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Abstract

Background: Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for
ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well
established, comparatively less is known about what influences the distribution of herbivory in coral reefs.

Methodology and Principal Findings: We quantified spatial patterns of macroalgal consumption in a cross-section of
Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the
influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal
herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial
patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The
biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer
reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of
macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels
within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats,
which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems,
herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and
we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae.

Significance: This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial
patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to
reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is
essential for the healthy functioning of these ecosystems.
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Introduction

Spatial heterogeneity in ecosystems can strongly influence

population structure, community composition and ecosystem

processes [1]. Herbivory can generate spatial heterogeneity by

regulating rates of primary production and nutrient cycling [2,3],

modifying plant community composition, diversity and biomass

[4,5], and/or directly disturbing habitats physically, e.g. through

burrowing [6,7]. Several factors are known to control the spatial

distribution of herbivory, including abiotic influences such as

topography or distance to water (in terrestrial systems), and biotic

influences such as plant distribution, nutritional quality, predation,

herbivore social behaviour (e.g. herding), and human management

practices [8,9,10,11]. Additionally, feedback mechanisms between

herbivory and plant quality can also influence spatial patterns of

herbivory. For example, while herbivory generally decreases plant

biomass, it often enhances nutrient recycling and availability

[12,13], although these short-term positive feedbacks may

eventually result in a compositional shift towards less palatable

plant species [14]. However, much of this knowledge comes from

wildlife and rangeland management literature that deals mostly

with large ungulates, and we know comparatively less about what

controls spatial patterns of herbivory in ecosystems characterised

by other consumers.

This study focuses on the processes that control the spatial

distribution of herbivory in coral reefs, ecosystems that are

characterised by some of the highest rates of herbivory [3,15,16].

Herbivores can remove over 90% of daily algal production in

shallow coral reefs [3,17,18], and the presence of abundant coral

depends on high levels of herbivory [19,20,21]. Indeed, herbiv-

orous fish play a crucial role in maintaining coral-reef resil-

ience (i.e. the ability of a system to absorb disturbance whilst
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maintaining ecosystem function [22]) by consuming macroalgae

that can otherwise outcompete corals when new space becomes

available following disturbance [23,24,25,26,27]. However, the

impact of herbivores is usually not uniform across all habitats, and

coral reefs may be viewed as spatial mosaics of animal- and

macroalgae-dominated communities characterised by different

intensities of herbivory [19,28,29,30]. Thus, variations in the

intensity of herbivory between different parts of a reef separated by

short distances (tens to hundreds of metres) can be greater than

differences among reefs that are many kilometres apart [31].

Despite the existence of such marked spatial patterns in herbivory

in coral reefs, we have a limited knowledge of the factors that drive

differences across reef gradients.

Early studies dealing with spatial patterns in coral reefs focused

on the distribution of marine plants, and highlighted the

importance of herbivory for maintaining differences among

habitats [17,19,28,32,33]. Other studies focused on the distribu-

tion of herbivores in different sections of the reef and found

marked variations in densities and species composition

[29,30,31,34]. Several mechanisms involving both abiotic and

biotic influences have been proposed to explain the striking

gradients in the intensity of herbivory observed on coral reefs

worldwide. Among the abiotic influences, wave exposure and

depth are considered to inhibit herbivory. Generally, herbivory is

often lowest in the first 1–2 meters of water because turbulence

associated with wave impact hinders the feeding ability of fish, and

it is usually greatest a few meters below the surface and decreases

thereafter at depths greater than 20 m [35,36,37]. In contrast,

structural complexity and availability of refuges are considered to

enhance herbivory [29,32,33,35]. In terms of biotic factors, large

grazers appear to aggregate in zones of high algal turf production,

although the mechanisms by which fish respond to productivity

are not clear [38]. Despite many such hypotheses having been

invoked to explain spatial variation of herbivory in coral reefs, few

studies have experimentally tested the importance of specific

mechanisms. Moreover, herbivory in coral reefs is a process that

involves a wide range of consumers with highly variable feeding

modes and diets and with contrasting ecological functions [39],

and there is a need to quantify and assess the impact of different

functional groups separately. For example, differences in turf algae

productivity may influence (and be influenced by) the distribution

of fishes that consume turf algae [38], but probably have no effect

on species that feed on macroalgae.

Roving herbivorous fishes have been clearly identified as the key

herbivores in undisturbed coral reefs [21]. However, they do not

constitute an ecologically uniform group, but can be broadly

classified into grazer and browser functional groups, depending on

their diet and mode of feeding [40,41]. Grazing taxa (including

scraping and excavating parrotfishes) typically feed on the epilithic

algal matrix (EAM sensu Wilson [42]) and crustose coralline algae,

and constitute the majority of herbivorous fishes on coral reefs. In

contrast, only a handful of species are considered to be browsers –

that is, species that consume large erect macroalgae [43,44,45,46].

Grazers and browsers are thought to play distinct and comple-

mentary roles in avoiding phase shifts towards macroalgal

dominance [40,47]. Grazers can preclude an increase in overall

algal biomass, prevent macroalgal growth by consuming macro-

algal recruits, and provide space for coral recruitment, while

browsers consume the adult brown seaweeds that typically

dominate coral reefs in the absence of herbivory, and therefore

have the potential to reverse phase shifts once macroalgae are

established in reefs [40,47]. Recent studies have highlighted the

importance of macroalgal consumption and have identified the

key species or functional groups responsible for this ecological

function [30,45,46,47,48], but we know little about the mecha-

nisms that control the distribution and abundance of these

browsers.

