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Abstract 

In the past decade, single-cell technologies have revealed the heterogeneity of the tumor-immune microenviron‑
ment at the genomic, transcriptomic, and proteomic levels and have furthered our understanding of the mechanisms 
of tumor development. Single-cell technologies have also been used to identify potential biomarkers. However, 
spatial information about the tumor-immune microenvironment such as cell locations and cell–cell interactomes is 
lost in these approaches. Recently, spatial multi-omics technologies have been used to study transcriptomes, pro‑
teomes, and metabolomes of tumor-immune microenvironments in several types of cancer, and the data obtained 
from these methods has been combined with immunohistochemistry and multiparameter analysis to yield markers 
of cancer progression. Here, we review numerous cutting-edge spatial ‘omics techniques, their application to study of 
the tumor-immune microenvironment, and remaining technical challenges.
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Background
The tumor‑immune microenvironment and the therapeutic 
challenge
The inter-related, co-existing, and competitive nature of 
interactions between tumor cells, the surrounding tissue, 
and infiltrating innate and adaptive immune cells results 
in a unique environment that varies by tumor type and is 
highly adapted to the tumor behavior. This complex eco-
system is composed of tumor cells, immune cells, stromal 
cells, fibroblasts, extracellular matrix, and blood vessels, 
and is referred to as the tumor-immune microenviron-
ment (TIME). In the TIME, dynamic and bidirectional 
interactions occur between cells of various types through 
communication signals such as secreted molecules, pro-
teins, and vesicles [1]. Tumor cells, as well as immune 
and stromal cells, utilize specific metabolic pathways to 

survive in the oxygen- and nutrient-limiting environment 
of a tumor [2].

Tumor-infiltrating T cells, which recognize tumor-spe-
cific antigens and kill tumor cells, are modulated by mul-
tiple signals emitted by tumor cells and by myeloid cells 
[3]. Monocytes and macrophages, specifically tumor-
associated macrophages, can suppress or modulate the 
tumor killing by T cells [4]. Other non-immune cells, 
such as endothelial cells and fibroblasts, are critical regu-
lators of tumor progression in the TIME [5, 6]. Endothe-
lial cells build blood vessels necessary for transfer of 
nutrients to the tumor. Cancer-associated fibroblasts not 
only lay down the matrix but also actively participate in 
immune modulation.

Recently developed therapeutic strategies that lev-
erage the immune system to inhibit tumor growth 
have proven effective in some solid tumors. Although 
immune checkpoint blockers (ICBs) such as anti-
CTLA-4 antibody ipilimumab, anti-PD-1 antibod-
ies nivolumab and pembrolizumab, and anti-PD-L1 
antibody atezolizumab have been evaluated in the 
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treatment of many different cancers [7], ICB therapy 
works only on certain types of cancers. Loss of tumor-
expressing MHC class I molecules, which initiate the 
T cell response, insufficient numbers of T cells in the 
tumor mass, and the presence of immunosuppressive 
cells or factors can all limit efficacy of ICBs. Thus, the 
TIME strongly influences the effectiveness of ICB ther-
apies [8]. To understand how to harness the immune 
system to inhibit tumor progression, a detailed under-
standing of immune cell distribution and function is 
imperative.

Single‑cell technologies reveal the heterogeneity 
of the tumor‑immune microenvironment
The development of single-cell detection platforms has 
enabled deep profiling of the heterogeneity of tumors and 
the immune system both within individual tumors and 
between patients [9, 10]. Genomic single-cell sequenc-
ing methods, which detect mutations at the DNA level, 
have been used to confirmed co-existence of dangerous 
mutations in individual cells, a resolution that cannot be 
achieved by bulk sequencing [11, 12]. Single-cell RNA 
sequencing (scRNA-seq) enables profiling of transcrip-
tomes in cells of the TIME [13]. These technologies have 
yielded high-resolution and unbiased profiling of cancer-
ous cells, T cells, myeloid cells, and stromal cells and have 
revealed a vast heterogeneity of immune profiles across 
tumor types [14, 15].

Single-cell proteome detection platforms with mul-
tiplex capacity have also been developed. For example, 
mass cytometry (also known as cytometry by time-of-
flight or CyTOF) methods can detect over 40 cellular 
markers at one time [16, 17]. CD4+ and CD8+ T cells, 
tumor-associated macrophages, and cells that express 
immune checkpoint markers, the hierarchy of hemat-
opoietic stem cell differentiation, functional heterogene-
ity and signaling in T and natural killer (NK) cells have 
been revealed using the CyTOF platform [18–24].

Experiments using single-cell technologies have con-
vincingly demonstrated that tumor masses usually con-
tain multiple genetically defined subclones of cells with 
distinct sets of gene mutations and different transcript 
profiles. Immune cells, with vastly different transcript 
profiles characteristic of progenitor, active, exhausted, 
and suppressed cells, coexist with tumor. These data have 
raised critical questions: How do these immune players 
with vastly different functions coexist in the same envi-
ronment? Are these cells equally distributed in the tumor 
mass, or do they segregate into clusters with distinct spa-
tial and biological features? To answer these questions, 
a single-cell dataset embedding histological structure 
information is needed.

A new era of single‑cell‑level histological research
Long before the development of the spatial ‘omics, it was 
known that certain histological patterns within tumors 
are highly linked to patient prognosis. For example, peri-
tumoral T cell and B cell infiltration in colorectal cancer 
patients is correlated with positive prognosis, whereas 
the depletion of lymphocytes in the tumor core is an indi-
cator of poor prognosis [25]. Further, stromal infiltration 
of T cells is linked to good prognosis for specific types of 
breast cancer [26, 27]. To better understand spatial cor-
relates with prognosis researchers have used multiplexed 
immunohistochemistry (IHC), immunofluorescence 
(IF) and laser capture microdissection-based IHC/IF 
with auxiliary tools to select tumor regions for analyses 
of expression patterns of protein and RNA transcripts 
[28]. These types of histological analyses are limited by 
resolution and problems related to bias in sample selec-
tion. Recent technological advancements in solid-phase 
sequencing and multiplex imaging have enabled multi-
plexed detection of transcripts, proteins, and metabo-
lites in high-resolution images (Fig.  1). In the following 
sections, we will review recent developments in spatial 
multi-omics, research applications in tumor tissue explo-
ration, and current challenges.

