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Abstract 

Background Subjective cognitive decline (SCD) may serve as a symptomatic indicator for preclinical Alzheimer’s dis-
ease; however, SCD is a heterogeneous entity regarding clinical progression. We aimed to investigate whether spatial 
navigation could reveal subcortical structural alterations and the risk of progression to objective cognitive impairment 
in SCD individuals.

Methods One hundred and eighty participants were enrolled: those with SCD (n = 80), normal controls (NCs, n = 77), 
and mild cognitive impairment (MCI, n = 23). SCD participants were further divided into the SCD-good (G-SCD, 
n = 40) group and the SCD-bad (B-SCD, n = 40) group according to their spatial navigation performance. Volumes of 
subcortical structures were calculated and compared among the four groups, including basal forebrain, thalamus, 
caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. Topological properties of the subcortical 
structural covariance network were also calculated. With an interval of 1.5 years ± 12 months of follow-up, the pro-
gression rate to MCI was compared between the G-SCD and B-SCD groups.

Results Volumes of the basal forebrain, the right hippocampus, and their respective subfields differed significantly 
among the four groups (p < 0.05, false discovery rate corrected). The B-SCD group showed lower volumes in the basal 
forebrain than the G-SCD group, especially in the Ch4p and Ch4a-i subfields. Furthermore, the structural covariance 
network of the basal forebrain and right hippocampal subfields showed that the B-SCD group had a larger Lambda 
than the G-SCD group, which suggested weakened network integration in the B-SCD group. At follow-up, the B-SCD 
group had a significantly higher conversion rate to MCI than the G-SCD group.

Conclusion Compared to SCD participants with good spatial navigation performance, SCD participants with bad 
performance showed lower volumes in the basal forebrain, a reorganized structural covariance network of subcorti-
cal nuclei, and an increased risk of progression to MCI. Our findings indicated that spatial navigation may have great 
potential to identify SCD subjects at higher risk of clinical progression, which may contribute to making more precise 
clinical decisions for SCD individuals who seek medical help.
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Introduction
Alzheimer’s disease (AD) is a major global concern [1]. 
Subjective cognitive decline (SCD) is defined as self-
experienced worsening of cognitive function without 
objectively detected deficits [2, 3]. Abundant evidence 
has shown that SCD may serve as a symptomatic indi-
cator for preclinical AD in terms of amyloid pathology, 
cortical thinning, abnormal functional connectivity, and 
white matter degeneration [4–6]. However, SCD is a het-
erogeneous entity in terms of underlying etiology and 
clinical progression [7]. For example, memory complaints 
could be related to psychiatric disorders (e.g., depres-
sion, anxiety, and sleep disturbances), personality traits 
(e.g., neuroticism), metabolic diseases (e.g., diabetes), or 
neurodegenerative diseases (e.g., AD). In addition, the 
trajectories of objective cognitive function in SCD also 
show different patterns over time. Some SCD occurs with 
objective cognition remaining stable, while some SCD 
occurs with objective cognition gradually deteriorating 
into dementia [7]. Recent efforts have aimed at identify-
ing those with SCD who are at higher risk of clinical pro-
gression to objective cognitive impairment [8–11]. This 
may contribute to making more precise clinical decisions 
for SCD individuals who seek medical help [7].

Spatial navigation is an essential ability for people 
to determine and maintain a route from one place to 
another using their own position and environmental 
clues [12]. Previous studies have shown spatial naviga-
tion impairment in AD dementia patients, which may be 
attributed to the widespread neurodegeneration involv-
ing the medial temporal, frontal, and parietal lobes. Spa-
tial navigation impairment is also commonly observed 
in patients with mild cognitive impairment (MCI) typi-
cally due to AD [13–15]. However, the integrity of spatial 
navigation in the preclinical AD stage has not been fully 
investigated and is considered an overlooked cognitive 
marker [16]. Spatial navigation complaints are more fre-
quently observed in SCD subjects than the normal con-
trols (NCs) [17]; in accordance with this, our previous 
study has shown that the SCD group was outperformed 
by the NC group in the spatial navigation test [18]. These 
cross-sectional studies have provided preliminary evi-
dence of the potential of spatial navigation in identifying 
incipient AD patients. Furthermore, longitudinal stud-
ies have suggested the promising utility of baseline spa-
tial navigation in predicting future cognitive decline [19, 
20]. Spatial navigation showed better performance than 
episodic memory in discriminating progressors from 
nonprogressors measured by the Clinical Dementia Rat-
ing scale [19]. Considering the heterogeneity of the SCD 
entity, we speculated whether the baseline spatial navi-
gation performance could also serve as a predictor for 
future clinical progression in SCD subjects.

Cortical and subcortical atrophy and deformation have 
been commonly observed in MCI and AD patients and 
are recognized as a well-established imaging marker 
for the AD continuum [21–23]. The imaging findings of 
cortical morphometry in the SCD stage remain contro-
versial; however, studies have converged to suggest that 
SCD is associated with subcortical volume reductions in 
the Ch4p subregion of the basal forebrain and the CA1 
subregion of the hippocampus [4, 24, 25]. As suggested 
by histological studies, subcortical nuclei were affected 
by tau-related pathology since the earliest stages of AD 
[26]. Furthermore, subcortical nuclei such as the basal 
forebrain, hippocampus, caudate, and thalamus play 
important roles in cognition and spatial navigation [27, 
28]. Significant associations between volumetric and 
functional measures of subcortical nuclei and spatial 
navigation have been observed [13, 29, 30]. Therefore, 
investigations of subcortical alterations may increase our 
understanding of the neural basis underlying cognitive 
and behavioral deficits in the SCD stage.

