
Spatial Pattern Templates for Recognition of

Objects with Regular Structure
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Abstract. We propose a method for semantic parsing of images with
regular structure. The structured objects are modeled in a densely con-
nected CRF. The paper describes how to embody specific spatial rela-
tions in a representation called Spatial Pattern Templates (SPT), which
allows us to capture regularity constraints of alignment and equal spacing
in pairwise and ternary potentials.
Assuming the input image is pre-segmented to salient regions the SPT
describe which segments could interact in the structured graphical model.
The model parameters are learnt to describe the formal language of se-
mantic labelings. Given an input image, a consistent labeling over its
segments linked in the CRF is recognized as a word from this language.
The CRF framework allows us to apply efficient algorithms for both
recognition and learning. We demonstrate the approach on the problem
of facade image parsing and show that results comparable with state of
the art methods are achieved without introducing additional manually
designed detectors for specific terminal objects.

1 Introduction

The recent development in the areas of object detection and image segmenta-
tion is centered around the incorporation of contextual cues. Published results
confirm the hypothesis that modeling relations between neighboring pixels or
segments (superpixels) can significantly improve recognition accuracy for struc-
tured data. The first choice one has to make here is to choose the neighbor
relation, or in other words, which primitive elements participate in constraints
on labels. The constraints are usually specified with a formal language of spa-
tial arrangements. A common choice for the relation is the adjacency of element
pairs in the image plane, such as 4 or 8-neighborhood of pixels in a grid, which
supports the language model [1]. This can be extended in various directions: In
‘depth’ when we have more concurrent segmentations, or in cardinality when we
connect more elements together. Generally speaking, in this paper we will take a
closer look on this design process and introduce a concept called Spatial Pattern
Templates (SPT).

A convenient framework to embed such patterns into are probabilistic graphi-
cal models, where image elements correspond to nodes and edges (or higher-order
cliques) to the relations among them. In such a graph, our pattern templates
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correspond to cliques or factors, as they describe how a given joint probability
factorizes. We choose Conditional Random Fields (CRF [9]) as a suitable model,
which allows us to concentrate on the element relations and not to care much
about how the data are generated. Specifically, we propose pattern templates to
deal with regular segmentations and call them Aligned Pairs (AP) and Regular
Triplets (RT).

We identify regular segmentations as those where object geometry, shape
or appearance exhibit symmetry, particularly translational, which manifests in
alignment and similarity. Such principles often apply to images with man-made
objects, even though such phenomena are also common in the nature. Urban
scenes have some of the most regular yet variable segmentations and their seman-
tic analysis is receiving more attention nowadays, as it can aid other computer
vision tasks such as image-based urban reconstruction. We design our method
with this application in mind, specifically targeting parsing of facade images
(a multi-class labeling problem).

In this task, we exploit the properties of largely orthogonal facade images.
We start by training a classifier to recognize the patches given by unsupervised
segmentation. Based on the initial segments we build a CRF with binary rela-
tive location potentials on AP and ternary label consistency potentials on RT.
For intuition, this can be seen as a process where all segments jointly vote for
terminal labels of the other segments, with voting scheme following the chosen
spatial patterns. The concept of template design, its embedding in the CRF and
implementation for regular objects with Regular Triplets and Aligned Pairs are
the contributions of this paper.

2 Related work

Contextual models. Relative location prior on label pairs is used in [4] for multi-
class segmentation. Every segment votes for the label of all other segments based
on their relative location and classifier output. Ideally, such interactions should
be modeled with a complete graph CRF, where an edge expresses the joint
probability of the two labels given their relative location, but this would soon
make the inference intractable with the growing number of segments. Instead
Gould et al. [4] resort to a voting scheme and use CRF with pairwise terms
for directly adjacent segments only. In our approach, we include the discretized
relative location prior in a CRF but limit the number of interactions by choosing
a suitable pattern template.

