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Diffusion tensor magnetic resonance imaging (DT-

MRI) is unique in providing information about both

the structural integrity and the orientation of white

matter fibers in vivo and, through “tractography”, re-

vealing the trajectories of white matter tracts. DT-MRI

is therefore a promising technique for detecting dif-

ferences in white matter architecture between differ-

ent subject populations. However, while studies in-

volving analyses of group averages of scalar quantities

derived from DT-MRI data have been performed, as

yet there have been no similar studies involving the

whole tensor. Here we present the first step towards

realizing such a study, i.e., the spatial normalization of

whole tensor data sets. The approach is illustrated by

spatial normalization of 10 DT-MRI data sets to a stan-

dard anatomical template. Both qualitative and quan-

titative approaches are described for assessing the

results of spatial normalization. Techniques are then

described for combining the spatially normalized data

sets according to three definitions of average, i.e., the

mean, median, and mode of a distribution of tensors.

The current absence of, and hence need for, appropri-

ate statistical tests for comparison of results derived

from group-averaged DT-MRI data sets is then dis-

cussed. Finally, the feasibility of performing tractog-

raphy on the group-averaged DT-MRI data set is inves-

tigated and the possibility and implications of

generating a generic map of brain connectivity from a

group of subjects is considered. © 2002 Elsevier Science (USA)
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INTRODUCTION

Diffusion tensor magnetic resonance imaging (DT-
MRI), developed by Basser et al. (1994), allows the

diffusion tensor to be estimated noninvasively in each
voxel of an MR data set, by acquiring a series of MR
images sensitized to diffusion in different directions
and fitting a tensor model to the data.

In the CSF-filled ventricles and in gray matter at the
typical spatial resolution of DT-MRI data (2.5 � 2.5 �
2.5 mm), the diffusivity of water molecules is indepen-
dent of the direction in which it is measured, i.e., it is
isotropic. In the white matter, however, diffusion is
much more hindered across a bundle of coherently
ordered axons than when diffusing parallel to the long
axes of the axons (Moseley et al., 1990). Hence in white
matter, diffusion cannot be characterized by a single
scalar quantity and is better described by the tensor
matrix formalism (Crank, 1962).

The degree to which the apparent diffusivity de-
pends on the direction in which it is observed is char-
acterized by the anisotropy of the diffusion tensor.
Several quantitative measures of diffusion anisotropy
have been proposed (e.g., Basser et al., 1994; Basser
and Pierpaoli, 1996; Pierpaoli and Basser, 1996), but
the most robust are those that are independent of the
orientation of the sample with respect to the measure-
ment system and do not require rank sorting of the
eigenvalues (Pierpaoli and Basser, 1996.).

Since the self-diffusivity of a water molecule is sen-
sitive to changes in its local environment, the diffusion
tensor acts as a probe of tissue architecture. This
makes DT-MRI an attractive option for studying dif-
ferences in white matter between different subject
groups. Indeed, early reports looking at anisotropy
measures in vivo suggest that DT-MRI can reveal dif-
ferences between, for example, normal healthy volun-
teers and patients with amyotrophic lateral sclerosis
(Ellis et al., 1999; Glauche et al., 2001), alcoholics (He-
dehus et al., 1999), dyslexics (Klingberg et al., 2000),
epileptics (Eriksson et al., 1999, 2001; Rugg-Gunn et
al., 2001), and schizophrenics (Buchsbaum et al., 1998;
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Lim et al., 1999; Pfefferbaum et al., 1999; Foong et al.,
2000; Steel et al., 2001; Agartz et al., 2001) and may
also reveal gender and age differences in normal
healthy volunteers (Virta et al., 1999).

Two approaches have generally been adopted for in-
vestigating intergroup anisotropy differences. The first
involves manual placement of regions of interest (ROI)
in the brain and recording the mean anisotropy within
the ROI for each individual subject (e.g., Ellis et al.,
1999; Virta et al., 1999; Foong et al., 2000; Steel et al.,
2001). The second involves generation of a group-aver-
aged data set and subsequent comparison of data ei-
ther from within an ROI (e.g., Hedehus et al., 1999;
Klingberg et al., 1999) or on a voxel-by-voxel statistical
basis (e.g., Buchsbaum et al., 1998; Eriksson et al.,
1999, 2001; Rugg-Gunn et al., 2001; Glauche et al.,
2001). This latter approach relies on coregistration of
data sets and a straightforward averaging of the scalar
intensities within each voxel to create a group-aver-
aged scalar data set.

In this study, we extend the concept of group aver-
aging of scalar data to group averaging of tensor data
and show how a group-averaged tensor data set can be
created in a standard anatomical reference space.
Methods are presented for generating not only the
mean tensor within each voxel, but also the median
and mode of the distribution of tensors within each
voxel. We then assess how well results obtained in the
average data set conform to results obtained in the
individual brains and consider implications for group
averaging of both scalar and tensor data in clinical
studies. We also discuss how our findings impact of the
validity of employing a single scalar quantity, such as
anisotropy, for making inferences about connectivity in
the human brain.

The use of DT-MRI data to reconstruct approxima-
tions to the pathways of white matter within the brain
(i.e., “tractography”) is a rapidly developing area of
research in the field of DT-MRI (Basser, 1998; Jones et
al., 1998; Mori et al., 1998, 1999; Poupon et al., 1999,
2000; Jones et al., 1999b; Conturo et al., 1999; Basser et
al., 2000; Tuch et al., 2000, 2001; Koch et al., 2001;
Parker et al., 2001). There is clearly great potential for
such a technique in studying differences in the topol-
ogy of white matter tracts between populations. How-
ever, while studies involving group averaging of (sca-
lar) anisotropy measures have been performed,
tractography has been reported only on an individual
subject basis. In this work, we investigate the possibil-
ity of performing tractography on a population-aver-
aged diffusion tensor data set. Finally, we investigate
the possibility of generating a “summary” tractography
result for a group of subjects, i.e., a map that summa-
rizes the trajectories of the major white matter path-
ways, as seen by DT-MRI, within a group of subjects.
We refer to this group-averaged map as a “generic

connectogram.” The implications of using a generic
connectogram in clinical studies are discussed.

METHOD

Data Acquisition

Eleven healthy male volunteers (age range 25 to 39
years; mean 33.3 � 4.7 years) who were free of neuro-
logical and psychological symptoms, and who were not
taking medication, were recruited to this study. Al-
though 11 subjects were recruited, the averaging was
performed on data from only 10 of these subjects (re-
ferred to here as the “source subjects”). Data from the
11th subject were used to create a template DT-MRI
data set.

Diffusion-weighted magnetic resonance imaging
data were acquired from each subject on a 1.5-T GE
Signa NV/i LX system (General Electric, Milwaukee,
WI) with actively shielded magnetic field gradients
(maximum amplitude 40 mT m�1). A standard quadra-
ture birdcage head coil was used for both RF transmis-
sion and MR signal reception.

Data were acquired using a multislice peripherally
gated EPI sequence, optimized for precise measure-
ment of the water self-diffusion tensor in the human
brain (Jones et al., 1999a, 2002), from 60 contiguous
near-axial slice locations with isotropic (2.5 � 2.5 � 2.5
mm) resolution. The echo time was 107 ms while the
effective repetition time was 15 R-R intervals. The
duration of the diffusion-encoding gradients was 17.3
ms, giving a maximum diffusion weighting of 1300 s
mm�2. Diffusion gradients were applied in 64 isotropi-
cally distributed orientations (Jones et al., 1999a,
2002). The total data acquisition time was approxi-
mately 14 min.

