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Summary 

The spatial ‘ power ’ spectrum of the main geomagnetic field has been 
estimated for harmonics up to n = 500. It is shown to consist of two 
components, long wavelengths being dominated by fields originating in 
the core, and short wavelengths by fields originating in the crust; the 
cross-over occurs at n 2 11 ,  a wavelength < 3600 km. 

The core field is often approximated by a set of spherical harmonic 
coefficients. It is shown that at present main field coefficients for n 2 9, 
and secular variation coefficients for n 2 6 ,  are not known with significant 
accuracy. Estimates are made of the standard deviations of the IGRF 
coefficients, and the standard deviation of the IGRF field deduced. This 
field is known to about 0.5 per cent at the surface but only to about 10 
per cent at the core. Its time variation is known only to about 20 per cent 
at the surface, and is very uncertain at the core. 

1. Introduction 

This paper considers the contribution to the mean square geomagnetic field of 
internal origin (i.e. the mean of H. H over the Earth’s surface) from different spatial 
frequencies (or, equivalently, wavelengths). As we are concerned with a closed- 
spherical surface only certain frequencies have physical meaning-those correspond- 
ing to wavelengths 27-ca/n where a is the Earth’s radius and n is an integer. The 
‘ spectrum ’ is therefore discrete rather than continuous, though the distinction is not 
important for large values of n. 

Fourier analysis separates a function f ( 2 )  known on a circle of radius a into 
orthogonal components such that 

W 

f ( A )  = C (A, cos nA+B, sin d) 
n = O  

= C C,  cos (nA+E,). 

The values of E, and hence of A, and Bn depend on the (arbitrary) choice of origin, 
but the values of Cn = (An2 +Bn2)* are independent of origin. Because of the ortho- 
gonality, each harmonic component contributes independently to the mean square 
value of f ( A )  over the circle; the total contribution of components of wavelength 
2naln is 

+c,z = +(A2 + B,z). 
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718 F. J. Lowe 

Similarly, spherical harmonic analysis separates a function f ( 0 ,  A) known on a 
spherical surface into orthogonal components such that 

m n  
J'(8, A) = 2 2 @,,"'(@(A,,"' cos mA+B,,"' sin mA) 

n = O  m = O  

= c c onm(0)c,m cos (mn + Enm). 

Now not only do the values of E,:, and hence of A," and Brim, depend on the 
(arbitrary) choice of origin of ?&, but also for a given n the relative values of the Cnm 
depend on the (arbitrary) choice of the 0 = 0 axis. Again, because of the ortho- 
gonality each harmonic component contributes independently to the mean square 
value of .f'(O, A) over the sphere; however to determine fully the contribution from 
wavelengths 2na/n to the mean square, all the harmonics of that n must be con- 
sidered. This contribution is proportional to the sum 

which is independent of the choice of axes. (The constant of proportionality depends 
on the normalization of the functions 0:(8).) 

In this paperf(8, A) is the vector geomagnetic field H, which can be specified near 
the Earth's surface by its scalar potential 

V = a 5 2 (:)"+I Pnm(cos O)(gnm cos ml+h: sin mA); 
n = l  m = O  

this expression is valid only for fields of internal origin, but in practice fields of 
external origin are almost entirely eliminated by using yearly means. 

For the semi-normalized Pnm(cos 8) used in geomagnetism, the mean square value 
over the surface of the field H produced by harmonics of a given n (i.e. of wavelength 
27cu/n), which will be called R,, is (Lowes 1966) 

By analogy with a time varying ' signal ', a plot of ' power ' R, against ' frequency ' n 
is called the spatial power spectrum. 

Most of the field observed at the Earth's surface comes from electric currents in 
the core, and we would like to extrapolate this field down to the core-mantle boundary. 
However such an extrapolation using equation (1) is valid only if there are no sources 
(magnetization or electric current) in the mantle or crust. We know that there are 
small but significant contributions to the surface field from the magnetization of 
crustal rocks, and such crustal fields must be removed (or shown to be negligible) 
before extrapolation is feasible. 

This paper extends and amplifies the work of Bullard (1967) and Booker (1969), 
who used only the radial component of the core field, and considers in more detail 
the random and systematic errors involved. 

