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Abstract An analysis of drought in western Iran from 1966 to 2000 is presented
using monthly precipitation data observed at 140 gauges uniformly distributed over
the area. Drought conditions have been assessed by means of the Standardized
Precipitation Index (SPI). To study the long-term drought variability the principal
component analysis was applied to the SPI field computed on 12-month time scale.
The analysis shows that applying an orthogonal rotation to the first two principal
component patterns, two distinct sub-regions having different climatic variability
may be identified. Results have been compared to those obtained for the large-
scale using re-analysis data suggesting a satisfactory agreement. Furthermore, the
extension of the large-scale analysis to a longer period (1948–2007) shows that
the spatial patterns and the associated time variability of drought are subjected
to noticeable changes. Finally, the relationship between hydrological droughts in
the two sub-regions and El Niño Southern Oscillation events has been investigated
finding that there is not clear evidence for a link between the two phenomena.
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1 Introduction

Drought is a normal, recurrent feature of climate that may occur everywhere even if
its characteristics and impacts vary significantly from region to region (Wilhite 1997).
It is defined as a natural temporary imbalance of water availability, consisting of
a persistent lower-than-average precipitation, of uncertain frequency, duration and
severity, of unpredictable or difficult to predict occurrence, resulting in diminished
water resources availability and carrying capacity of the ecosystems (Pereira et al.
2002). Thus, an objective evaluation of drought condition in a particular area is the
first step for planning water resources in order to prevent and mitigate the negative
impacts of future occurrences. For this purpose, along the years, several indices
have been developed to evaluate the water supply deficit in relation to the time
duration of precipitation shortage (see Keyantash and Dracup 2002; Heim 2002 and
references therein). Among them, the most commonly used for drought monitoring
are the Palmer Drought Severity Index (PDSI, Palmer 1965) and the Standardized
Precipitation Index (SPI, McKee et al. 1993). The PDSI is based on the supply-and-
demand concept of the water balance equation for a two-layer soil model. It depends
on several local coefficients that are estimated using local hydrological norms related
to temperature and precipitation averaged over some calibration period (at least
30-year period, according to the World Meteorological Organization recommenda-
tion). The basis of the index is the difference between the amount of precipitation
required to retain a normal water balance level and the actual precipitation.

Nevertheless, if we wish to compare drought conditions of different areas, which
often have different hydrological balances, the most important characteristic of any
index is the standardization. The SPI complies with this requirement. It is, in fact,
a standardized index that can be computed on different time scales, so as to allow
monitoring most of drought types (i.e. meteorological, agricultural, hydrological).
The SPI computation for any location is based on the long-term precipitation
record cumulated over the selected time scale. This long-term record is fitted to a
probability distribution (usually a Gamma distribution, Guttman 1999), which is then
transformed through an equal-probability transformation into a normal distribution.
Positive SPI values indicate greater than median precipitation, and negative values
indicate less than median precipitation (Bordi and Sutera 2001). Thus, because the
SPI is normalized wetter and drier climates can be represented in the same way.

Guttman (1998) compared the Palmer Drought Index (an older version of the
PDSI) with the SPI through a spectral analysis in order to evaluate the application
accuracy. He recommended the SPI as a more useful drought index because it is
standardized and contains a probabilistic interpretation, so it can be used in risk
assessment and decision-making. Paulo and Pereira (2006) compared the PDSI and
the SPI concluding that the linear correlation coefficient between the two indices is
higher for the 12-month time scale.

Morid et al. (2006) examined the performances of seven drought indices requiring
only rainfall data for drought detection and monitoring in the Tehran province of
Iran. They concluded that, despite different underlying statistical distributions, the
SPI performed in a similar manner with regard to drought identification and drought
onset, and that the SPI and Effective Drought Index (EDI) could be recommended
for operational drought monitoring in the region; however, the EDI requires daily
precipitation, which constitutes a serious limitation for its operational use.
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Thus, due to its advantages, the SPI appears to be the most powerful drought
index. Many authors including, Hayes et al. (1999), Szalai and Szinell (2000), Bordi
and Sutera (2001), Lloyd-Hughes and Saunders (2002), Lana et al. (2001), Vicente-
Serrano et al. (2004), Tsakiris and Vangelis (2004), used the SPI to monitor drought
in many regions, while others have used the SPI to predict drought class transitions
adopting Markov-chain and log linear models (Paulo et al. 2005; Paulo and Pereira
2007; Moreira et al. 2008), or to forecast droughts with stochastic and neural networks
modelling (Mishra and Desai 2005).