Analysis of Diffusion-Weighted Data

The diffusion-weighted images were initially cor-
rected for the effects of eddy-current-induced distortion
using in-house software. In brief, a reference image
was first constructed by calculating the mean intensity
in each voxel from all the non-diffusion-weighted im-
ages. Next, for each diffusion-weighted image the
downhill simplex method (Press et al., 1992) was used
to select the optimal magnification, shear, and dis-
placement of the diffusion-weighted images in order to
give the best registration with the reference image.
The “mutual information” (Collingon et al., 1995; Viola
et al., 1996) was used to assess the registration be-
tween the “reference” image and the corrected image.

Following correction of image distortion, the diffu-
sion tensor, together with the computed T2-weighted
intensity that would be obtained in the absence of any
diffusion weighting, was calculated for each voxel us-
ing multivariate linear regression after logarithmic
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transformation of the signal intensities (Basser et al.,
1994). The tensor in each voxel was subsequently di-
agonalized to determine the eigenvectors and eigenval-
ues, and the eigenvector associated with the largest
eigenvalue (which we refer to here as the “principal
eigenvector”), the trace, and the fractional anisotropy
(Basser and Pierpaoli, 1996) of the tensor in each voxel
were determined.

Generation of a Diffusion Tensor Template

in Standard Space

In order to obtain a group-averaged DT-MRI data set
in a standard anatomical reference space, it was first
necessary to generate a template DT-MRI data set in a
standard anatomical space by coregistering with a
standard MR brain template. The standard MR tem-
plate used for this purpose was the T2-weighted EPI
template included as part of the functional imaging
analysis software package SPM99 (Wellcome Depart-
ment of Cognitive Neurology, Institute of Neurology,
London, UK). One subject was identified from the
group of 11 subjects (referred to here as “the 11th
subject”), whose age was close to the mean age of the
remaining 10 subjects (age of 11th subject 33 years,
mean age 33.3 years), and his data set was used to
create the DT-MRI template.

The computed T2-weighted volume data set obtained
as part of the diffusion tensor fitting procedure was
masked from the background signal using steps (i)–(iii)
of the brain extraction procedure described below. The
data were then imported into SPM99 and the “Spatial
Normalisation” feature was used to coregister this T2-
weighted volume with the T2-weighted volume tem-
plate supplied in SPM, using an affine transformation
with 12 degrees of freedom (Friston et al., 1995a,b).
The affine transformation matrix thus obtained was
then applied to the fractional anisotropy volume data
set of the 11th subject—to create a “target” fractional
anisotropy data template in a standard reference
space.

Brain Extraction

The software used for coregistration of tensor data
sets (Alexander et al., 1999, 2001, 2002) has previously
been found to provide the most robust results when all
extraneous signals are removed from the data set (i.e.,
only those voxels containing signal from the brain are
retained as part of the image). While this extraction
could be performed manually by tracing the contours of
the brain by hand for each image slice, we developed an
automated approach, such that the segmentation of the
brain was objective. The procedure can be broken down
into four steps.

(i) For each subject, the mean signal intensity in the
background of the computed T2-weighted image was

automatically determined by selecting a rectangle of
400 pixels, whose long axis was parallel to the phase-
encoding direction (so as to avoid inclusion of any po-
tential Nyquist ghosting artifacts), and computing the
mean pixel intensity.

(ii) The initial stage of brain extraction was per-
formed using the software package BET—Brain Ex-
traction Tool, part of the Functional Software Library
package (Oxford Centre for Functional Magnetic Res-
onance Imaging of the Brain, Oxford University, Ox-
ford, UK). Essentially, the software employs a mesh
that is molded to the surface of the brain using a series
of adaptive rules and constraints and the MR data set
segmented into “brain” (within the mesh) and “non-
brain” (outside of the mesh). (Note. A technical report
giving full details of this procedure is available for
download from http://www.fmrib.ox.ac.uk/analysis/
research/bet.)

(iii) Following preliminary extraction, a simple con-
nectivity algorithm based on intensity thresholding
was applied. This step was necessary since the frac-
tional anisotropy volume data set masked by the out-
put of step (ii) was often found to have a few very bright
(high anisotropy) voxels around the external surface of
the brain—most likely as a result of partial volume
effects. The threshold that gave the best results was
empirically found to be 3.5 times the mean background
intensity determined in step (i).

(iv) Finally, the extracted T2-weighted volume was
used as a binary mask on the tensor volume data set.

Spatial Normalization of Tensor Data Sets

For each of the 10 source subjects, the masked tensor
volume data set was coregistered (using an affine reg-
istration with 12 degrees of freedom) to the template
using the approach described by Alexander et al. (1999,
2001, 2002). This approach employs the AIR registra-
tion package (Woods et al., 1998a,b) for coregistration,
and the computed transformations thus obtained are
applied to the DT-MRI volumes using the preservation
of principal directions algorithm (Alexander et al.,
2001a), which has been shown to reorient each tensor
correctly under nonrigid transformations.

The images used for coregistration were the frac-
tional anisotropy images computed from the six ele-
ments of the tensor (Basser and Pierpaoli, 1996). This
measure is rotationally invariant (Pierpaoli and
Basser, 1996), and we were therefore justified in coreg-
istering each tensor data set to the template tensor
data set by matching image intensities based on the
fractional anisotropy.

Measures of Central Tendency

Following coregistration of the data sets, the mean
(�D�2), median (�D�1), and mode (�D�0) of the distribu-
tion of tensors within each voxel were computed. These
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statistical concepts—mean, median, and mode—are
relevant not only to the usual case of samples of scalar
data but also to more complex geometrical data (Pen-
nec and Ayache, 1998). The key step in this extension
is the redefinition of mean, median, and mode in a
more abstract form. This was achieved by Fréchet
(1948), who defined a continuum of central locations �r,
where r � ℜ �. The central location, �r, is defined as
that location in the domain of the samples that mini-
mizes the sum of the distances, raised to the power r, to
the samples. So, for example, �2 is the element that is
closest to the samples in a distance-squared sense; �1

is the element that is closest to the samples in an
absolute-distance sense, etc. Such definitions seem to
bear no relation to the familiar definitions of mean,
median, and mode, but it can readily be shown (Griffin,
1997) that for scalar variables the Fréchet-defined �2 is
the mean, �1 is the median, and (with appropriate
taking of limits) �0 represents the mode(s).

To apply the Fréchet definitions to tensor data, a
metric was required. We used the metric

d�A, B) :��(A � B) : (A � B) , (1)

where A and B are the two different tensors and the
symbol : indicates the generalized tensor dot product
between two tensors (Morse and Feschbach, 1953).

In expanded form, Eq. (1) is written as

d�A, B	 � � �A11 � B11	
2 � �A22 � B22	

2 � �A33 � B33	
2

� 2�A12 � B12	
2 � 2�A13 � B13	

2 � 2�A23 � B23	
2 .

(2)

We note that this metric is invariant to choice of
coordinate system. Using this metric it can be shown
that the Fréchet mean of a sample of tensors coincides
with the more obvious definition of the mean of a
sample of tensors, i.e., �2�
D1, . . . , Dn�	 �

�1/n	�i�1
n Di, so the mean was determined in this

more obvious and rapid way. To calculate the median
of a sample of tensors we started with the mean
tensor and then used gradient descent on the abso-
lute distance function d1�X	 � �i�1

n d�X, Di	. To cal-
culate the mode, we started with the median and
then repeatedly used gradient descent on the r-dis-
tance function dr�X	 � �i�1

n �d�X, Di	� r. For the first
gradient descent, r was set to 0.9, for the second 0.8,
and so on. At the completion of the gradient descent
with r � 0.1, the sample closest to �0.1 was selected
as the mode tensor.