In Section 2 the spectrum of the crustal field is considered, in Section 3 the 
spectrum of the core field, and in Section 4 the (spatial) spectrum of the time variation 
of the core field. Section 5 considers extrapolation to the core, and in Section 6 the 
various results of this paper are discussed. 
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Spatial power spectrum of the main geomagnetic field 719 

2. Spectrum of the crustal field 

Because of its shallow origin the crustal field can be expected to consist largely of 
high harmonics, for which there are no estimates from spherical harmonic analysis. 
However a reasonable indication of the higher frequency spectrum can be obtained 
from the Fourier analysis by Alldredge, van Vooris & Davis (I  963) of a round-the- 
world profile of the magnitude of the magnetic field. Because only one profile was 
analysed the individual coefficients are very scattered, but Fig. 1 gives the smoothed 
version of the power spectrum obtaked by Bullard (1967). Bullard suggested that 
there was a distinct change in the s!ope at about n = 25, corresponding to a wave- 
length of about 1600 km, and that this represented the separation between fields of 
core and crustal origin. 

The spectrum from n = 25 to n = 500 is in fact fitted quite well by the line 

y = 50 exp (-0.004 n), (3) 
and the departures from the line are probably not significant. 

For this (essentially) plane geometry, extrapolation downawrds involves the factor 
exp (2zn/a) so the observed spectrum is consistent with sources giving a ' white ' power 
spectrum at depth 9 km (12 km below the flight level). Clearly, whatever the actual 
distribution of sources, the spectrum beyond n = 25 comes from shallow, crustal, 
sources. Assuming that for these sources the spectrum of equation (3) holds for all n, 
summation from n = 1 to co would give the mean square crustal field. (Only 10 per 
cent of this m.s. field would come from n < 25, and only 13 per cent from n > 500, 
so in fact the shape of the spectrum at the two ends is not very important.) 

However the Alldredge et al. analysis differs in two significant ways from a 
spherical harmonic analysis of the vector field. 

First, it was a Fourier analysis along a (nearly) great circle track. Algebraically, 
the situation is very complicated; the weights given to individual spherical harmonic 
coefficients depend on the orientation of the track, and the harmonic contributions 
to the mean square field are not separable. Physically, however, we have a one- 
dimensional cross-section of a two-dimensional pattern; the details may well be 

1 I 1 I 1 I 4  
0 I00 200 300 400 500 

Order of Fourier harmonic 

FIG. 1. Smoothed power spectrum of the round-the-world magnetic intensity 
profile of Alldredge et al. (1963). (After Bullard (1967). Bullard plotted Cnz, not 

fCn2, and his ordinate scale was wrong by a factor 5.) 
l y  = 1 nanotesla 
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altered, particularly at low frequencies, but it is unlikely that the general nature of the 
higher frequency spectrum, or its total power, will be much changed. 

Secondly, what was analysed was not the (three components of the) vector field, but 
the magnitude of the field. In general this results in a very complicated distortion of 
the spectrum. However, the higher harmonics of the crustal field are effectively 
only a small perturbation on the much larger, only slowly varying, main field. In 
such a situation it can be shown that the main field acts as a directional filter, picking 
out that part of the perturbation field which is along the local direction of the main 
field. In the resultant power spectrum the powers of perturbations locally parallel to 
the main field remain almost unchanged at their fundamental frequencies, while 
perpendicular perturbations have almost all their power transferred to zero fre- 
quency; harmonic and intermodulation terms are small, and would tend to average 
out. Thus for a random, small, high frequency, crustal field, uncorrelated with the 
large, low frequency, main field, we would see on average one-third of the crustal 
power. 

We must therefore expect the Alldredge et al. spectrum to be significantly different 
from a spherical harmonic spectrum at low frequencies, but to be similar at high 
frequencies apart from a factor of about 3. We can therefore use the spectrum to 
estimate the total rms crustal field to be about 200y. This value compares well with 
those of 300y for (continental) Canada and about 120y for (oceanic) Bermuda, 
obtained by Serson & Hannaford (1957) for about 3000 km of vector magnetometer 
track in each case, and values ranging from 160 to 23011, (when corrected by the 
3% factor) for NE Atlantic and Indian Ocean towed magnetometer profiles totalling 
about 3000 km, obtained by Neidell (1964). 