Spatial transcriptomics methods
The most commonly used methods for spatially resolved 
transcriptomic analyses are listed in Table 1, and a sche-
matic of the spatial transcriptomics workflow is shown 
in Fig.  1A (upper panel). Depending on the technique, 
these experiments use either fresh-frozen (FF) or forma-
lin-fixed, paraffin-embedded (FFPE) tissues. The main 
strategies for spatial transcriptomics are based on next-
generation sequencing (NGS) and on fluorescence in situ 
hybridization (FISH) [29–31]. With NGS techniques, 
transcripts are encoded with position information prior 
to sequencing. For example, with the 10 × Genomics 
Visium platform, chips containing spatially barcoded 
oligo(dT) are used to capture mRNA from the tissue 
overlaid on the chip and then processed for sequencing 
yielding unbiased spatial transcriptomic data [32]. How-
ever, due to the low numbers of transcripts captured, 
transcript abundances from multiple neighboring cells 
are aggregated for downstream analyses, so the effective 
spatial resolution is not at the single-cell level.

Other spatial transcriptomic techniques rely on spa-
tially barcoded probes conjugated to beads to capture 
RNA from the tissue samples. For example, Slide-seq is 
a method for transferring RNA from tissue sections onto 
a surface covered in DNA-barcoded beads with known 
positions, allowing the locations of each RNA transcript 
to be inferred by sequencing [33]. Slide-seq V2 has higher 
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RNA capture efficiency than Slide-seq; the efficiency 
is about 50% that of scRNA-seq [34]. XYZseq encodes 
spatial information by physically partitioning tissue sec-
tions into an array of microwells containing barcoded 
primers for reverse transcription primers [35]. The High-
Definition Spatial Transcriptomics (HDST) method uses 
microwell-based fluorescence spatial indexing beads to 
capture transcripts, and fluorescence signals reveal tran-
script positions in tissue samples. The barcoded RNA is 
sequenced, and sequencing data is mapped to fluores-
cence data. Cyclic sequencing of individual transcripts 
can be used to increase resolution. For both Slide-seq 
and HDST, the size of beads and the capture efficiency 
of RNA transcripts determines the resolution of spa-
tial information: The diameter of beads used in HDST is 
around 2 μm, and the beads used for Slide-seq are 10 μm 
in diameter. HDST captures more targets and provides 
higher resolution than Slide-seq [36].

Recently, spatial transcriptomic approaches with higher 
transcriptome capture efficiencies have been developed 
to enable capture of sub-µm-resolution images. In Seq-
Scope, tissue is attached to an RNA-capturing array with 
a dense arrangement of barcoded clusters [37]. mRNAs 
captured from the tissue are used as the template to gen-
erate cDNAs for NGS analysis. In Stereo-seq, circular 
amplified DNA nanoballs containing barcode sequences 
are generated and dispersed onto the etched chips with 
patterned array [38]. An mRNA capture sequence is 
linked to the spatial barcode and used to capture the 
mRNA released from the tissue section overlaid on the 
chip. Each dot is 220  nm in diameter, and there is 500 
or 715  nm between the dots; however, the lateral diffu-
sion of mRNA during the capture step is more than 5 μm. 
Optimized Stereo-seq can read-out 1450 unique molecu-
lar identifiers per 10 μm diameter (a bin of 14 × 14 DNA 
nanoballs) providing spatial transcriptomic data for a tis-
sue area as large as several cm2. Although detection of 

low-abundance copy transcripts is not currently possible, 
this technique has been applied to analyze mouse embry-
onic development and the transcriptomes of solid tumors 
at near single-cell resolution [38, 39].

Spatially encoded barcodes can also be allocated to 
individual cells through light-based printing of DNA 
barcodes onto the surface of cells. In ZipSeq, patterned 
illumination and photocaged oligonucleotides are used 
to serially print barcodes (the so-called zipcodes) onto 
live cells within tissues [40]. This annealed zipcode ter-
minates in a polyA sequence that streamlines subsequent 
cDNA library construction. For sequencing, the tissue 
sample is dissociated into single cells and scRNA-seq is 
performed. The final analysis combines mapping tran-
scripts onto zipcoded regions.

In Deterministic Barcoding in Tissue sequencing 
(DBiT-seq), two perpendicular microfluidic chips with 
parallel channels are sequentially placed against the tissue 
section to introduce oligo-dT-tagged with combinations 
of spatial barcodes for each tissue pixel [41]. The tissue is 
then digested to recover spatially barcoded cDNAs, and 
libraries are prepared and sequenced. Spatial transcrip-
tome mapping of the developing eye in an E10 mouse 
embryo was achieved using DBiT-seq with 10-μm resolu-
tion. By combining DBiT-seq with immunofluorescence 
staining or scRNA-seq, a better understanding of specific 
cell types could be achieved.

Methods to profile the transcriptome within a region of 
interest (ROIs) have also been developed. With the Digi-
tal Spatial Profiler (DSP), the abundances of proteins or 
RNAs within an ROI are measured by counting unique 
barcoded oligonucleotides assigned to each target of 
interest. Antibodies or mRNA hybridization probes are 
conjugated with barcoded photocleavage oligonucleo-
tides and used to stain the tissues. Next, photocleavage 
is induced by UV light, and the released oligonucleotides, 
which encode spatial information, are collected for NGS 

Fig. 1  Schematics of the spatial multi-omics technologies, analysis workflow, and example data. A Schematics of workflows for spatial 
transcriptomics, proteomics, and metabolic analyses. Upper: Spatial transcriptomics platforms are classified into those based on next-generation 
sequencing and those based on in situ hybridization and in situ sequencing. The next-generation sequencing-based approaches use chips covered 
by a matrix of the barcoded oligonucleotides to capture mRNAs from the overlaid tissue. After tissue removal and probe harvest, a cDNA library 
with coordinate barcodes is prepared and sequenced. The in situ hybridization-based methods use fluorescently labeled probes that hybridize to 
the target transcripts. The in situ sequencing method uses probes to capture target transcripts, and sequencing is performed after rolling circle 
amplification. Middle: The spatial proteomic platforms utilize fluorescent reporters or metal-conjugated antibodies to recognize target proteins. 
For fluorescent reporters, repeated imaging and stripping to remove probes allow detection of many antibodies. In the methods that employ 
metal-conjugated antibodies, tissue is systematically ablated by a laser or an ion beam and analysis by mass spectrometry yields spatial and 
molecular information. Lower: For the spatial metabolomics, metabolites can be ionized and detected after sputtering from a spot or pixel on the 
tissue by a laser. B An example of a data analysis workflow for image processing and downstream analyses (clustering, spatial network analysis, 
or evaluation of cell–cell interactions) applicable to spatial multi-omics data. During image processing, information on the position of each cell is 
obtained by algorithmic definition. Clustering and neighborhood analyses can then be performed on the segmented images to obtain information 
about how cell types interact. C Example of results obtained from a multiplexed immunofluorescence imaging study performed using the CODEX 
method. The composite image of six key antibodies staining from the panel is shown on the left. The cell segmentation is shown in the middle. 
Cellular clustering and neighborhood analyses were performed, as shown on the right. Clusters are color coded. A chord diagram is used to 
represent the interactions between cell clusters. The size of the arc is proportional to the strength of the cell–cell interactions

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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analysis [42]. An optimized DSP method was recently 
used to detect 44 proteins and 96 transcripts simultane-
ously [43]. Similarly, Pick-seq can be used to sequence 
RNAs in an ROI of a tissue sample [44]. The ROI, selected 
based on immunofluorescence, is isolated by aspiration 
into a liquid-filled 40-μm bore needle. Subsequently, cells 
are lysed, and cDNA is prepared and sequenced.