In this study, we quantified spatial patterns of macroalgal

herbivory by fishes across a coral reef, tested for similar spatial

patterns in potential explanatory variables, and then used

manipulative and mensurative experiments to test some hypoth-

eses arising from the patterns observed. We tested for the presence

of spatial variation in herbivory by quantifying consumption of

erect macroalgae and measuring the biomass and composition of

herbivorous fishes among a cross section of a coral reef (lagoon,

reef flat and outer reef habitats). We then related patterns in

herbivory to the spatial distribution of algal cover, algal biomass

and structural complexity in these three habitats. In the

manipulative and mensurative experiments, we selected two

habitats with contrasting levels of herbivory (reef flat and lagoon)

and used herbivore exclusion and feeding experiments to test

hypotheses about the mechanisms that might cause the observed

consumption patterns. In particular, we asked: (1) Does consump-

tion of macroalgae relate to spatial patterns in macroalgal

productivity, nutritional quality, community composition and/or

palatability? (2) Does herbivory influence macroalgal nutritional

quality? (3) Does benthic structural complexity and proximity to

reef influence the distribution of macroalgal herbivory?

Results

Seascape patterns in the distribution of herbivory,
herbivores, macroalgae, coral cover and rugosity

There was a significant difference in the rates of herbivory

(measured as consumption of tethered Sargassum) among habitats, a

pattern that was constant at all sites (Fig. 1, Table S1). No

consumption was recorded in the lagoon, whereas in the reef flat

and outer reef habitats we found similar rates of about 1–2 cm h21

(permutational analysis of variance [PERMANOVA] pair-wise

tests: Lagoon , Reef flat = Outer reef; p,0.02). Since Sargassum

was much more abundant in the lagoon than in other habitats (see

below), and consumption may depend on local availability of this

resource, we incorporated Sargassum availability into our analysis of

consumption by comparing a relative consumption index (RCI) for

this taxa across habitats, where RCI = proportion of Sargassum

consumed x proportion of Sargassum present (from algae biomass

Figure 1. Seascape patterns in the distribution of herbivory.
Length of Sargassum myriocystum lateral branches consumed per hour
(mean 6 SE) at lagoon, reef flat and outer reef habitats at each of the
experimental sites.
doi:10.1371/journal.pone.0017115.g001

Seascape Patterns in Coral Reef Herbivory
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results, data averaged at site level; method modified from the

‘global preference index’ used by Hoey and Bellwood [45]). We

found equally striking differences between habitats in RCI (F2, 6

= 15.89; p = 0.004; data not shown) as for rates of herbivory.

We found strong differences among habitats in total biomass of

all roving herbivorous fish and of browsing fish alone, a pattern

that was consistent at all sites (Table S2a, S2b). The reef flat and

outer reef habitats generally hosted an order of magnitude higher

herbivore biomass than the lagoon (Fig. 2a, 2b; PERMANOVA

pair-wise tests, p,0.05 for comparison between lagoon and either

outer reef or reef flat). The species composition of roving

herbivorous fish assemblages was different among habitats but

the nature of these differences varied among sites (significant

Habitat x Site interaction; Table S3a). Pair-wise comparisons

showed that roving herbivorous fish assemblages in the three

habitats were significantly different from each other at all sites

(p#0.002 for all comparisons), but within each habitat, assem-

blages were only similar among sites in the reef flat and outer reef

habitats, and not in the lagoon – i.e. the interaction was caused by

the greater degree of variability in the lagoon. Differences in the

composition of the browser fish assemblages between habitats were

less consistent across sites (significant Habitat x Site interaction

yielded by the PERMANOVA analysis: Table S3b), with

significant differences among all three habitats at two of the sites

(PERMANOVA pair-wise tests, p,0.05 for all comparisons), but

not at the other site, where only lagoon and reef flat assemblages

differed (PERMANOVA pair-wise test, p = 0.008).

Canonical analysis of principal components (CAP) of all roving

herbivorous fish yielded a high classification success of 93.1%

across all habitat types (i.e. only 6.9% misclassification error).

Correlations with CAP axis scores indicate that a high biomass of

Chlorurus sordidus was characteristic of the reef flat (Fig. 3a), where

the biomass of this species was about an order of magnitude higher

than that in the lagoon or outer reef. Although less abundant,

Siganus trispilos was also characteristic of the reef flat habitat. Scarus

frenatus, S. prasiognathos and S. rubroviolaceous characterised the outer

reef habitat, with average biomass for each species in the outer reef

20 times higher than those in the other habitats. No species were

identified as characteristic of the lagoon habitat; this habitat was

instead characterised by a low biomass of all species. CAP of

browser fish assemblages yielded a low classification success of

59.7% (Fig. 3b). Correlations with CAP axis scores indicated that

Figure 2. Seascape patterns in the distribution of herbivores, macroalgae, coral cover and rugosity. Data represent means 6 SE of (a)
total roving herbivorous fish biomass, (b) total browsing fish biomass, (c) algal cover, (d) algal biomass, (e) coral cover, and (f) rugosity.
doi:10.1371/journal.pone.0017115.g002

Seascape Patterns in Coral Reef Herbivory
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the outer reef tended to be characterised by high biomasses of Naso

unicornis and N. lituratus, while the reef flat was characterised by

higher biomass of Scarus schlegeli (Fig. 3b).