Moreover, graph theory analyses have provided a new 
perspective for investigating the neural mechanisms 
underlying neurological disorders and behavioral impair-
ments [31, 32]. The gray matter network derived from the 
high-resolution  T1-weighted  (T1W) images can be con-
structed by calculating the structural covariance between 
pairs of regions [33, 34]. A characteristic small-world loss 
in the network constructed by cortical thickness and sul-
cal depth has been observed in MCI patients [35]. Altera-
tions in structural covariance of hippocampal subregions 
and weakened transmission efficiency have been shown 
in AD patients [36]. Previous studies using the graph the-
ory approach in SCD individuals were mainly focused on 
functional imaging and diffusion tensor imaging data [6, 
37, 38]. Studies based on structural images have indicated 
a reorganized structural covariance network constructed 
by the regions in the Automated Anatomical Labelling 
(AAL) atlas in SCD subjects, which was associated with a 
steeper cognitive decline and an increased risk of clinical 
progression [39–41]. However, the topological properties 
of the structural covariance network of subcortical struc-
tures in SCD subjects, and the associations with spatial 
navigation, remain poorly understood.

In the present study, we aimed to investigate whether 
spatial navigation could reveal subcortical structural 
alterations and the risk of progression to MCI in SCD 
subjects. The SCD subjects were divided into two sub-
groups based on their spatial navigation performance. We 
expected to demonstrate the differences in the baseline 
volumes of subcortical nuclei and topological properties 
of the subcortical structural covariance network between 
the two groups. More importantly, we hypothesized that 
the SCD group with bad spatial navigation performance 
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would be more likely to convert to MCI than the SCD 
group with good spatial navigation performance.

Methods
Participants
A total of 180 right-handed participants were enrolled in 
the present study. Of these, 77 were NCs, 80 were SCD 
subjects, and 23 were MCI patients. The inclusion criteria 
were 55–80 years old and having 8 or more years of edu-
cation. Participants with a history of stroke, other neuro-
logical disorders that could lead to cognitive impairment 
(Parkinson’s disease, encephalitis, epilepsy, brain tumors, 
etc.), severe anxiety or depression, and contraindications 
for magnetic resonance imaging (MRI) were not enrolled. 
Subjects who complained of memory decline within the 
last 5 years and expressed worries associated with mem-
ory decline and did not meet the diagnostic criteria for 
MCI were defined as SCD [2]. Subjects with no cogni-
tive complaints and associated worries and did not meet 
the diagnostic criteria for MCI were recruited as NCs. 
MCI patients were diagnosed by the criteria proposed 
by Jak et al. [42]. The detailed diagnostic criteria could be 
referred to the protocol for the Sino Longitudinal Study 
on Cognitive Decline (SILCODE) [43].

The study was conducted in accordance with the Dec-
laration of Helsinki and was approved by the Ethics Com-
mittee of Nanjing Drum Tower Hospital. All participants 
signed an informed consent statement after gaining a suf-
ficient understanding of the study procedure.

Neuropsychological evaluation
All participants underwent a set of standardized neu-
ropsychological evaluations, including SCD-question-
naire (SCD-Q) [43] and mini-mental state examination 
(MMSE) [44]. Memory function was assessed by the 
auditory verbal learning test (AVLT), including the 
immediate, short-delayed, long-delayed, cued recall, 
and recognition memory [45]. Executive function was 
assessed by the trail making test part A (TMT-A), trail 
making test part B (TMT-B) [46], symbol digit modali-
ties test (SDMT) [47], and clock drawing test (CDT) [48]. 
Language function was assessed by the animal fluency 
test (AFT) [49] and the Boston naming test (BNT) [50]. 
The averaged Z-score of the cognitive tests was calcu-
lated as the composite score of the corresponding cogni-
tive domain.

Spatial navigation assessment
Spatial navigation ability was measured by the Amunet 
test battery (NeuroScios, Austria, Gmbh), which used 
a similar testing paradigm as the hidden goal task [51]. 
The test battery has been proven to be highly consistent 
with real space navigation [13, 52]. The description of the 

Amunet test battery and the schematic of the paradigm is 
detailed in our previous study [18]. Briefly, both egocen-
tric and allocentric navigation strategies were assessed. 
In egocentric navigation, the examinees could only locate 
the hidden goal using their starting position towards the 
goal (the first-person perspective); however, in allocentric 
navigation, the examinees could only locate the hidden 
goal by its relationship with the external orienting cues 
but not the starting position. The egocentric and allo-
centric navigation subtasks both consist of 8 trails, and 
the average distance errors (from the position located by 
the examinee to the correct position of the goal) across 
all trails were recorded automatically. Notably, a lower 
distance error indicated a better navigation performance, 
and the test was no time limit. According to the average 
distance errors across all the egocentric and allocentric 
navigation trails, the SCD subjects were further sym-
metrically divided into the SCD-good (G-SCD) group 
(n = 40) and the SCD-bad (B-SCD) group (n = 40). The 
former group performed better than the latter group.

Imaging data acquisition
The  T1W images were obtained using two Philips 3  T 
MRI scanners. Participants wore earplugs and foam pads 
to abate noise and prevent head motion. The images in 
the Achieva TX were acquired with repetition time 
(TR) = 9.74 ms, echo time (TE) = 4.60 ms, and 192 sagit-
tal slices, and those in the Ingenia CX were acquired with 
TR = 8.10 ms, TE = 3.70 ms, and 196 sagittal slices. The 
two scanners share the following parameters: slice thick-
ness = 1  mm, field of view (FOV) = 256 × 256  mm2, and 
voxel size = 1 × 1 × 1  mm3.

Volume extraction of the subcortical nuclei 
and hippocampal subfields
The flowchart of data processing and analysis steps was 
summarized in Fig. 1. The subcortical nuclei of thalamus, 
caudate, putamen, pallidum, hippocampus, amygdala, 
and accumbens were automatically segmented using the 
FreeSurfer version 6.0.0 image analysis suites (http:// 
frees urfer. net/) (Fig.  2). The hippocampus was further 
divided into 12 subfields, including the hippocampal tail, 
subiculum, CA1, fissure, presubiculum, parasubiculum, 
molecular layer, dentate gyrus, CA2/3, CA4, fimbria, 
and HATA. In addition, the estimated total intracra-
nial volume (TIV) was extracted to adjust for head size 
differences.