Imaging-based strategies, which combine interactive 
in  situ hybridization or in  situ sequencing with high-
resolution microscopy, can achieve subcellular spatial 
resolution and can potentially provide genome-wide 
transcriptomic information. However, these meth-
ods are usually technically demanding, require itera-
tive workflows, sophisticated image analysis processes, 
and large collections of probes. In methods based on 
in  situ sequencing, probes are used to hybridize pre-
selected RNA targets to allow reverse transcription. 
Rolling circle amplification, sequencing-by-ligation, 
sequencing-by synthesis, or sequencing by hybridiza-
tion can be used as read-out [45]. Fluorescent in  situ 
sequencing (FISSEQ) is an untargeted gene profiling 
method in which transcripts are reverse transcribed, 
and rolling circle amplification is used to generate 
cDNA amplicon nanoballs of 200–400 nm in diameter 
within the cell. The amplicons are then sequenced using 
Supported Oligonucleotide Ligation and Detection 
(SOLiD) technology to yield in situ transcriptomic data 

[46]. Targeted in situ transcriptomics images have been 
obtained using Spatially resolved Transcript Amplicon 
Readout mapping (STARmap), which is a combination 
of hydrogel tissue chemistry methods with targeted sig-
nal amplification- And a targeted method, Sequencing 
with Error-reduction by Dynamic Annealing and Liga-
tion (SEDAL) method, was used to simultaneously map 
1020 genes in mouse V1 neocortex [47].

The method known as MERFISH, for multiplexed 
error-robust FISH [48], is an advanced method derived 
from single-molecule FISH (smFISH) [49, 50]. Multi-
plexing results from rounds of hybridization, imaging, 
and stripping. In smFISH due to numerous single image 
merges, the error of each image also accumulates. The 
scheme used in MERFISH allows detection of errors and 
replacement with valid sequence [48, 51]. MERFISH has 
been used to spatially resolve 10,050 genes simultane-
ously at subcellular resolution and to identify specific 
gene subsets that are enriched in subcellular compart-
ments. seqFISH + applies a complex in  situ hybridiza-
tion technique to obtain higher dimensional results than 
MERFISH [52]. The primary oligonucleotide probes have 
sequence complementary to RNAs of interest and a read-
out region for secondary probe binding. The second-
ary probes are conjugated to combinatorial fluorophore 
labels used in imaging to potentially allow detection of 
24,000 genes in single cells.

Table 1  Spatial transcriptomic platforms

Spatial 
transcriptomic 
technique

Biomolecule 
target

Read-out Resolution Coverage Number of targets Tissue preparation References

NGS based

 10X Visium RNA Sequencing 55 μm Full  > 10,000 FFPE, FF [32]

 Slide-seq RNA Sequencing 10 μm Full  > 10,000 FF [33]

 Slide-seq V2 RNA Sequencing 10 μm Full  > 10,000 FF [34]

 XYZseq RNA Sequencing Single cell in 
500 μm micro‑
wells

Full 10,000 FFPE, FF [35]

 HDST RNA Sequencing 2 μm Full  > 10,000 FF [36]

 Stereo-seq RNA Sequencing 0.22 μm on chip Full  > 10,000 FF [38]

 ZipSeq RNA Sequencing Single cell Full  > 10,000 live cells [40]

 Pick-seq RNA Sequencing 5–20 cells Full  > 10,000 FFPE, FF [44]

 DBiT-seq RNA Sequencing 10 μm Full  > 10,000 FF [41]

 Seq-Scope RNA Sequencing  ~ 0.6 μm on chip Full  > 10,000 FF [37]

In situ sequencing based

 FISSEQ RNA Sequencing by ligation Sub-cellular Full 16,000 FFPE, FF [46]

 STARmap RNA Sequencing by ligation Single cell Targeted 1020 FF [47]

In situ hybridization based

 MERFISH RNA Cyclic imaging Sub-cellular Targeted > 10,000 FF [48]

 Seq-FISH +  RNA Cyclic imaging Sub-cellular Targeted > 10,000 FF [52]

 DSP RNA Sequencing 200 μm Targeted 1600 FFPE [43]
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Spatial proteomics methods
The idea that arose from traditional IHC that multiple 
proteins could be detected in a single step staining pro-
cedure prompted development of highly multiplexed 
spatial proteomic detection (Table  2 and Fig.  1A, mid-
dle). Most proteomics platforms either employ fluoro-
phores or metal tags. The method are similar in terms 
of spatial resolution, cell throughput, number of the 
molecular targets, and the temporal dynamics. For 
fluorescence-based methods, a procedure called itera-
tive image acquisition is applied to the FF or FFPE tis-
sue of interest through cyclic addition and removal of 
fluorescently labeled primary antibodies. Examples 
include MACSima Imaging Cyclic Staining (MICS) [53], 
tissue-based cyclic immunofluorescence (t-CycIF) [54, 
55], Co-Detection by IndEXing (CODEX) [56], Signal 
Amplification By Exchange Reaction (Immuno-SABER) 
[57], and InSituPlex [58]. The choice of fluorophores or 
design of oligonucleotides is important for the success of 
spatial detection using these iterative methods. The anti-
bodies are conjugated to fluorophores that have minimal 
spectral overlap (maximal Stokes shift), to indexing oli-
gonucleotides (CODEX), to orthogonal DNA concate-
mers (Immuno-SABER), or amplified oligonucleotides 
(InSituPlex) to provide specificity and sensitivity during 
the iterative detection process. To bleach or inactivate 
the label, t-CycIF and MICS use gentle conditions such 
as  photobleaching with specialized antibodies (REAfin-
ity or REAdye_lease) or a specialized removal reagent 
(REAlease). In Multi Omic Single-scan Assay with Inte-
grated Combinatorial Analysis (MOSAICA), secondary 
probes are conjugated to the combinatorial fluorophore 
labels used in imaging [59]. Spatial results are captured 
by fluorescence lifetime imaging and microscopy (FLIM). 
Using FLIM, fluorescence spectral detection and lifetime 

measurements are obtained for each pixel. Fluorescence 
spectral and lifetime data are processed by a machine 
learning-based decoding method, and phasor analysis 
is utilized for mapping spectral and temporal informa-
tion to original images yielding three-dimensional tissue 
images. CODEX has the advantage of not requiring an 
amplification enzyme or specialized buffers, which makes 
it less costly and less time-consuming [56].