As was pointed out by Bullard, in the spectrum of Fig. 1 there is no absence of 
power at intermediate frequencies, as had been suggested by Alldredge & van Hooris 
(1961) and Alldredge et al. (1963). It is however consistent with the existence of only 
two sources of field, one in the crust and one in the core. If, as seems likely, the 
spectrum of equation (3) is valid also for low frequency crustal fields, then for all 
values of n for which reliable spherical harmonic coefficients are at present available 
(n ;5 10) the crustal contribution can be ignored. 

- 

- 

- 

- 

- 

- 

- 
I I I I I I I I I 

0 

Degree n 

FIG. 2. Total mean square contribdtion to vector field by all harmonics of dew= n. 
IGFW 1965.0. Closed circles, at Earth's surface; open chles ,  at core surface. 
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Spatial power spectrum of the main geomagnetic field 721 

3. Spectrum of the core field 

Up to m < n < 8 the field of deep origin is specified approximately by the 80 
spherical harmonic coefficients of the IGRF 1965.0 (IAGA Working Group 1971). 
Although the individual coefficients have a wide range of values, if we, in effect, 
average them by performing the summation of equation (2) we obtain the ' power ' 
spectrum (independent of co-ordinate system) given by the points plotted in the 
lower part of Fig. 2.  Apart from those for = 1 and 2, the points are fitted remarkably 
well by the line 

R, = 4.0 x 109 (4.97. (4) 

Although the departures from a smooth curve are significantly greater than the errors 
of the points, it does seem likely that the source mechanism gives a smooth spectrum 
on average. 

Up to n = 7 the points for the different analyses considered for the IGRF do not 
depart significantly from each other. For n > 8 analyses which have been taken to 
higher degree differ significantly, but all give points very much above the line, and 
give the impression of an upward curvature of the spectrum (see e.g. Fig. 2 of Bullard 
(1967)). However these values of R, are almost certainly very much overestimated. 
This is because random errors in the individual coefficients lead on average to a 
systematic increase in the sum of their squares, and hence of R,; in fact coefficients 
consisting only of ' noise ' can give quite large values of R,. 

That these analyses do have large errors in their coefficients is indicated by the 
fact that the three analyses for which the separation into internal and external parts is 
possible all give large magnitude high harmonic fields of external origin (and, for 
Fanselau & Kautzleben, of non-potential origin); see Table 1. It is most unlikely that 
such large external fields of long time scale do exist, and most probable that the 
external R, values are simply an indication of the errors of analysis. It can then be 
easily shown that the external R, give a direct estimate of the systematic errors of the 
internal R,. It follows that for these three analyses none of the coefficients for n 2 11 
are significantly above error level, and we are left with four, very uncertain, values, 
three for n = 9 and one for n = 10, which are scattered about the line. The same 
argument almost certainly holds for the results of the other high degree analyses at 
present available. 

Table 1 
n 

m = O  
Values of Rn = (n + I) C [(g,")2 + (h.">2] for the internal and external coeficients of 

the anaIyses of Fanselau & Kautzleben (1958), Vestine et al. (1963), and Hurwitz et al. 
(1966). 

Unit 1 04y2. 
n R. 

F & K  Vestine Hurwitz 
Int. Ext. Int. Ext. Int. Ext. 

6 77.36 4.01 70.45 9-95 62.66 0.90 
7 13.63 2.66 20.08 6-09 8.90 0.76 
8 4.32 2-91 8.69 6.60 1-78 0.40 
9 3.56 2-30 6.36 3-43 0.56 0.12 
10 1-71 2.13 3.67 2.86 0.39 0.11 
11 1.95 0.58 3.27 2.93 0.06 0.11 
12 1.33 1.25 1.92 1.99 0.10 0.13 
13 0.08 1-02 
14 1.00 1.18 
15 1.14 1.00 
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722 F. J. Lowes 