Studies on climate variability are important for the design and management of
water resource systems. However, such analysis may be difficult when data from
many stations are used. The principal component analysis (PCA) is a convenient and
useful method to reduce inter-correlated variables into a few linearly uncorrelated
ones. Many authors, using observations or re-analysis data (Bordi and Sutera 2001,
2002; Bonaccorso et al. 2003; Bordi et al. 2004a, b, 2006; Vicente-Serrano et al. 2004),
applied the PCA to the SPI for analyzing the temporal and spatial variability of
drought. In particular, Bordi et al. (2006) showed that the National Centers for Envi-
ronmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR)
and ERA-40 re-analysis products capture a linear trend as a primary feature of the
climatic signal, both at global and large regional level, though the spatial location
of this climatic behavior differs greatly between the two data sets. Thus, a stringent
comparison with the rain gauge observations is suggested to check the reliability of
the re-analysis data and properly understand the long-term variability in a region.

Moreover, some authors studied the possible link between precipitation regimes
around the world and El Niño Southern Oscillation (ENSO), since this climatic
signal may contribute to the predictability of precipitation variability and anomalies
in many tropical and subtropical regions (Ropelewski and Halpert 1996; Vicente-
Serrano 2005; Peel et al. 2002). The influence of ENSO on autumn precipitation
in Iran was studied by Nazemosadat and Cordery (2000) who found a negative
correlation between the Southern Oscillation Index (SOI) and rainfall for almost all
the country, but stronger and more consistent in the southern foothills of the Alborz
Mountains, northwestern districts and central areas. Nazemosadat and Ghasemi
(2004) further explored these relationships and proposed a mechanism to justify the
seesaw fluctuation of winter precipitation over the southwestern and southeastern
Caspian Sea coasts showing that it is likely that the interaction between the Siberian
high and ENSO controls rainfall variability over these regions. However, the pos-
sible relationship between ENSO and drought phenomenon, objectively monitored
through a standardized drought index, remains an open question.

On these grounds, using both rain gauge observations and NCEP/NCAR re-
analysis data, we carried out an analysis of drought variability in western Iran by
decomposing the SPI time series into principal components. The motivations are:

1. Precipitation in Iran has a high spatial and time variability. There are regions in
the south of Caspian Sea, which receive up to 2,000 mm of annual precipitation,
whereas portions of central and eastern part of the country get less than 50 mm.
Furthermore, most of the precipitation in Iran falls during the winter and autumn
seasons, due to the prevalence of humid westerly winds of Mediterranean origin
(Domroes et al. 1998; Dinpashoh et al. 2004; Raziei and Azizi 2007). However,
there are regions in the northwestern part of the country that are characterized
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by high precipitation also during spring. These features make difficult the man-
agement of water resources in Iran, especially during water shortage periods.
The SPI appears to be a useful tool for comparing the climatic conditions of
these areas characterized by different hydrological regimes;

2. Iran experienced recurring drought events. For instance ten out of the 28
provinces were affected by one of the worst and prolonged droughts in 1998–
2001 period, leaving an estimated 37 million (over half the country’s popu-
lation) vulnerable to food and water shortage. Twenty provinces experienced
precipitation shortfalls during winter and spring 2001 (Agrawala et al. 2001).
While some efforts have been done to study the precipitation variability in Iran
(Domroes et al. 1998; Dinpashoh et al. 2004; Soltani and Modarres 2006; Raziei
and Azizi 2007), no comprehensive study on drought (i.e. deviation of actual
precipitation from a historically established norm), supported by a standardized
drought index, has been performed for the region. Drought studies, in fact, are
important to better develop policies and measures that support drought risk
management for the region;

3. The analysis of the climatic variability in the last 50 years at global scale using
the SPI (see Bordi and Sutera 2001; Bordi et al. 2006) showed a linear trend as
the primary feature of the drought variability, but never a comparison with the
rain gauge observations has been made for Iran. This would be useful to properly
adopt the re-analysis product as a tool for drought monitoring in the country.

Furthermore, following the investigations mentioned above on the possible impact
of ENSO on precipitation regimes in different areas of the world, we propose a
comparison between extreme phases of SOI and major droughts/wet periods in
western Iran as deduced from the SPI analysis. This is to understand if disastrous
drought events, which often adversely impact Iran, might be partly attributed to this
teleconnection.

