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SPATIAL PATTERNS IN HOUSEHOLD DEMAND 

BY ANNE C. CASE' 

In this paper I discuss economic processes that may give rise to spatial patterns in data, 

and explore the relative merits of alternative modeling approaches when data are spatially 
correlated. Specifically, I present an estimation scheme that allows for spatial random 

effects, and focus attention on cases in which such a framework may be preferred to the 
more general fixed effects framework that nests it. I use the models presented, together 
with information on the location of households in an Indonesian socio-economic survey, 
to test spatial relationships in Indonesian demand for rice. 

KEYWORDS: Spatial correlation, Moran I statistics, random effects models, fixed effects 
models, SUSENAS. 

1. INTRODUCTION 

MANY ECONOMIC PROCESSES have spatial aspects. Unobservable variables may 

be spatially correlated and thereby produce spatial correlation in the errors of 
equations describing economic behavior. Examples are climate, soil quality, 
or the availability of substitute goods that are not recorded in data sets. In 
addition, if households directly gain utility in consuming bundles similar to 
those consumed by their neighbors, one may observe spatial correlation in 
household behavior.2 

In many cases, fixed effect models can be used to control for spatial compo- 
nents. This can be done, for example, by incorporating either household level 
effects into a demand equation, using panel data, or village level effects, using a 
cross-sectional demand survey.3 This strategy for controlling spatial effects is 
often a suitable one. 

There are, however, some cases in which a spatial modeling framework may 
be more appropriate. There may be no intraregional variation in a variable of 
interest, for example when price depends upon distance from some point. When 
this is true, the responsiveness of demand to changes in such variables cannot 
be examined in a fixed effect framework. The variables of interest are perfectly 
correlated with the fixed effects. In other cases, there may be specific interest in 
the spatial components themselves. For example, in testing the extent to which 
households look to a reference group when making decisions, the magnitude 
and direction of interactions between households may be of primary impor- 
tance. This information would be difficult to extract from a fixed effect frame- 
work. Finally, if a spatial process is responsible for regional effects, a spatial 

II thank David Card, Angus Deaton, Mark Gersovitz, Ann Harrison, Larry Katz, Daniel Sichel, 
and anonymous referees for comments on an earlier draft. 

2 In Linear Expenditure Systems developed by Gaertner (1974) and Pollak (1976), and in an 
Almost Ideal Demand System estimated by Alessie and Kapteyn (1985), the behavior of other 
households affects a given household's behavior through social proximity. Such a metric may also be 
used with the model presented below. Future work might also incorporate a dynamic process 
through which learning occurs. 

3 For example, Deaton (1987) models household demand with a cluster specific fixed effect. 

953 



954 ANNE C. CASE 

model that constrains random effects to be spatially correlated is more efficient 
than a fixed effect model that does not. 

This paper examines spatial models that may be preferred to fixed effect 
models when spatial parameters are parameters of interest or when fixed effect 
modeling is infeasible or inefficient. Section 2 discusses tests for the presence of 
spatial patterns in economic data, and economic processes that may induce such 
patterns. In addition, it presents an estimation scheme that allows for spatial 
interaction among households. Section 3 nests the spatial models in a more 
general fixed effect framework, and discusses cases in which one framework may 
be preferred to the other. Section 4 presents an example of spatial modeling. 
Information on the location of households in an Indonesian socio-economic 
survey is used to explore spatial relationships in Indonesian demand for rice. 

2. SPATIAL MODELS 

Spatial patterns can often be described in terms of spatial correlation, the 
positive or negative correlation of a variate between neighboring regions of a 
surface. One can test for spatial correlation on any surface that has been 
divided into nonoverlapping contiguous districts. In Figure 2.1, a map of Bali 
Province in Indonesia, districts sharing a boundary are said to share a join. In 
this figure, a first order spatial process can be characterized by the relationship 
between the value a variate Y takes in one district and the value it takes in 
joining districts. For example, a first order relationship between district 2 and its 
neighbors, districts 1, 8, and 3, can be described: 

Y2= Y1 + Y8+ Y3+E2 

where 8 is a vector of identically, independently distributed errors, and sub- 
scripts refer to districts.4 

Spatial correlation in a variate may not, by itself, be of much interest. For 
example, if wealthier households tend to live in the western districts of Bali 
Province, then there would be little information in finding that demand patterns 
in the western districts resemble each other. Instead, it would be more useful to 
test for spatial correlation in the residuals of a regression that removed wealth 
effects, such as equation (2.1): 

(2.1) Y=Xf + E. 