It can be shown that the derivative of the r-distance
function is never zero outside the convex hull (the
smallest convex region containing the set of the sam-
ples) and therefore the minima of the r-distance func-
tion are all contained within the convex hull of the

samples. For tensors, this property guarantees that
each of the Fréchet-defined mean, median, and mode
tensors of a sample of positive definite tensors will
always be positive definite.

The Fréchet approach to central locations also nat-
urally gives rise to methods for calculating dispersion
measures, as generalized in Eq. (3), i.e.,

Sr �
1

n
�
i�1

n

�d��r, Di	�
r

. (3)

Again, as the parameter r is varied, a family of
dispersion measures is defined. Of most interest are S2,
which is the standard deviation, and S1, which is the
mean absolute deviation.

We note that we can determine the most typical
tensor data set of a sample in the following manner.
First, we define dij for a pair of images, i and j, as the
sum over all voxels of the distance (measured using the
metric in Eq. (1)), between the tensor from image i and
the tensor from image j, i.e.,

dij � � �
all voxels

d�Di, Dj	
2 . (4)

For each data set, we then formulate the root-mean-
square distance between the tensors in the voxels in
the ith data set and equivalent voxels in the other data
sets, i.e.,

ci �

� �
i�1, j�1

n

d ij
2

n � 1
. (5)

The most representative data set of the sample is that
data set with the lowest value of ci.

Following computation of the three measures of cen-
tral tendency, (�D�2, �D�1), and �D�0), and determina-
tion of the most typical data set, Dtyp, tensors were
diagonalized and their eigenvectors and eigenvalues
computed, and images of fractional anisotropy (Basser
and Pierpaoli, 1996) were created. Furthermore, color
images showing the orientation of the principal eigen-
vector (the eigenvector associated with the largest ei-
genvalues) were created using the “absolute direction”
scheme reported by Pajevic and Pierpaoli (1999a,
2000).

Assessment of Spatial Normalization

Several strategies were developed to assess the qual-
ity of spatial normalization:
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Visual Inspection of Alignment of Principal
Eigenvectors

For each subject, the in-plane orientation of the prin-
cipal eigenvector in each voxel was visualized using a
modified version of the “quiver” library function in the
mathematical software package MATLAB (The Math-
works, Natick, MA). The orientation of a principal eig-
envector was represented only for those tensors for
which the fractional anisotropy was above a threshold,
arbitarily chosen to be 0.15. The 10 fiber-orientation
images were then superimposed to allow visual inspec-
tion of the alignment of the principal eigenvector
within each voxel. We refer to this composite image as
a “bow-tie” plot, on account of the appearance of the bar
plots within each voxel when the orientational coher-
ence of the principal eigenvectors is relatively high.

Quantitative Measures of Alignment of Principal
Eigenvectors

The bow-tie plots were created to allow visual inspec-
tion of the alignment of principal eigenvectors of the
individual tensors within each voxel and were not de-
signed to provide anything more than a qualitative
measure of the degree of alignment. In regions where
orientational coherence is low, the images could prove
to be cluttered and difficult to summarize. Further-
more, the plots allow visualization of the projection of
the three-dimensional orientational information only
onto a two-dimensional plane. We therefore sought to
gain quantitative measures of the three-dimensional
alignment of the principal eigenvectors in each voxel,
by computing maps based on dyadic tensors formed
from the principal eigenvectors. The underpinnings of
this work are to be found in Bingham (1974) and later
in Basser and Pajevic (2000).

Following the approach of Basser and Pajevic (2000),
we calculated the mean dyadic tensor, ��j � j

T�, for the N
subjects, in each voxel, where

��i � i
T� � �� � ix

2
�ix�iy �ix�iz

�ix�iy � iy
2

�iy�iz

�ix�iz �iy�iz � iz
2
�� �

1

N
�
j�1

N

� i
j
� i

j T

(6)

and � i
j is the ith component of the principal eigenvector

in the voxel for the jth subject. We then computed the
three eigenvalues of ��i�i

T�, assigned here as �1, �2, and
�3. (Note that for each individual tensor, there is only
one non-zero eigenvalue. The eigenvector of the dyad
which is associated with this eigenvalue is parallel to
the eigenvector from which the dyad is formed.)

The measure we chose to assess the intersubject
coherence of eigenvectors was formulated directly from
the dyad dispersion measure proposed by Basser and
Pajevic (2000), i.e.,

��2 � �3

2�1

. (7)

The intersubject coherence of eigenvectors in each
voxel was derived by subtracting this measure from 1
to form the dyadic coherence, �.

� � �1 � ��2 � �3

2�1
� . (8)

When the different subjects’ principal eigenvectors are
randomly distributed, then �1  �2  �3 and �3 0, and
when the individual principal eigenvectors are per-
fectly aligned with the mean principal eigenvector,
then �2 � �3 � 0 and � � 1.

Scattergrams of Fractional Anisotropy and Dyadic
Coherence, �

To investigate the relationship between orienta-
tional coherence of principal eigenvectors and anisot-
ropy, the image analysis package Analyze (Biomedical
Imaging Resource, Mayo Foundation, Rochester, MN)
was used to create scattergrams of fractional anisot-
ropy of the mean tensor, �D�2, and dyadic coherence, �

(formed according to Eq. (6)) for every image voxel.
Regions of the scattergram were manually selected

to include voxels with (i) high fractional anisotropy and
high dyadic coherence measure and (ii) low fractional
anisotropy and high dyadic coherence measure. The
boundaries for our definitions of “high” and “low” were
arbitrary. The voxels within the different scattergram
regions were then highlighted on the image of the
fractional anisotropy of the mean tensor, using a dif-
ferent color for each “signature” to allow their topo-
graphical distribution to be visualized.

Variability of Tensors

Several measures were formulated to assess the
variability of tensors by examining the scatter of ten-
sors about the measures of central tendency. To assess
the scatter of the tensors about the mean, �D�2, the
following measure, S2, was constructed from Eq. (3),

S2 � � 1

N � 1
�
k�1

N

�Dk � �D�2	 : �Dk � �D�2	 , (9)

where N is the number of subjects and (Dk � �D�2) is
the tensor formed by subtracting the mean tensor,
�D�2, from the kth individual tensor, Dk.

The expression in Eq. (9) will be recognized as being
analogous to the unbiased estimate of the standard
deviation of the tensors. However, since this measure
depends on the magnitude of the tensors in a voxel, we
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also calculated a normalized measure of scatter about
the mean (analogous to a coefficient of variation), in
which the normalization factor is the magnitude of the

mean tensor, ��D�2� � ��D�2 : �D�2, i.e.,

S� 2 �
S2

��D�2�
. (10)

To assess dispersion about the median, the following
measure is appropriate:

S1 �
1

N � 1
�
k�1

N

��Dk � �D�1	 : �Dk � �D�1	 .

(11)

Again, a normalized form of S1 is obtained by dividing
by ��D�1� to give

S� 1 �
S1

��D�1�
. (12)

Tractography

To investigate the feasibility of creating a generic
connectogram and to determine how well a tractogra-
phy result obtained from an averaged data set would
represent results obtained from individual subjects, we
performed tractography in both a typical subject and
the averaged data set. The software for estimating the
trajectories of tracts from diffusion tensor data was
written in the C programming language and based on
the procedure originally described by Basser (1998).

Generating a Continuous Description of the Tensor
Field

The first step involved generating a continuous de-
scription of the diffusion tensor field from the voxel-
wise discrete estimates by B-spline fitting a series of
basis functions to the elements of the tensor matrices
(Aldroubi and Basser, 1999; Pajevic et al., 2001). This
procedure allows rapid evaluation of the diffusion ten-
sor at any arbitrary location within the imaged volume
and also permits smoothing of the tensor field (Al-
droubi and Basser, 1999).