There were differences among habitats and sites in algal cover

(Fig. 2c; Table S2c) and among habitats in algal biomass (Fig. 2d;

Table S2d). Algal cover and biomass were higher in the lagoon

than in either the reef flat or the outer reef, which were similar

(SNK pair-wise comparisons: Lagoon . Reef flat = Outer reef,

p,0.05). Differences in macroalgal species assemblages among

habitats were not consistent among sites (significant Habitat x Site

interaction; Table S3c). Lagoon and outer reef habitats differed

significantly at all three sites (p,0.05), but comparisons of reef flat

habitat with lagoon and outer reef were not significant anywhere.

CAP yielded a classification success of 70.4% across all habitat

types (i.e. 29.6% misclassification error). The reef flat habitat

hosted high biomass of Lobophora variegata, Turbinaria ornata and an

unidentified filamentous green alga, whereas the outer reef habitat

was characterised by red algae belonging to the genera Amphiroa

and Amansia (Fig. 3c). The lagoon habitat was strongly char-

acterised by Sargassum species, which represented over 80% of the

total algal biomass in this habitat.

Coral cover differed among habitats, but the nature of this

difference varied among sites (significant Site x Habitat interaction;

Fig. 2e, Table S2e). Coral cover was always lower in the lagoon than

in any other habitat (0–5% overall cover; p#0.002 for all

comparisons), but differences in coral cover between reef flat and

outer reef were not consistent between sites. There were clear

differences in rugosity among habitats, a pattern that was consistent

at all sites (Fig. 2f, Table S2f). The lagoon was the least structurally

complex habitat, with rugosity values approaching 1 (mean all sites

0.9560.01; p#0.01 for all comparisons), whereas the outer reef had

similar rugosity values to the reef flat, which were ,50% more

structurally complex than the lagoon (Fig. 2f).

Relationships between macroalgal herbivory and other
variables

We found a near-significant logarithmic relationship between

site averages for measurements of macroalgal herbivory and algal

cover (Fig. 4a; F1, 7 = 4.958; p = 0.06; r2 = 0.415) but not between

macroalgal herbivory and algal biomass (F1, 7 = 3.26; r2 = 0.318;

p = 0.11). In addition, there were no significant relationships

between measurements of herbivory rates and total herbivorous

fish biomass (F1, 7 = 1.392; r2 = 0.166; p = 0.277), or browser fish

biomass (F1, 7 = 0.822; r2 = 0.105; p = 0.395). Rates of herbivory

were higher in the sites and habitats that were more structurally

complex, as reflected by a strong linear relationship between rates

of consumption of tethered Sargassum and rugosity (Fig. 4b; F1, 7

= 64.82; r2 = 0.90; p,0.001), where rugosity explained 90% of the

variance in consumption.

Experimental test of effects of habitat and herbivory on
algal consumption, productivity and chemical
composition

Herbivore exclusion experiments performed with Lobophora

variegata in high and low herbivory habitats (reef flat and lagoon,

Figure 3. Seascape patterns in the distribution of fish and
algae assemblages. Canonical analysis of principal coordinates (CAP)
comparing community assemblages of (a) all roving herbivorous fish,
(b) all browsing fish, and (c) macroalgae between sites (numbered
icons) and habitats (symbols): Triangles facing upwards = Lagoon;
Triangles facing downwards = Outer reef; Squares = Reef flat habitat.
Data were fourth-root transformed prior to ordination.
doi:10.1371/journal.pone.0017115.g003

Seascape Patterns in Coral Reef Herbivory
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respectively) showed that changes in algae biomass were strongly

influenced by the habitat in which thalli were deployed and

whether thalli were caged, as shown by a Habitat x Herbivory

interaction (Fig. 5a, Table S4a). In the reef flat habitat, caging had

an acute effect on biomass change: there was a net increase in

biomass of 30% inside cages, compared to a net decrease in

biomass of 30–50% in the partial and open cages (SNK pairwise

comparisons: Caged . Open = Partially Caged; p,0.01). In

contrast, caging had no effect on algal biomass in the lagoon

habitat, where there was a net increase in biomass of 30–60% in

all treatments (SNK pairwise comparisons: Caged = Open =

Partially Caged). The clear inference from this result is that

herbivores strongly reduced L. variegata biomass on the reef flat, but

not in the lagoon. No artefacts were associated with the structure

of the cages (SNK pairwise comparisons: Partially Caged Lagoon

= Open Lagoon, and Partially Caged Reef flat = Open Reef flat),

i.e. the presence of cages did not confound the interpretation of the

effects of herbivory on algal biomass. In the absence of herbivory,

there were no differences in L. variegata biomass accumulation

between habitats (Fig. 5a; SNK pairwise comparisons not

significant: Reef flat Caged = Lagoon Caged).

Nitrogen content was significantly higher in caged algae than in

open and partial cages (PERMANOVA pair-wise tests p,0.05)

(Fig. 5b, Table S4b), but the habitat in which algae were placed

had no effect on nitrogen content. In contrast, the availability of

nitrogen per unit carbon (C:N ratio) was not affected by caging but

was significantly influenced by the habitat in which algae were

placed, with highest C:N ratios found in algae transplanted to

lagoon habitats (Figure 5c, Table S4c).

