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Abstract

Over the last few decades it has become increasingly obvious that disturbance, whether natural or anthropogenic in
origin, is ubiquitous in ecosystems. Disturbance-related processes are now considered to be important determinants of
the composition, structure and function of ecological systems. However, because disturbance and succession processes
occur across a wide range of spatio-temporal scales their empirical investigation is difficult. To counter these difficulties
much use has been made of spatial modelling to explore the response of ecological systems to disturbance(s) occurring
at spatial scales from the individual to the landscape and above, and temporal scales from minutes to centuries. Here
we consider such models by contrasting two alternative motivations for their development and use: prediction and
exploration, with a focus on forested ecosystems. We consider the two approaches to be complementary rather than
competing. Predictive modelling aims to combine knowledge (understanding and data) with the goal of predicting
system dynamics; conversely, exploratory models focus on developing understanding in systems where uncertainty is
high. Examples of exploratory modelling include model-based explorations of generic issues of criticality in ecological
systems, whereas predictive models tend to be more heavily data-driven (e.g. species distribution models). By
considering predictive and exploratory modelling alongside each other, we aim to illustrate the range of methods used
to model succession and disturbance dynamics and the challenges involved in the model-building and evaluation
processes in this arena.
r 2007 Rübel Foundation, ETH Zürich. Published by Elsevier GmbH. All rights reserved.

Keywords: Succession; Disturbance; Vegetation dynamics; Spatial models; Model evaluation; Model analysis
Introduction

What and why?

Since Henry Chandler Cowles described vegetation
change in the Indiana dune fields of Lake Michigan
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ees.2007.07.001

ing author.

esses: george.perry@auckland.ac.nz (G.L.W. Perry),

n@kcl.ac.uk (J.D.A. Millington).
(Cowles, 1899), succession and disturbance have been
dominant themes in ecology (McIntosh, 1999). In the
first half of the twentieth-century ecology’s focus on
equilibrial conditions saw disturbance as atypical
(building on the climax theory espoused by Clements
and followers), before a shift to a more disequilibrial
perspective, which emphasises the crucial role that
disturbance plays in ecosystems, occurred (Wu and
Loucks, 1995; Perry, 2002). Paralleling this shift was a
move toward a spatially explicit view of ecological
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systems. On one hand, these changes in perspective have
resulted in increased consideration of the interactions
between ecological pattern and process in large spatially
heterogeneous systems (the landscape ecology approach
– Turner, 2005) while on the other it has led to
increasing focus on fine-scale spatio-temporal interac-
tions within plant populations and communities (the
‘plant’s-eye view’ – Stoll and Weiner, 2000); our focus
here is largely on the former.

Various model-based methodologies have been em-
ployed to unravel the ecological implications of spatial
heterogeneity and disturbance, including: (i) ‘classical’
mathematical models, (ii) statistical–empirical models,
and (iii) mechanistically rich simulation models. ‘Classi-
cal’ ecological models, such as the Lotka–Volterra
system, adopt a mean-field approach in which all
organisms are identical and interact with each other
and the environment equally (i.e. they see a homo-
geneous average of the system); typically such models
are also deterministic. While these ‘classical’ models
remain important in theoretical ecology, recent simula-
tion models of succession-disturbance dynamics are
often spatially explicit and incorporate stochastic events
(Perry and Enright, 2006; Scheller and Mladenoff,
2007). These simulation models operate at scales from
small plots, typically � 1–10 ha as in the ‘gap models’
derived from JABOWA and FORET (see Bugmann,
2001), to tens of thousands of hectares (or more) as in
spatially explicit landscape models (SELMs) such as
LANDIS (see Mladenoff, 2004). However, and irrespec-
tive of the spatial scale they consider, such representa-
tionally rich models usually lack tractability, and
comparing them with analytical models highlights the
‘realism-tractability’ trade-off that plagues ecological
modelling.
Challenging issues

The challenges involved in spatial modelling of
ecological dynamics are many, but they can be distilled
to those relating to scaling, representation, and model

evaluation (Green et al., 2005; Perry and Enright, 2006;
Scheller and Mladenoff, 2007). Understanding forest
succession necessitates integrating processes operating
from the instantaneous (e.g. photosynthesis) to the
generational (e.g. tree longevity). Likewise the temporal
grains of disturbance processes span seconds (e.g. the
physico-chemical processes that explain fire behaviour)
to centuries (e.g. soil changes, nutrient fluxes and
decomposition). Representing all of these processes in
a single model is difficult – it is possible to represent fine-
grained patterns over small extents or, conversely,
coarse(r) patterns over large extents, but not both.
Given that incorporating all scales within a single model
is problematic, and likely not desirable, trade-offs in the
way in which processes are represented are inevitable –
this ‘dilemma of representation’ is the key challenge for
effective ecological model building. Trade-offs in
representation often hinge on how much mechanism is
included in a given model. For example, if we consider
seed dispersal, is a mechanistic approach, in which every
propagule and its subsequent dispersal as a function of
meteorological processes is represented, required? Or is
a phenomenological approach, in which the relationship
between distance from parent and seed rain fraction
received is described by some probability function, more
appropriate? While implementing a mechanistic model
may be feasible at fine grains and small extents, at larger
extents phenomenological alternatives are more likely to
be appropriate (and computationally feasible) (Nathan
and Muller-Landau, 2000). The issues of scale and
representation are inextricably intertwined and lie at the
heart of adequate model conceptualisation.

Representing disturbance dynamics becomes even
more challenging if we consider human activity. Humans
can (i) rescale the disturbance regime by altering the
frequency, size and severity of disturbance events (e.g.
Hansen et al., 2005, discuss changes to fire and flood
regimes in exurban landscapes) and/or (ii) introduce
novel disturbances, such as pathogens, to ecosystems (e.g.
Jules et al., 2002 discuss movement of pathogens by
humans across and between watersheds). While ecology
has traditionally focused on ‘natural’ or ‘unmodified’
systems (Liu, 2001), more and more research is focusing
on human-driven change in ecosystems; this is especially
important in places such as the Mediterranean basin
where landscape patterns reflect long periods of human
occupation and use, and are cultural as much as
ecological (Blondel and Aronson, 1999).