The paper is organized as follows. In Section 2 there is a description of the
data used for the study, while Section 3 provides information on the methodology
adopted. Section 4 shows the main results obtained from the PCA of the SPI on
12-month time scale, using both observations and re-analysis data, and from the
comparison between SOI and drought/wet events. The summary and conclusions are
given in Section 5.

2 Study Area and Data

Western Iran comprises an area extending from about 26–39◦ N to 45–51◦ E. The
region is mostly occupied by Zagros Mountain systems (Fig. 1a), which faces the
direction of the prevailing moisture bearing systems and receives between 200 to
600 mm of precipitation per year (Domroes et al. 1998; Dinpashoh et al. 2004). Due
to the latitudinal extent and its complex relief structure, the precipitation amount
varies highly over the region.

Monthly precipitation data from 196 stations in the region were made available by
the Iranian Water Resources Institute and the Iranian Meteorological Organization.
Homogeneity of the median and variance was evaluated using the Mann–Whitney
homogeneity test, and trend and independence were checked using the Mann–
Kendall and Kendall autocorrelation tests, respectively (Helsel and Hirsch 1992).
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Fig. 1 a Topographic map of Iran and b stations network across the study area

Results showed that 56 stations had to be discarded due to low data quality and
having more than 5% missing values. The remaining 140 stations (Fig. 1b) cover 36
hydrological years from October 1965 to the September 2000. The stations constitute
a well-distributed network throughout the study area. Missing values for each station
were estimated using Move4 technique (Maintenance of Variance Extension), which
develops a linear equation such that a reasonable and unique extended record is
generated and the variation of data series is maintained (Vogel and Stedinger 1985;
Paulo et al. 2003).

The re-analysis product used in this study is the monthly precipitation rate
retrieved from the NCEP/NCAR data set. Precipitation fields are available from
January 1948 to present on a regular grid 1.9 × 1.9◦ in latitude and longitude and
have been derived from the primary meteorological fields by means of a re-analysis
procedure. Details about the assimilation model and the re-analysis project can be
found in Kalnay et al. (1996). Here we have considered the area 23.8–41.0◦ N, 43.1–
63.8◦ E (120 grid points) and two time sections: October 1965–September 2000 and
January 1948–December 2007.

3 Methodology

The SPI is usually computed over multiple time scales ranging from 1 to 48 months,
which reflect the impact of drought on the availability of the different water
resources. Among users there is a general consensus about the fact that the SPI
on shorter time scales (say 3 and 6 months) describes drought events affecting
agricultural practices, while on the longer ones (12 and 24 months) it is more suitable
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for water resources management purposes. In this paper, results concerning the
12-month time scale (SPI-12 hereafter) are discussed. This is because in Iran there
are areas where significant portions of the available water reservoirs are managed on
a time scale of a single year (i.e. they are filled in during the rainy season and empty
out in the dry season). Notice that, using this time scale we avoid the seasonal cycle,
while the memory effect associated with the inter-annual variability is still accounted
for. The SPI time series were computed following the method described by McKee
et al. (1993).

To capture the patterns of co-variability of drought at different stations, the
PCA (Rencher 1998) was applied to the SPI-12 time series. The method consists
in computing the covariance matrix of the SPI data with the corresponding eigen-
values and eigenvectors. The projection of the SPI fields onto the orthonormal
eigenfunctions provides the principal components or PC score time series. In guiding
a proper interpretation of the results shown in the next section, we remark that
the spatial patterns (eigenvectors), properly normalized (divided by their Euclidean
norm and multiplied by the square root of the corresponding eigenvalues), are called
“loadings”; they represent the correlation between the original data (in our case,
the SPI-12 time series at single stations) and the corresponding principal component
time series.

In order to find more localized spatial patterns of variability we applied the
Varimax rotation to the loadings (Richman 1986; von Storch and Zwiers 1999). This
method allows finding areas within the region that have rather independent climatic
variability, i.e. the rotated principal components are temporally orthogonal (Rencher
1998). Following the rule by North et al. (1982), we have estimated the sampling
errors of the eigenvalues associated to principal components and we have established
how many loadings to retain for rotation. For the cases here analyzed, using both rain
gauge observations and re-analysis precipitation data, only the first two eigenvalues
are well separated within 95% confidence level. Thus, the time variability of drought
events across the study area was represented by the two rotated PC score time series.
It is worth to notice that the rotated PC scores provide the common time behavior of
the SPI time series in those areas where the corresponding loadings have maximum
values leaving undetermined the magnitude of drought/wet spells occurred on each
station.