Experimental test of palatability of algae from high and
low herbivory habitats

We detected no significant difference in area loss between

lagoon and reef flat morphotypes of Lobophora variegata after 5 days

of deployment (mean consumption (6 SE) reef flat morphotype

= 2.5761.14 cm2, lagoon morphotype = 2.1360.59 cm2;

t = 20.6359, df = 12, p = 0.537, 95% CI = 24.006, 1.416). The

two morphotypes did not differ in their nitrogen content (mean

nitrogen content (6 SE) reef flat morphotype = 1.2260.05%,

lagoon morphotype = 1.2160.02%; Welch’s t = 0.170, df = 4.657,

p = 0.873; 95% CI = 20.134, 0.153). The C:N ratio of the reef

flat morphotype tended to be lower than the lagoon morphotype,

although statistical differences between the two only approached

Figure 5. Experimental test of effects of habitat and herbivory
on algal consumption, productivity and chemical composition.
(a) Biomass change and (b) nitrogen and (c) carbon/nitrogen ratio of
Lobophora variegata transplanted to reef flat and lagoon habitats in
three experimental treatments designed to manipulate access by
herbivores (Caged, Open and Partially caged) after 6 weeks. Data
pooled across the three sites, bars represent means 6 SE.
doi:10.1371/journal.pone.0017115.g005

Figure 4. Relationships between rates of herbivory, algae cover
and rugosity. (a) Logarithmic relationship between herbivory rates
and algal cover. (b) Linear relationship between herbivory rates and
rugosity. All variables were averaged for each site.
doi:10.1371/journal.pone.0017115.g004

Seascape Patterns in Coral Reef Herbivory
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significance (mean carbon:nitrogen ratio (6 SE) reef flat

morphotype = 21.8760.3, lagoon morphotype = 23.6560.81;

t = 22.057, df = 8, p = 0.074). The 95% confidence intervals of

this near-significant result were relatively wide and non-symmet-

rical around zero (95% CI = 23.757, 0.214), suggesting that a

difference in C:N ratio may exist but was not detected by our test.

We found no differences among morphotypes in their phenolic

content (mean phenolic content (6 SE) reef flat morphotype

= 1.5660.1%, lagoon morphotype = 1.6060.24%; t = 20.151,

df = 8, p = 0.883; 95% CI = 20.643, 0.564).

Effect of proximity to reef on consumption of
macroalgae

Consumption of tethered Sargassum varied with increasing

distance from the boundary between the reef flat and lagoon,

and the nature of the differences among distances varied among

sites (significant Site x Distance interaction; Fig. 6, Table S5).

Nearly 100% of the tethered algae offered in the middle of the reef

flat (225 m) and at the reef flat/lagoon boundary (0 m) were

consumed at all sites (all SNK comparisons between sites not

significant). We found variable differences in consumption among

sites at distances between 5 and 50 m from the reef flat/lagoon

boundary, but at all sites there was no consumption at 75 m (SNK

comparisons between sites not significant). At two sites, there was

either very low or no consumption at 30 and 50 m from the reef

flat/lagoon boundary, but at the third site there was still high levels

of consumption at those distances (significant SNK comparisons

between site 1 and sites 2 and 3 at 30 m and 50 m).

Discussion

Herbivores operate in dynamic systems where they can both

generate spatial heterogeneity and respond to existing patterns in

space. In this study, we found marked spatial variation in the

abundance, composition and consumption of macroalgae across a

coral-reef seascape. Spatial patterns in macroalgal consumption

were best explained by differences in structural complexity among

habitats: herbivory was always highest in the most structurally

complex coral-dominated reef flat and outer reef habitats. In

contrast, the cover and biomass of macroalgae appeared to be

themselves influenced by consumption patterns, with habitats

supporting high biomass of herbivores also supporting low algal

abundance. Experimental exclusion of herbivorous fish in different

habitats supported the conclusion that these consumers exert a

strong influence on macroalgae in the structurally-complex reef

flat habitat, but not in the structurally-simple lagoon habitat. In

addition, algal consumption decreased to undetectable levels

within 75 m of coral structure into the structurally simple lagoon

habitat, where highly palatable macroalgae were abundant.

Although productivity and nutritional quality of plants can both

influence and be influenced by herbivory in terrestrial systems

[12,13,14], we found no evidence that these traits affect the

distribution of herbivory in the coral-reef seascape at Ningaloo

Reef.

Seascape patterns in the distribution of macroalgae,
herbivores and herbivory

The pattern of among-habitat differences in macroalgae cover/

biomass and in the composition of roving herbivorous fish in

Ningaloo Reef across distances of hundreds of metres is

remarkably similar to patterns observed across tens of kilometres

in coral reefs with different geomorphology, such as the Great

Barrier Reef (GBR). Macroalgal cover in the lagoon at Ningaloo

ranged between 10–80%, values that are similar to inner shelf

systems in the GBR (36–66%), while the outer reef at Ningaloo

(located about 1 km offshore) hosted ,10% algal cover, values

that are more similar to mid-shelf or outer-shelf reefs located 50–

100 km offshore in the GBR (0–15%) [34,41]. This pattern is also

apparent when comparing herbivorous fish biomass, which ranged

from ,1 kg/125 m2 in the lagoon to up to 20 kg/125 m2 in the

reef flat and outer reef, a difference that is in the same order of

magnitude as the disparity in roving herbivorous fish biomass

among inner-shelf and mid/outer-shelf reefs in the GBR [34,41].

The distinct spatial patterns in consumption of algae described

in this study are also similar to the GBR [30,33], as well as to reefs

found in the Caribbean [29,35,49], and in the Hawaiian Islands

[50]. Herbivory is always highest in coral-dominated habitats near

or at the reef crest, and decreases with either depth or distance

towards the inner sections of lagoons. This suggests that a similar

process (or combination of processes) may be controlling the

distribution of herbivory in different coral-reef ecosystems, despite

great variations in their geomorphology and physical influences.