Having implemented any model the next challenge lies
in analysing and evaluating it (Gardner and Urban,
2003). While there are well-established tools for analys-
ing deterministic ‘classical’ ecological models, a frame-
work for analysing stochastic spatial models is
comparatively much less developed. A first problem lies
in the data requirements of such analyses (lack of
empirical data is often a primary motivation for the
development of ecological models – Urban et al., 1999).
Second, stochastic models pose challenges for analysis
that deterministic ones do not; they necessitate adopting
a probabilistic approach and may require sophisticated
strategies for their analysis (e.g. Monte Carlo and
stochastic geostatistical methods). Finally, the tools
available for model analysis tend to focus on time (e.g.
comparison of observed and predicted time series –
Mayer and Butler, 1993) rather than on space; there is a
paucity of methods for direct comparison of spatial
patterns or predictions. The lack of a comprehensive
analytical framework for stochastic, spatially explicit
simulation models has hampered their effective applica-
tion – in response to this, ‘new’ evaluation frameworks
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Table 1. Some hallmarks of the predictive vs. exploratory

approaches to ecological modelling
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such as pattern-oriented modelling have been developed
and advocated (Wiegand et al., 2003; Grimm et al.,
2005).
Predictive Exploratory

� Reasonable system

understanding and/or data

� Limited system

understanding and/or data

� May or may not explicitly

include mechanism

� Focus on elucidating

mechanism

� Primary focus usually

prediction

� Primary focus usually

heuristic

� Model vs. data � ‘Experimental’ approach to
Two contrasting perspectives

We have chosen to classify models not on methodo-
logical grounds but on the basis of the purpose for
which they are employed; we consider two broad
approaches to model implementation and analysis:
‘confrontation’ approach to

model analysis

model analysis
1.

� Answer-driven/focussed � Question-driven/focussed

1

find

ess
models designed and implemented with the primary
purpose of effective prediction of the future dynamics
of a system, rather than exploring its underlying
causality; we term this ‘predictive’ modelling
2.
Fig. 1. Position of exploratory and predictive modelling in a

hypothetical data-understanding space (after Starfield and

Beloch, 1986); by data we mean the amount of information

available to describe the system and its dynamics and by

understanding we mean the level of process (causal) compre-

hension of the system and its dynamics that we possess.
models designed and implemented to gain insight
about how and why the system of interest behaves as
it does, rather than making explicit predictions; we
term this ‘exploratory’ or ‘heuristic’ modelling.1

While this division represents a somewhat artificial
dichotomy (Table 1), considering models and modelling
along these lines helps to elucidate some of the
similarities and differences in the ways that broad-scale
vegetation change has been modelled. Furthermore,
there are obvious synergies between the approaches; for
example: (i) successful prediction can improve under-
standing and vice versa, (ii) process-based predictive
modelling is often preceded by exploratory modelling
and (iii) exploratory modelling can help to ascertain
where predictive modelling may not even be appropriate
or possible (Bankes, 1993; Brown et al., 2006). Similar
classifications are discussed elsewhere in the ecological
modelling literature; Loehle (1983) discriminates be-
tween predictive and theoretical models, Bankes (1993)
between confirmatory and exploratory modelling, Gross
and Strand (2000) between predictive, explanatory and
heuristic models, and Oreskes (1998) between question-
and answer-driven approaches. Pielke Jr. (2003) argues
that clear statement of the motivation of a modelling
exercise (exploration or prediction) is fundamental to
the effective use of models. In terms of the data-
understanding space (Fig. 1) in which ecological models
are often placed, although exploratory modelling tends
to occur where the availability of data describing the
system and understanding of the system are both low
(i.e. epistemic uncertainty is high), predictive modelling,
while requiring descriptive data, does not assume causal
understanding (i.e. epistemic uncertainty may or may
not be high).

While our primary focus is the spatial facet of
modelling vegetation dynamics, it would be remiss to
According to the OED (2nd edition), heuristic means ‘‘serving to

or discover’’, a definition which we believe perfectly captures the

ence of this approach to modelling.
completely ignore the temporal nature of successional
change! In empirical–statistical models the focus is more
usually on the endpoint of succession or the nature of
the system at some point in the future, and the trajectory
that the system has taken to reach that point is of less
concern. Conversely, in dynamic spatial simulation
models time is a primary concern, and a given model’s
outputs will typically consist of a time series of maps
(spatial) or of vegetation abundance (non-spatial).
Adding a temporal dimension to the analysis of spatial
outputs is difficult; there are few tools for evaluating
time-series of categorical maps, for instance. Never-
theless, in conceptualising the long-term dynamics of
(forest) ecosystems the path taken to reach some system
state may be as important to elucidate as the endpoint
itself – this is especially the case if we taken the view that
such systems are likely to be non-linear and show
contingency-type behaviours.
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Finally, we do not intend that this paper be seen as an
exhaustive review of the state-of-the-art in modelling
succession-disturbance dynamics.2 Recent reviews of
spatial models of vegetation dynamics have considered,
in some depth, the conceptual and methodological
underpinnings of frameworks including species distri-
bution models (e.g. Guisan and Zimmermann,
2000; Guisan and Thuiller, 2005; Heikkinen et al.,
2006), individual-based ‘gap’ models (e.g. Bugmann,
2001; Shugart, 2002; Busing and Mailly, 2004),
spatially explicit models of plant population and
community dynamics (e.g. Czárán, 1997; Jeltsch and
Moloney, 2002; Herben and Hara, 2003), large-scale
spatial landscape models (e.g. Keane et al., 2004;
Mladenoff, 2004; Perry and Enright, 2006; Scheller
and Mladenoff, 2007) and applications of spatial
models for management and monitoring (Turner et al.,
1995, 2002; Hobbs and Lambeck, 2002). Together
these contributions provide the interested reader
with a thorough overview of this large and growing
literature as well as numerous examples of model
applications. The examples we consider here are
intended as illustrative, rather than exhaustive, examples
(see Table 2) and span a range of (primarily) forest
ecosystems.
‘Predictive’ modelling

