect 0.299 3.343
TWI 0.942 1.062

NDVI 0.941 1.063

3.2. Spatial Relationship Using WoE Model

The outcomes of WoE model are shown in Table 3. In elevation, the results of WoE indicate that
there is a direct correlation between classes of elevation and GE, and with an increase in elevation,
GE also increases. Therefore, the class of >1600 m with WoE 47.95 had the greatest impact on gully
occurrence. The result of slope degree indicate that classes 5–<10 with WoE 34.96 had a strong relation
with GEIM. For slope aspect, NE–facing slopes with a value of 19.46 show high probability of gully
occurrence. In the case of plan curvature, among the three classes of concave, flat, and convex,
the concave class had the highest value (78.04), and thus a positive correlation with GE. This result is
in line with [11,50]. In TWI, the class of >11 has the strongest relationship with GE with the highest
value (78.04). In the case of the convergence index, the class of 0–10 with values of 13.18 has a positive
relation with gully occurrence. With respect to distance from river, class of >650 with value of 25.86
and regarding distance from road the class of >3000 m with values of 16.25 had the greatest effect on
gully occurrence. For the drainage density factor, the class of <1.4 km/km2 showed the highest value
(14.23) and thus high correlation with gully occurrence. According to the lithology factor, Gypsiferous
marl with greatest value (51.23) is more prone to GE than other lithology units. Concerning LU/LC,
most gullies are located in the range land use type and this class with the highest value (21.02) has the
strongest relationship with gully occurrence. In NDVI, results indicated that all gullies are located in
the class of <0.11, showing that very low vegetation density renders slopes susceptible to GE.

Table 3. Relationship between conditioning factors and gully erosion using weights-of-evidence
(WoE) model.

Factor Class
Number of Pixels

in Domain
Pixels of Gullies

Weights-of-Evidence (WoE)

C S2 (w+) S2 (w−) S W

1

<1200 144,200 21 −3.16 0.05 0.00 0.22 −14.41
1200–<1350 348,463 89 −2.87 0.01 0.00 0.11 −26.60
1350–<1450 230,735 502 −0.37 0.00 0.00 0.05 −7.52
1450–1600 133,305 1057 0.33 0.00 0.00 0.00 0.00

>1600 85,376 1074 1.88 0.00 0.00 0.04 47.95

2

<5 705,163 896 −1.83 0.00 0.00 0.04 −44.90
5–<10 171,923 1259 1.34 0.00 0.00 0.04 34.96
10–<15 38,854 397 1.38 0.00 0.00 0.05 25.36
15–<20 13,936 121 1.13 0.01 0.00 0.09 12.13
20–<25 6223 50 1.03 0.02 0.00 0.14 7.22
25–30 3396 15 0.42 0.07 0.00 0.26 1.62
>30 2584 5 −0.41 0.20 0.00 0.45 −0.92
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Table 3. Cont.

Factor Class
Number of Pixels

in Domain
Pixels of Gullies

Weights-of-Evidence (WoE)

C S2 (w+) S2 (w−) S W

3

Flat 16,770 2 −3.22 0.50 0.00 0.71 −4.55
N 72,345 208 −0.01 0.00 0.00 0.07 −0.19

NE 79,383 209 −0.11 0.00 0.00 0.07 −1.52
E 72,794 43 −1.66 0.02 0.00 0.15 −10.81

SE 91,567 54 −1.68 0.02 0.00 0.14 −12.24
S 114,731 246 −0.34 0.00 0.00 0.07 −5.13

SW 119,263 396 0.15 0.00 0.00 0.05 2.81
W 142,533 459 0.12 0.00 0.00 0.05 2.35

NW 232,693 1126 0.76 0.00 0.00 0.04 19.46

4
Concave 54,613 1493 2.99 0.00 0.00 0.04 78.04

Flat 574,180 749 −1.43 0.00 0.00 0.04 −33.33
Convex 313,286 501 −0.80 0.00 0.00 0.05 −16.27

5

<7 24,272 63 0.00 0.00 0.00 0.02 −0.15
5–<7.5 42,453 91 −0.32 0.01 0.00 0.11 −3.00
7.5–11 89,328 225 −0.16 0.00 0.00 0.07 −2.29

>11 786,026 2364 0.21 0.00 0.00 0.06 3.87

6
<0 75,370 26 −2.21 0.04 0.00 0.20 −11.21

0–10 776,920 2534 0.95 0.00 0.00 0.07 13.18
>10 89,789 183 −0.39 0.01 0.00 0.08 −5.08