The simplest test for spatial correlation is the Moran I (MI) statistic (Moran 
(1950)), which can be used with (2.1) to measure covariance in errors between 
joining districts relative to the variance in errors in a given district. Assigning 
unit weight to all joins (wii = 1 if districts i and j share a join) and zero weight 

4See Cliff and Ord (1981), Griffith (1988), or Anselin (1988) for an introduction to stochastic 

spatial processes. 
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a~~~~~~~~~~~~~~ 

Res iduals by Di strict 

FIGURE 2.1 

Weights used in the analysis of spatial correlation 

between Indonesian districts, Bali province 

BALI DISTRICTS 

d=l d=2 d=3 d=4 d=5 d=6 d=7 d=8 

d= 1 0 .5 0 0 0 0 0 15 
d=2 .33 0 .33 0 0 0 0 .3 
d=3 0 .25 0 .25 0 .25 0 . 
d= 4 0 0 .33 0 .33 .33 0 0 
d= 5 0 0 0 .33 0 .33 .33 1 

d= 6 

0 0 

.2 .2 .2 0 .2 
. 

d= 7 0 0 0 0 .5 .5 0 0 

d=8 ,.25 .25 .25 0 0 .25 0 0 

the MI statistic for the residuals of model (2.1) is 

where ud is the average of residuals for observations in district i, J is the total 
number of joins, and d is the total number of districts. 

Under the null hypothesis that errors are identically, independently dis- 
tributed normal variates, the Pitman-Koopmans theorem can be used to evalu- 
ate the moments of the MI statistic. Under fairly weak assumptions, the MI 
statistic is asymptotically normally distributed. (See Appendix One.) 

A significant MI statistic is consistent with several spatially regressive struc- 
tures. Many of these appear as special cases of the following model: 

(2.2) Y=WY+Xl+ u= (I-W) Xl + (I-2 W) u, 

u =iWu +p +e = (It ) + (I-TW)'e. 

For T households in N districts, W is a (TN X TN) weighting matrix that 
assigns to households in district i the average value of variate Y in districts 
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surrounding district i.5 An example of such a weighting matrix is given in Figure 
2.1 for Bali Province for the case of one observation per district. In this 
example, all neighbors of a district are given equal weight, and all districts are 
equally influenced by their neighbors taken together [1jwij = 1]. These assump- 
tions may be altered if more information about the relative importance of 
neighbors is available. The coefficient 4 measures the extent to which house- 

holds are emulating their neighbors, gaining utility by consuming bundles 
similar to neighbors' bundles (WY). 

In (2.2), the error term u has three components. E is a (TN x 1) vector of 
random errors, with E(E) = tTNO, Var (E) = o2I, and E(X'E) = tkO. 9 is a non- 

spatial district specific error. For household k in district i, E(Gp) = 0; E(pkp1) 

=c if j E i; else E(Gp0p) = O. In this section, it will be assumed that E(X'p) 
= tkO. Potential correlation between explanatory variables X and the district 
specific error component p will be discussed in Section 3. In addition to p and 
8, the error in equation (2.2) contains a spatial error term (rWu), with the 
interpretation that the error terms for observations in any district i contain r 

times the average error found in districts surrounding district i (Wu). Spatial 
correlation in errors (r # 0) may result when unobserved spatially correlated 
variables drive demand. Any unobserved regional differences, such as unob- 
served differences in the availability of substitute goods or in regional economic 

conditions, may result in unobserved errors being different in different parts of 
a country, but related in nearby areas. 

