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Abstract A real world mining application of pair-copulas is presented to model the spatial

distribution of metal grade in an ore body. Inaccurate estimation of metal grade in an ore

reserve can lead to failure of a mining project. Conventional kriged models are the most

commonly used models for estimating grade, and other spatial variables. However, kriged

models use the variogram or covariance function, which produces a single average value to

represent the spatial dependence for a given distance. Kriged models also assume linear spa-

tial dependence. In the application, spatial pair-copulas are used to appropriately model the

non-linear spatial dependence present in the data. The spatial pair-copula model is adopted

over other copula based spatial models since it is better able to capture complex spatial de-

pendence structures. The performance of the pair-copula model is shown to be favourable

compared to a conventional lognormal kriged model.
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1 Introduction

This paper presents the first application of spatial pair-copulas to mining, with the purpose

of illustrating the advantages of spatial pair-copula models over traditional kriged models

in mining. This paper additionally aims to provide practitioners with a detailed guide to

fitting spatial pair-copulas, which is lacking in the literature. This research forms part of a

larger project with the Australian mining industry to reduce the uncertainty in estimates of

economic risk in mining a potential ore reserve. The choice of the pair-copula model was

motivated by the non-linear spatial dependence of multiple geological and geometallurgical

variables apparent in the ore body and the need to estimate the variability in estimates of the

spatial distribution of metal grade to facilitate a more informative risk evaluation. Accurate

estimation of metal grade is one of the most important and influential factors for success in

mining projects (Peattie and Dimitrakopoulos 2013).

Any method used to model a geological variable should be capable of accurately estimat-

ing the true spatial dependence (correlation). Spatial dependence describes the relationship

between realisations of a geological variable sampled at different locations (Getis 2007). In

reality, the in-situ spatial dependence structure may be non-linear, that is, it may vary over

the distribution of the variable of interest (Journal and Alabert 2007). Although some kriged

models, such as lognormal kriging and multi-Gaussain kriging, are able to model skewed ge-

ological variables, these models inherently assume linear spatial dependence through the use

of the variogram (Diggle and Ribeiro 2007). Similarly, simulation methods that are based

on conventional kriged models, such as conditional simulation (Khosrowshahi and Shaw

2001), also assume linear spatial dependence. The accuracy of local distributions from con-

ditional simulations are also highly dependent on the number of simulations, and the method

for finding the optimal number of simulations remains and open problem. Whilst multiple

indicator kriging (MIK) is able to address spatial non-linearity, MIK can lead to higher esti-

mates of recoverable material for higher cut-off grades due to the inconsistency of indicator

models from one cut-off to the next as a result of the indicator variables being treated sepa-

rately. This issue is known as the order relation problem (Vann and Guibal 2001). MIK also

suffers from a loss in statistical power to detect the true relationship between variables due

to binary transformation.

Bárdossy and Li (2008) introduced a copula based geostatistical model that uses bivari-

ate copulas to model spatial dependence. Spatial copula models do not require a Gaussian

assumption, are capable of modelling extreme measurements and also permit non-linear

spatial dependence (Li 2010). However, most readily available copulas in the literature are

unable to be extended to higher dimensions, which is required for spatial data, or do not

provide good parameterisation for the dependence structure to appropriately reflect the spa-

tial configuration of the data points (Bárdossy and Li 2008). Gaussian and Student t copulas

fulfil both requirements but these copulas cannot be used to model asymmetric dependence

structures. Whilst the non-central chi copula Bárdossy (2006) can model asymmetric depen-

dence structures, this model is very computationally expensive for large scale data sets. For

example, for n observations, 2n calculations are needed to obtain estimates at unsampled lo-

cations. Additionally, the spatial copula model of Bárdossy and Li (2008) assumes the same

copula family for each separation vector hhh, and multivariate dependence, which is required

in the interpolation process, is also modelled using the same family of higher dimensional

copula. The spatial pair-copula model of Gräler and Pebesma (2011) not only possesses the

desirable features of the Bárdossy and Li (2008) spatial copula model, but additionally per-

mits the use of different types of copula families for different separating vectors and also
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for higher order dependencies. Thus, non-linear spatial dependence can be captured more

accurately using a spatial pair-copula compared to more simple spatial copulas.