Relationship between patterns in herbivory and
macroalgal distribution, productivity, nutritional quality
and palatability

We found a near-significant negative logarithmic relationship

between algal cover and algal consumption that suggests that the

cover of macroalgae is reduced under high herbivory conditions,

but it also depends on other factors under low herbivory

conditions. The conclusion that this relationship is causal, rather

than just correlative, is supported by the growth in macroalgae

with experimental exclusion of herbivores. We did not detect a

similar relationship between macroalgal biomass and herbivory,

probably because much of the algal biomass collected in our

quadrats was present under coral plates and in small crevices that

were effectively inaccessible to consumers, whereas algae surveyed

as percentage cover better reflect algae that is available to

herbivores.

Spatial patterns of macroalgal consumption were not related to

among-habitat differences in macroalgal production (measured as

biomass change) or nutrient content, since these algal traits were

similar in habitats with contrasting levels of herbivory. Experi-

Figure 6. Effect of proximity to reef on consumption of
macroalgae. Length of Sargassum myriocystum lateral branches
consumed after 48 hours (mean 6 SE) at increasing distances from
the reef flat/lagoon boundary in the three experimental sites.
doi:10.1371/journal.pone.0017115.g006

Seascape Patterns in Coral Reef Herbivory
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mental exclusion of herbivores resulted in very similar growth of

Lobophora variegata transplanted to the high herbivory reef flat and

low herbivory lagoon. Similarly, we did not find any among-

habitat differences in the nitrogen content of algae. We did,

however, detect some differences between habitats in the

availability of nitrogen per unit carbon, which tended to be

higher for thalli placed in the reef flat (i.e. lower C:N ratio). Lower

C:N ratios are generally associated with higher palatability, and

many marine herbivores are known to preferentially consume and

grow faster on diets with low C:N ratios [51,52]. However, in our

feeding preference experiment between reef flat-decumbent and

lagoon-ruffled L. variegata, the two morphotypes were equally

consumed, despite near-significant differences in C:N ratio. This

contrasts with the findings of Coen and Tanner [53], who found

striking differences in susceptibility to herbivory between the same

two morphotypes in the Caribbean and suggested that their

different morphologies were related to differential grazing

intensities in their respective habitats. However, these authors

also found greater chemical differences among morphotypes than

detected in our study, which may explain the discrepancy with our

results.

Differences in the algal assemblages from habitats with

contrasting levels of herbivory are consistent with the inference

that macroalgal consumers are influencing spatial patterns in

macroalgal community composition. The habitat with the lowest

rates of herbivory (lagoon) was characterised by high abundance of

palatable Sargassum species, which are readily eaten by macroalgal

browsers worldwide when accessible (pers. obs.; [45,54,55,56] and

are actively selected by siganids [57]. Of the algae that

characterised reef flat habitats, Turbinaria ornata is considered

unpalatable [58], while Lobophora variegata is consumed by browsers

to varying degrees (pers. obs.; [54,59,60,61,62]. Outer reef

habitats with similar levels of herbivory were characterised by

the red algae Amphiroa sp. and Amansia sp., both of which are

actively avoided by some siganids [57,63]. These findings are

consistent with other studies that show a restriction of palatable

species to areas of the reef with low levels of herbivory [33,64].

Feedback mechanisms between herbivory and algae
In many terrestrial systems, herbivores have a positive effect on

the plants they consume through enhancing nutrient recycling and

availability, a feedback mechanism known as grazing optimisation

[12,13,65]. However, in our cage experiments macroalgae that

were exposed to herbivores had the lowest nitrogen concentra-

tions. Our results are consistent with several marine studies that

show a short-term reduction in nitrogen content in seagrasses

grazed by fish and urchins [66,67]. This lack of a fertilisation effect

may be partly due to the fact that the localised input of nutrients

that occurs in terrestrial systems via the faeces and urine of

herbivores is likely to be reduced in the marine environment,

generally due to the dilution and dispersion of nutrients via water

movement. Indeed, the only marine examples where optimisation

effects have been recorded through excretion of nitrogenous

wastes of herbivores are from shallow, poorly flushed systems [68].

Other examples of grazing optimization effects in the marine

environment come from systems dominated by specialist herbi-

vores such as turtles, who generally raise the nitrogen content of

seagrasses through increasing the proportion of nutrient-rich new

foliage by repeated cropping [69,70,71]. Additionally, herbivores

can also indirectly enhance the nitrogen content of macrophytes

by inducing bacterial nitrogen fixation either through sediment

disturbance (e.g. effects of dugongs on seagrass meadows; [71]) or

by removing algal recruits and facilitating dominance by rapidly

colonising nitrogen-fixing cyanobacteria [72,73]. While the lack of

nitrogen enhancement of transplanted algae in our cage

experiment could be partly due to the short duration of the trial

(6 weeks), the fact that we found no differences in the nitrogen

content of Lobophora variegata specimens from habitats with

contrasting levels of herbivory (lagoon and reef flat morphotypes)

indicates that potential differences in nitrogen fixation or other

nitrogen uptake mechanisms between habitats are not having an

effect on macroalgal nitrogen content in Ningaloo Reef.

Herbivory patterns explained by structural complexity
In this study, structural complexity was identified as the key

feature mediating spatial patterns of macroalgal consumption by

fish. This conclusion is supported by three lines of evidence: (1)

different outcomes from experimental exclusion of herbivorous

fish in structurally-complex reef habitat and structurally-simple

lagoon habitat; (2) a strong linear relationship between macroalgal

consumption and structural complexity; and, (3) a decrease in

herbivory with increasing distance from structurally-complex reef

habitat. These results are consistent with other studies that have

shown an increase in herbivore density and grazing rates with

topographical complexity [33,49,74,75]. Although there is a lack

of experimental studies identifying the specific causes that link

herbivory and structure, availability of shelter or refuges, increased

diversity of microhabitats and resource partitioning are thought to

be key influences [76]. Complex habitats can reduce predation by

providing shelter [77], lower competition through increased niche

availability [78,79], and provide specific settlement habitat for

larvae [80]. Nevertheless, greater structural complexity is not

associated with higher herbivory at all spatial scales. For example,

herbivory is lower within branching coral habitats that are highly

structured at small scales (cm) than in nearby planar coral habitats

[62].