7

<170 382,383 522 −1.07 0.00 0.00 0.05 −21.99
170–<370 329,586 835 −0.21 0.00 0.00 0.04 −4.99
370–650 179,671 914 0.75 0.00 0.00 0.04 18.62

>650 50,444 472 1.31 0.00 0.00 0.05 25.86

8

<500 90,285 0 −0.10 0.00 0.00 0.02 −5.29
500–<1500 102,453 0 −0.12 0.00 0.00 0.02 −6.05
1500–3000 113,685 12 −3.44 0.08 0.00 0.29 −11.91

>3000 635,661 2731 4.70 0.00 0.08 0.29 16.25

9

<1.4 277,251 1150 0.55 0.00 0.00 0.04 14.23
1.4–<2.4 353,215 1000 −0.04 0.00 0.00 0.04 −1.12
2.4–3.7 231,503 573 −0.21 0.00 0.00 0.05 −4.49

>3.7 80,115 20 −2.54 0.05 0.00 0.22 −11.32

10

Murmg 144,412 1544 1.97 0.00 0.00 0.04 51.23
Qft2 617,176 417 −2.36 0.00 0.00 0.05 −44.47
Ku 23,972 0 −0.03 0.00 0.00 0.02 −1.35
Jd 18,232 0 −0.02 0.00 0.00 0.02 −1.03

PeEz 1449 0 0.00 0.00 0.00 0.02 −0.08
PlQc 71,058 600 1.24 0.00 0.00 0.05 26.85

Jl 3,274 0 0.00 0.00 0.00 0.02 −0.18
E2c 58,380 174 0.03 0.01 0.00 0.08 0.33
E1c 4,820 8 −0.56 0.13 0.00 0.35 −1.60

11
Range 708,879 2669 2.48 0.00 0.01 0.12 21.02

Farming 193,682 33 −3.06 0.03 0.00 0.18 −17.47
Bare land 39,523 41 −1.06 0.02 0.00 0.16 −6.75

12
<0.11 863,198 2743 0.09 0.00 0.00 0.02 4.59

0.11–0.25 56,745 0 −0.06 0.00 0.00 0.02 −3.26
>0.25 22,140 0 −0.02 0.00 0.00 0.02 −1.25

1. Elevation, 2. Slope degree, 3. Slope aspect, 4. Plan curvature, 5. topographic wetness index (TWI), 6. Convergence
index, 7. Distance from river, 8. Distance from road, 9. Drainage density, 10. Lithology, 11. land use (LU), 12. NDVI.

3.3. Applying RF Model

The outcomes of the confusion matrix for RF model are shown in Table 4. The result shows
that the model predicted 2487 non-gully pixels as non-gullies and 256 non-gullies as gully. On the
other hand, the RF model predicted 2677 gullies as gullies and 66 gullies as non-gullies. Moreover,
the out-of-bag error (OOB) for RF was 5.82%. This means that the model has a precision of 94.18%,
which expresses the excellent accuracy of the model in predicting gully erosion.
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Table 4. Confusion matrix from the random forest (RF) model (0 = no gully, 1 = gully).

0 1 Class Error

0 2487 256 0.0933
1 66 2677 0.0240

Prioritization results of RF are shown in Table 5 and Figure 4. The results show that the distance
from roads (381.67, 22%), elevation (335.06, 19%), and lithology (234.21, 14%) had the highest values,
followed by slope degree, drainage density, distance from river, NDVI, convergence index, slope aspect,
TWI, plan curvature, and LU/LC.

Table 5. Relative influence of effective conditioning factors in the RF model.

Conditioning Factors Weight

Distance from road 381.67
Elevation 335.06
Lithology 234.21
Slope degree 153.85
Drinage density 126.72
Distance from river 106.84
NDVI 105.26
Convergence index 73.97
Slope aspect 72.41
TWI 71.3
Plan curvature 42.43
LU 25.38
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Figure 4. Relative influence of effective conditioning factors in the random forest (RF) model.