Volume extraction of the basal forebrain subfields
A cytoarchitectonic mask in the Montreal Neurologi-
cal Institute (MNI) space of the basal forebrain derived 
from histological sections of a postmortem brain was 
used to extract the basal forebrain volumes [53] (Fig. 3). 

http://freesurfer.net/
http://freesurfer.net/
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Fig. 1 The flowchart of data processing and analysis steps

Fig. 2 Anatomical position and extent of the subcortical structures

Fig. 3 Segmentation of the basal forebrain subfields
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Structural MRI data were processed using the Compu-
tational Anatomy Toolbox (CAT12, https:// neuro- jena. 
github. io/ cat/) based on Statistics Parametric Mapping 
version 12 (SPM12, https:// www. fil. ion. ucl. ac. uk/ spm/). 
Briefly, structural data were automatically segmented 
into gray matter, white matter, and cerebrospinal fluid 
partitions. Then, the grey matter was non-linearly nor-
malized to the CAT12 default template (IXI555-MNI152) 
using the Diffeomorphic Anatomical Registration 
Through Exponentiated Lie Algebra (DARTEL) algo-
rism. The images were modulated and smoothed with 
an 8-mm full-width at half-maximum (FWHM) [54, 55]. 
The weighted average image quality rating (IQR) of each 
participant was extracted from CAT12 to measure the 
image quality [56, 57].

The basal forebrain was divided into five subfields. Sub-
fields of Ch4p (posterior part of the nucleus basalis of 
Meynert), Ch4a-i (anterior and intermediate parts of the 
nucleus basalis of Meynert), Ch3 (the nucleus of the hori-
zontal limb of the diagonal band), NSP (the nucleus sub-
putaminalis), and Ch1/2 (the nucleus of the vertical limb 
of the diagonal band) were derived. Volumes of all sub-
fields were summed as the volume of the basal forebrain 
nuclei. Lower anatomical volumes indicate a more severe 
neural loss in the corresponding subcortical nuclei.

Structural covariance network construction
The structural covariance network was constructed using 
the Brain Connectivity Toolbox (https:// sites. google. 
com/ site/ bctnet/) [58]. Nodes were defined by the 12 
subfields of the right hippocampus and 5 subfields of 
the basal forebrain. Edges were defined by the correla-
tion coefficients between pairs of regional volumes of 
the nodes. Thus, a 17 × 17 R matrix for each group was 
generated. Considering that negative correlations were 
difficult to interpret, we set the negative correlation val-
ues to zero as suggested by previous studies [59, 60]. The 
network was further binarized within a sparsity range of 
18%-50% and an increment of 1% to ensure robustness 
and comparability. The lower bound of the sparsity range 
was determined using the graph theory network analy-
sis (GRETNA) toolbox (https:// www. nitrc. org/ proje cts/ 
gretna/) [61].

Global metrics of clustering coefficient (Cp), charac-
teristic path length (Lp), Gamma, Lambda, small world-
ness (Sigma), global efficiency, and local efficiency were 
calculated. Cp is defined as the average Cp (the number 
of edges that exist between neighbors) across all nodes 
in the network and can reflect the network segrega-
tion of the brain. Lp is defined as the average shortest 
path length between all pairs of nodes in the network 
and is commonly used to measure network integration 
of the brain. The Gamma is the normalized Cp and is 

calculated as  Cpreal network/Cprandom network. Similarly, 
the Lambda is the normalized Lp and is calculated as 
 Lpreal network/Lprandom network. A reduced Gamma and/
or Lambda indicates a more random topology and 
enhanced information integration [39, 62]. The num-
ber of random networks was set to 100 [41, 59]. Sigma 
is calculated as Gamma/Lambda, and a Sigma greater 
than 1 suggests that the brain network has small-world 
properties. Global efficiency is inversely related to 
the average shortest path length and could reflect the 
information transfer capacity of the network. Local 
efficiency is defined as the average local efficiency (the 
degree of fault tolerance when the first neighbors were 
eliminated) across all nodes in the network [63].

Nodal metrics of nodal efficiency, betweenness cen-
trality (the fraction of all shortest paths passing through 
a node), and degree (the number of connections that a 
node has with the rest of the network) were calculated.

Follow‑up data analysis
With an interval of a mean = 1.5  years ± 12  months of 
follow-up [64], the neuropsychological assessment was 
re-performed, and diagnoses were re-evaluated using 
the same criteria as baseline enrollment. The propor-
tion of converters to MCI was compared between the 
G-SCD and B-SCD groups using Fisher’s exact test.

Statistical analysis
The demographic and clinical data across the four 
groups were compared using one-way ANOVA, and 
the sex and MRI distribution were compared with chi-
square tests. One-way ANCOVA was used to meas-
ure the across-group differences in subcortical nuclei 
volumes, controlling for sex, age, years of education, 
and TIV. Least significant difference post hoc was per-
formed to compare each two groups. The correlations 
between subcortical nuclei volumes and clinical data 
were calculated, with sex, age, years of education, and 
TIV as covariates. Statistical analyses were performed 
with SPSS version 26.0, and the significance level was 
set at p < 0.05 with two-tailed tests. False discovery rate 
(FDR) correction was used for multiple comparison 
corrections.