In addition, for neighboring districts i and j, I assume that district i's right 
side variables are uncorrelated with j's errors. For this reason, district i's 

conditioning variables affect j's consumption only through their effect on i's 

consumption. Correlation between i's conditioning variables and consumption 
in j, net of the effect of j's own conditioning variables, identifies 4. After 

controlling for the direct effect of neighbors' consumption, the residual correla- 

tion between consumption in districts i and j identifies r. 
For a model with error components (irWu + p), given 4 = 0, ordinary least 

squares estimation is inefficient. If OLS is performed without error correction, 
the parameter estimates / are still unbiased, but the variance estimates are 

biased and may lead to faulty inference. Furthermore, standard random effects 

modeling that ignores the spatial component of the error is also inefficient. 
The presence of the term JWY in model (2.2), representing the influence 

neighbors have on demand through their behavior, has important effects both 
on the estimation and the interpretation of the coefficients. If the ordinary least 
squares estimator / = (X'X)-'X'Y is used when the true model is (2.2), and 4 
is not equal to zero, the parameter estimates of /3 will be biased and inconsis- 

tent, even when r = 0. 

5 (I_W) is invertible for all {4 I -<1 <4 <1). One can prove this by demonstrating II - WI 

=Hj(l - kej), where ej is the jth eigenvalue of W, and proving that - < ej for all eigen- 
values, ej. 
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In addition, the presence of these interaction terms alters the interpretation 
of the /3 coefficients. In the absence of interaction terms between districts, the 
effect on the dependent variable of a change in the kth explanatory variable is 

f3k. However, with interaction between districts, the effect of a change in the 
kth explanatory variable is COifk, where C" is the (i, i) element of (I - W)-1. 
A change in an exogenous variable in district i affects demand in district i, 

which also affects demand in district i's neighbors. Demand in district i changes 
both because of the change in the explanatory variable, and also because of 

change in its neighbors' demand. These interaction effects are captured in 

(I - W) -1, and vary between districts. In a restricted way, then, the model 

allows the effect of a change in an exogenous variable on the dependent variable 
to be district specific. 

Because ordinary or generalized least squares estimation of (2.2) leads to 
biased and inconsistent parameter estimates if 4 is not equal to zero, maximum 
likelihood estimation is used. The log likelihood function for (2.2) is 

-TN N 1 N 

(2.3) L = 2[In (27)] + InJA I +lIn I Cl - - In IVI - - 
G'V-'Gi 

2 2 2i-l 

where 

Gi-Y-( ? +)WY? ( 4r) W2Y-Xi3 + ,rWXf3 

Yi and Xi are (Txl) and (Txk) observations from district i. Wi are the 

(T X TN) rows of matrix W that correspond to observations in district i; Wi2 are 

the analogous rows of W2; [ln JA I + ln IC I] is that part of the Jacobian of the 

transformation from errors into Y due to spatial components, with A = 

(I - rW), C = (I - 4W); and for each district the inverse of the variance- 

covariance matrix of (e + Sn) is 

V-1=i IT- 2?2 L]t1 

The asymptotic variance-covariance matrix for [fo7, 7,l3, b ] is given by the 

inverse of the information matrix. 
I use an iterative procedure to obtain the maximum likelihood estimates. I 

obtain estimates of /, 4, and r from a spatial model that constrains nonspatial 
district effects to be zero ('p = 0). In this case, V = o2I, and the likelihood can 

be concentrated with respect to 8 and maximized with respect to 4 and r. From 

these estimates of (,3, 4, r) and the first order conditions of likelihood (2.3), I 

obtain estimates of O.E2 and j2: 

^2 1 NG(I 1\') 
=N(T- 1) i T TJ1 

iN 1 
A2 E GU.2 _62, 

N i-1 T ' 
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where Gi is Gi evaluated at the updated estimates for (, 4, r), and Gi is the 

mean of Gi. I use these estimates of 6r2 and 
A 

2 to find the values of /, 4, and r 
that maximize (2.3). I then use these estimates to update a 7 and (J2, and repeat 

this process until convergence. 

Under the assumption that the parameters (f3, 4, ,) are independent from 

those in V, v = (o-, o-A), and that the values of v that maximize the likelihood 

are such that: (i) det V > A > 0; (ii) V is nonnegative definite; and (iii) v'v < M 

for arbitrary positive numbers A and M, the iterative procedure converges to a 

solution of the first order maximizing conditions of the likelihood function. This 

is proven through simple extension of Oberhofer and Kmenta (1974). 