The metal tag-based spatial proteomics methods are 
imaging mass cytometry (IMC) [60] and Multiplex Ion 
Beam Imaging (MIBI) [61]. In these strategies, metal-
conjugated antibodies are used to stain tissue samples, 
and target proteins are detected using mass spectrom-
etry based on the abundances of isotopic reporter masses 
released from the tissue upon ablation with a laser beam 
or ion beams. The output is as a non-overlapping mass 
signal integration for each measured cell. A single laser 
is used in IMC to ablate tissue. The two source ion beams 
employed in MIBI result in higher spatial resolution than 
is obtained with IMC [61–63]. Both IMC and MIBI have 
been used to study tumor samples from pre-clinical and 
clinical studies and have significantly contributed to 
our understanding of the highly complex architecture 
of TIME at a cellular level and its role in tumorigenesis 
[62, 64–70]. Multiplexed fluorescence- and metal-based 
tagging methods can be employed to detect protein and 
mRNA within the same tissue. Co-detection strategies 
aim to reveal both genotypic and phenotypic information 
about a cell simultaneously [71].

Spatial metabolic methods
Mass spectrometry is a robust technique for mul-
tiplexed analysis of proteins, natural products, and 
metabolic derivatives [72, 73]. Since classical mass spec-
troscopy methods do not provide spatial information, 

Table 2  Spatial proteomics platforms

Spatial proteomic 
technique

Biomolecule target Read-out Resolution Number of targets Tissue preparation References

Fluorophore-based

 MICS Protein Cyclic imaging Sub-cellular 100 FFPE [53]

 t-CycIF Protein Cyclic imaging Single cell 60 FFPE [54, 55]

 CODEX Protein Cyclic imaging Single cell 60 FFPE, FF [56]

 Immuno-SABER Protein Cyclic imaging Sub-cellular 10 FFPE, FF [57]

 InSituPlex Protein Cyclic imaging Sub-cellular 5 FFPE [58]

 MOSAICA Protein/ Nucleic acid Spectral and time 
resolved fluorescence 
imaging

Single cell Up to 10 FFPE [59]

Metal-based

 IMC Protein Mass cytometry 1 μm 40 FFPE, FF [60]

 MIBI Protein Mass cytometry 260 nm 40 FFPE, FF [61]
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mass spectrometry-based imaging strategies have been 
developed that employ different ionization methods [74]. 
These include matrix-assisted laser desorption/ioniza-
tion mass spectrometry (MALDI) [75, 76], desorption 
electrospray ionization (DESI) [77, 78], and secondary 
ion mass spectrometry (SIMS) [79, 80]. These platforms 
allow label-free detection, quantification, and mapping 
of multiple metabolites including small molecules, lipids, 
peptides, organic compounds, and elemental ions in cells 
and tissues (Table 3, Fig. 1A, lower panel).

MALDI requires applying and crystallizing the sam-
ple onto a matrix. The resolution of current commercial 
MALDI instrumentation is about 10  μm, and atmos-
pheric pressure MALDI provides resolution below 2 μm 
[81]. To improve ionization efficiency, MALDI-2 com-
bines a laser post-ionization with MALDI [82]. Transmis-
sion-mode MALDI-2 (t-MALDI-2) provides resolution 
of 1–2  μm for detection of phospholipids and some 
biomolecules [83], and 0.6-μm spatial resolution was 
obtained by adapting the strategy to the Orbitrap mass 
analyzer [84].

DESI has been used to analyze drug, biological and 
metabolic molecules under ambient conditions [85–88]. 
For DESI, a matrix is not necessary; charged droplets 
and ions of solvent are sprayed directly onto the surface 
of analyte. The analyte on the surface is taken up by a 
stream of charged solvent droplets to form the multiply 
charged ions analyzed by mass spectroscopy. The spa-
tial resolution of DESI is about 50–200 µm. Signal levels 
decrease and sensitivity is reduced when large areas of 
tissue are analyzed, such as whole-body sections of mice. 
To address this and expand the coverage of metabolites, 
air flow-assisted ionization was incorporated into the 
DESI workflow in a pipeline called air flow-assisted DESI 
(AFADESI) [89]. The resolution of AFADESI is 300–
500 µm. Another DESI-based protocol, nanoDESI, which 
incorporates a solvent bridge between primary and nano-
spray capillaries, has spatial resolution of 10–15 µm [90].

SIMS facilitates soft ionization of analytes via a pri-
mary ion beam. As SIMS is a high vacuum technique, 
sample preparation for SIMS usually requires chemical 
or cryogenic fixation to maintain tissue integrity [91]. 
Several methods have been developed based on SIMS. 
TOF–SIMS combines the time-of-flight (TOF) and SIMS 
to obtain information on the molecular layers of a solid 
surface to increase resolution [80]. The spatial resolution 
of TOF–SIMS can reach 1  μm. 3D OrbiSIMS is label-
free and has subcellular lateral resolution (0.3 μm) and a 
high mass resolving power [92, 93]. Despite limitations 
in terms of sample type and complicated sample prepa-
ration, 3D OrbiSIMS enables visualization of exogenous 
and endogenous metabolites in tissues in three-dimen-
sions. The spatial single nuclear metabolomics (SEAM) 
method was developed to solve problems in segmenta-
tion and representation in SIMS data [94]. SEAM pre-
serves the native state of samples with fast and minimal 
sample processing, providing in  situ metabolic finger-
prints and single nuclei clustering.

Studies of tumor progression using spatial ‘omics
Researchers have used spatial ‘omics to zoom in on can-
cer, uncovering various features of the TIME. Studies of 
the genomes, transcriptomes, proteomes, and metabo-
lomes of normal and cancerous tissues have revealed 
differences in cellular compositions in different compart-
ments, tumor-immune cell interactomes, and correlates 
of tumor progression (Fig.  2). The following sections 
describe how spatial ‘omics tools have been used to 
image normal and tumor tissues in preclinical and clini-
cal samples.