The non-parametric permutation test with 1000 repeti-
tions was applied to assess the across-group differences 
in structural covariance network properties, which were 
integrated over all selected ranges of sparsity values as 
the area under the curve (AUC). The significance level 
was set at p < 0.05 with two-tailed tests. The FDR cor-
rection was applied for multiple comparisons of nodal 
metrics.

https://neuro-jena.github.io/cat/
https://neuro-jena.github.io/cat/
https://www.fil.ion.ucl.ac.uk/spm/
https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/
https://www.nitrc.org/projects/gretna/
https://www.nitrc.org/projects/gretna/
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Supplementary analyses
We recalculated the basal forebrain subfield volumes 
with a 4-mm FWHM smoothing kernel to investigate 
whether the degree of smoothing was responsible for the 
differences among the four diagnostic groups. The corre-
lations between basal forebrain subfield volumes with a 
4-mm FWHM smoothing kernel and clinical data were 
recalculated, with sex, age, years of education, and TIV 
as covariates. Furthermore, we divided the SCD subjects 
into the G-SCD group (n = 40) and the B-SCD group 
(n = 40) based on their memory, language, and executive 
function, respectively, and then the comparisons of sub-
cortical volumes and conversion rate to MCI between the 
two groups were repeated.

Results
Demographic and clinical data
As is shown in Table  1, no significant difference in age, 
sex, and years of education was observed among the 
four groups. The G-SCD, B-SCD, and MCI groups all 
showed worse self-perceived memory function than the 
NC group. The MCI group scored lower in the MMSE, 
memory, and executive cognitive domains than the other 
three groups. Compared to the G-SCD group, the B-SCD 
group showed worse language and executive function. 
The G-SCD group showed similar performance to the 
NC group on all the cognitive domains tested (Supple-
mentary Fig. 1). The four groups did not significantly dif-
fer in TIV and IQR.

Subcortical nuclei volumes
Table  2 shows the comparisons of the volumes of the 
15 subcortical nuclei across the four groups. Significant 
differences in the volumes of the basal forebrain and 
the right hippocampus were observed. Specifically, the 
B-SCD and MCI groups showed lower volumes in the 
basal forebrain than the NC and G-SCD groups. The 
MCI group showed lower right hippocampal volume 
than the other three groups. No significant differences in 
the volumes of the bilateral thalamus, caudate, putamen, 
pallidum, amygdala, accumbens, and left hippocampus 
were shown.

Furthermore, subfields of the basal forebrain (Table 3) 
and the right hippocampus (Table  4) were analyzed. 
The B-SCD group showed lower volumes in the Ch4p 
and Ch4a-i subregions than the G-SCD group. The MCI 
group showed lower volumes in all the subregions of the 
basal forebrain. As for the right hippocampus, the MCI 
group showed atrophied subregions of the subiculum, 
CA1, presubiculum, molecular layer, dentate gyrus, CA4, 
and HATA.

Associations between subcortical nuclei volumes 
and clinical measures
As is shown in Fig. 4, significant correlations between vol-
umes of the basal forebrain and right hippocampal sub-
fields and clinical measures were observed. After FDR 
correction, greater volumes in the Ch4p were associated 
with greater executive function (r = 0.271, p < 0.001). The 
volumes of right hippocampal subfields were significantly 

Table 1 Demographic and clinical data

Data were presented as means ± standard deviation or number. Statistics for sex and MRI were derived from the chi-square test, and statistics for other variables were 
derived from one-way ANOVA

SCD-Q Subjective cognitive decline questionnaire, MMSE Mini-mental state examination, TIV Total intracranial volume, IQR Image quality rating
* p < 0.05
a~f Post hoc analyses showed a significant difference between groups. aNC vs G-SCD; bNC vs B-SCD; cNC vs MCI; dG-SCD vs B-SCD; eG-SCD vs MCI; fB-SCD vs MCI

NC (n = 77) G‑SCD (n = 40) B‑SCD (n = 40) MCI (n = 23) F/χ2 P

Age 65.36 ± 5.80 64.40 ± 5.49 65.18 ± 5.90 65.87 ± 5.80 0.382 0.766

Sex (male/female) 14/63 7/33 7/33 4/19 0.015 1.000

Education years 12.86 ± 2.97 12.68 ± 2.64 11.79 ± 2.36 12.65 ± 3.61 1.272 0.286

MRI (TX/CX) 30/47 13/27 17/23 9/14 0.889 0.828

SCD-Q 3.90 ± 1.99 5.68 ± 1.29a 5.81 ± 1.25b 5.20 ± 2.07c 15.395 < 0.001*

MMSE 28.73 ± 1.19 28.75 ± 1.28 28.43 ± 1.53 27.26 ± 3.55cef 4.564 0.004*

Composite Z scores of each cognitive domain

 Memory function 0.29 ± 0.78 0.10 ± 0.71 − 0.11 ± 0.78b − 0.97 ± 0.73cef 16.872 < 0.001*

 Language function 0.21 ± 0.82 0.24 ± 0.63 − 0.31 ± 0.79bd − 0.59 ± 0.70ce 9.931 < 0.001*

 Executive function 0.10 ± 0.60 0.28 ± 0.64 − 0.15 ± 0.65bd − 0.56 ± 0.63cef 10.284 < 0.001*

 Navigation distance errors − 0.28 ± 0.65 − 0.51 ± 0.27 0.80 ± 0.69bd 0.42 ± 1.03cef 35.129 < 0.001*

 TIV 0.05 ± 0.99 0.11 ± 0.90 − 0.09 ± 1.07 − 0.21 ± 1.10 0.674 0.569

 IQR (%) 84.50 ± 1.93 84.69 ± 1.79 84.59 ± 1.73 84.93 ± 1.46 0.373 0.773
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correlated with memory function (subiculum, r = 0.218, 
p = 0.004; fissure, r = 0.226, p = 0.003; presubiculum, 
r = 0.237, p = 0.002; molecular layer, r = 0.220, p = 0.003; 
dentate gyrus, r = 0.207, p = 0.006; CA4, r = 0.203, 
p = 0.007; HATA, r = 0.217, p = 0.004). The volumes of 
right hippocampal subfields were also significantly corre-
lated with navigation function (tail, r =  − 0.210, p = 0.005; 
CA1, r =  − 0.227, p = 0.002; molecular layer, r =  − 0.196, 
p = 0.009). Under uncorrected criteria, more signifi-
cant correlations were observed. Greater volumes in the 
Ch4p were associated with greater language (r = 0.186, 
p = 0.014) and navigation function (r =  − 0.180, p = 0.017). 
Greater volumes in the Ch4a-i were associated with great 
performance on the executive tests (r = 0.192, p = 0.011).