CRFs are popular for high-level vision tasks also thanks to the number of
algorithms available for inference and learning [11]. However, useful exact al-
gorithms are known only for a specific class of potential functions (obeying
submodularity). Kohli et al. [5] fit in this limitation with a robust version of
a generalized Potts model, which softly enforces label consistency among any
number of elements in a high order clique (pixels in segments). We can use this
model for RT, but because the pairwise relative location potentials may have ar-
bitrary form, we cannot apply the efficient α-expansion optimization used in [5].
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Structure learning. A number of methods for learning general structures on
graphs have been recently developed [3, 12, 13]. They learn edge-specific weights
in a fully connected graph, which is directly tractable only when the number
of nodes n is small (10 segments and 4 spatial relations in [3]) due to edge
number growing with O(n2). Scalability of the approach has been extended by
Schmidt et al. by block-wise regularization for sparsity [12] (16 segments) and
subsequently also for higher-order potentials with a hierarchical constraint [13]
(30 segments). Since we deal with ∼ 500 segments, this approach cannot be
directly applied and, as suggested in [12], a restriction on the edge set has to
be considered. The SPT can be here seen as a principled implementation of this
restriction to keep the problem tractable.

Facade parsing. There are two major approaches to the facade parsing problem.
Top-down approach relies on the construction of a generative rule set, usually
a grammar, and the result is obtained stochastically as a word in the language
best matching the input image [14]. So far there are no methods for automatic
construction of the grammars and they do not generalize well outside of the
style they were designed for. Learning is possible for very simple grammars (e.g.
grid [17]) but it cannot express other structural relations.

Bottom-up approaches instead combine weak general principles, which are
more flexible and their parameters can be learned. Regularity of spacing, shape
similarity and alignment is used in [18] to find weakly regular structures, but
the model cannot be simply extended for more classes than one (window). The
hierarchical CRF [8], which aggregates information from multiple segmentations
at different scales, has been applied to facades in [19], where binary potentials
model consistency of adjacent labels within as well as across segmentations. Here
neighboring segments with similar appearance are more likely to have the same
label (contrast-sensitive Potts model). The recent three-staged method [10] com-
bines local and object detectors with a binary Potts CRF on pixels. The result
is further sequentially processed to adjust the labels according to the alignment,
similarity, symmetry and co-occurence principles, each of them applied with
a rather heuristic procedure. Additional principles are designed for a specific
dataset and in fact resemble grammatical rules. In contrast, our method accom-
modates the general assumption of regularity in a principled and general way as
a part of the model, which is based on the CRF and can benefit from the joint
learning and inference.

3 Spatial Pattern Template model

Initially we obtain a set of segments S in the input image with a generic
method such as [2], tuned to produce over-segmentation of the ground truth
objects. The image parsing task is to assign labels L = {li ∈ C}Ni=1 of known
classes C = {cj}

K
j=1 to given segments S = {si ⊂ dom I}Ni=1 in an image I.

Let X = {xi ⊂ I}Ni=1 be the image data of segments S. With segments corre-
sponding to nodes in a graph and labels L being the node variables, we construct
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a CRF with potentials taking the general form of

p(L|X,S) =
1

Z(X,S)

∏

q∈Q

e−
∑

j∈φ(q) θjϕj(lq|xq,sq), (1)

where Q is the set of cliques, ϕj are potential functions from a predefined set
φ(q) defined for a clique q. The ϕj is a function of all node variables in collections
lq,xq, sq, their weights are θj and Z(X,S) is the normalizing partition function.
The design of a specific CRF model now lies in the choice of cliques Q defining
topology on top of the segments and their potential functions ϕj , which act on
all node variables in the clique and set up the probabilistic model.

3.1 Spatial templates for data-dependent topology

As a generalization of the adjacency, used i.e. in [19], we can think of other
choices for the graph topology that may suit our domain by including inter-
actions between distant image elements, which are ‘close’ to each other in a
different sense. As mentioned in Sec. 2, the scale of the problem does not allow
us to reach complete connectivity. To allow dense connectivity while keeping the
problem tractable, we need to restrict the number of cliques (edges). We describe
this restriction with a template and, with the geometrical context in mind, we
limit ourselves to spatial templates, which assign segments to cliques based on
their geometrical attributes (shape, location). In principle other attributes (ap-
pearance) could be used in the template too. The meaning of this representation
is to provide a systematic procedure for automatic learning of which interactions
are the most efficient ones for the recognition task at hand.