Although copula based modelling is a new avenue for geostatistics (Kazianka and Pilz

2010), it has been widely used in non-spatial applications in fields where it is essential to

deal with non-linear dependence, such as in finance and actuarial sciences (Bárdossy 2006).

In the literature, simple copula models have been used in only a few spatial applications, for

example, to model hydrology properties (Bárdossy and Li 2008), soil properties (Marchant

et al. 2011), air pollutants (Kazianka and Pilz 2011) and in mining (Musafer et al. 2013).

The pair-copula model has been used in only a few spatial (Gräler and Pebesma 2011; Gräler

2014; Musafer and Thompson 2016a,b) and spatial-temporal (Erhardt et al. 2015a,b) appli-

cations. However, the pair-copula model has not yet been applied to mining applications.

The main objectives of this research are to fit a pair-copula model to estimate the metal

grade of an ore reserve obtained from a real mine site, and to estimate the distribution of

metal grade at unsampled locations, conditional on the local neighbourhood of sampled

locations. Since the data are positively skewed, the pair-copula model is compared to a

lognormal kriged model to facilitate comparison between a model that is, and a model that

is not, able to capture non-linear spatial dependence.

This paper contains four sections. Section 2 describes copulas, pair-copulas and the

pair-copula model for spatial data. In Section 3, the pair-copula model is applied to data on

metal grade from a real mine and the corresponding results on model fit are given in the

same section. Section 4 is devoted to conclusions driven by the results and discussion on the

pair-copula model.

2 Method

This section provides an explanation of the statistical theories, utilised by Gräler and Pebesma

(2011), that underpin the construction of geostatistical models based on pair-copulas. In-

structions for the application of pair-copula models to spatial data, as summarised from

Gräler and Pebesma (2011) and Gräler (2014), then follows.

2.1 Copula

Copula theory, which was introduced by Sklar (1959), forms the basis for any copula based

spatial model. A copula describes the dependence structure between random variables. A

copula does not need any information about the marginal distribution of the random vari-

ables to describe the dependence structure. Moreover, a copula can be defined as a multivari-

ate distribution function of uniformly distributed random variables. Conversely, the copula

can be constructed using the multivariate distribution function. An introduction to copula

theory can be found in Nelsen (2006) and Trivedi and Zimmer (2007). For an applied re-

view of copulas, the reader is referred to Boardman and Vann (2011).

2.2 Pair-copula

The pair-copula model can be classified as a hierarchical model building concept. Aas et al.

(2009) initially introduced this method to estimate the joint multivariate distribution of ran-

dom variables using a set of bivariate copulas based on the work of Joe (1996), Bedford and
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Cooke (2002), and Kurowicka and Cooke (2006). Aas et al. (2009) present a worked exam-

ple for the construction of a multivariate distribution for four random variables. To provide

a simple demonstration of Aas et al.’s (2009) method, a small example for three variables is

given below.

Let the joint density function of X1,X2,X3 be f123(x1,x2,x3). This can be factorised as

f123(x1,x2,x3) = f3(x3) f2|3(x2|x3) f1|23(x1|x2,x3). (1)

From Sklar’s (1959) theorem, any multivariate distribution function F with marginals F1(x1), . . . ,Fn(xn)
can be written as

F(x1, . . . ,xn) = C(F1(x1), . . . ,Fn(xn)),

where C is an n dimensional copula. Hence the joint density function can be written as

f (x1, . . . ,xn) = c1,2,...,n(F1(x1), . . . ,Fn(xn)) · f1(x1) · . . . · fn(xn), (2)

where c1,2,...,n is the copula density.