Structural covariance network properties
Topological properties of the structural covariance net-
work constructed by the subfields of the basal forebrain 
and the right hippocampus were assessed. The correla-
tion matrix of each group is shown in Fig. 5A, and the 
25% strongest connections of each diagnostic group are 
shown in Fig. 5B. Compared with the G-SCD group, the 
B-SCD group showed a larger Lambda (Table  5). The 
MCI group showed a larger Gamma than the G-SCD 
group. The MCI group also showed a lower Lp, a larger 
Sigma, and greater global efficiency than both G-SCD 
and B-SCD groups. Considering the nodal metrics, the 
MCI group showed greater nodal efficiency in the right 
fimbria than the G-SCD group.

Table 2 Subcortical nuclei volumes  (mm3)

Data were presented as means ± standard deviation

L Left, R Right
* p < 0.05, FDR corrected, controlling for sex, age, years of education, and total intracranial volume
a~f Post hoc analyses showed a significant difference between groups. aNC vs G-SCD; bNC vs B-SCD; cNC vs MCI; dG-SCD vs B-SCD; eG-SCD vs MCI; fB-SCD vs MCI

NC (n = 77) G‑SCD (n = 40) B‑SCD (n = 40) MCI (n = 23) F P

Basal forebrain 535.24 ± 40.62 539.47 ± 51.05 515.08 ± 42.47bd 499.95 ± 36.37ce 5.327 0.002*

L-Thalamus 5946.67 ± 563.92 5955.59 ± 650.65 5801.25 ± 580.15 5567.23 ± 414.48 2.262 0.083

L-Caudate 3077.73 ± 354.22 3176.93 ± 371.77 3065.99 ± 417.08 3084.21 ± 403.91 0.752 0.523

L-Putamen 4519.79 ± 448.30 4493.13 ± 518.10 4440.52 ± 554.15 4398.10 ± 347.17 0.224 0.879

L-Pallidum 1862.60 ± 240.92 1847.12 ± 219.02 1807.77 ± 254.06 1781.75 ± 262.65 0.396 0.756

L-Hippocampus 3577.23 ± 352.48 3576.78 ± 424.65 3484.67 ± 345.05 3312.63 ± 293.79 2.899 0.037

L-Amygdala 1359.26 ± 221.99 1281.10 ± 230.21 1301.93 ± 220.96 1232.48 ± 210.16 2.638 0.051

L-Accumbens 502.48 ± 87.68 493.19 ± 82.03 487.24 ± 77.49 448.04 ± 91.01 2.075 0.105

R-Thalamus 5813.13 ± 576.93 5757.73 ± 576.39 5667.74 ± 572.91 5498.96 ± 420.97 1.494 0.218

R-Caudate 3176.42 ± 349.43 3277.09 ± 376.46 3171.37 ± 415.60 3226.93 ± 493.72 0.879 0.453

R-Putamen 4503.70 ± 501.74 4494.81 ± 492.07 4466.18 ± 546.24 4406.74 ± 401.24 0.112 0.953

R-Pallidum 1757.02 ± 198.94 1784.53 ± 213.82 1754.38 ± 250.43 1702.58 ± 246.80 0.180 0.910

R-Hippocampus 3678.94 ± 379.55 3677.84 ± 450.97 3575.85 ± 407.17 3319.50 ± 345.14cef 4.693 0.004*

R-Amygdala 1534.93 ± 278.04 1484.69 ± 256.68 1474.44 ± 231.41 1358.29 ± 171.53 2.838 0.040

R-Accumbens 494.64 ± 81.59 489.63 ± 83.88 475.37 ± 66.99 454.74 ± 78.25 1.220 0.304

Table 3 Basal forebrain subfield volumes  (mm3)

Data were presented as means ± standard deviation
* p < 0.05, FDR corrected, controlling for sex, age, years of education, and total intracranial volume
a~f Post hoc analyses showed a significant difference between groups. aNC vs G-SCD; bNC vs B-SCD; cNC vs MCI; dG-SCD vs B-SCD; eG-SCD vs MCI; fB-SCD vs MCI

NC (n = 77) G‑SCD (n = 40) B‑SCD (n = 40) MCI (n = 23) F P

Ch4p 85.80 ± 8.03 86.40 ± 9.27 81.96 ± 6.34bd 79.78 ± 5.74ce 4.994 0.002*

Ch4a-i 142.37 ± 10.17 144.01 ± 13.01 137.13 ± 11.32bd 134.19 ± 10.03ce 4.757 0.003*

Ch3 135.73 ± 10.25 136.77 ± 13.27 130.98 ± 11.29 126.73 ± 9.47ce 4.843 0.003*

NSP 104.60 ± 8.16 104.93 ± 10.01 101.44 ± 9.79 98.22 ± 7.23ce 3.187 0.025*

Ch1/2 66.74 ± 6.73 67.36 ± 8.00 63.56 ± 6.17 61.03 ± 6.91ce 4.885 0.003*
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Follow‑up data analytical results
With an interval of a mean = 1.5  years ± 12  months 
of follow-up, none in the G-SCD group (n = 20) pro-
gressed to MCI, while 4 in the B-SCD group (n = 19) 
progressed to MCI, with a follow-up interval of 396, 
723, 761, and 791  days, respectively. The G-SCD and 
B-SCD groups differed significantly in the conversion 
rate to MCI. No significant difference in interval days 
and demographic data of the follow-up cohort was 
shown between the two groups (Table 6).