Modelling with the explicit goal of predicting the
(specific) dynamics of a (specific) system is, arguably,
closest to what most non-modellers envisage modelling
as an intellectual activity to be; indeed, in many of the
‘hard’ sciences prediction is the primary purpose of
modelling. While the usual view of prediction may imply
possession of both data and understanding, this is
not necessarily the case – predictive modelling can
successfully proceed without causal understanding.
Indeed in ecology this is often the case, especially as
technologies such as remote-sensing provide ever
increasing amounts of multi-temporal spatial data (Kerr
and Ostrovsky, 2003). As Fig. 1 shows ‘predictive
modelling’ spans the entirety of the understanding-axis
(the x-axis); this emphasises how persuasive accurate
predictions are when forwarding a theory to explain a
phenomenon, although it is important to bear in mind
that accurate predictions can be made for the ‘wrong’
reasons. There are many approaches to developing
predictive ecological models; here we will focus on
three that have been widely applied in the prediction
of vegetation dynamics: (i) empirical–statistical (e.g.
regression) models, (ii) transition matrix models and
(iii) forest gap models.
2Indeed, the field has grown so rapidly that this is probably

impossible for a single review in any case.
Empirical–statistical models

Empirical–statistical models (such as regression-type
approaches) epitomise the predictive modelling ap-
proach. A typical regression modelling framework
involves collecting data, dividing those data into
training and testing sets, parameterising the model (i.e.
estimation of model coefficients) and then testing its
predictive power via a variety of well-established
statistical methods such as measures of explained
variance or deviance, log-likelihood ratios, ROC curves,
etc. (e.g. Mac Nally, 2000) In the context of succession
and disturbance, regression models are often non-
spatial,3 temporally static (i.e. they assume stationarity)
and focus on final outcomes rather than trajectories of
change. One issue with any empirical model is the extent
to which it can be successfully extrapolated to spatial or
temporal settings or scales outside those for which it was
parameterised – it is common for empirical models with
high predictive power at a calibration site to show poor
performance when applied elsewhere.

Predicting vegetation change with regression-type models

Empirical–statistical models have frequently been
used to predict vegetation dynamics, especially in the
context of land-use/cover change (LUCC). For example,
Carmel et al. (2001) used linear and logistic regression
models to predict vegetation change in the Galilee
Mountains, northern Israel, over the period 1964–1992.
They build and parameterise regression models includ-
ing terms describing initial vegetation condition, local
neighbourhood conditions in the initial vegetation map,
topography and disturbance regime (grazing of stock)
derived from a series of GIS-based maps interpreted
from aerial photography. The regression models were
calibrated using a subset of the total available data, and
are then tested on the complete data set; using the
estimated co-efficients and the parameter values in each
grid cell in the landscape, the model outcomes can be
‘mapped’ across the landscape and then compared with
observed conditions. The model was analysed by
comparing the predicted and observed vegetation
composition and spatial pattern, and by pixel-by-pixel
comparison (aggregate vs. spatial similarity, sensu

Brown et al., 2005). Carmel et al. (2001) also predicted
vegetation change to the year 2020 based on (i)
maintenance of the status quo and (ii) the removal of
grazing from the site. Other regression-based models
have considered the influence of human activity on
transitions between forest and non-forest land-covers by
directly considering anthropogenic variables related to
human population and economic markets (e.g. Wear
and Bolstad, 1998; Millington et al., 2007). While the
3Although there is no reason that space could not be included in

such models, e.g. via spatial autoregressive models (Miller et al., 2007).
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regression models in these examples reproduce land-
scape dynamics with some accuracy at the site they
considered, the question remains of how transferable
such site- and scale-specific results really are. Further-
more, the frequent inability of such models to achieve
land-cover predictions with accuracies greater than the
‘null model’ of no change (i.e. the original land cover
map) has been documented (Pontius Jr. et al., 2004).

Species distribution models (SDMs)

SDMs are another much applied predictive ecological
modelling framework (Franklin, 1995; Guisan and
Zimmermann, 2000; Pearson and Dawson, 2003;
Heikkinen et al., 2006; Rodrı́quex et al., 2007). SDMs
are ‘‘empirical models relating field observations to
environmental predictor variables, based on statistically
or theoretically derived response surfaces’’ (Guisan and
Thuiller, 2005, p. 994). The approach relies heavily on
the concept of the Hutchinsonian (realised) niche in
linking species’ distributions to their environments
(Guisan and Zimmermann, 2000). Despite the success
and widespread use of SDMs (see examples in Table 2)
they have been criticised on the basis of (some of) their
assumptions, in particular the view that species’
(or higher taxa’s) distributions are in equilibrium with
the environment and the limited consideration of biotic
processes and interactions such as competition and
dispersal (Pearson and Dawson, 2003). While SDMs
serve a variety of applied purposes, including the
prediction of range expansion under climate change
or by invasive species and aiding in the design of
reserve networks, they are also used to explore funda-
mental biogeographic and ecological questions. Those
building SDMs have adopted many statistical metho-
dologies including those based on climatic envelopes,
regression-methods (classification and regression trees,
generalised linear and generalised additive models),
artificial neural networks and genetic algorithms,
among others (Guisan and Thuiller, 2005; Heikkinen
et al., 2006).

Recently, SDMs have been integrated with cellular-
automata (CA) models to increase their spatial dyna-
mism. For example, Iverson et al. (1999) integrated the
DISTRIB and SHIFT models to predict possible range
shifts of Pinus virginiana (Virginia Pine) under climate
change. DISTRIB is a regression-tree model designed to
isolate the suite of environmental predictors that best
explain a species’ current distribution. By changing
input values (e.g. altered temperatures), DISTRIB can
be used to statically assess potential range changes.
SHIFT is a stochastic CA model that predicts migration
rates of tree species under altered environmental
conditions. Based on habitat availability in ‘donor’
and ‘recipient’ cells (Hj and Hi, respectively), the
abundance of the species of interest in the donor cell
ðFjÞ, and the distance between the cells ðDa

ijÞ, SHIFT
produces a dynamic description of the probability that
unoccupied cells will become occupied ðCiÞ:

Ci ¼ Hi � SðHj � Fj �Da
ijÞ, (1)

where a is a power function exponent describing the
distance-decay curve for colonisation probability.