Using Eq. (2), the second term of Eq. (1) can be written as

f2|3(x2|x3) =
f (x2,x3)

f (x3)

=
c23(F2(x2),F3(x3)) · f2(x2) · f3(x3)

f3(x3)

= c23(F2(x2),F3(x3)) · f2(x2). (3)

Again, using Eq. (2), the third term of Eq. (1) can be written as

f1|23(x1|x2,x3) =

c13|2(F1|2(x1|x2),F3|2(x3|x2)) · c12(F1(x1),F2(x2)) · f1(1). (4)

Substituting Eqs. (3) and (4) into Eq. (1) gives

f123(x1,x2,x3) = f1(x1) · f2(x2) · f3(x3) · c12(F1(x1),F2(x2))

·c23(F2(x2),F3(x3)) · c13|2(F1|2(x1|x2),F3|2(x3|x2)).

This equation states that the density of the three dimensional copula can be decomposed into

a set of three bivariate copulas. The copulas c12(F1(x1),F2(x2)) and c23(F2(x2),F3(x3)) are

unconditional bivariate copulas (unconditional pair-copulas) and c13|2(F1|2(x1|x2),F3|2(x3|x2))
is a conditional bivariate copula (conditional pair-copula). Here, three pair-copulas have

been used for the decomposition. In general, to decompose an n dimensional density func-

tion, n(n−1)/2 pair-copulas are required.

Marginal conditional distributions are required when constructing the conditional pair-

copula. Joe (1996) showed that

F(x|vvv) =
∂Cx,v j |vvv− j

(F(x|vvv− j),F(v j|vvv− j))

∂F(v j|vvv− j)
, (5)

where vvv is a d dimensional vector, v j is one arbitrarily selected variable and vvv− j denotes the

vector vvv excluding v j. If vvv is univariate, such that vvv = v, then

F(x|v) =
∂Cx,v(F(x),F(v))

∂F(v)
.



Spatial pair-copula modelling of grade in ore bodies: a case study 5

However, this pair-copula decomposition is not unique. For example, there are 240 differ-

ent constructions for a five dimensional density. Each decomposition approximates the full

copula density differently (Aas et al. 2009). A graphical model, called a regular vine model,

was developed by Bedford and Cooke (2002) to organise the large number of pair-copula

constructions. Canonical vines and D-vines are special cases of regular vines. Canonical

vines can be used if one can identify the key variable that governs the interaction of the data

set. If dependence between variables needs to be treated in a specific order, then D-vines can

be used.

Figures 1 and 2, which are reproduced from Aas et al. (2009), represent the graphical

model used to illustrate the D-vine and a canonical vine for five variables, respectively. Each

figure consists of four trees Tj, j = 1,2,3,4. Tree Tj has 6− j nodes and 5 j edges. Each edge

represents the corresponding pair-copula and the label of the edge represents the subscript

of the pair-copula. Nodes in the figure are only used for determining the labels of the edges.

Fig. 1: D-vine for five variables.

By using the decompositions shown in Figure 1, the joint density function of five random

variables can be approximated using a D-vine as follows (Aas et al. 2009).

f12345(x1,x2,x3,x4,x5) =

f1(x1) · f2(x2) · f3(x3) · f4(x4) · f5(x5) ·

c12(F1(x1),F2(x2)) · c23(F2(x2),F3(x3)) · c34(F3(x3),F4(x4)) ·

c45(F4(x4),F5(x5)) · c13|2(F1|2(x1|x2),F3|2(x3|x2)) ·

c24|3(F2|3(x2|x3),F4|3(x4|x3)) · c35|4(F3|4(x3|x4),F5|4(x5|x4)) ·

c14|23(F1|23(x1|x2,x3),F4|23(x4|x2,x3)) ·

c25|34(F2|34(x2|x3,x4),F5|34(x5|x3,x4)) ·

c15|234(F1|234(x1|x2,x3,x4),F5|234(x5|x2,x3,x4)).
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Fig. 2: Canonical vine for five variables.