In deriving large sample approximations for the estimators, the number of 

districts is held constant. Instead the sample size increases by increasing the 

number of observations per district. As a result, estimates obtained for /3, r, , 
and o-?7 are consistent and asymptotically efficient. 

One can test for the presence of spatial correlation in errors and a spatially 

correlated dependent variable by using Wald, Lagrange multiplier, or likelihood 

ratio tests of the hypothesis that f or r equals zero. 

The likelihood and the parameter estimates from spatial models can also be 

compared with those from a fixed effect model that does not constrain the 

effects. Such a fixed effect model is discussed in the next section. 

3. A NESTING FIXED EFFECT MODEL 

Spatial models embedded in (2.2) are random effects models, where part of 

the effects are restricted to be correlated in space and the error remaining, 

[sD + e], is assumed to be uncorrelated with the right-hand-side variables. Model 

(2.2) can be rewritten: 

(3.1) Y=X,8 + E + [4WY+YrWu + ?p] =X,8 + f +f 

where the term in brackets is identical for every observation within a district. f 
is a (TN x 1) vector of constrained random effects. For observation k in district 

i, (2.2) restricts f: 

(3.2) fk = [OWkY+ 1JWkU + (?i 

where Wk is the kth row of weighting matrix W. That is, model (2.2) assigns to 

the random effect of each observation within a district: f times the average 

value of Y in districts surrounding the observation's district plus r times the 

average error in districts surrounding the observation's district plus a nonspatial 

district specific error 'pi. 
For this reason, the /8 parameters of (2.2) can be estimated using a least 

squares dummy variable estimator of the corresponding fixed effect model: 

(3.3) Y=X,8+Do+E 

where D is a (TN x (d - 1)) matrix of dummy variables. 

There are cases in which fixed effect modeling may be preferred to spatial 

modeling. Fixed effect models relax a key assumption of the spatial models. In 
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its assumption that conditioning variables are uncorrelated with error sD, the 

spatial model (2.2) is a special case of a more general model that does not 

maintain this assumption. In those cases in which E(X'\o) # tkvO the parameter 

estimates from the spatial models will be inconsistent. A Hausman test of the 

difference between the estimates from the spatial model and those from a fixed 

effect model tests for the presence of such correlation. The fixed effect model is 

inefficient in the absence of correlation between conditioning variables and 

district specific errors, but provides consistent estimates in their presence. 

While there are cases in which fixed effect models may prove to be superior, 

there are also cases in which subsuming spatial effects within fixed effects results 

in a real loss in information. For example, a research goal may be the 

determination of appropriate reference groups in demand. The appropriateness 

of different weighting matrices for neighbor assignment, W, can be tested in 

the spatial framework above by nesting different weighting matrices, say W 

and W2: 

W= aW' + (1-a)W2 

and varying a between 0 and 1 to maximize the likelihood (2.3). While these 

neighbor assignments may be based on geography, as in the example above, they 

need not be. In addition, one may test whether households mimic their demo- 

graphic neighbors, their neighbors in income space, or some combination of the 

above. For example, if reference group is thought to depend upon income, 

distance between any two districts i and j could be measured: Oij = 1/I income 

i - income jI, for i 0j, normalized so that Ejzij = 1. The information of who is 

influenced by whom may be harder to extract from fixed effects. While choice of 

metric to measure distance in any given variable is arbitrary, in research based 

on U.S. states using other states as reference points, Case, Hines, and Rosen 

(1989) found their answers were insensitive to the metric chosen. 

In addition, spatial models distinguish the extent to which influence from the 

reference group is registered. A value of 4 near zero suggests neighbors have 

little influence, while a value of . near 1 or - 1 suggests that households are 

strongly influenced by neighbors' purchases. The value of 4 may vary between 

different goods, suggesting that for some purchases households are sensitive to 

consumption in a reference group, but for other purchases they are not. 

Moreover, one might be interested in testing whether neighbors' influence is 

stronger within certain income groups, or in a particular age range. Estimates of 

0 are provided by spatial models, but not by fixed effect models. Subsuming 0 
in the fixed effects in those cases where it is a parameter of interest results in an 

information loss. 