Supplementary analytical results
We smoothed the modulated images with a 4-mm instead 
of 8-mm FWHM, and the result of lower volumes in the 
Ch4p and Ch4a-i subregions in the B-SCD group than the 
G-SCD group remained robust (Supplementary Table 1), 
which suggested that the degree of smoothing may not 
be a crucial factor for the differences. The correlations 
between basal forebrain subfield volumes with a 4-mm 
FWHM smoothing kernel and clinical measures were 
shown in Supplementary Fig.  2. After FDR correction, 

Table 4 Right hippocampal subfield volumes  (mm3)

Data were presented as means ± standard deviation
* p < 0.05, FDR corrected, controlling for sex, age, years of education, and total intracranial volume
a~f Post hoc analyses showed a significant difference between groups. aNC vs G-SCD; bNC vs B-SCD; cNC vs MCI; dG-SCD vs B-SCD; eG-SCD vs MCI; fB-SCD vs MCI

NC (n = 77) G‑SCD (n = 40) B‑SCD (n = 40) MCI (n = 23) F P

Tail 533.30 ± 68.27 541.56 ± 73.41 521.76 ± 77.54 494.31 ± 68.98 1.651 0.180

Subiculum 405.03 ± 48.60 407.07 ± 50.87 398.36 ± 47.67 368.83 ± 47.03cef 3.168 0.026*

CA1 599.83 ± 77.12 590.84 ± 78.50 571.73 ± 69.33 539.58 ± 59.69c 3.776 0.012*

Fissure 174.85 ± 34.63 168.29 ± 29.36 164.64 ± 30.02 154.86 ± 24.73 2.287 0.080

Presubiculum 281.58 ± 29.56 278.40 ± 33.66 278.86 ± 30.81 256.79 ± 38.83cf 3.433 0.018*

Parasubiculum 52.84 ± 9.26 51.21 ± 8.47 52.46 ± 9.98 49.38 ± 7.39 0.917 0.434

Molecular layer 528.53 ± 58.90 525.75 ± 62.01 512.38 ± 53.09 474.96 ± 54.67cef 4.899 0.003*

Dentate gyrus 270.86 ± 34.67 264.55 ± 30.37 260.47 ± 27.93 242.87 ± 28.10cef 4.403 0.005*

CA2/3 185.85 ± 30.40 186.76 ± 28.44 179.64 ± 25.24 166.14 ± 25.92 2.611 0.053

CA4 229.72 ± 29.34 224.50 ± 25.27 222.68 ± 24.02 207.10 ± 22.62cf 3.974 0.009*

Fimbria 72.61 ± 17.86 64.33 ± 13.40a 65.69 ± 15.80b 64.57 ± 18.49 3.677 0.013*

HATA 55.43 ± 8.44 54.19 ± 9.15 53.15 ± 9.60 48.61 ± 8.14c 3.124 0.027*

Fig. 4 Associations between volumes of the basal forebrain and right hippocampal subfields and clinical measures. Partial correlation analyses 
were adjusted for sex, age, years of education, and total intracranial volume. *p < 0.05; **p < 0.01; ***p < 0.001. The black * indicates results that 
survived multiple comparisons after FDR correction
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greater volumes in the Ch4p were associated with greater 
executive function (r = 0.250, p < 0.001). Under uncor-
rected criteria, greater volumes in the Ch4p were asso-
ciated with greater language (r = 0.162, p = 0.032) and 
navigation function (r =  − 0.168, p = 0.026).

In addition, the SCD subjects were divided into the 
G-SCD group (n = 40) and the B-SCD group (n = 40) 
based on their memory, language, and executive function, 

respectively. Contrary to the reduced volumes in Ch4p 
and Ch4a-i subfields of the basal forebrain in the B-SCD 
than the G-SCD grouped by the navigation ability, no 
significant differences in volumes of basal forebrain sub-
fields were observed between the G-SCD and the B-SCD 
grouped by their memory, language, and executive func-
tion (Supplementary Table  2). Furthermore, contrary to 
the higher conversion rate to MCI in the B-SCD than 

Fig. 5 Structural covariance network of the basal forebrain and right hippocampal subfields. A Correlation R matrices of subfields in each 
diagnostic group. B The top 25% of the strongest regional connections are shown for each diagnostic group

Table 5 Global metrics of the structural covariance network

aCp area under the curve (AUC) of the clustering coefficient, aLp AUC of the shortest path length, aGamma AUC of the Gamma, aLambda AUC of the Lambda, aSigma 
AUC of the Sigma, aEglobal, AUC of the global efficiency, aElocal AUC of the local efficiency
* p < 0.05