Spatial imaging reveals compartmentalization of tumor 
and immune cells
Solid tumors are composed of tumor cells, immune 
cells, stromal cells, and a vascular system. These com-
ponents are not evenly distributed. Tumor cell-rich and 

Table 3  Mass spectroscopy-based spatial metabolomic platforms

Spatial proteomic 
technique

Biomolecule target Read-out Resolution Coverage of 
mass range

Tissue preparation References

DESI Metabolite DESI 50–200 µm 0–2000 Da Solid, frozen liquid [78]

AFADESI Metabolite DESI 300–500 µm 0–2000 Da Solid, frozen liquid [89]

nanoDESI Metabolite DESI 10–15 µm 0–2000 Da Solid, frozen liquid [90]

MALDI Metabolite MALDI 2–10 µm 0–20,000 Da Dried sample in matrix [75, 76]

t-MALDI-2 Metabolite MALDI 0.6–2 µm 0–20,000 Da Dried sample in matrix [84]

SIMS Metabolite SIMS 50 nm 0–1000 Da Dried sample [79, 80]

TOF–SIMS Metabolite SIMS 0–1 µm 0–10,000 Da Dried sample [80]

3D OrbiSIMS Metabolite SIMS 0.3 µm 0–1000 Da Dried sample [93]

SEAM Metabolite SIMS 1.5 µm 0–2000 Da Cryosections [94]
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stroma-rich areas are evident under traditional histo-
logical examination. For example, breast cancer has well 
characterized histopathological features and serves a 
good model for spatial cellular profiling. This cancer has 
been studied using spatial transcriptomics [95–97] and 
high-dimensional antibody-based tissue profiling [67, 
70]. Using scRNA-seq, Wu et  al. profiled breast cancer 
tissue cell types and the spatial localization of tumor-
associated immune and stromal cells [95]. Based on the 
spatial annotation, the authors found that T cells were 
mostly located in an area rich in lymphocytes and in an 
area composed of stromal cells and lymphocytes. The 
locations of CD4+ and CD8+ T cells were positively cor-
related with APOE+ macrophages which also express 
PD-L1 and PD-L2, suggesting an active immunoregula-
tion. At the invasive tumor front, both cxcl10-expressing 
macrophages and CD8+ T cells were detected.

In another study, Andersson et  al. used spatial tran-
scriptomics to profile HER2+ breast cancer tissue [96]. 
They discovered that tumor and immune cells are 

compartmentalized. Immune cells are either intermin-
gled with connective tissue or clustered as a lymphoid 
organ structure, some surrounding the ductal carcinoma 
in  situ (DCIS) area. Similar findings were reported by 
Salmen et  al., who also used a spatial transcriptomics 
approach to study HER2+ breast cancer specimens [97]. 
They also found enrichment of T helper 2 and class-
switched memory B cells in the DCIS area. In agreement 
with findings reported by Wu et  al. [95], Salmen et  al. 
detected strong associations between macrophages that 
express CXCL9 and CXCL10 and T cells and NK cells 
that express CXCR3.

Antibody-based, single-cell protein expression profil-
ing using MIBI was used by Keren et al. to analyze loca-
tions of 36 proteins in specimens from patients with 
triple-negative breast cancer (TNBC) [70]. The pro-
teins included those expressed by tumor cells, immune 
cells, and stromal cells. Functional markers for prolif-
eration and epigenetic and immune regulation were 
also included. In agreement with spatial transcriptomics 

Fig. 2  The TIME landscape revealed by spatial multi-omics. EMT epithelial-mesenchymal transition, TAM tumor-associated macrophage, CAF 
cancer-associated fibroblast, APC antigen-presenting cell, MDSC myeloid derived suppressor cell, i-macrophage, inhibitory macrophage, TSK 
tumor-specific keratinocyte
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approaches, B cell presence was highly correlated with 
CD4+ and CD8+ T cells. A cell neighborhood analysis 
revealed a clear tumor-to tumor neighbor and immune-
to-immune neighbor patterns. These findings reflect the 
tumor tissue compartmentalization seen in spatial tran-
scriptomics data.

Spatial proteomics studies have also revealed this com-
partmentalization of tumor and immune cells in several 
other cancers. Topological distribution of immune cells 
within the hepatocellular carcinoma (HCC) specimens 
was studied by Sheng et  al. using IMC [98]. Based on 
36 antibodies identifying tumor, stromal, immune, and 
endothelial cells, they discovered several tumor-stromal-
immune cell clusters that reflected coordinated cellu-
lar neighborhoods and compartmentalization of tumor 
and immune cells. Most immune cells (infiltrated mac-
rophages, T and B cells) were absent from the cancerous 
region or limited to the perivascular region. Instead, these 
cells clustered within an immune-fibroblastic area. Sheng 
et al. also discovered a spatial relationship between mac-
rophages and T cells. The liver-resident macrophages, the 
Kupffer cells, were enriched in the peritumoral area and 
were mainly immunosuppressive. T cells surrounding the 
Kupffer cells expressed higher level of PD-1 than those 
surrounding the infiltrating macrophages.

Chan et al. studied small cell lung cancer (SCLC) sam-
ples using the MIBI platform [99]. SCLC has long been 
considered an “immune-cold” cancer due to little infil-
tration of leukocytes into the tumor. Quantitatively, 
the immune-mixing score determined using MIBI was 
indeed lower within the SCLC tumors than in other types 
of cancer. The SCLC tumors expressed NEUROD, which 
was associated with poor prognosis, and Chan et al. also 
found that CD8+ T cells from SCLC tumor samples were 
more exhausted and had lower effector-like gene expres-
sion than did tumors of other subtypes.