Understanding the mechanisms that drive spatial patterns of

ecological processes in coral reefs is particularly important for the

management of these systems, because the ability of individual

coral reefs to reorganise and maintain ecosystem function

following disturbance is considered to strongly depend on the

matrix of adjacent reefs and habitats in the surrounding seascape

[81,82]. This study highlights the importance of structural

complexity in establishing spatial patterns of macroalgal fish

herbivory, an ecological process of key importance that can

reverse phase shifts when algae overgrow corals following

disturbances [47]. Structural complexity thus emerges as a critical

feature of reefs that is essential for the healthy functioning of the

ecosystem.

Materials and Methods

The Department of the Environment and Conservation of

Western Australia provided a permit to the authors during 2008–

2009 to perform this study within the Sanctuary Zones of the

Ningaloo Marine Park (Permit Number CE002084) and to collect

flora samples (Permit Number SF006457).

Study area
This study was conducted at Ningaloo Reef (Western Australia),

a fringing reef approximately 290 km in length. Ningaloo Reef is

an arid-zone reef where extensive coral reefs occurs in close

proximity to the mainland. The study was conducted between

April 2008 and September 2009 in the Mandu (22u 069 S, 113u
529 E) and Maud (23u 079 S, 113u 449 E) sanctuary zones of the

Ningaloo Marine Park. At Ningaloo, the reef crest is narrow and

mostly devoid of coral growth, the reef flat landward of the reef

crest hosts coral communities across a width of approximately

Seascape Patterns in Coral Reef Herbivory
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150 m, and the outer reef slopes seaward of the reef crest

presenting a well-developed spur and groove morphology to

depths of 30 m [83] (Fig. S1). In the Mandu sanctuary zone, the

reef encloses a lagoon that is about 1 km in width. In the Maud

sanctuary zone, the width of the lagoon ranges more widely from

1.7 km to 7 km. In each location, the lagoon is populated with

sparse corals, sandy substrata and patches of macroalgae. The

tides in the area have a maximum ,2 m range at spring tides.

Most of this study took place in the Mandu sanctuary zone,

where we haphazardly selected three study sites in each of three

habitats that characterise the area: lagoon, reef flat and outer reef

(Fig. S1). We performed one experiment (on the effects of reef

proximity on macroalgal removal) in the Maud sanctuary zone,

where we haphazardly selected three study sites at the boundary

between the reef flat and lagoon, with each site located about

250 m apart.

Patterns in rates of consumption of macroalgae among
habitats

Relative differences in consumption of erect macroalgae

between lagoon, reef flat and outer reef habitats at all Mandu

sites were measured in April 2008 using tethered pieces of

Sargassum myriocystum. This brown alga is rapidly eaten (within

hours) and has a relatively simple morphology, which allowed us to

estimate biomass loss from differences in length before and after

deployment. S. myriocystum plants bear 3–6 main lateral branches

per individual, and each of these has a consistent length-weight

relationship (148.0169.241 mg/cm). Patterns of herbivory were

determined by placing lateral branches of S. myriocystum of 15 cm

in length and similar weight (mean 2.1360.19 g; n = 26) in three

sites at each of the lagoon, reef flat and outer reef habitats. In each

site, S. myriocystum lateral branches (n = 25) were distributed

haphazardly and tethered to the available substrata using cable

ties. In the lagoon habitat, branches were either tethered to other

macroalgae or to lose pieces of dead coral on the sand at around

1.5 m depth. In the reef flat habitat, branches were mostly

tethered to pieces of dead coral covered in epilithic algal matrix

adjacent to live corals, at 1–2 m depth. In the outer reef habitat,

branches were mostly tethered to coral pieces and crustose

coralline rocky surfaces at about 6 m depth – the shallowest depth

that we could easily access in regular swell conditions. Tethered

algae were collected 4–7 hours after deployment, and mass

consumed was estimated from the total length consumed, and

converted to mass consumed per hour. Some tethered algae

became detached and lost, leading to an unbalanced data set (final

n ranged from 17 to 25 depending on site). Replicates where algae

became wholly detached were not included in the analysis because

we could not be sure that detachment was due to herbivory.

Patterns in biomass and species composition of
herbivorous fish among habitats

Censuses of the herbivorous fish assemblage were carried out

during a two-week period in November 2008 at three sites in each

of the three habitats in the Mandu Sanctuary zone (Fig. 1). Fishes

were counted along eight 2565 m haphazardly placed transects

per site during daylight hours (avoiding 2 hours after sunrise and

before sunset). Fish counts were performed swimming at a

constant speed (ca. 8 minutes per 25 m transect) and counting

and estimating the size of fish within 2.5 m of either side of the

transect line. Fishes were identified to species level and their total

length was estimated in 5 cm size categories. Size estimates were

validated using objects of known length. Length estimates for

individual fish were converted to biomass using the allometric

length-weight conversion W = a * TLb, where W is weight in

grams, TL is total length and parameters a and b are constants

obtained from the literature [84]. We restricted our counts to

mobile herbivorous and ‘nominally’ herbivorous fishes, excluding

pomacentrids [85]. We identified 25 species from the families

Acanthuridae, Siganidae, Kyphosidae and Labridae (parrotfishes).