From Figure 2, approximation of the joint density function for five random variables can

be written using a canonical vine as follows (Aas et al. 2009).

f12345(x1,x2,x3,x4,x5) =

f1(x1) · f2(x2) · f3(x3) · f4(x4) · f5(x5) ·

c12(F1(x1),F2(x2)) · c13(F1(x1),F3(x3)) · c14(F1(x1),F4(x4)) ·

c15(F1(x1),F5(x5)) · c23|1(F2|1(x2|x1),F3|1(x3|x1)) ·

c24|1(F2|1(x2|x1),F4|1(x4|x1)) · c25|1(F2|1(x2|x1),F5|1(x5|x1)) ·

c34|12(F3|12(x3|x1,x2),F4|12(x4|x1,x2)) ·

c35|12(F3|12(x3|x1,x2),F5|12(x5|x1,x2)) ·

c45|123(F4|123(x4|x1,x2,x3),F5|123(x5|x1,x2,x3)).

2.3 Pair-copula construction for spatial data

Gräler and Pebesma (2011) introduced pair-copula construction to the spatial framework.

Spatial pair-copulas allow modelling of complex spatial dependence in a fully flexible way.

A canonical vine structure is used to construct a pair-copula for spatial data, since this struc-

ture benefits spatial interpolation by giving higher priority to the interaction between the

unobserved locations and nearby locations, if unobserved locations are selected as the root

element.

2.3.1 Assumptions of copula based geostatistical models

As with conventional geostatistical models, copula based models assume that the set of mea-

sured values of the variable of interest are realisations of a random field (Bárdossy and Li

2008). However, when fitting copula based models, a stationary random field (see the defini-

tion in Gaetan and Guyon (2010)) is assumed over the domain of interest. This assumption is
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stronger than the conventional linear geostatistical assumption of a second-order stationary

random field over the domain of interest because the copula based model requires that all

the moments of the data generating process be unaffected by a change of spatial distance.

However, copula based modelling has more advantages when compared to conventional

geostatistical modelling, even though it requires a more limiting assumption, such as the

ability to obtain the full conditional distribution, ability to remove the influences of marginal

distributions when modelling the dependence structure and the ability to model non-linear

spatial dependence (Haslauer et al. 2010). Based on this strong stationarity assumption, the

marginal distributions of the variable of interest for each location in the domain are identi-

cal, that is, Fi(zi) = F(zi). The empirical bivariate copula can be used to explore the spatial

variability. As with the variogram, it is assumed that the bivariate spatial copula Cs at any

two locations only depends on the separation vector hhh and is independent of the locations x

(Bárdossy 2006; Bárdossy and Li 2008), that is,

Cs(hhh,u,v) = Pr (F(Z(x))≤ u,F(Z(x+hhh))≤ v)

= C (F(Z(x)),F(Z(x+hhh))) .

All of the above mentioned assumptions are also applicable to pair-copula modelling of spa-

tial data. To simplify application of the pair-copula model, spatial dependence is restricted

to the isotropic case here. In isotropic situations, spatial dependence is assumed to vary only

with distance and not with direction. In this case, the vector hhh is simply distance h.

2.3.2 Spatial interpolation using pair-copulas

The steps for carrying out spatial interpolation using pair-copulas, based on Gräler and

Pebesma (2011) and Gräler (2014), is described as follows.

Step 1: Empirical bivariate copula densities.

Since the marginal univariate distributions of the variable of interest for each location are

identical (based on the stationarity assumption), the empirical marginal distribution function

F(z) can be estimated using all the observations z(x1), . . . ,z(xN), where N is the total number

of sample locations. A unit interval transformation is then applied to the observations using

the estimated distribution function.

Distances between every pair xi − x j = h; i 6= j,∀i, j = 1,2, . . . ,N are then calculated

and, thereafter, each pair {F(z(xi)),F(z(x j))} is placed into a relevant distance class from

the following classes [0,h1), [h1,h2), . . . , [hl−1,hl), where hl is the maximum distance at

which significant dependence is observed. The mean distance is taken as the representative

value for each class.

The empirical bivariate copula densities can be calculated using kernel density smooth-

ing if the number of pairs per distance class is large enough, otherwise the empirical bivari-

ate copula can be calculated by defining a regular grid on the unit square and calculating the

cumulative frequency of values for each grid. The next step is to fit the theoretical copula

model to the empirical copula densities. This is similar to fitting a theoretical model to the

experimental variogram.
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Step 2: Theoretical bivariate copula densities and spatial copula construction.