Table 2 

Contributions of harmonics of degree n to surface field 

(a) Mainfield, IGRF1965.0. Unit: 1 gauss = 105y= tesla 

n rmsfield rmsSD 
At Earth's surface 

1 0.4378 
2 0.0739 
3 0.0581 
4 0.0332 
5 0.0138 
6 0-0079 
7 0.0034 
8 0.0013 

> 8  

1 
2 
3 
4 
5 
6 
7 
8 

> 8  

0.0006 0-4378 0.0006 

0.4492 0.0020 
0.0007 
0.0007 
0.0006 

-0.0008 

At core surface 

2.683 0-003 
0.829 0.008 
1.193 0.017 
1.24 0.03 
0.95 0.05 
0-99 0.09 
0.78 0.16 
0.5 0.3 

2.683 0.003 

2.5 0.3 

-1.1 

(b) Secular variation field, IGRF 1956.0. Unit: y Iyr 

(For explanation of correction see text) 

n 

1 
2 
3 
4 
5 
6 
7 
8 

> 8  

1 
2 
3 
4 
5 
6 
7 
8 

> 8  

rms Corrected 
field field rmsSD 

At Earth's surface 

25 25 4 
55 55 

13 12 5+ 
9 7 53 

29 15 28 14 y 
3 - 5 

4 - 

At core surface. 

150 
620 
590 
550 
920 

1170 
1190 
1590 

150 25 
610 60 
580 
510 
830 390 
920 710 
- 
- 

25 

65 

-6 

150 

1590 

? 

3.7 0.3 

41 
12 

8:] 

69 13 

1600 840 

The second column gives the (rms) average values (over the sphere) of the synthesized vector fields; 
this is R.* for the main field, and Q.+ for the secular variation. 

The standard deviations tabulated are the (rms) average values (over the sphere) of the standard 
deviation of the synthesized vector field; they are [(n+ 1) (2n+ l)]*u. for the urn of Table 3. (Those 
given in the conference abstract of Lowes (1972) were the standard deviations of the values of R,* 
and Qn+, Le. (n+ l)*um, using somewhat different values of un.) 
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Spatial power specbum of the main geomagnetic field 723 

In Section 5 it is shown that the spectrum of equation (4) is consistent with the 
field originating in the core, and in the absence of any reliable data for higher har- 
monics this spectrum will be assumed to hold for all values of n. The total rms 
contribution for harmonics with n > 8 can then be estimated, and this value, together 
with those for n < 8, is given in the first part of Table 2a. 

However these rms field contributions, and the field synthesized from the co- 
efficients, are both subject to error, as the IGRF coefficients will not be exactly those 
appropriate to the Earth's field. An indication of the uncertainty of the coefficients is 
given by Fig. 3(a), which shows the scatter of the eight sets of coefficients which were 
submitted for the IGRF (Cain & Cain 1971). It is to be expected that the standard 
deviations of the coeficients will vary only with n and not with m (Lowes, to be 
published), and the observed scatter is reasonably fitted by standard deviations a, 
varying smoothly from 23y for n = 1,  to 5y for n = 8 (Table 3). 

These eight analyses used data sets having considerable overlap, so the scatter of 
their coefficients will underestimate their errors. On the other hand, the IGRF 
coefficient set is a weighted mean of four sets, so would be expected to have somewhat 
smaller errors than individual sets. On the assumption that these two eXects cancel, 
the standard deviations of Table 3 have been attached to the IGRF coefficients; 
assuming that covariances can be ignored then leads to the average standard deviations 
of the synthesized field which are given in Table 2a. 

The values of a, given in Table 3 are considerably larger than those obtained 
from the internal consistency of' individual analyses. For example Leaton, Malin & 
Evans (1965) obtained values 5 11 y, and Cain et ul. (1967) values ,< 3 y .  However, 
that they are reasonable estimates of error to be attached to the IGRF coefficients is 
confirmed by the figures given by Cain & Cain (1971) for the rms differences between 
the IGRF and various data sets. When extrapolated to an altitude of 1000 km the 
figures of Table 2 predict a rms difference of 86y, while the observed rms difference 
between the lGRF and the total intensity observations of OGO 4 (which were not used 
in the analyses) was 57y, corresponding to about 92y for the vector field. For surface 
data we would expect about 3OOy (composed of rms contributions of 200y from the 
coefficient errors, 80y from harmonics for n > 8, and 200y from the crustal field (see 
Section 2), while that observed was about 200y per component, corresponding to 
about 350y for the vector field. The observed residuals include a contribution from 
the errors in the secular variation coefficients of the IGRF; the differences between 
expected and observed figures correspond to a few years of the errors estimated in 
the next Section. 