These data were analysed in two ways: one including all species of

roving herbivorous fish and one including only species that are

considered to be browsers (consumers of macroalgae). Of the

species recorded, 11 taxa were identified as browsers of erect

macroalgae based on gut content analyses [86] and direct

observations on remote video cameras (unpubl. data): Kyphosus

vaigiensis, Naso lituratus, Naso spp., Naso unicornis, Scarus ghobban, S.

schlegeli, initial-phase Scarus sp., Siganus argenteus, S. doliatus, and S.

trispilos.

Patterns in cover, biomass and species composition of
macroalgae among habitats

To determine whether spatial patterns in macroalgal herbivory

were related to macroalgal distribution, we measured algal cover,

algal biomass and community composition at each site at Mandu

in November 2008. Algal cover was quantified using the line

intercept benthic survey method described by Fox and Bellwood

[30]. We conducted a total of 6 replicate transects (total of 30

points per replicate) in each of the habitats at the three sites.

Macroalgal biomass and community composition were mea-

sured by clearing three 0.25 m2 haphazardly placed quadrats of all

macroalgae (arbitrarily defined as algae with thallus larger than

1 cm) at each site. Algal samples were bagged and returned to the

laboratory, where they were sorted to genus level (where possible)

and weighed. Algal taxa that we were unable to identify were

classified according to broad functional groups (brown, green or

red; filamentous, encrusting or foliose).

Patterns in coral cover and structural complexity
To determine whether patterns in consumption of macroalgae

were related to topographic complexity, we measured coral cover

(which provides three-dimensional structure and potential refuges)

and estimated a rugosity ratio (n = 3) at each site. Live coral cover

was quantified using the line intercept benthic survey method

described above for algal cover. To measure rugosity, a 10 m light

chain was placed along the substrate contour, and the equivalent

straight line horizontal distance encompassed by the 10 m of chain

was measured (n = 3). The rugosity ratio (R) was calculated as the

straight line horizontal distance along the reef divided by the total

chain length, with values close to unity indicating a flat substratum

and lower values indicating a structured habitat [87].

Experimental test of effects of habitat and herbivory on
algal consumption, productivity and chemical
composition

A transplant experiment was set up to determine the effects of

habitat on the consumption and growth of algae and to assess the

interactive effects of habitat and herbivory on algal chemical traits.

The experiment took place over 6 weeks from April to May 2008

in the Mandu sanctuary zone. Specimens of Lobophora variegata

(ruffled morphotype, sensu Coen and Tanner [53]) were randomly

collected from a lagoon location and placed on reef flat and lagoon

habitats under caged and uncaged conditions. This species was

chosen because it is commonly found in all coral-reef habitats and

because preliminary feeding trials showed it was consumed at a

lower rate than other macroalgae (unpubl. data), thus making it

more suitable for long-term transplant experiments than other
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species that are consumed within hours when placed in the reef

flat. Three L. variegata thalli were placed within each plot. All plots

were randomly distributed and placed about 3–5 m apart from

each other.

We used triangular cages of 1082 cm2 (equilateral triangle with

sides of 50 cm and 50 cm in height). Open (uncaged) plots were

marked with steel reinforcing bar along the corners. In caged plots,

fences and roofs were made with plastic-coated metal mesh

(2.5 cm mesh size), thereby excluding large herbivorous fish.

Partial cages consisted of steel reinforcing bars along the corners

with one fenced side and a roof, and were used to control for cage

artefacts. All plots had a base of plastic coated mesh to which thalli

were attached. The experiment ran for 6 weeks, and the cages

were cleaned of fouling organisms once after 2 weeks, although

these were not abundant. We recorded blotted wet-weight of algae

(n = 3) at the beginning and at the end of the experiment and

calculated biomass change.

At the end of the experiment, algal thalli were freeze-dried and

ground. Nitrogen and carbon content of individual thalli were

analysed using a Europa Scientific ANCA-NT 20-20 mass

spectrometer. Where possible, L. variegata sections of intermediate

age (i.e. equidistant from holdfast and thallus edge) were used in

the chemical analyses, and care was taken to gently remove any

epibiota. Some thalli were so heavily grazed that we used the

entire thallus in the analysis, and in some instances we did not

have enough mass to conduct chemical analyses, leading to an

unbalanced data set.

Experimental test of palatability of algae from high and
low herbivory habitats

We compared the palatability and chemical composition of

Lobophora variegata from high and low herbivory habitats (reef flat

and lagoon, respectively) with an experiment performed in April

2008 in the Mandu sanctuary zone. Lagoon and reef flat habitats

are characterised by hosting different morphotypes of L. variegata.

As in other coral-reef ecosystems, an erect ruffled form (hereafter

referred to as ‘lagoon’ morphotype) is usually found on sandy

substrata where herbivores are less abundant, whereas the flat

decumbent form (hereafter referred to as ‘reef flat’ morphotype) is

usually found underneath coral plates in coral-dominated habitat

where herbivores are often more common [53]. The lagoon and

reef flat morphotypes of L. variegata were offered in pairs of similar

initial area in the reef-flat habitat, where we recorded highest

herbivore activity. Replicate pairs (n = 15) were at least 3 metres

apart from each other. An equal number of controls (n = 15) were

individually protected from herbivores with plastic window-screen

mesh cages (3 mm mesh size). L. variegata pairs were left in the field

for five days. Replicates with one or two wholly detached algae

were not included in the analysis because we could not guarantee

that detachment was due to herbivory. Photographs of each algal

specimen were taken at the beginning and at the end of the

experiment and consumption was measured as changes in area

determined using ImageJ analysis software. Five additional thalli of

each morphotype were collected at the beginning of the

experiment for carbon, nitrogen and phenolic chemical analyses

to further identify potential differences in nutritional traits between

habitats. Total phenolic content was quantified spectrophotomet-

rically using a modified Folin-Ciocalteu assay [88].