Global metrics Group comparisons

NC G-SCD p NC B-SCD p NC MCI p

aCp 0.21 0.21 0.662 0.21 0.21 0.883 0.21 0.22 0.578

aLp 0.62 0.64 0.586 0.62 0.73 0.106 0.62 0.55 0.216

aGamma 0.50 0.43 0.366 0.50 0.54 0.659 0.50 0.61 0.301

aLambda 0.33 0.32 0.347 0.33 0.36 0.327 0.33 0.33 0.924

aSigma 0.48 0.42 0.141 0.48 0.47 0.804 0.48 0.59 0.090

aEglobal 0.17 0.16 0.314 0.17 0.16 0.226 0.17 0.19 0.102

aElocal 0.23 0.23 0.635 0.23 0.23 0.852 0.23 0.25 0.138

Global metrics Group comparisons

G-SCD B-SCD p G-SCD MCI p B-SCD MCI p

aCp 0.21 0.21 0.810 0.21 0.22 0.797 0.21 0.22 0.717

aLp 0.64 0.73 0.079 0.64 0.55 0.034* 0.73 0.55 0.005*

aGamma 0.43 0.54 0.154 0.43 0.61 0.009* 0.54 0.62 0.482

aLambda 0.32 0.36 0.021* 0.32 0.33 0.090 0.36 0.33 0.531

aSigma 0.42 0.47 0.163 0.42 0.59 < 0.001* 0.47 0.59 0.012*

aEglobal 0.16 0.16 0.718 0.16 0.19 0.012* 0.16 0.19 0.005*

aElocal 0.23 0.23 0.809 0.23 0.25 0.164 0.23 0.25 0.226



Page 10 of 14Chen et al. Alzheimer’s Research & Therapy           (2023) 15:86 

the G-SCD grouped by the navigation ability, no signifi-
cant differences in conversion rate to MCI were observed 
between the G-SCD and the B-SCD grouped by their 
memory (Supplementary Table 3), language (Supplemen-
tary Table  4), and executive function (Supplementary 
Table 5).

Discussion
In the present study, for the first time, we investigated 
the heterogeneity of SCD from the perspective of spa-
tial navigation performance. The SCD participants were 
divided into two subgroups based on their spatial naviga-
tion performance. The results showed that, compared to 
SCD subjects with good spatial navigation ability, those 
with bad spatial navigation ability showed lower volumes 
in the basal forebrain, reorganized structural covariance 
network of the basal forebrain and right hippocampal 
subfields, and a higher conversion rate to MCI. Alto-
gether, this study may indicate the promising role of spa-
tial navigation in risk assessment and early intervention 
for SCD subjects.

It has been well-established by histopathological studies 
that AD is associated with the loss of cholinergic neurons 
and the basal forebrain is a key structure for cholinergic 
input to the hippocampus, amygdala, and cerebral cortex 
[65, 66]. Cholinergic degeneration in the basal forebrain 
plays a crucial role during AD progression, not only in 
late disease but also in the early stages [67, 68]. Significant 
associations between basal forebrain atrophy and cortical 
amyloid deposition in patients with pre-symptomatic and 
predementia stages of AD have been observed [55]. In 
addition, degeneration of the basal forebrain cholinergic 
projections has been suggested as a robust and reliable 
upstream event of entorhinal and neocortical degenera-
tion [64]. Previous studies have shown significant volume 
reductions of the basal forebrain in SCD, MCI, and AD 
patients [24, 29, 69]. In accordance with previous studies, 
the B-SCD group and MCI group in this study showed 
lower volumes in the basal forebrain, while this was not 

observed in the G-SCD group. Contrary to the signifi-
cantly atrophied right hippocampus observed in the MCI 
group, no significant hippocampal atrophy was observed 
in the B-SCD group. These findings are aligned with pre-
vious studies suggesting that volume reduction in the 
basal forebrain may be a more sensitive structural indica-
tor than hippocampal atrophy in the early stages of AD 
[70, 71]. These findings also indicate that treatment with 
acetylcholinesterase inhibitors may be noteworthy since 
the earliest stages of AD.

Subfield and correlation analyses showed that the 
B-SCD group mainly showed atrophy in the Ch4p and 
Ch4a-i subfields of the basal forebrain and the volumes 
of these subfields were significantly associated with lan-
guage and executive function as well as with spatial 
navigation performance under uncorrected criteria. Cho-
linergic inputs to the cerebrum originate from different 
nuclei of the basal forebrain, with Ch1 and Ch2 inner-
vating the hippocampus, Ch3 innervating the olfactory 
bulb, and Ch4 innervating practically the entire cerebral 
cortex and amygdala [72, 73]. The Ch4, also known as the 
nucleus basalis of Meynert, is a key structure for cholin-
ergic input to the medial prefrontal, cingulate, retrosple-
nial, and visual cortices [74]. The medial prefrontal lobe 
plays a crucial role in many aspects of navigation, includ-
ing route planning, route plan updating, goal tracking, 
path selection, and spatial memory consolidation and 
abstraction [75]. The posterior cingulate and retrosple-
nial cortex, which are located close to both the medial 
temporal and parietal lobes, have been implicated in 
the integration of hippocampal-related allocentric and 
parietal-related egocentric spatial information and the 
flexible transitions between these two navigation strate-
gies [27, 76]. We speculated that the atrophy in Ch4 may 
trigger a loss of cholinergic axons projecting to the asso-
ciative cortical regions and eventually leads to cognitive 
and spatial navigation deficits. Notably, the correlations 
between Ch4p volumes and navigation performance did 
not survive multiple comparisons. We speculated that the 
behavioral deficits in the B-SCD group are more likely to 
be underlined by functional rather than structural neu-
ral changes, which would be further investigated in our 
future study.

Except for the subcortical volumetry, we also studied 
the organization of the structural covariance network. 
Since significant differences in the volumes of the right 
hippocampus rather than the left hippocampus among 
the diagnostic groups were observed and hippocampal 
lateralization in navigation has been suggested by pre-
vious studies [13, 77], thus, only the right hippocampal 
subfields were used to construct the structural covari-
ance network combined with basal forebrain subfields. 
The findings showed that the B-SCD group had a larger 

Table 6 Follow-up data

Data were presented as means ± standard deviation or number. The p values for 
sex and outcome were derived from Fisher’s exact test, and statistics for other 
variables were derived from two sample t-test
* p < 0.05

G‑SCD (n = 20) B‑SCD (n = 19) t P

Age 65.50 ± 5.51 65.16 ± 6.05 0.185 0.854

Sex (male/female) 5/15 3/16 0.695

Education 12.85 ± 2.81 11.71 ± 2.35 1.368 0.180

Outcome (convert-
ers/nonconverters)