Maximum likelihood can be used to estimate the bivariate copula densities. In the spatial

setting, several copula families must be estimated for each distance class in order to fit the

most suitable spatial copula. For example, if there are 10 distance classes and nine cop-

ula families are to be compared for each distance class, altogether, ninety bivariate copulas

need to be estimated in the first step of pair-copula construction. This may be computa-

tionally demanding and time consuming. It is simpler and faster to calculate the inverse of

Kendall’s tau (or Spearman’s rho) for a distance class and convert this value to an estimate

of the dependence parameter using the functional relationship between Kendall’s tau and

the dependence parameter of the copula family (Genest and Rivest 1993). Following this,

the copula that produces the maximum likelihood, amongst the copulas for a given distance

class, is selected as the spatial copula for the corresponding class and is assigned to the

mean distance of the distance class. The set of selected spatial copulas is then used to obtain

distance dependent convex combinations of copulas as follows.

Ch(u1,u2) =















































λ1 ·M(u1,u2)+(1−λ1) ·C1,h(u1,u2), 0 ≤ h < h1

...

λi ·Ci−1,h(u1,u2)+(1−λi) ·Ci,h(u1,u2), hi−1 ≤ h < hi

...

λk ·Ck−1,h(u1,u2)+(1−λk) ·L(u1,u2), hk−1 ≤ h < hk

L(u1,u2), hk ≤ h < hl

(6)

where h1, . . . ,hl are the boundaries of the distance classes, hl is the maximum distance at

which significant dependence is observed, L(u1,u2) = u1 ·u2 (independence for far away lo-

cations), M(u1,u2)=min(u1,u2) (perfect dependence for very close locations), λi =
hi−h

hi−hi−1
,

and u1 and u2 are the calculated cumulative values for the two locations of interest. This con-

vex combination ensures consistency between distance classes.

Step 3: Pair-copula construction and spatial interpolation.

Copula based methodology permits estimation of the full conditional distribution of Z(x):

F(x,z) = Pr(Z(x)≤ z|Z(x1) = z1, . . . ,Z(xN) = zN),

where N is the total number of observations. The full conditional distribution can be written

using the corresponding conditional copula Cx,N :

F(x,z) = Cx,N(F(z)|u1 = F(z1), . . . ,uN = F(zN)).

It may be computationally intensive to use all N observations in calculating the full

conditional distribution due to the large number of conditional pair-copulas that must be

semi-parametrically fitted to the data. However, the full conditional distribution can be ap-

proximated based on a sufficient number of local neighbouring locations (Bárdossy and Li

2008). The number of locations used in the approximation is determined by randomly select-

ing a few locations, and estimating and plotting the density functions for different numbers
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of nearby locations. The smallest number of nearby locations n that produces nearly identi-

cal density functions for almost all considered locations is used for the approximation. The

approximate full conditional distribution is given by

F(x,z) = Cx,n(F(z)|u1 = F(z1), . . . ,un = F(zn)),

where F(zi) = F(z(xi)) for i = 1, . . . ,n and the points xi are observations in the neighbour-

hood of x.

The conditional density function can be derived as

f (z|z1, . . . ,zn) =
∂F(x,z)

∂ z

=
∂C(F(z)|u1 = F(z1), . . . ,un = F(zn))

∂ z

=
∂C(u|u1 = F(z1), . . . ,un = F(zn))

∂u
·

∂F(z)

∂ z
,

that is,

f (z|z1, . . . ,zn) = c(u|u1 = F(z1), . . . ,un = F(zn)) · f (z),

where f (z) is the marginal density and F(z) is its distribution function.

The procedure for constructing the conditional copula density c(u|u1 = F(z1), . . . ,un =
F(zn)) using a pair-copula construction is described using an example as follows.