Furthermore, for policy purposes one may wish to control behavior through 

manipulation of exogenous variables. In doing so, if households gain utility in 

consuming bundles similar to their neighbors' [o # 0], one will want to account 

for expected interhousehold effects [pWY] when modeling anticipated reaction 

to change in an exogenous variable. Fixed effect models such as (3.3), which do 

not allow one to judge whether an observed spatial pattern is due to correlation 
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in the dependent variable or correlation in errors, do not allow such effects. 

When interhousehold effects are important, the ultimate effect of a change in 

an explanatory variable could be misinterpreted in the fixed effect framework 

provided by (3.3). 

Finally, spatial models may provide estimates in cases where one would like 

to control for regional effects using a fixed effect framework but, because of 

data constraints, one cannot. For example, if data lack intraregional variance, 

fixed effects are perfectly correlated with variables of interest. Because of the 

constraints placed on the regional effects by the spatial models, one can obtain 

estimates of parameters of interest in a framework that controls for regional 

effects, albeit in a constrained way. 

An example of spatial modeling, and a comparison of spatial and fixed effect 

estimates, are presented in the final section. 

4. DEMAND FOR RICE IN INDONESIA 

As an example of spatial modeling, this section will examine demand for rice 

purchased in Indonesian markets. The Indonesian socio-economic survey 

SUSENAS draws samples from every district in the country. Districts, roughly 

comparable in size to counties in the eastern U.S., are the contiguous units 

upon which neighborliness is measured. I use data on 141 districts in the 11 

provinces for which maps were available. Districts were selected for analysis if 

they (1) imputed positive rent values for homeowners; (2) consumed rice 

purchased in markets rather than that grown at home; and (3) were adjacent to 

at least one other district in the analysis. (TN = 2089.) There are on average 2 

villages surveyed in each district. Prices used here are village mean log unit 

values. Tests for bias induced by using unit values in lieu of prices found no 

significant bias in parameter estimates. 
In the demand equation estimated, from which residuals are tested for spatial 

correlation, the log quantity of market rice purchased by a household (Y) is 

modeled as a function of the log household expenditure per household member 

(ln XPC), the size of the household (MEMS), the number of household mem- 

bers above the age of 10 (GT10), and the mean village log prices of market rice 

(price), fish (pfiSh), housing (Phous) and fuel (Pfuel): 

(4.1) Y= 80 +f31 ln XPC + 82MEMS + 83GT10 

+ 84price + P5pfish + 86phous + 87pfuel + 8. 

It is assumed initially that E are normally distributed errors, E(E) = t0, and 

Var (E) = o-2L. The results of the regression appear in column 1 of Table IV.1. 

The expenditure elasticity (0.13) is equal to the income elasticity for rice 

estimate for Indonesia by Barker and Herdt (1980) using a demand equation 

and data similar to those used here. Ceteris paribus, an additional household 

member is associated on average with an increase in rice purchases of roughly 

18%. An additional adult in the household, holding constant household size and 

per capita expenditure, is associated on average with an increase in rice 
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TABLE IV.1 

MAXIMUM LIKELIHOOD ESTIMATES OF MODELS WITH SPATIAL COMPONENTS 

Model 4.1 No district specific effects or spatial correlation (p =T = 0 = 0). 

Model 4.2 District specific effects, but no spatial correlation (p 0, T = 0). 
Model 4.3 Spatial correlation in dependent variable ((p # 0, T = 0, 4 0 0). 

Model 4.4 Spatial correlation in errors ((p 0 0, T O 0, = - 0). 
Model 4.5 Spatial correlation in both ((p # 0, T # 0, 4 + 0). 