0/20 4/15 0.047*

Interval (days) 535.95 ± 163.50 539.16 ± 168.55 − 0.060 0.952
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Lambda than the G-SCD group, suggesting a reorganized 
structural covariance and weakened network integration 
of the basal forebrain and right hippocampal subfields. Fu 
et  al. have observed an altered organization of the grey 
matter network characterized by decreased properties of 
integration and segregation in SCD individuals compared 
to the NCs [41]. Significant associations between global 
amyloid burden and individual gray matter network 
properties in participants with subjective memory com-
plaints have been reported [78]. In addition, alterations 
in individual grey matter network measures could predict 
faster clinical progression in subjects with SCD or MCI 
[39, 40]. These studies suggested that a more random 
organization of the grey matter network was associated 
with a steeper cognitive decline, with a lower Lambda 
predicting a steeper decline in global cognition and lan-
guage function. This finding may somewhat be inconsist-
ent with the larger Lambda and higher conversion rate 
to MCI in the B-SCD group in the present study. Pos-
sible explanations for this discrepancy could be the dif-
ferences in the SCD definition, participant recruitment, 
and analytical methods of structural covariance network, 
e.g., individual or group-wise, the definition of network 
nodes, sparsity, and other parameters. The MCI group 
in the present study showed an increased small-word 
property compared to the SCD group. Consistent with 
this, a recent study conducted on 194 elderly subjects 
with records on amyloid and tau status also suggested 
that the structural covariance was enhanced during AD 
progression [79]. Increased structural covariance seeding 
from hippocampal subfields and basal forebrain in MCI 
patients has been reported by the voxel-based analysis 
[80, 81]. We speculated that the parallel pattern of the 
basal forebrain and hippocampal atrophy may contribute 
to the enhanced structural covariance in the MCI stage. 
The abnormalities of morphometric networks, which 
seem divergent and dynamic across the different stages of 
AD, may contribute to our understanding of the neuro-
pathological mechanisms.

Recently, researchers who focus on SCD have been 
emphasizing that the heterogeneity of this entity needs 
to be further investigated [8–11, 82, 83]. In the present 
study, for the first time, we investigated the heterogene-
ity of SCD from the perspective of spatial navigation per-
formance. The neural structural basis underlying spatial 
navigation (e.g., basal forebrain and hippocampus) are 
affected by AD pathology since the earliest stages [26]. 
Furthermore, compared to the traditional paper-and-
pencil-based cognitive tests, the spatial navigation tests 
have relatively fewer verbal, cultural, and educational 
biases, which may facilitate cross-cultural clinical trials 
across different sites [16]. Previous longitudinal stud-
ies have demonstrated the promising utility of spatial 

navigation at baseline as an assessment tool in predict-
ing future cognitive decline. In a prospective cohort 
study of 442 non-demented adults with a mean follow-up 
of 16.5 ± 13.7  months, Verghese et  al. found that a 10-s 
increment on the immediate maze time measured by 
the Floor Maze Test could predict the incidence of MCI 
with an adjusted hazard ratio of 1.25 [20]. Levine et  al. 
assessed the diagnostic value of cognitive mapping, route 
learning, and episodic memory tests in predicting clinical 
progression over an average of 4–5  years, and the find-
ings showed an AUC of 0.894, 0.794, and 0.735, respec-
tively; the cognitive mapping tended to perform better 
than the episodic memory [19]. Consistent with these 
findings, our follow-up data showed that the B-SCD 
group had a significantly higher conversion rate to MCI 
than the G-SCD group. Our findings indicated that spa-
tial navigation may have great potential to investigate 
the heterogeneity of SCD and to identify SCD subjects at 
higher risk of clinical progression. Supplementary ana-
lytical results showed that no significant differences in 
volumes of basal forebrain subfields and conversion rate 
to MCI were observed between the G-SCD and B-SCD 
grouped by their memory, language, or executive func-
tion, which may further support that spatial navigation 
could serve as a more informative and promising tool for 
risk assessment and early intervention for SCD.

Limitations
This study has some limitations. First, the sample size 
was relatively small and follow-up data was not available 
for all SCD participants. Second, AD biomarkers of amy-
loid β and tau were not available; thus, this study could 
not provide direct evidence on whether baseline spatial 
navigation could help identify the SCD subjects with pos-
itive AD biomarkers from the whole SCD entity. Recent 
studies have indicated the promising utility of plasma AD 
biomarkers, which are easier to obtain [84, 85]. We will 
collect plasma AD biomarkers in our future work and try 
to investigate whether spatial navigation could also help 
identify SCD with positive AD biomarkers or SCD at the 
preclinical stage of AD. Third, only structural imaging 
data were analyzed, while multimodal imaging combined 
with functional MRI and diffusion tensor imaging may 
give a more comprehensive description of the differences 
in imaging markers between the G-SCD and B-SCD 
groups. Fourth, the spatial navigation test was based on 
a two-dimensional computerized paradigm, while those 
based on real space and virtual reality may be more accu-
rate. Lastly, the relatively large variation in the follow-up 
period may have an impact on the conversion rate, and 
the follow-up duration may not be long enough to record 
the final outcome of the SCD participants to determine 
a prognostic model for SCD based on the present data. 
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The development of a prognostic model for SCD based 
on combined features of demographics, cognition, spatial 
navigation, plasma biomarkers, and imaging markers in 
the baseline will be our focus in the future.

Conclusions
Compared to SCD subjects with good spatial naviga-
tion performance, SCD subjects with bad performance 
showed lower volumes in the basal forebrain, a reor-
ganized structural covariance network of subcortical 
nuclei, and an increased risk of progression to MCI. 
Our findings may provide new insights into the role of 
spatial navigation in identifying those with SCD who 
are at higher risk of clinical progression to objective 
cognitive impairment, which may contribute to mak-
ing more precise clinical decisions for SCD individuals 
who seek medical help.
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