Finally, the GESM by the RF model was prepared in ArcGIS 10.5 and divided into five classes from
very low to very high (Figure 5a), using a natural break classification [8]. According to the results, of
the entire study area (847.87 km2), 525.97 km2 (62.03%) are located in the very low susceptibility class,
148.28 km2 (17.49%) in the low susceptibility, 79.42 km2 (9.37%) in the moderate class, 56.34 km2 (6.64%)
in the high class, and 37.88 km2 (4.47%) are located in the very high susceptibility class. Of the total area
of GE (0.729 km2) in the study area, 0.86% (0.01 km2) are located in the very low susceptibility class,
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5.67% (0.04 km2) in the low susceptibility, 14.80% (0.11 km2) in the moderate susceptibility, 21.95%
(0.16 km2) in the high susceptibility, and 56.72% (0.41 km2) in the very high susceptibility classes.

 

Figure 5. Gully erosion susceptibility maps using: (a) RF model, (b) BRT model, and (c) multivariate
adaptive regression spline (MARS) model.

3.4. Applying BRT Model

The BRT model was used to reveal the spatial correlation between the existing GE and the GEVs
in the study area. The results of the model are shown in Figure 6. They indicate that the factors distance
from roads (31.1%), elevation (27.2%), and lithology (11%) had the highest importance on GE, mirroring
the outcomes of the RF model, followed by slope degree (7%), drainage density (6.7%), distance from
river (5.1%), slope aspect (3.8%), convergence index (2.4%), NDVI (2.2%), plan curvature (1.6%),
TWI (1.6%), and LU/LC (0.3%). The gully susceptibility map by the BRT model was also prepared in
ArcGIS 10.5 and divided into five classes of very low to very high (Figure 6c). The results of the GE
susceptibility class by the BRT model covered 847.87 km2 of the study area an area distribution in the
very low, low, moderate, high, and very high susceptibility classes are 605.37 km2, 88.38 km2, 52.01 km2,
34.13 km2, and 67.98 km2, and percentage distribution in the susceptibility classes of are 71.40, 10.42,
6.13, 4.03, and 8.02, respectively. Of the actual GE area of 0.729 km2, 0.04 (5.55%), 0.03 (4.56%), 0.06
(8.26%), 0.08 (11.34%), and 0.51 km2 (70.28%) are located in the very low to very high susceptibility
classes, respectively.
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Figure 6. Relative influence of effective conditioning factors in boosted regression tree (BRT) model.

3.5. Applying MARS Model

The optimal MARS model included 28 terms, and the GCV was 0.157. MARS model provides
the optimal model only by selecting the necessary parameters. In this research, nine GEVs including
lithology, distance from road, distance from river, drainage density, elevation, aspect, convergence
index, slope, and NDVI were used to construct the optimal model from the 12 GEVs. The GESM by
the MARS model was implemented in ArcGIS 10.5 using Equation (12). According to Equation (12),
distance from roads, elevation, and lithology were the most important variables. Values of GESM
by MARS model varies from −9.8 to 7.3. At first, GESM classified using quantile, equal interval,
natural break, and geometrical interval classification techniques, then, by comparatively analyses of
the distribution of training and validation gullies in high and very high classes, the natural break
classification technique was most accurate. As a result, GESM by MARS were classified into very low
(−9.86–−6.24), low (−6.24–−2.31), moderate (−2.3–0.04), high (0.04–0.38), and very high (0.38–7.32)
gully erosion susceptibility zones by natural break classification technique (Figure 5c). The results
indicate that 0.02 km2 (2.10%) of GE in the study area are located in the very low susceptibility
class, with 339.01 km2 (39.98% of total study area) and 0.58 km2 (79.16%) located in the very high
susceptibility class with 105.50 km2 (0.58%) (Table 6). In general, the results indicate that for all three
models with increasing susceptibility (from very low to very high), the area of the respective classes
decreased, while in contrast the areas of GE increased. These results is in line with Youssef et al. (2015).

Table 6. Area under the curve (AUC) values of RF, MARS, and BRT data mining models.

Models AUC Standard Error
Asymptotic
Significant

Asymptotic 95% Confidence
Interval

Lower Bound Upper Bound

RF 0.927 0.007 0.000 0.914 0.941
MARS 0.911 0.008 0.000 0.896 0.926

BRT 0.919 0.007 0.000 0.905 0.933
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3.6. Validation of Models

The results of the validation of the models using the AUC curve and SCAI indicator are shown in
Figure 7, and in Tables 6 and 7. The results show that the values of the AUC for the three models vary
from 0.911 to 0.927, indicating very good prediction accuracy for all models, with RF resulting in the
highest value. In addition, the SCAI values for the three models, RF (61.08–0.00), MARS (10.45–0.03),
BRT (12.59–0.01), show that the RF model has higher SCAI values compared to the other models in
the very low, low, and very high susceptibility classes (Figure 7). In spite of the high efficiency and
accuracy of the RF model for GE sensitivity mapping, so far this model has not been used by the
research community.