A set of locations for the initiation of the tracking
algorithm (the “seed points”) was first selected on the
fractional anisotropy images (see below). For each of
these seed points, the diffusion tensor was estimated
and diagonalized to determine the principal eigenvec-
tor. The tracking algorithm then moved a distance of
0.5 mm (arbitrarily chosen) along this direction. The
diffusion tensor was determined at this new location
(obtained from the continuous description of the tensor
field) and the orientation of its principal eigenvector

estimated. The algorithm then moved a further 0.5 mm
along this new direction. A pathway was traced out in
this manner until the fractional anisotropy of the ten-
sor fell below a fixed arbitrary threshold (set to 0.15,
unless mentioned otherwise). The procedure was then
repeated by tracking in the direction opposite to the
first step at the seed point, in order to reconstruct the
whole tract passing through the seed point.

Seed-Point Selection

As mentioned above, the first step toward generating
images of fasciculi was to define starting regions for the
tracking procedure. For each fasciculus, a ROI was
defined on the anisotropy image in a region where the
fasciculus is well defined, according to previous neuro-
anatomy works (Dejerine, 1895; Crosby et al., 1962). In
order to pick out tracts of a specific fasciculus, which
may run close to tracts belonging to other fasciculi, it
was sometimes necessary to employ a “two region of
interest” approach, in a manner similar to that re-
ported by Conturo et al., (1999). The procedure was to
place a second ROI such that it also contained a section
of the fasciculus of interest, but at a distance from the
first region of interest. Only those tracts whose paths
connected both regions of interest were retained, and
in this way it was possible to select exclusively those
fibers belonging to the desired fasciculus. The typical
time for computation of the trajectories from a hundred
seed points was 20 s, running on a Sun Sparcstation
Ultra 140.

The fasciculi studied for this work were the corpus
callosum, the uncinate fasciculi, and the inferior occip-
itofrontal fasciculi. Tractography was also performed
in a region of frontal white matter where the intersub-
ject intravoxel orientation coherence of principal eig-
envectors was low. Regions of interest were defined on
the fractional anisotropy image computed from the
mean data set, (�D�2), and tractography was performed.
The same regions of interest were then used for initial-
ization of tractography in an individual subject, so that
results obtained from an individual and a group-aver-
aged data set could be compared directly. For some
fasciculi, the anisotropy threshold was varied and trac-
tography repeated in order to view the effects of differ-
ent anisotropy thresholds within the average and indi-
vidual data sets (see Results).

Display of Derived Tracts

At the completion of tracking, a list of points which
lay at 0.5-mm intervals along the pathway traced out
was generated. A three-dimensional representation of
the pathways was then generated by creating a set of
polygons with circular cross section, and fixed radius,
to connect up the points, using MATLAB. The use of
“stream tubes” to visualize white matter trajectories in
this way was first reported by Zhang et al., (2000). The
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rendered data could be rotated about any axis to per-
mit viewing of the tracts from any angle.

RESULTS

Figure 1 shows one slice (slice 36) of the 60-slice
fractional anisotropy data sets obtained from each of
the 10 subjects both before and after spatial normal-
ization and serves to illustrate that the registration
was at least coarsely effective and did not fail across
any of the subjects. Note that the variation in geometry

and location of white matter structures appears to be
greater in peripheral (subcortical) regions of the brain
compared to the major and more centrally located
structures.

Figure 2 illustrates the averaging procedure detailed
under Measures of Central Tendency. The figure shows
averaging of the 10 tensors for a voxel in which the
normalized standard deviation of the tensors about the
mean, S� 2, is 26%. This is typical of the scatter present
across the 10 registered data sets: 40% of voxels have a
normalized standard deviation greater than this. The

FIG. 1. Spatial normalization of diffusion tensor data sets. For illustrative purposes, the 36th slice from the 60-slice fractional anisotropy
data set of each subject is shown both (A) before spatial normalization and (B) after spatial normalization.
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normalized difference between the mean and the median
tensors, �d��D�2, �D�1		/��1/ 2	��D�2 � �D�1	� � 5%, is
also typical: 40% of voxels have a greater fractional
difference between the mean and the median ten-
sors.

The fractional anisotropy of the mean tensor (�D�2)
data set is shown in Fig. 3a, while the orientation of the
principal eigenvector is shown in Fig. 3b. Note that
some relatively small structures are clearly delineated.
For example, the motor fibers and sensory fibers are
individually seen in the pons on the anisotropy image
(Fig. 3a) and the transverse pontine fibers are readily
seen on the fiber orientation image (Fig. 3b) in the last
column of row 1 and first column of row 2. There is also
some preservation of anisotropy information in subcor-
tical regions (third row of Fig. 3a and 3b).

Figure 4 compares the fractional anisotropy images
computed from an individual tensor data set and from
the mean tensor data set. The effect of averaging in
computation of the mean tensor data set clearly pro-
duces a smoother anisotropy image. As would be ex-
pected from inspection of Fig. 1B, in central major
white matter structures (such as the corpus callosum
and cingulum), the anisotropy data computed from the
mean tensor data set appear to provide a fair repre-
sentation of the anisotropy information contained in
the individual tensor data set. However, as also ex-
pected from Fig. 1B, while anisotropy information in
subcortical regions is preserved to a certain extent in
the mean tensor data set, the fine detail of some of the
smaller association and “U” fibers has been blurred.

Figure 5 allows comparison of results obtained from
the mean, median, and mode tensor data sets, together
with results obtained from the most typical subject,
Dtyp. While there are no differences, at least discernible

by eye, between the results obtained from the mean
and from the median tensor data sets the results ob-
tained from the mode tensor data set appear “grainy,”
most likely as a direct consequence of computing a
mode for the limited number of subjects used in this
study.

Figure 6a shows an image of the normalized measure
of scatter about the mean of the distribution, S� 2, for 16
slice locations (slice separation 7.5 mm). The images
tend to be brighter at interfaces between different tis-
sue types, for example at the interface of highly aniso-
tropic white matter tissue with gray matter or at the
interface of CSF-filled spaces with parenchyma, most
likely reflecting imperfect coregistration of these
boundaries across the subjects. In the white matter,
the images tend to be brighter in more peripheral sub-
cortical regions, most likely attributable to the greater
intersubject anatomical variation in these areas. The
centers of the fluid-filled lateral ventricles have the
lowest intensity since these represent fairly homoge-
neous regions consisting of nearly isotropic tensors
(any anisotropy being a result of noise). Slight misreg-
istration in these regions would still lead to similar
tensors being averaged.

Figure 6b shows a histogram of the scatter about the
mean of the distribution for the whole brain, expressed
as a percentage (i.e., S� 2 � 100). The peak of this his-
togram is at about 22%, but there is a substantial
number of voxels in which the coefficient of variation is
larger.

Figures 7–10 allow visual inspection of the align-
ment of the principal eigenvectors in each voxel across
the 10 subjects, using the bow-tie plots. A high degree
of alignment is seen in the genu, body, and splenium of
the corpus callosum (Figs. 7 and 8 respectively). How-

FIG. 2. Averaging of 10 tensors from a typical voxel in the data set. Each tensor is represented as an ellipsoid. The left shows the 10
individual tensors in gray, the mean tensor in red, and the median tensor in green. The principal eigenvector of each tensor is shown as a
cylinder. The middle shows only the mean and median tensors. The right shows the cross section with the plane containing the principal
eigenvectors of the mean and median tensor.