Let the number of nearby locations be four. Figure 3, which is reproduced from Gräler

and Pebesma (2011), depicts the pair-copula decomposition, based on a canonical vine struc-

ture, for obtaining the full five dimensional pair-copula density. In Figure 3, edges represent

the bivariate copula and the two nodes connected to each edge represent the two arguments

of a corresponding bivariate copula. The unobserved location is x0, and x1,x2,x3 and x4 are

nearby locations.

The estimation process of the copulas in the first tree, T1, has already been discussed in

step 2. By using these copulas, the marginal conditional distributions Fi|0, i = 1,2,3,4, can

be calculated using Eq. (5). The conditional pair-copula in the second tree, T2, can then be

estimated. The same procedure is repeated to estimate the conditional copulas in other trees.

These conditional copulas are influenced not only by their conditional distribution func-

tion arguments but also by the value of the conditioning variable. For example, c12|0 is

influenced by its arguments
(

F1|0(z(x1)|z(x0)),F2|0(z(x2)|z(x0))
)

and the value of Z(x0).
However, in pair-copula construction, estimation of a conditional pair-copula is simplified

by ignoring the influence from the value of the conditioning variable to keep the construc-

tion process more practicable (Haff et al. 2009). Haff et al. (2009) showed that, even though

this simplified version has some limitations, it is a good approximation for the actual model.
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Fig. 3: Five dimensional spatial vine.

Finally, using the decomposition shown in Figure 3, the full five dimensional copula

density can be written as

c(u0,u1, . . . ,u4) =

ch(F(z(x0)),F(z(x1))) · ch(F(z(x0)),F(z(x2))) · ch(F(z(x0)),F(z(x3))) ·

ch(F(z(x0)),F(z(x4))) · c12|0(F1|0(z(x1)|z(x0)),F2|0(z(x2)|z(x0))) ·

c13|0(F1|0(z(x1)|z(x0)),F3|0(z(x3)|z(x0))) ·

c14|0(F1|0(z(x1)|z(x0)),F4|0(z(x4)|z(x0))) ·

c23|01(F2|01(z(x2)|z(x0),z(x1)),F3|01(z(x3)|z(x0),z(x1))) ·

c24|01(F2|01(z(x2)|z(x0),z(x1)),F4|01(z(x4)|z(x0),z(x1))) ·

c34|012(F3|012(z(x3)|z(x0),z(x1),z(x2)),F4|012(z(x4)|z(x0),z(x1),z(x2))).

The conditional copula density of the variable of interest at the unsampled location can

then be obtained as follows

c(u0|u1, . . . ,u4) =
c(u0,u1, . . . ,u4)

∫ 1
0 c(v,u1, . . . ,u4)dv

.

Finally, point estimates at unobserved location x0 can be obtained. The mean and median

are (Bárdossy and Li 2008)

Ẑmean(x0) =
∫ 1

0
F−1(u)c(u|u1, . . . ,un)du,

Ẑmedian(x0) = F−1
α (u =C−1(0.5|u1, . . . ,un)).

Since the pair-copula method provides the full conditional distribution at an unsampled

location, it is easy to obtain a more complete estimation of uncertainty, such as confidence
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intervals, when compared to the kriged model. Here complete is used to emphasise that the

copula based model is fully capable of producing uncertainty estimation dependent on both

the observations configuration and values. This feature is important for additional drilling

campaigns, where a reduction in uncertainty is expected based on the influence of additional

measurements (e.g., Musafer and Thompson (2016a,b)).

3 Case Study

Confidential data on one particular metal from a real mine site are available, in which

there are nearly 80,000 measurements from over 2,000 drill holes. A small scale exam-

ple is presented here based on a random subset of the spatial observations. The subset of

2,086 measurements of metal grade z(xi) at three dimensional locations xi = (x1i,x2i,x3i),
i = 1, . . . ,2086 are displayed in Figure 4. R software (R Core Team 2016) and the R package

‘spcopula’ (Gräler and Appel 2015) were used to fit the pair-copula models.

Fig. 4: Three dimensional spatial plot of metal grade.