GESPMARS = 0.74 + (0.659 × Lithology1) + (0.656 × Lithology7)− 0.0001
×max(0, 13445 − Distance f rom road) + 0.0001
×max(0, Distance f rom road − 13445)− 0.0002
×max(0, 2907.97 − Distance f rom River)− 0.087
×max(0, 2.377 − Drainage density)− 0.106
×max(0, Drainage density − 2.377) + 0.001 × max(0, 1793
−Elevation)− 0.002 × max(0, Elevation − 1793)− 0.605
×Lithology7 × Aspect4 − 0.0001 × max(0, 7355.32
−Distance f rom road)× Lithology1 − 0.0001
×max(0, 11249.2 − Distance f rom road)× Lithology7
−0.00002 × max(0, Distance f rom road − 11249.2)
×Lithology7 + 0.0001 × max(0, 13445
−Distance f rom road)× Lithology10 − 0.005
×max(0, 84.853 − Distance f rom River)× Lithology1
−0.0003 × max(0, Distance f rom River − 84.853)
×Lithology1 + 0.001 × Lithology2 × max(0, Elevation

−1249)− 0.001 × Lithology2 × max(0, 1249 − Elevation)

−0.019 × Lithology7 × max(0, 0.772 − Convergence)− 23.54
×Lithology7 × max(0, NDVI − 0.055)− 22.23 × Lithology7
×max(0, 0.055 − NDVI)− 0.00001 × max(0, 7.65 − Slope)

×max(0, Distance f rom road − 13445) + 0.00001
×max(0, Slope − 7.65)× max(0, Distance f rom road − 13445)
−0.0001 × max(0, 8.186 − Slope)× max(0, 1793 − Elevation)

+0.00004 × max(0, Slope − 8.19)× max(0, 1793 − Elevation)

−0.0000001 × max(0, Distance f rom road − 3877.78)
×max(0, 907.97 − Distance f rom River) + 0.00000004
×max(0, 8861.03 − Distance f rom road)× max(0, 907.97
−Distance f rom River) + 0.0000001 × max(0, Road

−8861.03)× max(0, 907.97 − Distance f rom River)− 0.001
×max(0, Distance f rom road − 13445)
×max(0, Drainage density − 1.821)− 0.000001
×max(0, Distance f rom road − 11435.4)× max(0, 1793
−Elevation)− 0.000001 × max(0, Distance f rom road

−13238.3)× max(0, 1793 − Elevation)

(12)
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= 0.74	 +	(0.659	 × 	 ℎ 1) 	+	 (0.656	 × 	 ℎ 7) 	− 	0.0001	× 	 (0, 13445	 − 	 	 	 ) 	+ 	0.0001× 	 (0, 	 	 	 − 13445) 	− 	0.0002	× 	 (0, 2907.97	 − 	 	 	 ) 	− 	0.087	× 	 (0, 2.377	 − 	 	 ) 	− 	0.106	× 	 (0, 	 	 − 2.377) 	+ 	0.001	 × 	 (0, 1793	− ) 	− 	0.002	 × 	 (0, 	 − 1793) 	− 	0.605	× ℎ 7 × 	 4	– 	0.0001	 × 	 (0, 7355.32− 	 	 ) 	× 	 ℎ 1 − 	0.0001	× 	 (0, 11249.2	 − 	 	 ) 	 × 	 ℎ 7− 	0.00002	 × 	 (0, 	 	 	 − 	11249.2) 	× 	 ℎ 7	 + 	0.0001	 × 	 (0, 13445	− 	 	 	 ) 	× 	 ℎ 10	 − 	0.005	× 	 (0, 84.853	 − 	 	 	 ) 	× 	 ℎ 1	− 	0.0003	 × 	 (0, 	 	 	 − 	84.853) 	× 	 ℎ 1 + 	0.001	 × 	 ℎ 2	 × 	 (0, 	− 1249) 	 − 0.001	 × 	 ℎ 2 × 	 (0, 1249	 − 	 ) 	− 	0.019	 × 	 ℎ 7 × 	 (0, 0.772	 − 	 ) 	− 23.54	× 	 ℎ 7 × 	 (0, 	 − 0.055) 	− 	22.23	 × 	 ℎ 7× 	 (0, 0.055	 − 	 ) 	− 	0.00001	 × 	 (0, 7.65	 − ) 	× 	 (0, 	 	 	 − 13445) 	+ 	0.00001	× 	 (0, 	 − 7.65) 	× 	 (0, 	 	 	 − 	13445) 	− 	0.0001	 × 	 (0, 8.186	 − )	 × 	 (0, 1793	 − ) 	+ 	0.00004	 × 	 (0, 	 − 	8.19) 	× 	 (0, 1793	 − ) 	− 	0.0000001	 × 	 (0, 	 	 	 − 	3877.78) 	× 	 (0, 907.97	 − 	 	 ) 	+ 	0.00000004	× 	 (0, 8861.03	 − 	 	 ) 	 × 	 (0, 907.97	− 	 	 ) 	+ 	0.0000001	 × 	 (0, 	− 8861.03) 	× 	 (0, 907.97	 − 	 	 	 ) 	− 	0.001	× 	 (0, 	 	 	 − 13445) 	× 	 (0, 	 	 − 1.821) 	− 	0.000001	× 	 (0, 	 	 	 − 11435.4) 	 × 	 (0, 1793	− ) 	− 	0.000001	 × 	 (0, 	 	− 13238.3) 	× 	 (0, 1793 − 	 )
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Figure 7. Seed cell area index (SCAI) values for different susceptibility classes in RF, MARS, and BRT
data mining models.