Model Estimates 

Explanatory variablesa 
(standard errors) (4.1) (4.2) (4.3) (4.4) (4.5) 

Log expend per household member 0.1259 0.1111 0.1101 0.1094 0.1095 

(.0173) (.0154) (.0154) (.0158) (.0154) 
Number of household members 0.1762 0.1679 0.1670 0.1667 0.1667 

(.0064) (.0060) (.0060) (.0056) (.0060) 
Number of adults in household 0.0195 0.0314 0.0323 0.0329 0.0329 

(.0081) (.0080) (.0078) (.0071) (.0078) 

Village log price market rice - 0.4786 - 0.3978 - 0.4607 - 0.4190 - 0.4210 

(.0830) (.1049) (.1042) (.1073) (.1064) 

Village log price fish 0.0018 0.0343 0.0293 0.0313 0.0314 

(.0256) (.0296) (.0292) (.0295) (.0295) 
Village log price fuel 0.2631 0.0605 0.0512 0.0477 0.0479 

(.0334) (.0369) (.0372) (.0352) (.0374) 
Village log price housing 0.0295 - 0.0251 - 0.0323 - 0.0341 - 0.0339 

(.0095) (.0126) (.0124) (.0123) (.0128) 

T-coefficient of spatial - 0.4529 0.4401 

correlation in errors (.0804) (.0956) 

0-coefficient of spatial 0.3970 0.0152 

correlation in dep var (.0737) (.0420) 

o-r2-household variance 0.1124 0.1088 0.1088 0.1088 0.1088 

o.2-district variance 0.0958 0.0687 0.0646 0.0649 

Chi-square test statisticb 1161.26 41.58 5.70 0.03 

(0.99) (0.99) (0.91) (0.09) 

a 
Intercept not reported. Standard errors are estimated using the outer product of first partial derivatives of the log 

likelihood function. 

bLR test of equality in log likelihood between each column and column 5. Probability of correctly rejecting null 

hypothesis of equality in likelihoods is presented in parentheses. 

consumption of 2%, suggesting that adults consume only slightly more rice than 

children do. The own-price elasticity of market rice is - 0.48. 

The MI statistic for model (4.1), without any spatial structure, equals 0.4676, 

and is significantly different from its expected value (- 0.0076). The t statistic 

(T = 22.24) is significant on a 99.5% confidence interval. That neighboring 

districts have related residuals can also be seen in Figure 2.1, which maps mean 

residuals by district for Bali Province. It is apparent that northern districts have 

the higher mean residuals, and southern districts, the lower ones. Taken 

together, these indicators suggest that modeling a spatial component to demand 

is appropriate. 

The results of estimating the spatial random effects model (2.2) and fixed 

effect model (3.3) are presented in Tables IV.1 and IV.2. In Table IV.1, the 

parameter estimates of an OLS model with no spatial components are com- 

pared to the spatial model's estimates. Column 2 presents results of relaxing the 
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TABLE IV.2 

A COMPARISON OF ESTIMATES FROM RANDOM EFFECTS 

AND FIXED EFFECTS MODEL 

Model 2.2 

Spatial correlation 

Explanatory variables in errors 

(standard errors) (T # 0) Model 3.3 

Log expend per household member 0.1094 0.1095 

(0.0158) (0.0159) 
Number of household members 0.1667 0.1668 

(0.0056) (0.0057) 
Number of adults in household 0.0329 0.0327 

(0.0071) (0.0071) 
Village log price market rice - 0.4190 - 0.4078 

(0.1073) (0.1143) 

Village log price fish 0.0313 0.0326 

(0.0295) (0.0309) 
Village log price fuel 0.0477 0.0304 

(0.0352) (0.0359) 

Village log price housing - 0.0341 - 0.0382 
(0.0123) (0.0134) 

SOURCE: SUSENAS May 1978. Number of observations = 2089; number of 

districts = 141. 

Hausman test of equality in coefficient estimates from (2.2) and (3.3) = 0.32. 

Probability of correctly rejecting null of equality < 0.005. 

assumption of no nonspatial district specific effect (p). The increase in likeli- 

hood over OLS is roughly 500 points. This immediately suggests that the OLS 

standard errors reported in column 1 are biased. When the preferred specifica- 

tion of Model 4.4 below [IT2 = 0.1088, op = 0.0646, r = 0.45] is used to correctly 

calculate the OLS standard errors, they are one third to one half again as large 

as those presented in column 1. 