From Table 2a we see that, in terms of a spherical harmonic expansion, at the 
surface we know the dipole field to about 0.1 per cent, the non-dipole field to about 
2 per cent, and the total field to about 0.5 per cent. 

4. Spectrum of the secular variation 
Practically all the observed, long period, time variation-the secular variation- 

is due to variation of the core field; there is no significant contribution from the 
crust. Applying the analysis of Section 3 to the IGRF 1965.0 secular variation 
coefficients gives the (uncorrected) values of Q,-the mean square secular variation 
field for each n-shown in Fig. 4 and Table 2b. 

Fig. 3(b) shows the very large scatter of the eight sets of secular variation co- 
efficients submitted for the IGRF. However the POGO (3/68) set, based on only 
1.8 years data, considerably increases the scatter; it is also significantly different from 
the revised POGO (10/68) set (Cain & Langel 1968). It was therefore omitted, and 
the scatter of the other seven sets found to be fitted reasonably well by standard 
deviations varying smoothly from 3.2y/yr for n = 1, to 0.9y/yr for n = 8, again con- 
siderably larger than internal estimates of error. 
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ha. 3. Range of the eight sets of harmonic merits submitted for the IGRF. 
(a) Main hld; (b) secular Variation. (Reproduced by permission from Zmuda 

1971.) 

Table 3 

Estimates of standard deviations u,, of IGRF coeficients for main field and secular 
variation field 

1 B Y  I*aYlur 
n on 

2 17 1.2 
3 14 1.0 
4 12 0-8  
5 9 0.7 
6 8 0-6 
7 6 0.5 
8 5 0-45 
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NI 
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> 
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1 

1 0 3 -  
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Pei. P r 

FIG. 4. Total mean square contribution to vector secular variation field by all 
harmonics of degree n. IGRF 1965.0. Closed circles, uncorrected values at 
Earth's surface; open circles, uncorrected values at core surface. Squares, corrected 

values (see text). 

The IGRF secular variation coefficients were obtained by averaging those of five 
sets. Three of these were obtained directly from secular variation data (two from 
observatory data and one from a world chart). In the other two the secular variation 
coefficients were derived (simultaneously with main field and second derivative 
coefficients) from a much larger data set (of which the observatory data was only a 
small fraction). So in this case the observed scatter is probably more nearly typical 
of the standard deviations of individual coefficients. For simplicity the standard 
deviations of the IGRF coefficients have been estimated by halving the scatter figures; 
they are given in Table 3 and lead to the standard deviations given in Table 2b. 

Because of the large random errors in the secular variation coefficients the Qn 
values will, as explained above, be systematically overestimated. It is easily shown 
that the average systematic error is the square of the average standard deviation of 
Table 2b; corrected values of Q, are also given in Table 2b and shown in Fig. 4. It is 
clear that the values for n = 7 and 8 are not significant, and that the field for n = 6 
is very uncertain. 

In this case there is no independent world-wide test that the estimates of standard 
deviations given in Table 2b are valid for the IGRF. In Scandinavia the difference 
between the IGRF secular variation and the observed values has a vector rms of 
23y/yr (Barraclough 1971), but this represents a very small part of the surface. 

That the secular variation is very uncertain is not surprising. The standard 
deviations (Table 3) of the main field coefficients correspond to 2-10 years of secular 
variation. Also the field does not vary linearly with time; if large intervals are used 
to reduce the error in the mean rate of change, then the second derivative becomes 
important. 