In order to describe the process of designing a complex data dependent topol-
ogy for a CRF, we first have to decompose the process behind clique template
design into individual steps:

1. The first step is the specification of core attribute relation functions
δi : An → R based on the domain knowledge. The relations act on easily
measurable attributes A of n-tuples of segments. Example: Positions of two
points in a plane as attributes Ax, Ay ∈ R

2 and their signed distances in
directions x and y as the relations δx, δy.

2. The ranges of relations δi are discretized to ordered sets ∆i and di :
An → ∆i becomes the discrete counterpart of function δi. Example: The
signed distance is divided into three intervals, ∆x = {left, equal, right}, ∆y =
{below, equal, above} .

3. In the next step the Cartesian product of m relation ranges ∆i gives domain
D = ∆1 × · · · × ∆m, where subsets define logical meta relations (and,
or, equal). Example: Three intervals on two axes give 32 combinations in
Dxy = ∆x ×∆y.

4. The spatial template is a subset Ω ⊂ D representing a concrete relation.
The template is specified by an indicator function ω : D → {0, 1} represent-
ing the allowed combinations. Example: For alignment in one direction we
set ωxy = 1 when dx = equal or dy = equal, otherwise ωxy = 0.
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The template design may be viewed as a kind of declarative programming
framework for model design, a representation that can incorporate the specific
knowledge in a generic way with combinations of core relations δi. Each spatial
template is related to one potential function ϕj in (1).

In summary, the result of this process describes which subsets of segments
S labeled L should be jointly modeled in a graphical model; which of these are
effective is subject to learning. Figure 2 shows how the segments correspond to
nodes and their subsets define factors in p(L|X,S). In this work we introduce
two templates suitable for regular segmentations.

Aligned Pairs (AP) Out of all pairs of segments u, v we choose those which
are aligned either vertically or horizontally. It is useful to connect segments not
directly adjacent when the labels in such pairs follow some pattern, i.e. windows
are aligned with some free space in between.

The specification follows the spatial template design steps: 1) Based on
the position attribute we choose horizontal and vertical alignment δh, δv with
δh : (su, sv) → R and δh = 0 when the segments are exactly aligned, otherwise
according to Fig. 1 (analogically δv for vertical). 2) Quantized dh, dv take values
from ∆a according to Fig. 3 evaluated on segment bounding boxes. 3) Combina-
tions of horizontal and vertical alignment are then represented by joining dh, dv
in a discrete domain DAP = ∆2

a limited by maximum distance. 4) Finally we
specify the AP template with ωAP = 1 in the blue region in Fig. 1.

Note that adjacency (4-neighborhood) is a special case of AP when we specify
ωAP = 1 only for four specific values in DAP (directly above/under/left/right,
red squares in Fig. 1). Similarly values of |dh| ≤ 5 together with |dv| ≤ 5 corre-
spond to overlap or nesting of segments.

Regular Triplets (RT) Here we combine two Aligned Pairs in a triplet u, v, w
with regular spacing, in which the v is the shared segment. Including triplets
allows to express a basis for repetitive structures (rows, columns) of primitive
objects of the same label (window, balcony).

1) In addition to position alignment δh, δv we introduce ternary relation
functions for size similarity δs : (su, sv, sw) → R (relative difference in size
of segments) and regular spacing δr : (su, sv, sw) → R (relative difference
in free space between segments). 2) Based on them we define binary function
ds : (su, sv, sw) → {0, 1} to be 1 when |δs| < 0.1 and similarly dr : (su, sv, sw) →
{0, 1} to be 1 when |δr| < 0.1. 3) All functions dh(su, sv), dv(su, sv), dh(sv, sw),
dv(sv, sw), ds(su, sv, sw) and dr(su, sv, sw) are then joined in a six-dimensional
domain DRT = ∆4

a × {0, 1}2. 4) Finally we specify ωRT = 1 in the subspace of
DRT where ds = 1, dr = 1 and values of dh, dv indicate that the three segments
are pair-wise aligned in the same direction (horizontal or vertical).