Immunological features are used to classify patients 
with colorectal cancer (CRC) into either the Crohn’s-
like reaction (CLR) subtype or the diffuse inflammatory 
infiltration (DII) subtype. The immune cell topologies in 
CRC samples of both subtypes were studied by Schurch 
et  al. using CODEX [100]. Tertiary lymphoid structures 
(TLSs) are present at the tumor invasive front in CLR 
tumors but are absent in tumors from DII patients; the 
former patients have much longer overall survival. Cell 
neighborhood coordination was evaluated by analysis 
of the CODEX metadata. As suggested by histological 
analyses, CODEX analysis showed that immune-tumor 
cellular neighborhoods were more prevalent in the DII 
type than in the more compartmentalized CLR type. 
The CODEX images also showed that CD8+ T cell pro-
liferation was more frequently observed in the CLR type 
tumors, whereas immunosuppressive regulatory T cell 

proliferation was more frequently found in the DII type. 
In CLR, direct communication between T cells and mac-
rophages that express activity markers such as ICOS were 
frequently found in tumor boundary areas but not the 
bulk tumor areas. In contrast, immunosuppressive gran-
ulocytes were more active in the DII type than the CLR 
type tumor boundary areas. Schurch et  al. also found 
higher frequencies of T cells in the bulk CLR-type tumors 
than in DII bulk tumors and enrichment of immunosup-
pressive granulocytes and macrophages in the DII sub-
type tumors. These data suggest that increased number 
of immunosuppressive cells and lack of compartmental-
ized interactions between immune subsets might lead 
to worse outcomes in DII patients compared to patients 
with CLR-type tumors.

Immune cells show more exhaustion markers 
when distributed in the tumor parenchyma
In a spatially resolved transcriptomic analysis of tumor 
from patients with cholangiocarcinoma, Wu et  al. 
observed that T cells in the tumor core expressed higher 
levels of exhaustion markers than those in the tumor 
boundary or peritumoral normal tissue [39]. The same 
pattern was detected in our recent unpublished CODEX 
analysis of a mouse model of B cell lymphoma (Fig.  3). 
We detected enrichment of exhausted CD8+ tumor-infil-
trating lymphocytes (TILs) in the tumor compartment 
relative to the surrounding tissue (Fig. 3A and B). A cell 
neighborhood coordination analysis also showed that 
the cluster of exhausted CD8+ TILs (cluster 33) strongly 
interacts with two tumor cell clusters (clusters 28 and 32) 
as well as a cluster of CD4+ TILs (cluster 21) (Fig. 3C). In 
contrast, our data indicate that cells of the non-exhausted 
CD8+ TIL cluster (cluster 29) interact with macrophages 
(cluster 0) and non-tumor cells (cluster 24) (Fig. 3C).

Spatial multi‑omics approaches reveal active 
tumor‑immune interactions at the invasive front
Invasive fronts, where tumor cells border immune cells, 
are usually the areas of active immune reactions. A spa-
tial transcriptomics stratification reported by Anders-
sen et  al. revealed more interaction among various cell 
types at the front than in the tumor core in HER2+ breast 
cancer [96]. Further, Anderssen et al. found that tumors 
in some patients are enriched for natural killer T cells, 
CD8+ effector memory T cells, T helper 1 cells, CD4+ 
naïve T cells, and memory B cells at the invasive front 
and that these patients have better survival outcomes 
than those without prominent infiltration. A spatial 
proteomics analysis of TNBC by Keren et  al. revealed a 
gradient of histone methylation activity along the tumor-
immune border, indicating an active chromatin status 
when tumor cells are close to the border [70]. They also 
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detected CD11c+/CD11b+ myeloid-derived suppressor 
cells expressing PD-1, PD-L1, and IDO at the invasive 
front, suggesting that the front is an immunosuppres-
sive site in this type of breast cancer. In agreement with 
Anderssen et  al., Keren et  al. showed that immune cell 
infiltration at the tumor-immune border was correlated 
with better prognosis.

In a study of HCC and intrahepatic cholangiocarci-
noma (ICC) tumors, Wu et al. carefully examined the cel-
lular composition of the tumor border using Stereo-seq 

[39]. They found that NK cells, T cells, and macrophages 
accumulate close to the boundary between the tumor 
and normal tissue. NK cells and T cells were detected 
within 250–500 μm from the border and express immune 
checkpoint genes. Macrophages, mainly anti-inflamma-
tory (M2-like), were located within 250 μm of the border 
on the tumor side. These results indicate that there is a 
unique microenvironment at the invasive tumor front. 
Detailed subgrouping of the hepatocytes at the borders of 
these tumors revealed a group of hepatocytes that express 

Fig. 3  CODEX analysis of a mouse B cell lymphoma model reveals immune exhaustion in tumor core. A DAPI staining from the CODEX image stack, 
showing a clear tumor compartment. B Composite image of two markers extracted from the same CODEX image stack showing that the exhausted 
marker, PD-1 (red), co-localizes with CD8+ TILs (green) residing within the tumor area. C Cell–cell interactions based on CODEX neighborhood 
analysis; strong to weak correlations are light green to dark blue
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cellular damaging markers including SAA1 accumulate 
in the border region. Spatially, SAA1-expressing hepato-
cytes were detected along the border in close vicinity to 
macrophages. Since the recruited macrophages were 
mostly the M2-like phenotype, this recruitment might 
facilitate invasion of cancerous cells into normal tissue 
and, in the long run, worsen patient prognosis.

Behaviors of the tumor‑associated stromal cells 
and fibroblasts are spatially correlated
Cancer-associated stromal and fibroblastic cell composi-
tions are heterogenous and have correlated spatial distri-
butions in the tumor tissue. Combining scRNA-seq and 
spatial transcriptomics, Moncada et al. studied the cellu-
lar distribution and functional status of these cell types in 
pancreatic ductal adenocarcinoma tissue sections [101]. 
They identified a cancer cell cluster highly associated 
with fibroblasts in which both cancer cells and fibroblasts 
are enriched for inflammatory gene signatures. The spa-
tial transcriptomics data also revealed that M1 inflam-
matory macrophages are associated with a cancer cell 
subpopulation that is enriched for stress-response genes 
and associated with inflammatory fibroblasts. Similarly 
in ICC tumors, fibroblasts that express matrix-forming 
genes and inflammatory, antigen-presenting features 
were present in the peritumoral area [98].

In breast cancer, cancer-associated fibroblasts (CAFs) 
have been mapped using a spatial transcriptomics 
approach and scRNA-seq [95]. The so-called inflamma-
tory  CAFs (iCAFs) that express ALDH1A1, KLF4, LEPR, 
and CXCL12 were distributed across the areas that con-
tain both tumor and immune-stromal cells, whereas the 
myofibroblast CAFs were enriched only in the tumor 
cell-enriched area. The iCAFs were also anatomically cor-
related with areas enriched in memory and naïve B cells 
and CD4+ and CD8+ T cells. CAFs have long been con-
sidered immune regulatory cells that mobilize against 
tumor antigens. Analyses of spatial transcriptomic data 
revealed a strong chemokine, complement pathway and 
TGFβ-mediated cross-talk between the iCAFs and the 
neighboring T cells.