It is clear that Q, decreases much less rapidly with n than does R,. There is in 
fact reason to expect that the secular variation spectrum will be less steep than the 
field spectrum, because a substantial part of the secular variation is due to the west- 
ward drift of the non-dipole field pattern with respect to the Earth's surface. Two 
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726 F. J. Lowes 

alternative suggestions are: 

(a) Part of the secular variation is due to the drift at about o = 0.2"/yr of all the 
non-dipole field (Bullard et al. 1950); or 

(b) All of the secular variation is due to the drift at about OW/yr of part of the 
non-dipole field (Yukutake & Tachinaka 1969). 
In either case the secular variation produced is proportional to the longitudinal 
gradient of the appropriate field, so that shorter wavelengths are emphasized com- 
pared with longer wavelengths. It turns out that, on average, we would expect a 
given main field spectrum to be multiplied by a factor of n(2n+ l)w2/6 to give the 
westward drift secular variation spectrum; a contribution of this nature would 
considerably decrease the slope at small n. We would therefore expect an extra- 
polation of the line drawn on Fig. 4 to overestimate the contribution of higher 
harmonics. 

From Table 2b we see that, in terms of a spherical harmonic expansion, the 
secular variation field at the surface is known only up to n = 6, and only to about 
20 per cent. 

5. Extrapolation to the core 

Extrapolation downwards involves multiplying the spectrum by the factor 
(a/r)2n+4. The observed logarithmic main field spectrum for n = 3 to 8 is nearly a 
straight line, corresponding to sources giving a ' white ' spectrum at radius 0.47a 
(500 km inside the core); there is some indication that the spectrum is in fact concave 
downwards, corresponding to random dipole sources at radius 0.35~1. Extrapolation 
of the field down to the core boundary is therefore reasonable, and the result is 
shown on the upper part of Fig. 2 and the second part of Table 2a. (If the spectrum 
were in fact curved the estimates of the n > 8 field would need to be reduced.) 

(Nagata (1965) obtained a source radius of 0.42a. However he plotted 
[(g,,'")2 + (h,")']/(2n + 1) against n, and used as his criterion of source depth that these 
individud contributions to the mean square potential should on average be equal at 
the source; he therefore obtained a greater depth than that obtained here by con- 
sidering the total contribution of degree n to the mean squarefield. Nagata's suggestion 
of a different source for higher harmonics was based on the coefficients of Vestine and 
Fanselau & Kautzleben which have been shown above to be spurious.) 

Although individual harmonics have the same ' signal/noise ' ratio at both surface 
and core, the less accurate higher harmonics are relatively more important at the 
core; also the unknown high harmonics now contribute significantly. At the core 
boundary we therefore still know the dipole field to 0.1 per cent, but only know the 
n = 2 to 8 non-dipole field to about 10 per cent, the total non-dipole field to about 
40 per cent, and the total field to about 10 per cent. 

If the secular variation is also extrapolated to the core we obtain the results given 
in the upper part of Fig. 4 and the second part of Table 2b. The increase of Q,, with 
n is probably due to the production of a large part of the secular variation by westward 
drift; if so Q,, would start to decrease at about n = 8. The combined field of the first 
six degrees is known only to about 50 per cent, and from Fig. 4 we cannot estimate 
how much the higher degrees contribute. However a lower estimate of the magnitude 
can be obtained by assuming that the main field drifts bodily westward at 0.2"/yr; 
this then contributes 1000ylyr for n = 7 and 8. Extrapolating the spectrum of 
equation (4) give another 2500ylyr for n > 8, but this figure would be considerably 
reduced if the spectrum were concave downwards. 

Extrapolation to the core using equation (1) would not be valid if there were 
significant electric currents in the intervening mantle. There probably are currents 
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' leaking ' into the, slightly conducting, mantle from the, highly conducting, core. 
These currents will give toroidal magnetic fields which will reduce to zero at the 
surface; although at the core boundary these toroidal fields may be as large as the 
poloidal fields we are considering, there is no direct way of measuring them. 
Fortunately, such toroidal magnetic fields would not affect the extrapolation of the 
observed (poloidal) magnetic fields. 