599SPATIAL NORMALIZATION AND AVERAGING OF DT-MRI DATA



ever, Figs. 9A, 9B, and 9C show the orientations of the
principal eigenvectors in frontal white matter, in a
region similar to where previous studies have looked
for intergroup differences in anisotropy measures (e.g.,
Steel et al., 2001, compared anisotropy in regions of
interest in this region to compare white matter integ-
rity between schizophrenic patients and control sub-

jects). In comparison to the pattern seen in the corpus
callosum (Figs. 7 and 8), the orientational coherence of
the principal eigenvectors is very low, and the bow-tie
plots in each voxel bear more resemblance to a star,
reflecting a wide range of orientations of the principal
eigenvectors in the voxel. This pattern is even more
accentuated in Figs. 9D, 9E, and 9F, which show the

FIG. 3. (A) Fractional anisotropy images computed from the mean of the 10 spatially normalized diffusion tensor data sets. Every third
slice is shown, starting at slice 3 of the 60-slice data set. Note the preservation of anisotropy information in relatively small structures such
as the motor and sensory fibers in the pons and the cingulum bundle. (B) Fiber orientation images formed according to the “absolute”
direction scheme. Fibers which are predominantly oriented left–right are shown in red, anterior–posterior fibers are shown in green, and
superior–inferior images are shown in blue. The intensity in each voxel is modulated by the fractional anisotropy of the tensor
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principal eigenvectors in a region of subcortical white
matter in the left hemisphere.

Figure 10 shows a band of high coherence of eigen-
vectors passing between the frontal and the temporal
lobes. This is in the region of the uncinate and inferior
fronto-occipital fasciculi, suggesting that attempts to
track frontotemporal connections in the average brain
may be successful and that the result would be repre-
sentative of the results obtained from individual sub-
jects.

Figure 11 shows every third slice of the 60-slice
image of dyadic coherence, �, formed according to Eq.
(6). While the bow-tie plots in Figs. 7–10 allow the
actual pattern of eigenvectors to be visualized, the
dyadic coherence image provides a more readily inter-
pretable “summary” of intravoxel alignment of the
principal eigenvectors. The image is generally brighter
in the central portion of the brain, suggesting better
coregistration of the tensors in those voxels, possibly as
a consequence of the spatial normalization transforma-

FIG. 3—Continued
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tion employed in this work or there is generally greater
coherence in these central structures across subjects.

Figure 12 shows the scattergram of the dyadic coher-
ence and fractional anisotropy data. Two ROIs have
been drawn on the scattergram to select all regions of
“high” dyadic coherence. As expected (from Fig. 11), the
voxels within these ROIs are almost all centrally lo-
cated. The ROI shown in red was drawn to highlight
those voxels with high dyadic coherence and high frac-
tional anisotropy. These voxels are primarily located
within the major centrally located white matter fascic-
uli (the genu, splenium, and internal capsule). The
green ROI was drawn to select the section of the scat-
tergram with high dyadic coherence, but “low” anisot-
ropy (again, the boundaries of this ROI were arbi-
trarily chosen). This produced the intriguing result
that the majority of the voxels that have high dyadic
coherence and low anisotropy are located within cer-
tain parts of the thalamus. The bow-tie plot in Fig. 13

confirms this finding, i.e., a remarkable degree of align-
ment of the principal eigenvectors is seen within the
thalamus. Note that in Fig. 12, there are regions
within the thalamus where voxels have been high-
lighted and regions where they have not and there
appears to be a high degree of symmetry about the
midline.

Figure 14 shows tractography results obtained from
the single and mean tensor data sets. The tracking
result obtained by initiating tracking in the body of the
corpus callosum (Fig. 14a) from the mean tensor data
set is consistent with the result obtained from the
individual subject. This is most likely attributable to
the high anisotropy of this structure and its central
location within the brain and was expected from the
bow tie plot in Fig. 8. However, it is noticeable that in
some regions, reconstructed tracts extend a little far-
ther toward the cortex in the mean brain. Also, the
routes of some of the computed tracts appear less tor-

FIG. 4. Comparison of fractional anisotropy data obtained from (A) an individual tensor data set and (B) the group mean tensor data set.
Three slice locations are shown, at the level of the splenium, body of corpus callosum, and cingulum.
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tuous in the mean brain than in the individual brain
toward their termination points, most likely attribut-
able to the averaging procedure.

Figure 14b shows the effect of varying the anisotropy
threshold on tractography results obtained in the an-
terior forcep of the corpus callosum in both the individ-
ual brain and the mean brain. As expected from the
bow-tie plots in Figs. 7D–7F, the tractography results
obtained within the central portion of the anterior for-
cep in the individual and mean brain appear to be in
good agreement. This suggests that, at least in this
section of the structure, the results obtained in the
mean brain can be used to summarize results obtained
in the individual brains. However, also as expected

from the bow-tie plots, results obtained in the end
termini differ strongly between the two data sets.
While there appear to be fewer spurious reconstruc-
tions of tracts in the mean averaged brain than in the
individual brain at an anisotropy threshold of 0.20, for
example, the tracts terminate prematurely in the mean
brain. When the anisotropy threshold is lowered, the
number of spurious reconstructions of tracts appears to
increase in the individual data set, while the fine detail
of what appears to be end termini of the reconstructed
tracts in the mean data set is increasingly revealed.
Visual comparison of the end termini (or rather what
we have deemed to represent end termini) in the mean
and individual brains reveals marked differences in

FIG. 5. Comparison of results obtained from the mean tensor, �D�2, median tensor, �D�1, and mode tensor, �D�0, together with results from
a typical individual subject, Dtyp. The mean diffusivity (A), fractional anisotropy (B), and orientational information (C) are shown for the same
slice.
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FIG. 6. (A) Map of normalized standard deviation, S� 2, at 16 slice locations (separation of slices 7.5 mm). (B) Histogram of S� 2, (expressed
as a percentage) formed from the whole brain.
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tract topology. This suggests that tractography results
in such regions, obtained from the mean of a group of
affine-registered data sets, provide a poor approxima-
tion of the results obtained in the individual data sets.

Figure 14c shows tractography results obtained from
the uncinate and inferior occipitofrontal fasciculi. The
results are consistent with known anatomy, i.e., coher-
ently organized fasciculi running parallel to one an-
other, with one fasciculus connecting the frontal and
temporal lobes (the uncinate fasciculus) and the other
fasciculus running between the frontal and the occipi-
tal lobes (the inferior occipitofrontal fasciculus). The
results obtained in the average and individual brains
are remarkably similar in their topologies, which was
to be anticipated from the regions of high coherence of
the bow-tie plot in Fig. 10.

Figure 14d shows results obtained in a region of
frontal white matter where the intersubject intravoxel
orientational coherence of principal eigenvectors is
low. On a gross level, the results obtained in the indi-
vidual and mean brain are similar. However, there is

an additional “high-frequency” component in the re-
sults in the individual brain that has not been pre-
served in the results obtained from the mean brain.

DISCUSSION

Mean, Median, and Mode Tensors

The mean of a distribution is one of the most familiar
summary statistics for a distribution and the most
often adopted by the neuroimaging community. How-
ever, in cases in which there may be statistical outliers,
the benefits of examining the median of a distribution
are well known. To the best of our knowledge, this is
the first time that a method for computing the median
(and indeed the mode) of a distribution of second-rank
tensors has been formulated.

The mode of the distribution is likely to be a useful
measure only in a very much larger cohort of subjects
than the limited number presented in this study (n �
10). This was reflected by the “grainy” appearance of

FIG. 7. Bow-tie plot showing orientational coherence of the principal eigenvectors in each voxel, across the 10 subjects, at different
resolutions in the splenium (A–C) and genu (D–E) of the corpus callosum. The zoomed regions are indicated by the squares.
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the mode of the tensor distribution obtained from this
work. However, this approach was included in this
work for the sake of completeness.