Iverson et al. found that while the range of P.

virginiana may be markedly reduced under various
climate change scenarios, the species does not seem
threatened. More generally, they suggest that the
specific spatial pattern of migration that a species
exhibits will be influenced by its abundance in specific
parts of the landscape, landscape heterogeneity,
and potential migration lags. The broad advantage of
this coupled approach is that it surmounts some
of the criticisms of static SDMs regarding their
treatment of landscape-level heterogeneity such as:
(i) the interplay between fragmentation and rate of
migration and (ii) the possibility that environmental
change may produce low habitat-quality ‘barriers’ that
inhibit species movement (Hansen et al., 2001; Iverson
et al., 1999).
Predicting disturbance with empirical models

Finally, empirical–statistical models have been devel-
oped with a focus on characterising the frequency–size
component of the disturbance regime. The disturbance
that has received the most attention in this regard is fire
– both ‘natural’ and anthropogenic in origin (e.g.
Malamud et al., 2005, Table 2). Malamud et al. (2005)
analysed spatial variation in the frequency–area struc-
ture of the wildfire regime over the period 1970–2000
across the conterminous USA. They described the fire
regime in each of 18 ecoregions based on the parameters
of a power function relating fire frequency _f ðAF Þ to size
AF ð

_f ðAF Þ ¼ aA
�b
F Þ; log a provides an indication of the

number of fires per unit area and the power-law
exponent b measures the ratio of large to small fires in
a given area (b ¼ 0 suggests the same number of fires of
all sizes). They found that wildfire regimes system-
atically changed east to west across the USA, possibly
due to different human land-uses and patterns of
fragmentation, and that there were differences in the
frequency–area statistics for fires ignited by lightning
versus anthropogenic sources. Malamud et al. developed
a quantitative method for predicting wildfire recurrence
intervals using their estimates of a and b. Studies such as
these in some ways bridge the gap between predictive
and exploratory modelling; while prediction is often
their main focus, they are also concerned with attempt-
ing to isolate the drivers of spatio-temporal variability in
the wildfire regime, with the (tacit) recognition that
better causal understanding should lead to improved
predictive ability.
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Transition (Markov) models

The transition matrix (Markov) approach is often
used to project vegetation change (see Table 2). Central
to such models is a matrix, P, whose elements contain
the probability of a discrete vegetation class making the
transition from type i to type j in some time-step (t):

P ¼

p11 p12 . . . p1n

p21 p22 . . . p2n

..

. ..
. . .

. ..
.

pn1 pn2 . . . pnn

2
666664

3
777775

(2)

Repeatedly multiplying P by a 1� n state vector ðxtÞ,
which contains the abundance of each vegetation type (1
to n) at time t, projects the composition of the system
into the future (Eq. (3)). This state-vector ultimately
stabilises to reach what might be interpreted as the
Clementsian ‘climax’ condition. Thus, and assuming
that the transition probabilities are stationary:

xtþ1 ¼ xt � P; xtþ2 ¼ xtþ1 � P ¼ xt � P
2 . . . xtþk ¼ xt � P

k.

(3)

The key assumptions of the transition matrix approach
are that:
1.
 transitions within the system are temporally station-
ary; in reality this is unlikely due to endogenous
processes such as density-dependence and exogenous
drivers such as disturbance or anthropogenic forcing
2.
 local neighbourhood processes are not deemed
important (spatial stationarity); thus the vegetation
at a given site does not affect transition rates at
nearby sites (e.g. via seed dispersal), nor does
landscape position, although a stratified approach
in which different matrices are derived for different
site conditions may be used
3.
 the state of the system at time tþ 1 is predictable
from (and determined by) the state of the system at
time t; in other words, history and legacy effects are
not considered (although this can be relaxed, at the
expense of tractability, if nth-order Markov models
are used).

Yemshanov and Perera (2002) use a modified transi-
tion matrix approach to explore patterns of forest
succession over large spatial extents in the North
American boreal forest. They use a time-dependent
Markov model (see Acevedo et al., 1995) in which pij is
dependent on the length of time spent in i.
In Yemshanov and Perera’s model time-dependence
is considered via the probability of discrete-state
persistence ðpiiÞ:

piiðtÞ ¼ xðtÞpii, (4)
where xðtÞ is a probability distribution function based on
time constraints.

Yemshanov and Perera (2002) parameterise their
transition matrix model using data from a range of
disparate sources (the model as ‘synthesis tool’),
including previously published data, raw multi-temporal
data (permanent plot chronosequences and remotely
sensed imagery), and fine(r)-scale forest gap models.
These data sources enabled Yemshanov and Perera
(2002) to stratify vegetation transition probabilities by
climatic zone, moisture regime and soil nutrient status.
Model projections showed vegetation trajectories in
broad accordance with previously published case studies
(i.e. shifts toward late-successional forest species assum-
ing no disturbance).

In its simplest form the transition matrix framework
‘‘represents (forest) change as a null model’’ (Yemsha-
nov and Perera, 2002, p. 203). Romero-Calcerrada and
Perry (2004) use a transition matrix approach as a null
model in their investigation of human-driven landscape
change in SPA 56, ‘Encinares del rı́o Alberche y Cofio’,
Central Spain. They used the failure of transition matrix
models to successfully predict vegetation change, to
identify potential sources of non-stationarity in the
landscape. Johst and Huth (2005), using a grid-based
model, extended the transition matrix approach to
encompass time-dependent transitions, neighbourhood
influences on rates of change (transition times to some
state i are reduced if a cell’s neighbours are already in
that state) and disturbance dynamics. Thus their frame-
work, which they used to explore the shape of the
relationship between disturbance and diversity, circum-
vents some of the assumptions listed above; other
similar spatially implemented transition models have
also been developed (e.g. Li and Reynolds, 1997). The
cost, of course, is that the models are no longer
analytically tractable. Although Markov models have
proven very useful for efficiently predicting vegetation
change over large spatio-temporal extents in a wide
range of different systems, their empirical (site- and
scale-specific) nature makes them difficult to transfer to
other sites and/or scales.
Forest gap models

Since Botkin et al. (1972) described JABOWA, the
gap model approach has become one of the most
widely adopted frameworks for simulating small-scale
forest change (Shugart, 2002, Table 2). Gap models
simulate the establishment, growth and eventual demise
of all individuals in a small plot (� 0:01–0.1 ha);
thus, they provide an example of an ‘individual-based
model’ (IBM). Early gap models were typically non-
spatial, with new recruits being drawn from a potential
list of occupant species. Recent gap model variants