Summary statistics for metal grade are given in Table 1. Non-parametric edge-weighted

kernel density estimation was used to estimate the marginal distribution of metal grade with

higher weights given to measurements that are close to zero. A histogram of the metal grades

can be seen in Figure 5, from which positive skewness is apparent. The curve is the fitted

weighted kernel density. Using the estimated marginal distribution, observed measurements

were then transformed to the unit interval in order to construct the empirical copula densities

to explore the spatial dependence structure.

Five metre by five metre classes were constructed. Selecting this width for the classes

ensures high flexibility in the pair-copula model. Additionally, for this class width, each

class contains more than 100 pairs.
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Statistic Value

n 2086

Mean 0.815

Standard deviation 0.723

Coefficient of variation 0.886

Min 0.005

First quartile Q1 0.243

Median 0.675

Third quartile Q3 1.158

Max 4.961

Table 1: Summary statistics for metal grade.

Fig. 5: Histogram of metal grade.

Figure 6 is a plot of the Kendall tau values against the mean of the distance classes. From

this plot, spatial correlation of metal grade is estimated to decrease to zero for locations

separated by more than 65 metres. Autocorrelation for the mean of each distance class was

estimated using a polynomial fit to the Kendall tau values.

Figure 7 shows the empirical copula densities obtained for four of the 20 distance

classes. If the spatial dependence is linear, then the empirical copula density plots should

demonstrate a similar structure to that shown in Figure 8, which is a plot of a Gaussian

copula density. Even though the distance class [0,5) metres appears to have a linear spatial

structure (Figure 7(a)), the other distance classes have more complex spatial structures. The

empirical plot in Figure 7(d) confirms spatial independence between locations that are more

than 65 metres apart.

Inversion of Kendall’s tau was used to estimate the dependence parameter for a spatial

copula. The copula with the highest log-likelihood value, amongst the Gaussian, Student t,

Frank, Clayton, Gumbel, Joe, and survival version of the latter three, copulas was fitted to

each distance class. Table 2 gives the best fitting spatial copula for each distance class.

The anisotropy of the data was evaluated in several directions. The variograms show

fairly similar dependence structures for all directions. Hence, isotropic spatial dependence

was assumed.
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Fig. 6: Kendall tau values against the mean of the distance classes.

Dependence Degrees of

Class Copula Parameter freedom

0-5 Student t 0.709 4

5-10 Student t 0.646 4

10-15 Gumbel 1.504 -

15-20 Gumbel 1.327 -

20-25 Frank 1.622 -

25-30 Frank 1.109 -

30-35 Gumbel 1.088 -

35-40 Survival Gumbel 1.055 -

40-45 Survival Gumbel 1.036 -

45-50 Survival Gumbel 1.022 -

50-55 Survival Gumbel 1.017 -

55-60 Survival Gumbel 1.017 -

60-65 Independent - -

Table 2: Best fit copulas for each distance class.

Cross-validation was carried out to compare the performance of the pair-copula model

with lognormal kriging. Figure 9 shows the experimental variogram that was used for log-

normal kriging, where the exponential model was used to model spatial dependence. The

estimated nugget, sill and range of the exponential model are 0.301, 2.570 and 60.450, re-

spectively. The same distance classes as the pair-copula model were used in constructing

the variogram model. Leave-one-out cross-validation was used, with 20 nearby locations in

the interpolation process. Two estimators, the mean and median, were estimated from the

pair-copula model.

The performance of the models was evaluated by calculating the accumulated error be-

tween observed and estimated values for all sampling points using two criteria: mean abso-

lute error (MAE) and mean squared error (MSE). MAE and MSE are used to assess bias in

prediction and model accuracy, respectively. Table 3 summarises these statistics.

Both the mean and median estimators from the pair-copula model performed well in

terms of bias and accuracy of predictions in this application. From Table 3, the pair-copula

models have smaller MAEs and MSEs than the lognormal kriged model with the mean
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(a) (b)

(c) (d)

Fig. 7: Empirical copula density of metal grade for (a) 0-5 m, (b) 10-15 m (c) 20-25 m and

(d) 65-70 m distance classes.