Tensor Dispersion Measures

Maps of the tensor dispersion measures, such as the
maps of normalized standard deviation, S� 2, presented
in Fig. 6, provide a useful tool for improving the ro-
bustness of region-of-interest analyses. The most rep-
resentative voxels within a structure are those that
possess the lowest intravoxel dispersion of tensors
across the subjects. Therefore, by using the maps of
tensor dispersion as an aid to placing the ROIs (i.e., in
regions where the map of S� 2 is darkest, for example),
one can be sure that the most representative voxels,
and those that have been least contaminated by partial
volume effects, have been selected.

Statistical Analysis of Group-Averaged Tensor Data Sets

In this work, we have demonstrated spatial normal-
ization and averaging of DT-MRI data sets into a stan-

dard anatomical space and outlined a strategy for as-
sessing the scatter of tensors and their principal
eigenvectors.

One of our current aims is to develop robust methods
for performing statistical comparisons of spatially nor-
malized and group-averaged DT-MRI data sets. Scalar,
vector, and tensor data are now available for group
comparison. So far, only group analyses of scalar vari-
ables derived from the diffusion tensor have been re-
ported. One approach has been to borrow the technique
of statistical parametric mapping from functional MRI
research (Friston et al., 1995a,b) and apply it to group
studies of diffusion anisotropy (Buchsbaum et al., 1998;
Eriksson et al., 1999, 2001; Rugg-Gunn et al., 2001;
Glauche et al., 2001). However, before conclusions
about the robustness of such an approach can be made,
the statistical distributions of the underlying data
must be understood. While the statistical distribution
of the elements of the diffusion tensor within a region
of interest with spatially uniform diffusion properties
has been characterized (Pajevic and Basser, 1999), no

FIG. 8. Bow-tie plot in the body of the corpus callosum at different resolutions. The square in (A) shows the approximate location of the
zoomed region shown in (B), selected to examine orientational coherence in the body of the corpus callosum. The region enclosed by the square
in (B) has been enlarged in (C) and so on. Even at high resolution, the orientational coherence of the eigenvectors in the body of the corpus
callosum appears high.
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investigation into the statistical distribution of the mo-
ments of the diffusion tensor (second order and higher)
has been reported in the DT-MRI literature. It may be
that new statistical techniques need to be developed for

group analyses of higher order moments of the diffu-
sion tensor (reflecting the anisotropy, skewness, and
kurtosis), perhaps employing nonparametric ap-
proaches (e.g., Holmes et al., 1996).

FIG. 9. Bow-tie plots of the principal eigenvectors in the frontal white matter (A–C) and subcortical white matter (D–F).

FIG. 10. Bow-tie plots of the principal eigenvectors in the subcortical white matter. The zoomed region selected in B and shown enlarged
in C reveals a band of high coherence of the principal eigenvectors, in the location of the uncinate and inferior occipitofrontal fasciculi.
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Since we have been able to preserve orientational
information during the group averaging procedure re-
ported here, there now exists the potential for examin-
ing statistical differences in eigenvectors. While no
framework currently exists for comparing such data in
the DT-MRI literature, analytical techniques devel-
oped in other fields (Fisher et al., 1953; Bingham et al.,
1974; Mardia, 1972) may offer approaches that are
applicable for group analyses of eigenvector data.

As for tensorial data, we do not know of any statis-
tical techniques for the analysis of these. However, it is
felt that group analyses that consider the tensor as a
whole (rather than in some collapsed form), either in-
volving statistical comparison of tensors on a local ba-
sis or topological comparison of the tensor fields on a
global basis (Hesselink et al., 1997), may provide a
more complete means for comparing two groups of sub-
jects. Comparisons of tensor fields on a global basis
may well help to crystallize group statistical differ-
ences into one or two readily interpretable figures/
maps.

One thing is clear: caution should be exercised when
interpreting results obtained by applying existing sta-

tistical techniques, designed for Gaussian distributed
scalar variables, to scalar measures derived from dif-
fusion tensor data in an ad hoc way, until it has been
demonstrated that the data support their use. While
such investigations are under way with the data col-
lected for this study, they are beyond the scope of this
paper.

Figure 6b shows that the median normalized stan-
dard deviation of tensors was 22%. This value can be
used to estimate the number of subjects that would be
required in order to detect systematic variations in
anatomy by comparing diffusion tensor data. First,
consider testing for variation at the level of a single
voxel. Suppose we have two groups and that a real
systematic difference exists between the anatomies of
the two groups at the voxel in question. Assuming
normally distributed statistics, we can determine the
number of subjects that would be needed to detect this
difference reliably over and above the 22% natural
variation. If the anatomic difference gives rise to a 10%
difference between the “within-group mean tensors,”
we can calculate that 27 subjects in each group would
be needed in order to achieve 95% certainty of detec-

FIG. 11. Dyadic coherence map. Every third slice of the 60-slice image is shown. In each voxel, the intensity is directly proportional to
the dyadic coherence, �, formed according to Eq. (6).
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tion. If the anatomic difference was as low as 5%, then
105 subjects would be needed in each group and if it
was as high as 20%, only 7 subjects would be required
in each group to achieve 95% confidence of detection of
a difference.

Two points of caution regarding these calculations
should be raised. First, the statistics will change when
testing at multiple voxels in an effort to localize sys-
tematic anatomical differences. Second, the casual
mixing of horizontal (registration) and vertical (within

FIG. 12. Scattergram of dyadic coherence and fractional anisotropy data. The boundaries of two regions of interest were arbitrarily
selected on the scattergram to select a region of “high” dyadic coherence and “high” fractional anisotropy (ROI and voxels shown in red) and
a region of “high” dyadic coherence and “low” fractional anisotropy (ROI and voxels shown in green). The voxels are highlighted on an image
of the fractional anisotropy.

FIG. 13. Bow-tie plots of the principal eigenvectors in the thalamus. The square in (A) shows the approximate location of the zoomed
region shown in (B), selected to examine orientational coherence in the thalamus. The region enclosed by the square in (B) has been enlarged
in (C).
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voxel, across subjects) analyses of anatomical images
may be statistically suspect (Ashburner and Friston,
2001; Bookstein, 2001).

Orientational Coherence

One of the key points of this work was the develop-
ment of techniques for examining intersubject intra-
voxel orientational coherence of eigenvectors in a group
of spatially normalized DT-MRI data sets. These tech-
niques may be of assistance when trying to draw infer-
ences about “connectivity” in the brain by studying
group-averaged (scalar) anisotropy data. In regions
where the underlying intersubject coherence of eigen-
vectors is low, the significance of changes in the group-
averaged anisotropy is difficult to interpret (Virta et
al., 1999). Some studies have suggested that changes
in anisotropy indicate changes in functional connectiv-
ity (e.g., Buchsbaum et al., 1998). However, even when
the anisotropy of the tensor within a voxel across sub-
jects within a subject group is similar, the intersubject
coherence of fiber orientation within the voxel can be
low, reflecting occupation of the voxel by different
tracts. Therefore, a change in anisotropy in the voxel
would be reflecting changes in anisotropy in different
tracts. Hence, it is not clear that disruption to the
fibers passing through the voxel will affect functional
connectivity in the subjects in the same way.

It is our opinion that the orientational coherence of
the underlying tensors must be considered simulta-
neous with measures of anisotropy when attempting to
infer disruptions to connectivity from DT-MRI data.
We also suggest that measures of intersubject orienta-
tional coherence could also be used in the design of
studies, so that hypotheses about changes in diffusion
tensor data can be tested more rigorously by aiding
appropriate placement of ROIs (perhaps within a par-
ticular fasciculus), rather than by blindly placing a
region of interest in, for example, “frontal” white mat-
ter.