Columns 3 and 4 allow for spatial correlation in the dependent variable 

# 0) and in errors (#r 0) respectively. Both models achieve an increase in 

likelihood over column 2 of roughly 20 points, and a large reduction in the 

district specific variance o2, which falls from 0.09 to 0.06 as part of the district 

specific error is attributed to a spatial component. Results from both models 

can be used to reject a null hypothesis that the overall district level random 

effects are identically, independently distributed. Model 4.3 finds a large, 

significant spatial component (4 = 0.40, std. error = 0.07) in the dependent 

variable, while Model 4.4 finds a large, significant spatial component (r = 0.45, 

std. error = 0.08) in the errors. In order to distinguish between these models, 

they are nested in Model 4.5. 

Figure 4.1 provides a contour map of log likelihood values for a range of r 

and 0 for Model 4.5. This map suggests that the two parameters of spatial 

correlation substitute for each other empirically. There is a distinct ridge along 

which the highest likelihoods obtain. This ridge occurs where higher values of r 

are matched with lower values of X, and vice versa. While there are two local 

maxima, roughly at i = 0 and at 0 = 0, the higher of the two is clearly at (4 = 0, 
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FIGURE 4.1.-Log likelihood contours. 

= 0.45). Without nesting the models with spatial correlation in the dependent 

variable (4 # 0, i = 0) and in the errors (#r 0, p = 0) in a broader framework, 

it would not be possible to determine whether spatial correlation should indeed 

be attributed to the errors or to the dependent variable. If one brings to the 

estimation no theoretical prior as to which process underlies the observation of 

spatial correlation, the two potential processes must be nested as in Model 4.5 

in order to learn about their relative importance. 

The results of Table IV.1 suggest that spatial models, in addition to providing 

information on the underlying spatial process, also increase the efficiency of the 

estimation. However, the efficiency and information gains are more apparent 

than real if the district specific effects are correlated with right side variables. 

For this reason, the results of the random effects models are tested against a 

fixed effects model that does not assume E(X'(p)= tkO. 

Because Model 4.4 has a likelihood insignificantly different than that of 

Model 4.5 and has an additional degree of freedom, it is chosen for comparison 

in Table IV.2 with a fixed effect model in which all district effects are uncon- 

strained. The ,3 parameter estimates in the two estimation schemes are almost 

identical. A Hausman test statistic, jointly testing the equality of the seven 

parameter estimates, is 0.32; the probability of correctly rejecting the null 

hypothesis of equality between the two sets of estimates is less than 0.005. In 

this example, then, the use of a spatial random effects estimator is not inappro- 

priate. 

5. CONCLUSION 

When district specific effects are uncorrelated with right side variables, there 

are clear benefits to spatial modeling. This paper has discussed the gains in 

information and efficiency that are achieved by spatial random effects modeling. 
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The spatial modeling approach is relevant for a wide range of issues. In public 
finance, for example, spatial modeling can be used to suggest the extent to 
which states or nations look to others in determining the appropriate composi- 
tion of taxes or tariffs, levels of expenditure, and public good provision. 
Research on the effects of networking within urban areas may find spatial 

techniques useful in identifying externalities associated with unemployment or 
poverty in inner cities. The extent to which changes in firm behavior are 

matched by competitors can also be studied using spatial techniques, where data 
can be used to determine both the identity of competitors (W), and the extent 
to which correlated behavior is the result of intentional copycatting (n), or 
simply the result of common shocks (r). 

Department of Economics, Harvard University, Cambridge, MA 02138, U.S.A. 
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APPENDIX 

THE MORAN MI STATISTIC 

Under the null hypothesis that errors are identically and independently distributed normal 

variates, the expected value of the MI statistic is 

(1 E(MI) =-d 
tr [(X'X) lX'nX]- 

(1) E(MI) = 2J(d - k) 

where 12 is the (d x d) matrix of joins {cwi}; d is the number of districts; J is the number of joins in 
the system; and k is the number of parameter estimates. Also under the null hypothesis, the 
variance of the MI statistic is 

(2) Var (MI) 

d2(4J + 2tr ([(X'X) 1X'fX] ) - tr {[(X'X) -IX,(i + n,)2X]} 

-2(tr [(X'X) X'nX] )2/(d--k)} 

(2J)2(d-k)(d-k+2) 

See Cliff and Ord (1981) for discussion. 
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