ARTICLE IN PRESS
G.L.W. Perry, J.D.A. Millington / Perspectives in Plant Ecology, Evolution and Systematics 9 (2008) 191–210 201
(e.g. SORTIE – Pacala et al., 1996; Deutschmann et al.,
1997) have been spatially explicit and represent spatial
processes such as seed dispersal and recruitment in detail
(see Busing and Mailly, 2004). Gap models have been
successfully used to describe the effects of altered
disturbance regimes on forest structure and composition
(e.g. Miller and Urban, 1999; Lafon, 2004), climate
change (e.g. Bugmann, 1997; He et al., 1999), herbivory/
browsing dynamics (e.g. Dyer and Shugart, 1992; Seagle
and Liang, 2001) and the basic nature of forest
succession in various forest ecosystems (see examples
in Shugart, 1998); they have also been adapted for other
vegetation types such as mangrove fields and shrublands
(e.g. Chen and Twilley, 1998; Peters, 2002). Using state-
of-the-art computational tools, gap models can now
consider larger areas and large numbers of individuals
(e.g. TROLL can simulate up to 2� 107 individuals over
an area of � 20 km2 Chave, 1999). Nevertheless, the
computational limits inherent in tracking the fate of
every individual means that gap models usually focus on
relatively small areas (see Table 2).

In gap models, each individual is defined by its
diameter (D) and various allometric relationships link
diameter to other biometric descriptors such as height.
Growth is modelled as change in diameter DD

(Bugmann, 2001):

DD

Dt
¼ GD 1�

DH

DmaxHmax

� �
1

bðDÞ
f ðeÞ, (5)

where H is the tree’s height, bðDÞ describes the
allometric relationship between height and diameter, G

is a growth rate parameter, Dmax and Hmax are the
maximum dimensions of the tree, and t is time (usually
years).

The effects of the abiotic and biotic environment on
growth are given by a scalar ðf ðeÞ : 0pf ðeÞp1Þ that
reduces growth rate below the optimal; for example:

f ðeÞ ¼ g1ðALÞ � g2ðSBARÞ � g3ðDDÞ, (6)

where g1ðALÞ is a function of light availability,
g2ðSBARÞ is a function of stand basal area and
g3ðDDÞ is a function of the annual-degree day sum.

Other models include other key limiting factors; for
example, Chen and Twilley’s, 1998 gap model of
mangrove forest dynamics (FORMAN) includes the
effects of salinity on tree growth.

Gap models occupy an interesting middle-ground
between exploratory and predictive models. While they
rely heavily on empirical information for their para-
meterisation and can be used predictively (e.g. to
estimate changes in timber volumes per unit area
Landsberg, 2003), they can also be used heuristically
(e.g. to explore the conditions under which certain
system dynamics occur). As an example, Hall and
Hollinger (2000) describe the LINKNZ model, which is
a non-spatial modification of the LINKAGES gap and
nutrient dynamics model, for NZ forest systems. They
evaluate LINKNZ by comparing its predictions to:
(i) the observed structure or composition of stands of a
given age and (ii) developmental trajectories in various
NZ forest types. Fire and wind-throw events are
included by way of a reduction in biomass (tree death)
and the return of that biomass to the local biogeochem-
ical cycle; individual disturbance events are not modelled
mechanistically. LINKNZ model produces ‘plausible’
predictions of forest dynamics, although Hall and
Hollinger (2000, p. 25) note that ‘‘detailed patterns
may not be exactly reproduced, especially during the
early-establishment phases’’. Having demonstrated the
predictive adequacy of the model, Hall and Hollinger
(2000) use it to explore some open issues in NZ forest
ecology: (i) the ‘regeneration gap’ (the apparent wide-
spread failure of gymnosperm recruitment), (ii) the
‘beech gap’ (absence of Nothofagus spp. from areas
where they might be expected to grow) and (iii) the
dynamics of natural monocultures (e.g. Nothofagus

solandri var. cliffortioides and N. menziesii). Thus, the
model is used both predictively and heuristically – in this
case the model predictions are used to assess its
adequacy before its heuristic use.
Analysis strategies for predictive models

Compared to exploratory models there are reasonably
well-established tools for analysing predictive models; as
Mayer and Butler (1993) outline these are typically
quantitative, and include both graphical (e.g. plots of
observed vs. predicted data) and statistical methods (e.g.
analysis of residuals). While the emphasis lies heavily on
the predictive accuracy of the model, rather than the
structure of the model itself, recent information
theoretic methods do emphasise trade-offs between
predictive accuracy and model complexity (Johnson
and Omland, 2004; Hobbs and Hilborn, 2006). How-
ever, evaluation of predictive models remains proble-
matic. A now much-discussed problem for model
evaluation, considered in some depth, by Oreskes et al.
(1994) and Oreskes and Belitz (2001), is non-uniqueness
or under-determination. In essence, the argument goes
that because more than one model can produce the same
observations, simply finding a match between a model’s
predictions and (empirical) observations to some pre-
determined acceptable goodness-of-fit, is not grounds to
state that a model is either ‘true’ or ‘correct’. Following
Oreskes and Belitz (2001), this non-uniqueness can be
numerical (multiple solutions to equations), parametri-
cal (multiple input data produce the same outcomes –
this is termed ‘equifinality’ by Beven (2002)) or even
conceptual (multiple conceptual models equally well
explain empirical observations). It is also important to
distinguish between logical and temporal prediction
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(sensu Oreskes, 2000), that is predictions about phenom-
ena that are independent of the location in time and
space at which they occur as opposed to those that are
not. Falsifying a logical prediction has much greater
explanatory value than falsifying a prediction about a
specific time (or place), yet most model evaluation
(tools) focus on temporal prediction.