Table 7. Seed cell area index (SCAI) values in RF, multivariate adaptive regression spline (MARS), and
boosted regression tree (BRT) data mining models.

Model
Susceptibility

Classes

Total Area of Classes Gully in Classes No Gully
Area (km)

Seed
Cell (%)

SCAI
Area (km) % Area (km) %

RF

Very Low 525.97 62.03 0.01 0.86 525.96 0.01 61.08
Low 148.28 17.49 0.04 5.67 148.24 0.24 0.74

Moderate 79.42 9.37 0.11 14.80 79.31 1.15 0.08
High 56.34 6.64 0.16 21.95 56.18 2.41 0.03

Very High 37.88 4.47 0.41 56.72 37.46 9.27 0.00

MARS

Very Low 339.01 39.98 0.02 2.10 339.00 0.04 10.45
Low 194.83 22.98 0.01 1.48 194.82 0.05 4.89

Moderate 131.17 15.47 0.04 5.67 131.13 0.27 0.58
High 77.35 9.12 0.08 11.59 77.26 0.93 0.10

Very High 105.50 12.44 0.58 79.16 104.92 4.64 0.03

BRT

Very Low 605.37 71.40 0.04 5.55 605.33 0.06 12.59
Low 88.38 10.42 0.03 4.56 88.34 0.32 0.33

Moderate 52.01 6.13 0.06 8.26 51.95 0.98 0.06
High 34.13 4.03 0.08 11.34 34.05 2.06 0.02