Effect of proximity to reef on consumption of
macroalgae

To test the effects of proximity to reef on macroalgal removal,

we tethered Sargassum myriocystum lateral branches at a range of

distances from the reef flat/lagoon boundary and measured the

amount of algae consumed after 48 hours. We predicted that if

structural complexity positively influences herbivory, the rates of

macroalgal removal would be higher near the structurally complex

reef flat habitat than in the flat lagoon habitat. This experiment

was performed in the Maud sanctuary zone. We were unable to

perform this experiment in the Mandu sanctuary zone because the

reef flat/lagoon boundary in that part of the Ningaloo reef is

diffuse, with isolated coral heads scattered irregularly near the

boundary. In contrast, the reef flat and lagoon habitats are clearly

defined at Maud. These two sanctuary zones have similar rates of

macroalgal removal and a similar herbivorous fish assemblage

(Michael et al., unpublished data). Sargassum myriocystum (n = 3)

lateral branches of about 40 cm in length were tethered at 9

distances relative to the reef flat/lagoon boundary (225, 0, 5, 10,

15, 25, 30, 50 and 75 m) at each of three separate sites. Replicates

within each distance per site were approximately 15 m apart and

parallel to the reef flat/lagoon boundary, and sites were

approximately 250 m apart. The length of each individual S.

myriocystum lateral branch was measured at the beginning and at

the end of the experimental period. Since sand was the most

common substrate away from the reef, S. myriocystum lateral

branches were tethered to lose pieces of dead coral that were

buried in the sand.

Statistical analyses
All data were checked for normality and equality of variances by

visual inspection of scatterplots and distribution of residuals [89].

Where appropriate, data were transformed to conform to

parametric assumptions. When assumptions of normality could

not be met, the significance of effects was assessed by permutation

[90].

Patterns in consumption of tethered algae, total fish biomass,

coral cover and in the species composition of herbivorous fish and

algae communities were analysed using PERMANOVA testing for

differences between sites (3 levels, random factor) and habitats (3

levels, fixed factor). Patterns in the cover and biomass of

macroalgae and in rugosity were analysed using analysis of

variance (ANOVA) with the same design. When significant

differences were detected between main effects in ANOVA,

Student-Newman-Keuls (SNK) tests were used to resolve the

differences among means.

Bray-Curtis distance was our metric in all multivariate analyses

and data were fourth-root transformed prior to analyses to reduce

the effects of numerically large values (i.e. abundant schooling

species) [91]. Multivariate differences of fish and algae commu-

nities between sites and habitats were visualised using CAP. This

procedure produces a constrained ordination and presents data on

the axes chosen to best distinguish groups in the data [92]. CAP

also provides misclassification errors by carrying out a leave-one-

out allocation of observations to groups (habitats), thus indicating

the robustness of the classification. In addition, species with the

highest contribution to differences among habitats were identified

as those that had the highest absolute Pearson correlation with the

canonical axis from the CAP analysis. A correlation of r .0.4 was

used as an arbitrary cut-off to display potential relationships

between individual species and the canonical axes.

We used regressions to determine whether rates of herbivory

matched patterns in algal cover, algal biomass and rugosity, and to

assess the relationship between herbivory rates and roving

herbivorous and browser fish biomass. All data were averaged at

the site level. Linear, polynomial and logarithmic regressions were

fitted to the data, and the significant regression that best-fit the

data was selected using Akaike’s Information Criterion.
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In the herbivore exclusion x habitat experiment, changes in

biomass and chemical composition in L. variegata after 6 weeks

were analysed using a four-way ANOVA, testing for differences

among sites (3 levels, random), habitats (2 levels, fixed), large

herbivore-exclusion treatments (termed ‘herbivory effect’ through-

out; 3 levels, fixed) and plots (3 levels, random and nested in the

interaction of Site x Habitat x Herbivory). Differences in feeding

between lagoon and reef flat L. variegata were analysed using a t-test

as outlined by Peterson and Renaud [93] to adequately

incorporate controls for mass changes not due to consumption.

The t-statistic was calculated by comparing the between-food

differences in loss of mass of treatments (Choice 1 – Choice 2, with

herbivores) with the between-food differences in loss of mass of

control replicates (Choice 1 – Choice 2, without herbivores).

Differences in macroalgal chemical traits between morphotypes

were analysed using two-sample t-test when variances were

homogenous or Welch’s t-test otherwise. Confidence intervals

(CI) at 95% of t-test results are presented to assess the validity of

non-significant results following Colegrave and Ruxton [94]. The

effects of proximity to reef on macroalgal removal were analysed

using a two-way ANOVA testing for differences among sites (3

levels, random) and distances (9 levels, fixed).

All PERMANOVA and multivariate analyses were performed

using Primer-E v6 software [95] with the PERMANOVA+ add-on

package (version 1.0.1; [96]). All ANOVAs were performed using the

statistical package GMAV5 (coded by A. J. Underwood and M. G.

Chapman, University of Sydney, Australia). T-tests and regression

analyses were performed using R software (Version 2.9.0) [97].
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