Many methods have been developed to compare
observed and predicted maps on the basis of their
overall composition and pixel-by-pixel matches (Pontius
Jr. et al., 2004; Wealands et al., 2005). One key issue is
finding appropriate comparisons for model evaluation.
Pontius Jr. et al. (2004) note that many land-use and
cover change models make predictions no better (if not
worse) than a null model that simply retains the original
map as a prediction of the future (e.g. see Millington
et al., 2007). In general terms, despite the existence of
many statistical frameworks for the evaluation of
models and data, deciding on an appropriate null
model is not necessarily easy. A large number of
measures have been developed that aim to quantitatively
describe aspects of landscape pattern (broken into
landscape composition [what’s there?] and landscape
structure [where is it?]). All such metrics are derived
from measures of the geometry of patches: patch
perimeter, patch area and patch adjacency structure
(Gustafson, 1998). These metrics are widely used, for
example, to compare model simulations with observed
patterns and/or to compare sets of model simulations
under alternative parameterisations. While such
metrics may be useful for comparison, finding links
between metric values and specific ecological processes
has proved difficult (Cale and Hobbs, 1994; Li and
Wu, 2004).
4By complex we mean systems in which the (possibly few)

components interact to produce unexpected outcomes (‘emergence’),

whereas by complicated we mean systems comprising many elements

interacting in a linear or otherwise predictable fashion.
‘Exploratory’ modelling

In disciplines such as, for example, engineering,
modelling (stereo-)typically proceeds from a solid
conceptual basis and is underpinned by substantial
quantitative data. However, this is not often the case
when models of ecological systems are being developed.
Where data are scarce, hard to obtain, and/or uncertain,
modelling is more likely to be exploratory than
predictive. This does not, however, lessen the utility of
modelling – as Bankes (1993, p. 441) states ‘‘for many
problems partial information can provide partial an-
swers’’. Exploratory modelling is an approach that
(tacitly) emphasises the use of a model or models to
reduce epistemic uncertainty; it usually adopts an
experimental view of model analysis (Winsberg, 2003;
Peck, 2004), with the qualitative nature of the model
outcomes being more important than the quantitative
details. Bankes (1993), Pielke Jr. (2003) and Turner
(2003) provide reasons why the exploratory approach is
valuable:
1.
 the use of models as ‘existence proofs’ (i.e. to
demonstrate that certain system dynamics are
plausible)
2.
 the development of models early in research
as a guide/framework (i.e. hypothesis generation)
for future endeavours (whether model-based or
empirical)
3.
 the development of multiple and/or new ways of
conceptualising a system via critical and/or creative
thinking
4.
 risk assessment; for example, generation of worst
conceivable outcomes
5.
 synthesis and integration of disparate/alternative
sources of knowledge and understanding.
Abstract models as metaphors

To some extent all models are metaphors, but, in this
context, we are referring to highly abstracted models
that are not targeted at a specific system, but rather aim
to capture the key traits of some general class of system.
One much discussed and debated example is Per Bak’s
well-known forest-fire model (Bak and Chen, 1990),
which is intended to represent open, dissipative systems,
and uses ‘real’ forests and ‘real’ fires as a metaphor
(see Millington et al., 2006). The hallmark of such
models is their comparative simplicity and level of
abstraction. Their ‘simplicity’, however, does not mean
that they are not powerful and useful tools for exploring
complex systems4; in particular such ‘metaphor’
models have proved useful for exploring where and
how a system’s macroscopic statistical properties arise
from micro-level interactions and processes (so-called
‘emergence’).

An example of the use of metaphor models for the
exploration of forest dynamics is the ‘‘forest game’’
model described by Solé and Manrubia (1995). This
simple stochastic lattice-model attempts to mirror the
nature of gap dynamics processes in species-rich tropical
rainforest systems. The model comprises a two-dimen-
sional L� L lattice, with, at each time step, each cell
containing a tree of size St – the model assumes all trees
are of the same species. The model contains four basic
rules (with asynchronous updating):
1.
 birth: New trees appear at empty sites with pb.

2.
 death: Trees die at rate pd or when they exceed some

maximum size.
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3.
 growth: Tree size is updated as a function of the tree’s
size relative to that of its neighbours.
4.
 gap formation: On the death of a tree, some of that
tree’s neighbouring cells are cleared as a function of
the tree’s size.

The ‘‘forest game’’ provides a metaphor for the
complexities of gap-phase dynamics in species-rich
forests, and is clearly a gross simplification of the
dynamics of such systems. Nevertheless, it does capture
some of their macroscopic structure – in particular, it
exhibits multi-fractal behaviour in the form of a power-
law distribution of gaps similar to that observed in the
‘real’ system (Solé and Manrubia, 1995). Thus, a simple
model containing minimal specific process detail appears
to capture some of the key characteristics of a complex
system – this observation, that complexity can emerge
from simplicity has been made repeatedly using models
such as this, and has lead to the rise of ‘complexity
science’ (Bascompte and Solé, 1995).

Building on abstract models of: (i) the spread of
contagious disturbances and (ii) the spatial structure of
heterogeneous landscapes, Pausas (1999, 2006) has
developed CA-type models of Mediterranean forest
succession and disturbance that incorporate plant
functional types and idealised disturbance regime
characteristics. Pausas (2006) describes a spatially
explicit model (FATELAND) in which species compete
in grid cells as a function of their life-history character-
istics and the fire regime. Using artificial landscapes
following a gradient of coarse-to-fine spatial texture,
Pausas explored the interplay between spatial pattern,
life-history traits and the fire regime. The results are
placed in the context of the management and restoration
of fire-prone ecosystems in the Mediterranean Basin.
FATELAND shows that not only do species respond
differentially to alternate fire regimes, but that the
nature of their response varies with landscape pattern.
Although models such as FATELAND are not direct
representations of specific systems they bridge the gap
between highly abstract models, such as Bak and Chen’s
forest fire model (Bak and Chen, 1990; Millington et al.,
2006), and detailed site-specific simulation models.

Simple models such as the ‘‘forest game’’ have
benefited ecological theory, especially by contesting the
(intuitive) view that understanding complicated systems
requires complicated explanations. Furthermore, they
play an important role in developing broad under-
standing of a class of systems, and in allowing the
generation of hypotheses about the dynamics of those
systems. Nevertheless, the key question is ‘what have we
specifically learned from these models?’ Answering this
question means we need to consider how far we can
push the metaphor. The simplicity that such abstract
models engender can be beguiling, and it is easy to fall
into the trap of believing that since simple models
appear to reproduce the dynamics of some complex
system(s), those complex system(s) themselves must be
simple. As Frigg (2003) points out, there is a risk of
over-interpreting ‘emergent’ behaviours; it is important
to ask whether a given ‘emergent’ phenomena is robust
to different representations and parameterisations.
Likewise, it is easy to forget that the models are

(intended as) metaphors, and caution needs to be used
if they are applied to specific dynamics in specific
systems (Millington et al., 2006). If a given model is to
be applied to specific dynamics in specific systems then
there will be a minimum amount of empirical informa-
tion such a model will need to contain. The amount
of information that is required will depend upon
the current state of knowledge about that system and
the scale of representation at which the model is
constructed.
Detailed models as heuristic tools