3.2 Probabilistic model for label patterns

Given the fixed set of segments S, we will now make use of the SPT topology to
model regular contextual information with a CRF for the graphical model.
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0

Fig. 1. Spatial template Ω is a sub-
space in the domain DAP given by rela-
tion functions δh, δv. The center corre-
sponds to the exact alignment in both
axes. If segment u (green) is located in
the center, other squares (red for ad-

jacency, blue belong to Aligned Pairs)
correspond to discrete relative posi-
tions of segment v.

Fig. 2. Factor graph for regular SPT.
Segments S are shown as blue rect-
angles si (i.e. corresponding to win-

dow frames), factors are solid squares.
Aligned Pairs connect only segments
in mutual relative position specified by
the template in Fig. 1. Regular Triplets

then combine two aligned and equally
spaced pairs together.

For clarity we rewrite (1) in a convenient form

p(L|X,S) ∝
∏

u∈S

eϕ1(νu) ×
∏

(uv)∈AP

eϕ2(νu,νv) ×
∏

(uvw)∈RT

eϕ3(νu,νv,νw), (2)

where νi = (li|si, xi) are variables related to node i and ϕ1, ϕ2, ϕ3 are unary,
pair-wise (AP) and ternary (RT ) potential functions (factors) respectively. We
will now discuss features used in these factors.

The unary potentials ϕ1(νi) = log p(li|si, xi) are outputs of a multi-class clas-
sifier evaluated on the features for an image patch xi of the segment si. The
feature vector f(xi) is extracted from the image data by appending histogram
of gradients (HoG), color (HSV), relative size, position, aspect ratio and 2D
auto-correlation function.

Pairwise potentials for AP are restrictions on the template learned for con-
crete label pairs. They are based on a discretized version of the relative location
distribution [4], similar form is used in [15] for adjacency. It is the statistical
function

ϕ2(νu, νv) = θ2,dh,dv
log p(lu, lv | dh, dv), (3)

where dh are the values of horizontal alignment dh(su1, sv1) specified in Fig. 3,
analogically dv for vertical. The pattern of labels lu, lv is the empirical dis-
tribution in the given relative locations dh, dv computed as the second order
co-occurrence statistics of the labels for pairs of segments observed in a train-
ing set. The co-occurrence frequencies are obtained from a training set for each
pair of class labels and are accumulated for all values in the spatial template
domain ΩAP . Figure 4 shows the resulting histograms of AP in Fig. 1.
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Fig. 3. Given interval (a, b) the figure
shows the values ∆a of alignment re-
lation function da for a set of inter-
vals (u, v), ranging from 0 (aligned) to
±7 (no overlap). More free space be-
tween intervals corresponds to higher
absolute values (8, 9, 10, . . . ) in ∆. Po-
sitions are considered equal within 10%
tolerance of the interval length.
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Fig. 4. Discrete relative co-occurrence
location histogram p(lu, lv, dh, dv) for
label pairs in the ECP-Monge dataset.
It holds information such as ‘sky is usu-
ally above windows’ or ‘balconies are
aligned vertically with windows’. Dark
colors correspond to high frequency,
blue cross marks d = 0 (equality).

Ternary potentials models regularity by encouraging some labels in RT to have
the same value (i.e. window) in

ϕ3(νu, νv, νw) =

{

θ3,c if lu = lv = lw = c,

θ3,0 otherwise,
(4)

which is a generalized Potts model [5] and θ3,c is a learned class-specific pa-
rameter. We do not use the complex ternary co-occurrence statistic with this
potential because there is not enough data for its training. To facilitate efficient
learning, we convert ternary potentials into pairwise by adding a hidden variable
for each ternary factor ϕ3.