Finally, to investigate the relationship between ENSO and dry/wet periods in
western Iran, we compared the 12-month running mean SOI from October 1966 to
September 2000 with the SPI-12 time series of two stations representative of the
identified sub-regions. For the study we used the standardized monthly SOI, which is
freely available on the web at the URL http://www.cpc.noaa.gov/data/indices.

4 Results

4.1 Rotated PCA of the SPI-12 Time Series for Western Iran: Observations

We applied first the PCA to the SPI-12 time series computed for western Iran using
rain gauge observations. Based on Fig. 2, which shows the first ten eigenvalues of the
PCA with the corresponding 95% confidence intervals, we have selected only the first
two loadings for Varimax rotation. The percentages of the total variance explained

http://www.cpc.noaa.gov/data/indices
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Fig. 2 First ten eigenvalues
and the corresponding error
bars at 95% confidence level
for the principal components
of the SPI-12 computed using
rain gauge data
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by the retained loadings are 40.16% and 14.80% respectively, for a cumulative
variance of 54.96%. These loadings, here not shown, have high positive values over
the whole area with the exception of some stations in the north (Loading-1), and
positive values mainly in the northern part of the study area (Loading-2).

As illustrated in Fig. 3a, b, the orthogonal rotation applied to these spatial
patterns provides more localized areas of drought variability. The two rotated
loadings account for 27.75% and 27.21% of the total variance respectively, while
the cumulative variance remains unchanged with respect to the un-rotated case.
The first rotated loading (R-Loading 1) has positive values in the south of the
study area, reaching maximum values in southwestern regions. The corresponding
rotated PC score (RPC-1, Fig. 3c) shows multi-year fluctuations and remarkable dry
events of different magnitudes are expected to be occurred at single stations in the
south around 1967, 1971, 1974, 1984, 1986 and 1994. Moreover, a weak long-term
linear trend towards positive values, e.g. wet periods, from the eighties onward is
detectable. Nevertheless, such a trend accounts only 6.5% of the total variance of
the signal (see Table 1) and is not statistically significant at 95% confidence level.
The second loading has positive high values mainly in the north of the study area
and the corresponding score (RPC-2) shows multi-year fluctuations embedded on
a long-term linear trend towards negative values, e.g. dry periods (Fig. 3d). This
tendency seems to be driven by the worst drought event occurred in 1999, however,
as before, the unveiled trend is weak and explains only a small percentage of the
RPC-2 variance, i.e. 8.7%.

Thus, the rotated loadings seem to well localize in space two distinct sub-regions,
the northern and southern part of western Iran, that are characterized by different
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Fig. 3 a, b First two rotated loading patterns (R-Loading) of the SPI-12 in western Iran computed
using rain gauge data, and c, d the corresponding standardized rotated PC scores (RPC) for the
period October 1966–September 2000. Dashed line denotes the fitting linear trend. Black bullets in
a and b are the locations of the stations Shiraz and Orumieh considered representative of the two
identified sub-regions

drought variability. This is probably related to the different precipitation regimes in
the two areas: in the south the maximum precipitation amounts occur in autumn and
winter seasons, while in the north, during winter and spring (Raziei and Azizi 2007).

To better illustrate the different climatic behaviors characterizing western Iran,
let us consider the SPI-12 time series for the stations Shiraz in the south and
Orumieh in the north (see black bullets in Fig. 3a, b for their locations within the
region) as representative of the two sub-regions. The SPI-12 signal at these stations
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Fig. 4 Time behaviors of: a RPC-1 and SPI-12 for the station Shiraz in the south, b RPC-2 and SPI-12
for the station Orumieh in the north

(Fig. 4), in fact, have high positive correlation coefficients with RPC-1 and RPC-2
respectively, e.g. 0.84 and 0.88. It can be seen that the two sites are characterized by
a different climatic variability. For example, while in 1999 Orumieh experienced a
severe/extreme drought, Shiraz was characterized by near normal conditions; on the
contrary, in 1994 Orumieh was affected by a wet period, while Shiraz by a severe
drought (Fig. 4).

In the next subsection we will analyze the agreement of these results with those
from large-scale analysis carried out using the NCEP/NCAR precipitation data
set. Furthermore, we will investigate changes in the spatial pattern and temporal
variability of drought when a longer time record is considered.
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4.2 Rotated PCA of the SPI-12 Time Series for Iran: Analysis at Large-Scale

We have applied the PCA to the SPI-12 time series (October 1966–September 2000)
computed using NCEP/NCAR precipitation data for the whole Iran. According to
the rule by North et al. (1982), the eigenvalues corresponding to the first two loadings
are well separated, while the third and fourth show degeneracy. Moreover, the first
loading (here not shown) that explains 37.33% of the total variance, has high positive
values over most of Iran, while the second one, explaining 14.14% of the total
variance, has positive values in the north of the study area. Thus, as in the previous
case we applied a Varimax rotation to these two loadings in order to obtain more
spatially localized patterns of variability.