Models for learning are not limited to abstract,
stripped-back models such as those described above;
detailed models are also frequently used to explore
specific facets of vegetation dynamics in specific systems.
These models are usually informed by considerably
more empirical information than are the ‘metaphor
models’ described above, and might be best thought of
as tools for integration and synthesis (sensu Turner,
2003).
Exploring palæolandscapes with models

Much use has been made of succession-disturbance
models to try to reconstruct historical landscape
dynamics (Anderson et al., 2006). This application
straddles the division between models for learning and
models for prediction – they are tools for learning, as
they usually focus on trying to understand how a given
landscape composition and structure was achieved,
but they are often analysed in a predictive sense by:
(i) comparing their predictions against other observed
data (e.g. comparison of model outputs to palynological
reconstructions) and (ii) seeking to use historical
reconstructions to predict future change. A recent
example of model-based landscape reconstruction is
provided by Hall and McGlone (2001), who used the
LINKNZ model (described above) to reconstruct forest
composition and test estimated palæo-climatic condi-
tions in south-eastern New Zealand. Hall and McGlone
modelled forest composition in the recent past
(700–800 yr BP) and in the early Holocene
(7000–8000 yr BP). Various proxy climatic data suggest
that in the early Holocene temperatures were approxi-
mately 1 �C warmer than present-day with rainfall
approximately 60% lower; dominant forest taxa in the
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Fig. 2. Schematic overview of the pattern-oriented approach to

model design and analysis (after Wiegand et al., 2003);

reproduced with kind permission of Wiley-Blackwell Publishing.
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pollen record (at that time) include Dacryidum cupressi-

num, Nothofagus menziesii, Dacrycarpus spp., Weinman-

nia spp. and Podocarpus spp. Simulations were
conducted on �2000 separate landscape patches repre-
senting the broad range of bioclimatic conditions across
the region; thus, Hall and McGlone (2001) take a
stratified ‘sample’ of the landscape (see Urban et al.,
1999). Parameterising LINKNZ to mirror early Holo-
cene climatic conditions resulted in successful reproduc-
tions of the palynological record, supporting previous
climatic reconstructions. The model was then used to
predict likely future vegetation trajectories under
current climate conditions. In this example the model-
ling exercise is heuristic in the sense that: (i) it seeks to
confirm the plausibility of various hypothesised system
dynamics, (ii) it synthesises and integrates previous non-
model studies and (iii) provides new hypotheses about
the nature of the palæo-environment in this part of NZ.

Using models to explore human disturbance and

management

Detailed models are also used to assist in decision-
making in forests ecosystems by managers. While
models can be used to explicitly predict the future states
and dynamics of a system, they are more commonly
used to explore the potential outcomes of different
management strategies or scenarios. For example,
LANDIS (Mladenoff, 2004; Scheller et al., 2007), a
stochastic spatial simulation model that considers
vegetation dynamics over large space–time extents
(106 þ ha and 1000s of years), has been used to explore
the consequences of a number of landscape-level
management options (e.g. patterns of harvesting or fuel
management). Gustafson et al. (2000) describe a timber
management model which they added to LANDIS. In
their module management occurs in zones with specific
objectives and associated harvest prescriptions; the
prescriptions are described by a spatial component
(where? how large?), a temporal component (single- vs.
multi-stage harvest strategies) and cohort removal
component (which age cohorts?). The module also
includes ‘ranking algorithms’ that prioritise harvested
stands based on criteria such as a stand’s age, economic
value or age–class distribution. Gustafson et al. (2000)
used this model to compare the outcomes of three
different harvest strategies (no harvest, even-aged,
uneven aged) in south-eastern Missouri. They found
that the different strategies produce landscapes with
profoundly different spatial configurations. Gustafson
et al. highlighted the ability to use the model experi-
mentally, noting that ‘‘the model framework invites
evaluation and comparison of management alterna-
tives’’ (p. 40). He et al. (2004) discuss the use of
LANDIS to provide information for wildfire regime
management by allowing managers to explore the
implications of different fuel management practices
(e.g. prescribed burning, fuel reduction, fire suppression)
for landscape structure. They demonstrate the use of the
model by comparing the long-term outcomes of fire
suppression either with or without reduction of coarse
fuels via fuel treatment in the Missouri Ozarks. He et al.
(2004) emphasised the trade-offs required to simulate
fire regime management over broad spatio-temporal
extents; for example, LANDIS is stochastic and so
cannot be used to predict the outcomes of specific
individual events, but it does enable consideration of
longer-term spatial patterns and the outcomes of
different management approaches. Indeed, the strength
of using models in this way is their facilitation of
learning via an experimental approach.
Analysis strategies for exploratory models

Specific analysis strategies for exploratory or heuristic
models are less well-established than those for predictive
models. Although, the statistical tools discussed above
are frequently used to evaluate exploratory models, if
the focus of the modelling exercise is heuristic, then
predictive accuracy may become of reduced importance;
this means that evaluation may focus on a model’s
structural realism to ensure than any (novel) outcomes it
produces are plausible, but not ‘hard-wired’ into its
assumptions. It is fair to state, however, that model
analysis remains in practice dominated by technical and
quantitative approaches. Recently, and in light of some
important criticisms of this quantitative approach to
model evaluation, strategies such as ‘pattern-oriented
modelling’ (POM, Fig. 2) have been advocated for the
evaluation of the complex simulation models often used
in exploratory ecological analyses (Grimm and Berger,
2003; Grimm et al., 2005; Wiegand et al., 2003). As
Grimm et al. (2005) emphasise, models that are too
simple fail to capture the essence of the system being
considered, but models that are too detailed become
difficult to analyse and interpret. Thus, locating the
optimal representational detail for the question of
interest is of fundamental importance in model building
and implementation; it is this optimum that POM helps
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find. Compared to the confrontational approach dis-
cussed above, this type of model evaluation considers
both the structure of the model itself (are the essential
things included?) and its outcomes (does the model
reproduce specific dynamics [patterns] of the system of
interest?). This simultaneous consideration of structure
and outcome is a strength of the approach. As a strategy
pattern-oriented modelling:
�
 endeavours to make the choice of model structure less
arbitrary, by focusing on the optimal complexity (in
terms of the suite of processes/parameters included)
required for specific questions to be addressed;

�
 hinges on identifying multiple spatial and temporal
patterns and the minimal structure required for their
‘emergence’ from a model; Grimm and Berger (2003,
p. 412) note that ‘‘usage of multiple ‘weak’ patterns is
more fruitful than focusing on one single ‘strong’
pattern’’ and

�
 produces ‘structurally realistic’ models that contain

the fundamental structures/processes necessary to
capture the essence of the system; this is achieved by
comparing independent model outcomes with known
properties of the system.