Very High 67.98 8.02 0.51 70.28 67.46 6.40 0.01

4. Discussion

Determining effective parameters in GE and providing a GESM are the first steps in risk
management. In regards to this, prediction of areas susceptible to erosion is associated with uncertainty,
various models can be used to predict it accurately. Over the past decades, numerous statistical and
empirical models have been developed to predict environmental hazards, such as GE, by various
researchers around the world [12,14,28,30,31,45]. Due to some of the limitations of the aforementioned
models such as time consuming, complexity, costly, and need a lot of data, in recent years data
mining methods have been presented. Data mining is a process of discovery of relationships, patterns,
and trends that consider the vast amount of information stored in databases with template recognition
technology [51,58,59]. The most important applications of data mining are categorization, estimation,
forecasting, group dependency, clustering, and descriptions. The results of data mining models show
that in RF, BRT, and MARS mode, distance from roads had the highest impact in the occurrence
of gully erosion in the study area. This result is in line with [10,49]. If the engineering measures
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are not considered in site selection and construction of roads as anthropogenic structures in nature,
they can act as a causative factor in environmental hazards such as landslide and gully erosion.
The construction of roads in bare lands with erosion-sensitive formations has led to the expansion
of gully erosion in the study area, so that the construction of a road without proper culverts causes
disrupted of natural drainage and runoff concentrations, thus eroding the bare lands and resulting
in the formation of a gully. The results of the validation of data mining models showed that the RF
model more accurately predicted areas that are sensitive to gully erosion. These results are consistent
with the results of [36,43,46,59], which introduced the RF model as a strong and high-performance
model. One of the most widely used data mining methods is the RF model. The advantages of the
RF method over other models is that this model can apply several input factors without eliminating
any factors, and return a very small set of categories that support high prediction accuracy [6].
The classification accuracy of this model is affected by many factors such as the number, scale, type,
and precision of input data. Thus, in the processing, the use of all suitable factors causes the accuracy
of the model to increase. Compared with other models, RF has higher sufficiency to apply a very
high number of datasets [6]. The RF model has the potential as a tool of spatial model for assessing
environmental issues and environmental hazards. The RF model combines several tree algorithms to
generate a repeated prediction of each phenomenon. This method can learn complicated patterns and
consider the nonlinear relationship between explanatory variables and dependent variables. It can
also incorporate and combine different types of data in the analysis, due to the lack of distribution
of assumptions about the data used. This model can use and apply thousands of input variables
without deleting one of them. This method is less sensitive to artificial neural networks, in case of
noise data, and can better estimate the parameters [60]. The greatest advantages of RF model are
high predictive accuracy, the ability to learn nonlinear relationships, the ability to determine the
important variables in prediction, its nonparametric nature, and in dealing with distorted data, it
works better than other algorithms for categorization. The main disadvantages of this algorithm
include high memory occupation, hard and time-consuming in implementation for large datasets,
high cost of pruning, high number of end nodes in case of overlap, and the accumulation of layers
of errors in the case of the tree growing. [15,61] stated that the CART, BRT, and RF models showed
better accuracy compared to bivariate and multivariate methods. Pourghasemi et al. concluded that
the RF and maximum entropy (ME), models have high performance and precision in modeling [31].
Mojaddadi et al. showed that BRT, CART, and RF methods are suitable for modelling [55]. Chen et al.
indicates that the MARS and RF models are good estimators for mapping [36]. Lai et al. indicated that
the RF model has significant potential for weight determination on landslide modelling [62]. Kuhnert
et al stated that RF with AUC = 97.0 is suitable for landslide susceptibility [27]. Lee et al stated that the
prediction accuracy of RF model is high (90.8) and that this model had a high capability for landslide
prediction [43]. They applied RF and boosted-tree models for spatial prediction of flood susceptibility
in Seoul metropolitan city, Korea [43]. They stated that the RF model has better performance compared
to boosted-tree. As a scientific achievement, the methodology framework used in this research has
shown that the proper selection of effective variables in gully erosion, along with the use of modern
data mining models and Geography Information System (GIS) technique, are able to successfully
identify areas susceptible to gully erosion. The susceptibility map prepared using this methodology is
a suitable tool for sustainable planning to protect the land against gully erosion processes. Therefore,
this methodology can be used to assess gully erosion in other similar areas, especially in arid and
semi-arid regions.

5. Conclusions

GE is one of the main processes causing soil degradation and there is a need to improve methods
to predict susceptible areas and responsible environmental factors, to allow early intervention to
prevent, limit, or reverse gully formation. The utility of three data mining models, RF, BRT, and MARS,
to predict GE in the Shahroud watershed, Iran, was assessed. For this purpose, twelve causative
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factors and 121 gully locations (70%) are used for applying the models. In addition, 51 gully locations
(30%) are used for validation of models. The correlation between GE and conditioning factor classes
was researched with a WoE Bayes theory. Distance to roads, elevation, and lithology were the key
factors. Validation of the models showed that all three models have high accuracy for GE mapping.
Data mining/machine learning methods have a unique ability and accuracy for GESM. The results
also showed that the southwestern part of the study region has a high susceptibility to GE.

Therefore, it is recommended that the following suggestions should be made to prevent and
reduce soil erosion and its subsequent risks in the Sharoud watershed: (1) Control of gullies by
restoration of vegetation adaptable with the natural conditions of the area; (2) gully controlling by
building dams that could prevent soil erosion by slowing down the flow of water and aggravation
of sedimentation; (3) awareness of farmers by environmental officials of the region, in terms of the
type and principles of proper cultivation and prevention of overgrazing and destruction of vegetation;
(4) correction of land use based on natural ability and restrictions related to geomorphologic and
physiographic soil characteristics of the area.
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