The finding that the intersubject orientational coher-
ence of the principal eigenvector was high, even though
the anisotropy was low, in certain regions of the thal-
amus is intriguing. This could be partly attributable to
the fact that the thalamus is a central structure and, as
such, is likely to be more correctly coregistered with
the affine approach employed here, than more periph-
eral structures. However, this explanation is unlikely
to fully account for the high degree of orientational
coherence seen in the thalamus. While DT-MRI studies
involving group analyses have previously concentrated
on white matter (Buchsbaum et al., 1998; Hedehus et
al., 1999; Klingberg et al., 1999; Lim et al., 1999; Pfef-
ferbaum et al., 1999; Foong et al., 2000; Steel et al.,
2001; Agartz et al., 2001), the results obtained here
suggest that intergroup comparisons of scalar, vector,
and tensor measures in the thalamus may be possible.

Wiegell et al. have shown how individual thalamic
nuclei can be identified visually (Wiegell et al., 1999,
2000a) or automatically (Wiegell et al., 2000b) using
DT-MRI data. Even with the image of �D�2, different
regions of the thalamus have a specific pattern of an-
isotropy and dyadic coherence (Fig. 12), suggesting
that the dyadic coherence measure may be useful as an
additional measure for identifying different nuclei in a
group of subjects.

By coupling Wiegell’s approach with the DT-MRI
spatial normalization and averaging presented here, it
may even be possible to infer intergroup differences in
individual thalamic nuclei.

Coregistration

For the data in this study, affine registration ap-
pears to be reasonably effective in preserving informa-
tion in central structures. However, information in pe-
ripheral structures and end termini of central
structures was poorly preserved. Furthermore, it
should be noted that we selected a group of normal
subjects with an age range of 33.3 � 4.7 years, which
was drawn from our colleagues. In older or diseased
subjects, differing degrees of brain atrophy will com-
plicate the registration used for spatial normalization.
To ameliorate these problems, more sophisticated
higher order coregistration such as polynomial or elas-
tic registration techniques (Gee and Bajesy, 1998) cou-
pled with the tensor reorientation strategies of Alex-
ander et al. (1999, 2001a,b) may be beneficial, and this
is an active area of our ongoing research. However,
Alexander and Gee (2000) have observed that when
higher order transformations are used for registration,
the effects of noise can cause unpredictable reorienta-
tion of the tensors. The effects of noise can lead to high
spatial frequency information being introduced even in
homogeneous regions. The displacement field for reg-
istration can therefore contain spurious ridges and
whorls. In such cases, using the information contained
within the jacobian of the displacement field can lead
to variable reorientations of the diffusion tensor, even
in fairly homogeneous regions. Affine transformations
are less susceptible to such noise effects, since the
optimization of the transformation field is driven by
macroscopic features of the image and the jacobian of
the displacement field is constant. In view of these
considerations, we have currently limited ourselves to
affine registration, under which reorientation of ten-
sors is known to be reliable (Alexander et al., 2001).

We are also currently investigating the use of the
dyadic coherence measure, �, to drive the coregistra-
tion procedure (i.e., such that the global dyadic coher-
ence is maximized). This is with the specific aim of
improving tractography results obtained from an aver-
aged DT-MRI data set, using a tractography algorithm
that uses the principal eigenvector (as opposed to the
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whole tensor) for determining the route of path propa-
gation.

Finally, in this work spatial normalization was per-
formed on the anisotropy images alone. It is possible, in
principle, to perform the registration using all compo-
nents of the tensor, rather than an index which repre-
sents one property of the tensor in a collapsed form
(such as the anisotropy measure used here). Future
studies will investigate this possibility and examine
whether any bias is introduced by normalization based
on the anisotropy alone.

Tractography

Our results indicate that it is possible to perform
tractography in an averaged tensor data set and obtain
plausible results in some major white matter fasciculi.
In particular, results obtained in portions of centrally
located fasciculi, where the intervoxel coherence of fi-
ber orientation (both at the intra- and at the intersub-
ject level) is high, appear to agree well between the
mean and the individual data sets. These sections of
the fasciculi are referred to as the “stems” by earlier
workers (Makris et al., 1997). In regions where the
tracts diverge from the stem, or in small structures
(such as the commissural fibers of the anterior commis-
sure or end termini of fasciculi), the increased inter-
subject variability in white matter tract location and
geometry means coregistration of these structures per-
forms less well and so the tractography results ob-
tained in the mean data set are likely to be less repre-
sentative of the individual data sets, at least with this
affine approach. Since these structures represent the
end termini of connections between different regions of
the brain, they are important for studying brain con-
nectivity, and it is therefore essential that this issue is
resolved if group-averaged maps are to be used to as-
sess intergroup differences in connectivity.

Figure 14 demonstrates that tractography results
obtained from the mean of 10 affine-coregistered sub-
jects agree reasonably well, at least qualitatively, with
results obtained in an individual data set, in major
centrally located structures. In smaller structures, or
where tracts extend to peripheral regions of the brain,
the correlation between results obtained in the mean
and individual data sets appears less strong.

There have been many reports of successful tracking
of isolated tracts in the literature. The success of track-
ing central isolated structures such as the callosal fi-
bers in the average brain, presented in Figs. 14a and
14b, may therefore not be too surprising. Such a result
is encouraging for the study of the corpus callosum in
schizophrenia, as several studies (e.g., Foong et al.,
2000; Agartz et al., 2001) have reported differences in
scalar DT-MRI measures between schizophrenics and
controls. It may now be possible to probe these differ-

ences further by comparing eigenvector, tensor, and
tractography data.

For application of DT-MRI to cognitive and psychi-
atric disorders in general, however, it would be inter-
esting to focus not only on such structures as the cor-
pus callosum, but also on the association pathways
that typically run in the deep white matter of the
hemispheres and which do not have well-defined and
isolated trajectories. However, one may fear that the
anatomical variability in the deep white matter may
make meaningful tracking of the association pathways
in a population-averaged brain impossible. Contrary to
these concerns, we have been able to demonstrate that
tractography results obtained from the group-averaged
data set correlate well with results from an individual
data set in the association pathways, such as the un-
cinate and inferior occipitofrontal fasciculi (Fig. 14c).

Figure 14d provides an important illustration of the
differences between results obtained in the individual
and mean brains. The intersubject/intravoxel orienta-
tional coherence in the region where the seed points
were defined is low, which could be due to poorer per-
formance of the spatial normalization in this area, or
due to greater intersubject anatomical variability, or
due to the principal eigenvector being poorly defined in
the voxel for each subject (as a result of lower anisot-
ropy)—or a combination of all three. This intersubject
variability in results cannot be accurately reflected by
the results obtained in the mean brain. Indeed, much
smoother fiber trajectories are observed in the mean
brain compared to the individual results. This example
serves to show that extreme caution must be exerted
when interpreting results obtained in the average
brain in regions where the orientational coherence of
principal eigenvectors is low.

If registration/normalization of the whole data set
can be shown to be effective over the entire brain
(perhaps using high-order elastic matching), the
group-averaged data set could be used to generate a
generic connectogram—a template which character-
izes the routes and connections of fasciculi within a
certain population.

We are currently investigating ways of quantifying
just how representative a group-averaged tractogra-
phy result is of the underlying subject data. One ave-
nue that we are pursuing is to integrate the measures
of intersubject agreement (either through the dyadic
coherence measure, Eq. (6), or through the tensor dis-
persion measures, Eqs. (8) and (10)) along the tract.
This would provide an assessment of the “confidence”
we can assign to the tract of its ability to represent
properties of the individual diffusion tensor fields.