Along similar lines, O’Sullivan (2004, p. 291) states
that ‘‘It is clear that assessment of the accuracy of a
model as a representation must rest on argument about
how competing theories are represented in its workings,
with calibration and fitting procedures acting as a check
on reasoning’’. He argues that models should be
rigorously assessed on the basis of the theories
represented in the model and their adequacy – this type
of evaluation cannot be achieved solely via technical or
algorithmic means (Kleindorfer et al., 1998). In this
context, models may best be seen as types of thought
experiments where the implications of different con-
ceptualisations can be explored. POM and other model
evaluation frameworks (e.g. see Castella et al., 2005 for
a discussion of ‘social validation’) can provide under-
standing different to that which more ‘traditional’
confrontational evaluation methods give.
Where to from here?

The place of humans

Few ecosystems remain unaffected by human activity,
yet relatively few ecological models have explicitly
considered humans as agents of change (Liu, 2001).
This is rather surprising because: (i) the need for
environmental management to integrate biophysical
and social perspectives is widely discussed (Chave and
Levin, 2003; Pickett et al., 2005) and (ii) numerous
conceptual frameworks designed to encourage this
integration have been developed (Vogt et al., 2002).

A key question in successful integration of biophysical
and social and economic problems is at what spatial and
temporal scale(s) the system(s) should be analysed
(Bockstael et al., 1995; Vogt et al., 2002). For example,
while ecologists often view spatial dynamics as being as
important as temporal dynamics, economists generally
ignore spatial dynamics and set the spatial extent of
their model boundaries according to the extent of the
market (Bockstael, 1996). Temporally, ecologists are
more interested in dynamics over longer extents (often
considering 100þ years), whereas economists have
restricted themselves to shorter time-horizons (up to
decades) as they are less confident about their ability to
predict future perturbations to their systems (Bockstael
et al. 1995). The ‘landscape’, on the scale of the human
observer, seems a potential common-ground here as it
represent a scale at which both the natural and social
sciences have historically collected and analysed data
(Vogt et al., 2002; Matthews and Selman, 2006).

In the past, human action has often been included in
models in static and/or implicit (and arguably unsatis-
factory) ways such as the manipulation of parameters
describing disturbance frequency and/or size; of the 34
case-studies presented in Table 2, 18 consider humans
but of these only two do so directly . As Wainwright
(2006) discusses, such indirect, static and immutable
‘scenarios’ fail to capture the dynamic relationships and
feedbacks that typify human–environment interactions,
and at the worst can result in extremely unrealistic
model dynamics (e.g. the ongoing acquisition of
resources long after they have passed some usable lower
threshold). Recently, however, models that represent
environmental change and human activity and decision-
making more ‘realistically’ have received increasing
attention. Over recent years a number of models have
been developed that represent human decision-making
(e.g. via an agent-based approach) in spatially explicit
and temporally dynamic landscapes (e.g. via a grid-
based or CA model); Parker et al. (2003) review the use
of such models in the context of LUCC. Matthews
(2006) highlights two areas where such models need
development are (i) between-agent communication and
interaction in the decision-making process and (ii)
representation of dynamics in the landscape (beyond
simple cover change).

We anticipate that such integrated models will
continue to be developed and refined; nevertheless, the
development of integrated socio-ecological and ecologi-
cal–economic models is clearly a complicated endeavour
and such models have the potential to become extremely
detailed. Furthermore, the collaboration between eco-
logical modellers and modellers from other disciplines
that such an integrated approach suggests may not be as
straight-forward as might be hoped. For example,
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Drechsler et al. (2007) suggest that ecological modellers
must be aware that analytical tractability is valued more
highly in economics than is generally the case in ecology
(but note equally that economists must be prepared for
greater model complexity than they may be used to).
Potential difficulties in inter-disciplinary modelling
collaborations are likely to arise from differences in
perception and understanding between experts from
different disciplines – both regarding the systems being
modelled themselves and the objectives and potential of
the models being constructed.
Representation and scale

There is no single ‘best’ way of modelling succession
and disturbance dynamics, rather there are more or less
appropriate strategies depending on the questions of
interest and the purpose of the modelling exercise. The
modelling approaches described here range from data-
driven empirical approaches (e.g. regression models) to
representationally rich individual-based models (e.g.
forest gap models). A primary concern over which
approach will be taken will be the necessary trade-off
between spatio-temporal grain and spatio-temporal
extent. Individual-based models have been limited to
small spatial scales; the earliest gap models operated on
patches smaller than 1 ha and considered only a few
hundred individuals, but more recent gap model
variants (e.g TROLL – Chave, 1999) can consider up
to 2� 107 individuals over areas of � 20 km2. Never-
theless, for now, spatial extents of the order of tens of
thousands of hectares remain the domain of more
aggregated models. However, given the ever increasing
availability of computational power, individual-based
models, such as TROLL, will be able to consider more
and more individuals on larger and larger landscapes.
While this ‘brute-force’ approach might seem appealing,
it is debatable whether more and more detailed
representation over ever largening extents will prove
useful; there are inevitable limits to the amount of model
detail that can be supported in terms of either under-
standing (representation) or data (parameterisation). As
Levin (1997, p. 334) points out, the risk of developing
over-detailed simulations is that the ‘‘ymodels produce
cartoons that may look like nature but represent no real
systems.’’ The essence of effective modelling, in any
context, remains in isolating the ‘details that matter’
(Pacala and Deutschmann, 1995), and identifying the
local components of the system that contribute to
broad(er)-scale dynamics and those that are simply
noise (Levin et al., 1997; Urban, 2005; Hastings et al.,
2005). A broader view of model evaluation than the
traditional confrontation between model and data (e.g.
new frameworks such as pattern-oriented modelling),
will help in this context.
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