Risom et  al. utilized the MIBI to profile the stromal 
component evolution from the early DCIS to invasive 
breast cancer [67]. They found that DCIS without pro-
gression was characterized by fewer fibroblasts and 
discontinuous myoepithelium surrounding the DCIS. 
In samples of tumors that progressed into invasive can-
cer, the DCIS was associated with active fibroblasts, 
fiber formation, and absence of myoepithelium. Further, 
E-Cadherin expression by the myoepithelium and its 
continuity around the tumor were highly associated with 
tumor malignancy.

Spatial cellular profiling identifies tumor‑associated 
tertiary lymphoid structures
TLSs are locations where tumor antigens are presented 
to T cells [102]. Due to the heterogeneous composition of 
the lymphoid structures, the identification of the tumor-
associated TLSs can be difficult without the power of 
multiplexed immunostaining and transcriptomics infor-
mation. TLSs harbor multiple types of immune cells with 
distinct functions. Spatial analyses can identify aggre-
gates of B cells, T cells, and dendritic cells that are char-
acteristic of these structures. Studies of breast tumors 
revealed a B cell-enriched TLS in TNBC patients and a 
TLS in HER+ breast cancer patients with a high degree 
of co-localization between B and T cells [70, 96]. A TLS 
structure was also found in the CLR type of CRC that 
is not present in the DII type; in the latter the PD-1+/
ICOS+/CD4+ T cells were enriched in TLSs [100]. The 
presence of TLSs is an indicator of better prognosis for 
patients with CRC.

Tumor tissue topological profiling identifies novel tumor 
biomarkers
Like other multi-omics approaches, spatial transcriptom-
ics and scRNA-seq methods have the potential to lead 
to discovery of new tumor biomarkers. As an example 
of this potential, Gouin et  al. used scRNA-seq, spatial 
transcriptomics methods, and CODEX to study speci-
mens collected from 25 muscle-invasive bladder cancer 
patients [102]. From the single-cell clustering data, they 
discovered a novel biomarker, N-Cadherin 2 (encoded 
by CDH12), which is indicative of a cancerous epithe-
lium cluster associated with stem-cell-like feature and 
poor prognosis. Cellular neighborhood analyses from 
spatial transcriptomics and CODEX both revealed that 
the T cells in the CDH12-expressing cancer cell vicinity 
expressed more exhaustion markers. These findings, sup-
ported by data from other types of cancer [99], show that 
tumor cells with more de-differentiated, more prolifera-
tive, and more aggressive features are usually associated 
in situ with exhausted T cells.

The immune landscape of the metastatic tumor
The spatial interactions of metastatic tumor cells and 
the immune cells have also been explored. Liver metas-
tases of CRC were investigated by Wu et  al. using spa-
tial transcriptomics and multiplexed IHC [103]. These 
authors discovered a specific macrophage population 
that expresses MRC1+ and CCL18+ that resembles the 
resident Kupffer cells. This finding coincides with the role 
of the resident Kupffer cells in the primary HCC tumors 
[98]. These macrophages, which had anti-inflammatory 
M2-like expression features, as well as neutrophils were 
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enriched in the liver metastases compared to the primary 
lesion. Spatially, these macrophages were scattered in the 
metastatic tumors and peritumoral boundaries. Ligand-
receptor interaction analyses indicated extensive cross-
talk between the metastatic tumor cells and the MRC1+/
CCL18+ macrophages; an example is the “don’t-eat-me” 
signaling between CD47 on tumor cells and SIRPA on the 
macrophages.

The T cell landscape of solid tumor brain metastases 
was studied by Sudmeier et al. [104]. Using a spatial tran-
scriptomics approach, they found a consistent percentage 
of PD-1-expressing CD8+ T cells among the metastatic 
tumor cells. They also detected variable expression of 
exhaustion markers and lesser T cell receptor diversity 
in metastatic lesions than in the primary tumor. Spatially, 
exhausted T cells were distributed on the periphery of 
the metastatic tumor rather than in the tumor core. Pro-
genitor-like T cells were located adjacent to the inflamed 
peritumoral area, suggesting that differential cytokine or 
chemokine signaling within the tumor could serve as a 
differential niche for CD8+ T cells.

Tumor and immune cell metabolism profiling
Tumor-specific metabolic pathways have been identi-
fied by enrichment analysis of spatially resolved tran-
scriptomics data from ICC samples [39] and of spatially 
resolved metabolic analyses of esophageal squamous 
cell carcinomas [105]. The former study identified acti-
vation of hypoxia-related pathways and metabolism 
through the tricarboxylic acid cycle as well as upregu-
lation of fatty acid metabolism components (e.g., fatty 
acyl CoA synthesis and fatty acid beta-oxidation of 
tumor cells), high proliferative capacity, and high lev-
els of apoptosis that likely reflect higher proliferative 
capacity, damaged states, and energy requirements of 
tumor cells. The spatial metabolic platform revealed 
upregulation of arginine and proline metabolism, fatty 
acid biosynthesis, and alanine, aspartate, glutamate, 
pyrimidine, and histidine metabolism in tumors. Six 
critical metabolic enzymes within four pathways were 
present at higher levels in tumor compartments than 
in normal tissue: the pyrroline-5-carboxylate reductase 
PYCR2, glutaminase, uridine phosphorylase UPase1, 
fatty acid synthase, and ornithine decarboxylase. These 
enzymes catalyze proline biosynthesis, glutamine 
catabolism, phosphorolytic cleavage of uridine to ura-
cil, and decarboxylation of histidine to form histamine, 
respectively. PYCR2 is an essential enzyme in proline 
biosynthesis and promotes cancer proliferation and 
progression [106]; however, histamine is derived from 
the decarboxylation of histidine, which is catalyzed 
by an enzyme dramatically down-regulated in cancer 

[107], and histamine-based therapies can lead to cancer 
cell apoptosis and senescence and prolong survival in 
tumor-bearing animals [108].

scRNA-seq and spatial transcriptomics have also 
been applied to a recently developed mouse model of 
human neuroblastoma, revealing that the spatial rela-
tionship of CD4+ and CCR2+ macrophages play a pro-
tumor role via the arginine metabolic pathway [109]. 
Single-cell metabolic profiling also identified a tumor-
specific metabolic phenotype characterized by high 
levels of amino acid transporter CD98 expression and 
showed that a tumor-associated metabolic T cell state 
is characterized by expression of exhaustion markers 
PD1 and CD39 [110] as well as downregulated levels of 
TCF1, which is indicative of terminal exhaustion [111].