In this work, we have not addressed the issue of
choice of tractography algorithm since our aim was
simply to investigate the feasibility of obtaining a trac-
tography result on a group-averaged DT-MRI data set.
The approach adopted here was to employ only the
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FIG. 14. Tractography results obtained from the mean-averaged diffusion tensor, �D�2, and individual data sets in: (A) The genu, body, splenium,
and tapetum of the corpus callosum. (B) The anterior forcep of the corpus callosum, using different fractional anisotropy thresholds. The yellow arrows
point to spurious reconstructed fiber trajectories that do not belong to the anterior forcep of the corpus callosum. (C) The uncinate fasciculus (green) and
the inferior fronto-occipital fasciculus (red) obtained in the mean and individual data sets. The yellow lines on the sagittal views show the locations of the
axial sections on which ROIs were drawn to “dissect” the fasciculi from each other using a two-ROI approach. For both the mean and the individual brain,
the same region of interest was used for initiation of tracking (defined on slice 1). The ROIs used to detect the uncinate and inferior fronto-occipital fasciculi
are shown in green and red, respectively. (D) The frontal white matter region highlighted in Fig. 9A.
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directional information contained within the principal
eigenvector, which is taken to be parallel to the domi-
nant orientation of fibers within the voxel. When the
orientational coherence of the fibers within a voxel is
high, then we expect the principal eigenvector to cor-
rectly indicate the fiber orientation within the voxel.
However, when the fiber orientational coherence is

low, for example if fibers splay out or if fibers cross
within a voxel, then the principal eigenvector of the
voxel-averaged diffusion tensor can no longer accu-
rately reflect the underlying fiber orientations. While
the diffusion tensor is adequate to characterize diffu-
sion when the diffusion displacement profile is Gauss-
ian, these complex structures give rise to significant

FIG. 14—Continued
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deviations from a Gaussian diffusion displacement pro-
file. Recent work (Tuch et al., 1999; Wedeen et al.,
2000; Alexander et al., 2001; Frank, 2001; Alexander et
al., 2001a,b) has investigated higher order, non-Gauss-
ian representations of diffusion in complex tissue, as a
means of more completely characterizing diffusion. In-
corporating these techniques into a tractography algo-
rithm would undoubtedly improve its robustness in
regions of low intravoxel directional coherence and
may help to tease out connectivity information in sub-
cortical regions both in individual subject data and in
the group-averaged data. An interesting question,
then, is how well the methods described here (where a
single tensor model has been used) could be extended
to cases in which more complex non-Gaussian descrip-
tions are used. In general, a methodology similar to
that described in this paper could be applied to images
that contain non-Gaussian descriptions of the displace-
ment due to diffusion, in order to investigate their
intersubject variability in particular regions. Some in-
vestigation would be required to extend the methods
described by Alexander et al. (2001, 2002) to cope with
these representations.

The Benefits of Warping DT-MRI Data

to a Common Reference Frame

As the use of diffusion tensor imaging becomes in-
creasingly widespread, it will be used as a tool to aid in
a range of neuroscientific and clinical investigations. It
is likely that the information obtained from DT-MRI
will not be used in isolation, but will be used in con-
junction with image data obtained from other MRI
contrasts, for example T1-weighted high-resolution
structural data or functional MRI (f MRI) data. With
these latter image contrasts, it is common practice to
coregister the data to a common reference template
such as that of Tailarach and Tournoux (1998). Fusion
of DT-MRI data with these and other imaging modal-
ities such as PET (e.g., Buchsbaum et al., 1998) re-
quires that DT-MRI data are coregistered to the same
template. In this work, we have simply chosen a tem-
plate which is commonly used throughout the fMRI
community to illustrate how DT-MRI data can be
mapped into a chosen reference template.

We note that if one is interested only in looking at
rotationally invariant indices obtained from the diffu-
sion tensor, such as the trace or measures of anisotropy
(e.g., Basser and Pierpaoli, 1996), then it is not neces-
sary to perform reorientation of the tensors. Rather,
the tensors would be calculated in each individual and
the rotationally invariant measures computed prior to
applying the spatial transformation. However, the ap-
proach that is presented here allows one to look beyond
scalar invariants and to compare eigenvectors between
different subjects in a meaningful manner. Further-
more, it becomes possible to perform statistical com-

parisons of individual elements of the diffusion tensor
between different subjects. Such comparisons would be
meaningless unless the DT-MRI data are correctly
transformed and reoriented in the manner described
here. We speculate that examining the individual ten-
sor elements may reveal more information than exam-
ining scalar invariants alone.

We note that an alternative approach to averaging
the tensor data sets prior to tracking fasciculi would be
to track fasciculi on the 10 individual data sets and
then use the registration results simply to warp the
path of these tracks onto the chosen template. The
result of this latter approach would be something ap-
proximating a “probabilisitic” fiber map. However, the
uncertainty in the reconstructed path due to the inher-
ent noise can lead to deviations from the true path of
the underlying fasciculus (which is true for all tractog-
raphy approaches). Therefore, such a probabilistic map
of fiber location would contain variability due to two
sources: (a) variability which is due solely to MR noise
and uncertainties in fiber orientation and (b) true an-
atomical variability. When viewing such an image, it
would not be possible to determine what part of the
variability is attributable to which effect.

On the other hand, the approach that we describe
here does not make any provision for allowing anatom-
ical or noise-induced variability in the trajectories of
individual subjects to be determined. However, by av-
eraging the individual tensors from the subjects prior
to the tracking, the noise-induced variability is some-
what reduced, which is advantageous for picking out
the tracts. This results in sharpness and improved
definition of a number of the nerve pathways. In con-
trast to a fuzzy probabilistic map, we end up with a
smooth and continuous trajectory which represents the
“central” location of the tracts within the population.

CONCLUSION

We have shown how DT-MRI data sets can be spa-
tially normalized to a standard anatomical reference
space and have developed qualitative and quantitative
techniques for assessing the results of spatial normal-
ization.

Encouraging results were obtained even with a sim-
ple affine registration. Anisotropy and orientational
information were remarkably well preserved in central
regions of the brain when 10 individual DT-MRI data
sets were combined, while in peripheral regions the
wider range of intersubject anatomical variability and
the choice of registration algorithm meant that such
information was less well preserved. It is therefore
envisaged that more sophisticated “elastic” registra-
tion algorithms could serve to improve results.

By spatially normalizing to, and averaging in, a
standard anatomical template space, cross-referencing
to images with other contrast, such as fMRI data, now
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becomes feasible. However, we caution against the no-
tion of currently being able to “explain” differences in
functional connectivity measured by fMRI using infor-
mation obtained from DT-MRI.

We have demonstrated that plausible tractography
results may be obtained from major white matter fas-
ciculi in group-averaged DT-MRI data sets. However,
we have also shown, through the use of the bow-tie
plots, that a tractography result obtained from subcor-
tical regions in the average brain would not be very
representative of the results obtained from individual
subjects. Again, it is envisaged that this situation could
be improved through the use of more sophisticated
image registration algorithms.

Finally, while we have shown that spatial normal-
ization of DT-MRI data sets is possible, and we have
demonstrated for the first time how to determine mea-
sures of central tendency and scatter of a distribution
of tensors. We have also highlighted the absence of,
and need for, appropriate statistical techniques for
making robust inferences about differences in group-
averaged DT-MRI data sets between different subject
groups. When such techniques have been developed,
their combination with the spatial normalization and
averaging procedures outlined here should increase
the applicability of DT-MRI to, and enable more robust
and meaningful interpretation of data from, a wider
range of neurological and psychiatric investigations.
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