Piece-wise parameter learning. The unary potential classifiers are trained inde-
pendently to reduce the number of free parameters in the joint CRF learning
process. For binary potentials (including the reduced ternary potentials) we use
pseudo-likelihood learning procedure to obtain values of the potential weights θ.
This process corresponds to structure learning within the domain ΩAP limited
by the SPT topology, resulting in θ2 → 0 where the relation does not contribute
to the discriminative power of the CRF. In practice this amounts to learning
∼ 200 parameters based on likelihood in 50 sampled images, each of them with
approximately 500 label variables, 3000 pair and 100 triplet factors. The training
process takes several hours to complete (8 cores, 2 GHz) using Mark Schmidt’s
UGM library (www.di.ens.fr/~mschmidt/Software/UGM.html).

Inference. Because some of our potentials have a general form, exact inference is
not possible and we use an approximate algorithm [6] to compute the marginal
distributions of the labels, with run time around 30 s per image.
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Method SPT (proposed) Three Layers [10] SG [14] HCRF [19]

Classifier SGT SVM RNN RF RDF

Spatial pattern NC AP APRT NC Adjacency BSG HAdj

Prob. model - Cooc Cooc - Potts SG CS-Potts

ECP-Monge (8) 88.5 59.6 79.0 84.2 82.6 85.1 74.7 -

eTrims (8) 93.7 56.7 77.4 82.1 81.1 81.9 - 65.8

CMP Facade (12) 84.8 33.2 54.3 60.3 - - - -

Table 1. Pixel-wise accuracy comparison on facade datasets (number of classes
in brackets). Abbreviations: SGT=Segments with Ground Truth labels, NC=No
Context, AP=Aligned Pairs, RT=Regular Triplets, Cooc=Coocurence, BSG=Binary
Split Grammar, HAdj=Hieararchical Adjacency, RNN=Recursive Neural Network,
RF=Randomized Forest, SG=Shape Grammar, HCRF=Hierarchical CRF.

4 Experimental results

We have validated our method on two public datasets annotated into 8 classes
(like wall, window, balcony etc.). In addition in this paper we introduce a new
large facade dataset.

The public ECP-Monge dataset is available from [14] (we use corrected
ground truth labellings from [10]). It contains 104 rectified facade images from
Paris, all in uniform Hausmannian style. Next, the public eTrims database [7]
contains 60 images of buildings and facades in various architectural styles (neo-
classical, modern and other). We rectified them using vanishing points.

We have compiled a new publicly available larger CMP Facade database [16]
with ∼ 400 images of greater diversity of styles and 12 object classes.

Figure 5 shows parsing results for different contextual models, additional
results can be found in the report [16]. Table 1 provides their pixel-wise accu-
racy and comparison with other methods based on 5-fold cross validation. We
have used method [2] to extract averagely 500 segments (independently on the
image resolution) and show it under SGT, where ground truth labels of pixels
within each segment have been collected and the most frequent label among
them selected for the entire segment. The result is the maximum achievable ac-
curacy with this segmentation, inaccurate localization of the segment borders is
currently the main limiting factor (we are 4.3% below the limit on ECP-Monge).

The main observation is that contextual information improves the accuracy
averagely by 20% when statistics on AP is used, and by further 4% when RT are
included. The RT help mostly with window and balcony identification, thanks
to the statistics of these labels following regular pattern in the dataset. The
qualitative improvement is noticeable, even when their effect on the total pixel-
wise accuracy is small, which is a sign it is not a very suitable measure. A more
sophisticated local classifier could make the structural part of the model almost
unnecessary, as observed in [10], but such model may be overly reliant on a good
training set and perhaps prone to overfitting.
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ECP-Monge

image GT NC AP APRT SGT

eTrims DB
image GT NC AP APRT SGT

CMP Facade DB
image GT NC AP APRT SGT

Fig. 5. Selected visual results on facade dataset, our result with full model is under
APRT, (note it cannot be better than SGT ). See legend in Tab. 1 for abbreviations.
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5 Conclusion

We have introduced the concept of Spatial Pattern Templates for contextual
models. The proposed Aligned Pairs and Regular Triplets templates have been
found useful for segmentation of regular scenes by increasing accuracy of fa-
cade image parsing. Our next interest is to improve the quality of the segment
extraction to increase accuracy of their borders.

Acknowledgement: This work was supported by the Czech Science Foundation under
Project P103/12/1578.
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