Results obtained by orthogonal rotation are shown in Fig. 5. The first rotated
loading accounts for 35.40% of the total variance and has positive values in the
central–southern part of the country (below 35◦ N), reaching maximum values in the
southwestern Iran. The corresponding rotated PC score (Fig. 5c) resembles RPC-1
obtained for western Iran using observations (Fig. 3c). However, at variance with
Fig. 3c, a very weak linear trend of the opposite sign is here detectable that explains
just 2.3% of the variance of the signal (Table 1). The second rotated loading, which

Fig. 5 a, b First two rotated loading patterns (R-Loading) of the SPI-12 computed using
NCEP/NCAR precipitation data, and c, d the corresponding standardized rotated PC scores (RPC)
for the period October 1966–September 2000. Dashed line denotes the fitting linear trend
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Table 1 Values of the angular coefficients (p1) and intercepts (p2), with 95% confidence bounds, of
the linear trend in the rotated PC scores of the SPI-12 for different data sets and record length. The
last two columns refer to the sum square error and the R-square statistics

Data Period p1 (year−1) with 95% p2 (dimensionless) with SSE R-square
confidence bounds 95% confidence bounds

RPC-1 Oct. 1966– 0.0261 −51.72 (−70.76, -32.69) 380.3 0.0657
observations Sept. 2000 (0.0165, 0.0357)

RPC-2 Oct. 1966– −0.0304 60.34 (41.55, 79.14) 370.6 0.0871
observations Sept. 2000 (−0.0399, −0.0209)

RPC-1 NCEP/ Oct. 1966– −0.0154 30.52 (11.06, 49.99) 397.7 0.0229
NCAR Sept. 2000 (−0.0252, −0.0056)

RPC-2 NCEP/ Oct. 1966– −0.0667 132.30 (117.40, 147.20) 232.1 0.4282
NCAR Sept. 2000 (−0.0742, −0.0592)

RPC-1 NCEP/ Dec. 1948– −0.0383 75.86 (69.39, 82.33) 404.8 0.4283
NCAR Dec. 2007 (−0.0416, −0.0351)

RPC-2 NCEP/ Dec. 1948– −0.0083 16.41 (7.94, 24.89) 693.8 0.0201
NCAR Dec. 2007 (−0.0126, −0.0040)

explains 16.07% of the total variance, has positive values in the north of the study
area, including the north of western Iran. The corresponding RPC-2 shows multi-
year fluctuations embedded on a long-term linear trend towards negative values from
the eighties onwards (Fig. 5d) and accounts for about 43% of the variance of the time
series. Thus, the re-analysis data show a downward linear trend in the northwestern
Iran like the observations but of doubled amplitude and provides a great portion of
the variance of signal, suggesting that the quantification of this climatic tendency and
related discussions must be done with caution.

In Fig. 6a comparison among the rotated PC scores obtained using the observa-
tions in western Iran and those using the re-analyzed data for the whole country is
shown. An inspection of the figure suggests that RPC-1 and RPC-2 time series for
the two data sets have a good agreement if we take into account the different origin
of the precipitation data used and the different area coverage. This is confirmed by
the correlation coefficients: 0.66 for the RPC-1 time series and 0.54 for the RPC-2,
with p-values less than 0.01 in both cases.

Given the satisfactory agreement between the regional and large-scale analysis
for the period October 1966–September 2000, we have extended the analysis to a
longer period using the NCEP/NCAR precipitation data from January 1948 to
December 2007. As in the previous cases the Varimax rotation has been applied to
the first two loadings of the SPI-12 time series. Results are shown in Fig. 7. The first
rotated loading explains 24.81% of the total variance, while the second one 22.36%,
providing a cumulative variance of about 47%. It can be noted that these spatial
patterns differ from those obtained for the shorter period (Fig. 5a, b) though they
identify approximately the same sub-regions, e.g. the southern and the northwestern
Iran. On the other hand, the RPC-1 (Fig. 7c) resembles the RPC-2 of Fig. 5d, as
well as RPC-2 behaves like RPC-1 of Fig. 5c, in the common time section 1966–
2000. Furthermore, the long-term linear trend characterizing RPC-1 (northwestern
regions) is reduced if compared to that of RPC-2 in Fig. 5d, though it explains the
same percentage of variance (about 43%, see Table 1). Thus, these findings highlight
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Fig. 6 a Time behaviors of the first rotated PC scores (RPC-1) of the SPI-12 computed using rain
gauge observations (solid line) and NCEP/NCAR precipitation data (dashed line); b as before for
the second rotated PC scores (RPC-2)

the shortcoming of having observations covering a limited time section, since the
main spatial patterns of drought variability and the associated climatic trends may
change when longer periods are taken into account.