Margin Approach MAE MSE

Weighted kernel density
Pair-copula - mean 0.418 0.364

Pair-copula - median 0.409 0.368

Lognormal kriging 0.466 0.426

Table 3: Results of cross-validation.

estimator from the pair-copula model having the smallest MSE and the median estimator

having the smallest MAE.

Figure 10, shows bias against the true metal grade. For all models, the bias of individual

observations are generally larger as metal grade increases. However, both estimators from

the pair-copula model appear to show less bias than the estimator from the kriged model

over the distribution of metal grade.

The quantile plot in Figure 11 indicates that the pair-copula model reproduces the dis-

tribution of the data better than lognormal kriging.
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Fig. 8: Gaussian copula density.

Fig. 9: Empirical variogram overlaid with fitted exponential model.

4 Discussion and Conclusion

A spatial pair-copula model was fitted to model the distribution of metal grade from the

ore body of a real mine site. Unlike conventional kriging, the pair-copula model is able to

take account of non-linear spatial dependence and is, generally, more accurate than other,

less flexible, copula based spatial models. The full conditional distribution of metal grade is

available from the pair-copula model. Here, the mean and median estimators of metal grade

were obtained. In the application, the pair-copula model outperformed lognormal kriging in

terms of bias and accuracy of predictions.

It should be noted that, in mining applications, the mean estimator is expected to perform

well because it has the ability to produce unbiased estimates for total metal content. This was

shown to be the case for the mean estimator of the pair-copula model in the application.

Figure 10 indicates the existence of conditional bias (lower values are overestimated

and higher values are underestimated) in both the kriged and pair-copula models. The main
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(a)

(b) (c)

Fig. 10: Bias against true metal grade for (a) lognormal kriging, and (b) mean and (c) median

estimate from pair-copula model..

reason for the conditional bias in kriging and indicator kriging is the smoothing effect of

the variance of the estimator. Conditional bias arising from smoothing is well-documented

and understood in the literature (Seo 2013; Mclennan and Deutsch 2004). Although the

smoothing effect does not directly apply to the pair-copula model, this model uses several

approximations and numerical integrations throughout the estimation process. It can be con-

jectured that this might be the reason for the existence of conditional bias in the estimators

of the pair-copula model.

The pair-copula model has the potential to become a popular geostatistical model be-

cause of the ability to remove the influences of marginal distributions when modelling the

dependence structure and the ability to model non-linear spatial dependence and tail de-

pendence. As a result, the copula based model is fully capable of producing uncertainty

estimation dependent on both the observations configuration and values. Hence more com-

plete uncertainty estimation can be used to obtain more precise optimal designs than optimal

designs obtained using a kriged model for additional drillings.

A major disadvantage of spatial pair-copula modelling is the rapid increase in computa-

tional time required to fit conditional distributions at unsampled locations with an increase
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Fig. 11: Quantiles of the data against quantiles of the predicted values for the different

estimators.

in the number of nearby locations. As the number of nearby locations increases, the number

of conditional bivariate copulas in the pair-copula model that requires estimation increases

rapidly. Consequently, a limited number of nearby locations are used in fitting pair-copula

models with the assumption that the full conditional distribution is reasonably approximated,

which may be difficult to verify. Additionally, an invalid multivariate distribution may be fit-

ted by a pair-copula model when different types of copulas and different parameters are used

to fit the conditional bivariate copulas.

When fitting the marginal distribution, the pair-copula model assumes observations are

independent of each other. Hence, an inappropriate marginal distribution may be fitted to the

data in situations where, for example, observations are clustered because they come from the

same borehole or sampling has been carried out in areas where high grades are expected.

In the application, an isotropic dependence structure was assumed. Anisotropy should

be evaluated in different directions. Inspection of variograms for different directions is insuf-

ficient to evaluate anisotropy when fitting a spatial pair-copula model. Instead, the empirical

copula density of each distance class for different directions should be compared. This will

be addressed in future research.

Further improvements in the pair-copula model are expected to be gained through, for

example, development of an efficient method for defining the lag distance classes, use of

advanced search strategies, e.g., quadrant search, to remove the obvious cluster effects, and

use of more families of copulas. These improvements are the focus of current research.
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