Intratumor cellular topologic patterns are correlated 
with patient prognosis
To understand the topological cellular interaction pat-
terns in tissues, high-dimensional multi-omics data 
are analyzed computationally for correlations between 
locations of cells of particular types. The terms “cellu-
lar neighborhood” and “ecotype”, among others, have 
been used by independent research groups to describe 
the coordinated presence or absence of particular cell 
types [95, 98, 112]. Certain patterns of cellular coor-
dination are linked to patient survival or prognosis in 
various cancers. Gouin et  al. found that the CD8+ T 
cells within CDH12-enriched epithelial cellular neigh-
borhoods in bladder tumors expressed high levels of 
CD49a, PD-1, or LAG3 [112]. These data may explain 
why the patients who have higher CDH12 levels have 
better response to atezolizumab treatment and longer 
overall survival.

The spatial topology of the TIME is also correlated 
with overall survival, and compartmentalization of the 
tumor-immune architecture is usually positively cor-
related with better survival. In diffuse large B cell lym-
phoma, Colombo et al. showed that the more structured 
germinal center B cell subtype was correlated with bet-
ter overall survival than the dispersed subtype [113]. 
In CRC, tumors from the CLR subtype had more sepa-
rated compartments than the tumors from patients with 
the DII subtype, and the presence of the compartments 
were statistically correlated with patient prognosis [100]. 
The phenomenon was also observed in the breast can-
cer tumors where compartmentalized score is highly 
correlated with overall survival [70]. In another exam-
ple, Andersson et al. defined a TLS score in breast can-
cer specimens based on the degree of co-localization 
between B and T cells and found that a higher TLS score 
was also associated with better overall survival [96].
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Changes in compartmentalization occur during tumor 
progression
The development of spatial ‘omics technologies has made 
it possible to evaluate the spatial distribution of cell sub-
sets, cell characteristics, and metabolism among differ-
ent compartments of tumors during the course of cancer 
progression. For example, in HCC patients, Sheng et al. 
found that levels and locations of dedifferentiation, pro-
liferation, and immune checkpoint markers evolved 
during the process of tumorigenesis [98]. In CRC tis-
sue, Hartmann et al. observed metabolic polarization of 
immune cells toward the tumor-immune boundary with 
increased expression of CD98 and ASCT2 [110]. CD98 
and  ASCT2  are transporters with prognostic value in 
human cancers [114–116].

Furthermore, key genes in the progression of tumors 
can be identified by multi-dimensional deconstruction of 
spatial architecture datasets. Risom et al. obtained MIBI 
data on DCIS and invasive breast cancer (IBC) samples as 
well as normal breast tissue and extracted the top 20 most 
important features during the progression from DCIS to 
IBC [67, 117]. Hypoxia, glycolysis, stromal immune den-
sity, and desmoplasia/remodeling of the extracellular 
matrix were enriched in DCIS. Myoepithelial and immu-
noregulatory markers (e.g., PDL1, IDO1, COX2, PD1) on 
tumor and immune cells were enriched in IBC. Interest-
ingly, the expression patterns of ECAD, SMA, CK5, and 
myoepithelial markers were similar in normal tissue and 
in IBC tissues, and the highest myoepithelial expression 
of ECAD was observed in normal breast tissue. These 
findings suggest that the loss of “normal” features may 
serve a protective function in non-progressors. Further, 
myoepithelial loss in the stroma surrounding cancer cells 
appears to induce fibroblast and immune cell activation, 
playing a critical role in determining clinical outcome. 
In summary, spatial analyses suggest that invasive pro-
gression depends on an evolving spatial distribution of 
multiple cell types rather than alteration in levels or dis-
tribution of a single cell subset.

Conclusions
Studies using spatial multi-omics tools have revealed the 
complexity of the TIME and have shown that relative 
positions and interactions of cell types in the microen-
vironment of tumors, in addition to the cellular compo-
sition, strongly influence tumor development. A better 
understanding of spatial interactions is driving redefini-
tion of tumor subtypes and shifting the focus of research 
to tumor-immune interaction units, the discovery of 
additional cell types, and the examination of the changes 
in the TIME compartment as cancer progresses.

Spatial ‘omics technologies are in the “boom” period 
of development. Scientists in this field are addressing 

technological obstacles that limit resolution of the plat-
forms, multiplexing, sensitivity, and accuracy. In terms 
of resolution, currently commercialized spatial tran-
scriptomic and proteomics technologies do not provide 
true single-cell level resolution. In several studies, paral-
lel scRNA-seq analyses of the same specimen have been 
performed and used to re-assign and adjust the spatial 
transcriptomics data [39]. This may be a way to solve 
the resolution problem until higher resolution methods 
become widely available.

Multiplex antibody staining was a great leap forward 
from traditional IHC, which only allows simultaneous 
imaging of three or four targets. Multiplexing results 
in loss of sensitivity, however. For example, traditional 
IHC has a significantly higher detection sensitivity than 
cytometry-based multiplexed imaging [118]. Current 
multiplexed imaging protocols rely heavily on compu-
tational methods for data processing. The segmentation 
process, which translates the image data into cellular 
data, is critical and can suffer from inaccuracies. Com-
putational segmentation requires prior selection of 
markers of cellular identity (e.g., nucleus and membrane 
border). Training data are also required to demarcate 
irregularly shaped or polymorphous cells (e.g., endothe-
lial cells, fibroblasts). In addition, interpretation may be 
confounded by partially overlapping cells or non-spe-
cific background staining, which may affect the results 
of subsequent analyses and should be examined care-
fully before the data processing. At the time of prepara-
tion of this manuscript, new methods had recently been 
reported that yield three-dimensional images [119, 120]. 
In the future, we expect that a powerful and easy-to-han-
dle protocol will be developed to investigate cellular het-
erogeneity from multilayered tumor specimens.

In the last decade, spatial ‘omics developments have 
led to progress toward personalized, precision medi-
cine. Precision medicine, in which the treatment strategy 
is customized for each individual patient, relies heavily 
on detailed patient data. Thanks to technical advances, 
scientists are now able to analyze tumor tissue at the 
single-cell level with high data dimensions. The spatial 
multi-omics tools described in this review have revealed 
the heterogeneous composition of tumor and immune 
cells in the tumor microenvironment. These approaches 
have enabled comprehensive explorations of cancer and 
have furthered our understanding of the underlying 
mechanisms of tumor progression, which are critical for 
treatment and response. In the future, with the imple-
mentation of robust automated pipelines, clinicians and 
pathologists should be able to evaluate disease progres-
sion and tailor the therapeutic regimens to each patient, 
bringing us closer to the goal of precision medicine.
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