4.3 Drought Events and SOI Phases

Let us consider the stations Shiraz (south) and Orumieh (north) considered represen-
tative of the two identified sub-regions. Figure 8 shows the 12-month running mean
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Fig. 7 a, b First two rotated loading patterns (R-Loading) of the SPI-12 computed using
NCEP/NCAR precipitation data from January 1948 to December 2007, and c, d the corresponding
standardized rotated PC scores (RPC) for the period December 1948–December 2007. Dashed line
denotes the fitting linear trend

of the standardized SOI and the SPI-12 time series at these stations. The correlations
between SOI signal and the SPI-12 time series at Shiraz and Orumieh are very low
(correlation coefficients –0.26 and –0.39 respectively) though they are statistically
significant (p-values close to zero). These results suggest that there is not clear
evidence for a connection between ENSO phenomenon and hydrological droughts
in western Iran. In fact, although the phases of the SOI and the drought index
occasionally suggest an association between La Niña/El Niño events and drought/wet
spells, there are periods when such correspondence fails (see for example the years
1978 and 1998 in Fig. 8a or the years 1992 and 1998 in Fig. 8b). In particular, if we
focus on the two major El Niño events, 1983 and 1998, we note that both stations
provide SPI-12 values within the range (−1, 1) denoting near normal conditions for
the two sites.

By considering the SPI on 3-month time scale (SPI-3) computed using the aver-
aged precipitation in the two identified sub-regions, we find better results for the
autumn season defined as the period October–December. This implies correlation
coefficients between the autumn SOI and the SPI-3 time series in December to be
about −0.5 with p-values less than 0.05. The result is in agreement with previous
studies on the relationship between rainfall in Iran and ENSO (Nazemosadat and
Cordery 2000; Nazemosadat and Ghasemi 2004). However, as in the previous case,
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Fig. 8 Time series of the 12-month running mean SOI from October 1966 to September 2000 (solid
line) and the SPI-12 (dashed line) for a the station Shiraz, b the station Orumieh

we cannot conclude that meteorological droughts in December are strictly related to
La Niña events, since there are periods when there is not such correspondence.

It is worth to notice that, since historically an El Niño usually recurs every 3–7
years, as does its La Niña counterpart, if we wish to further investigate any statistical
significant correlation between El Niño and meteorological/hydrological droughts
longer time series of observations are needed.

5 Conclusions

The time and space variability of drought in western Iran was studied by using
rain gauge data from 140 stations distributed uniformly over the area. Drought
conditions were assessed through the SPI computed on 12-month time scale, while
their variability was analyzed applying the PCA to the index time series. Applying
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the Varimax rotation to the first two loadings we found two sub-regions having
different climatic variability: the southern and northern part of the study area. Thus,
for an efficient water resources management under dry conditions and in planning
measures for mitigating the adverse impacts of future drought occurrences, these
sub-regions should be separately considered.

The analysis at large-scale, carried out with the NCEP/NCAR re-analysis data
shows a satisfactory agreement for the period 1966–2000, given the different origin
of the data sets. Moreover, it seems that in the northwestern Iran the re-analysis data
provides a long-term linear trend towards drier periods from the eighties onward
more pronounced with respect to the observations. When a longer time period is
considered, such a trend is reduced and the leading spatial patterns of variability
change. This means that the regionalization here proposed based on observations
from 1966 to 2000 should be checked for longer data sets before using it for water
management purposes.

Finally, we have investigated the relationship between hydrological drought/wet
events and extreme phases of the Southern Oscillation (La Niña/El Niño episodes).
Results indicate that even if occasionally dry/wet events are associated with posi-
tive/negative phase of SOI, we cannot conclude that there is a stringent correlation
between the phenomena. Further investigations should be done using longer time
records of observations to evaluate the usefulness of these results for drought
prediction and early warming systems.
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