However, extrapolation of the poloidal magnetic fields might be affected by their 
time variation, as this will induce electric currents which will reduce the magnitude 
of the variations seen at the surface. The integrated time constant of the mantle is 
thought to be about 4 years, so that fields with periods of about 30 years or less will 
be significantly attenuated (Currie 1967). Unfortunately we do not know enough 
about the time spectrum of the field to be able to estimate the importance of this 
attenuation on the spatial spectrum, (Booker (1969) estimated typical periods z, by 
dividing R,  by Q,, and concluded that attenuation was not significant; however his 
conclusion would not be valid if a substantial part of a given R,  had periods shorter 
than z,.) Certainly, using equation (I)  to extrapolate can only underestimate the 
magnitude of the poloidal secular variation field at the core, but the same cannot be 
said for the main field, at least part of which is effectively the time integral of the 
secular variation. 

MacDonald (1 957) has shown that, for a given period, the ' physical ' attenuation 
due to induced currents is smaller for short wavelength spatial harmonics than for 
long wavelengths. However it is likely that short wavelength fields will tend to vary 
more rapidly than long wavelength fields, so it is not possible to say if this will affect 
the secular variation spatial spectrum. 

6. Discussion 

Tt has been shown that at present the known world-wide logarithmic spatial power 
spectra of both the long wavelength and short wavelength fields are well fitted by 
straight lines. If these lines are extrapolated and combined we obtain the spectrum 
of Fig. 5. This somewhat idealized spectrum probably represents the present surface 
field spectrum to better than about 30 per cent. Any physically plausible crustal field 
must have a spectrum which decreases at small n, so the extrapolation of equation (3) 
to small n is not really valid. However it appears that the core field is greater than the 
crustal field to at least IZ = 11. 

To estimate the accuracy of a field approximately specified by a finite set of 
spherical harmonic coefficients, we need to know both the magnitude of the field of 
the unspecified high harmonics, and the errors of the specified coefficients. 

The spectrum of equation (4) can be used to estimate the effect of high harmonics; 
the results are given in Table 4 for the Earth's surface and also for two typical satellite 
altitudes. (The figures would need to be reduced somewhat if the logarithmic 
spectrum is in fact concave downwards.) Corresponding figures for the crustal field 
(using the spectrum of equation (3) with the x 3  correction) would be about 190, 
20 and 47, but the last two values are really only upper limits as they depend critically 
on the spectrum remaining flat at small n. It is clear however that, at the Earth's 
surface, evaluating more coefficients will have very little effect on the residual field. 

The estimates made in this paper of the errors of the IGRF coefficients are in- 
evitably somewhat subjective, but it is thought that they are probably correct within a 
factor of two. 

Using these error estimates we see that the core field, about 45 OOOy rms, is reason- 
ably well known at the surface, the (n < 8) IGRF representing it in 1965 to about 
2OOy. An extrapolation of Table 2a indicates that it would just about be worth- 
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FIG. 5. Idealized surface power spectrum, 1965. 

Table 4 

Estimate of magnitude of core.fieldfrom harmonics with n > n I M x  

nmax rrns field of higher harmonics at altitude 

O h  350km 1 O O O k m  
8 81y 45 16 
9 38 20 6 

10 18 9 3 
11 8 4 1 
12 4 2 

while to determine the n = 9 coefficients as well, but there would be no point in going 
further unless smaller errors could be obtained; this conclusion is valid for all depths 
and altitudes. 

The IGRF secular variation coefficients are a very much poorer fit to the actual 
secular variation; with the error estimates of this paper only the coefficients for 
n < 5 are known at all reliably, and the coefficients for n = 7 and 8 are quite meaning- 
less. At the surface the secular variation, about 70y/yr rms, is known only to about 

Because some of the contributing coefficient sets were the result of joint solutions, 
the errors of the secular variation coefficients are not necessarily statistically in- 
dependent of those of the main field coefficients (i.e. the covariances may be signifi- 
cant). Ignoring this, we find that the very large uncertainty of the secular variation 
coefficients means that the deviation between the IGRF and the core field will double, 
from 200 to 4007 rms, in about 14 years. Clearly, any improvement in an IGRF to be 
used for about 10 years will depend more on a better understanding of the secular 
variation than on any increase in the number of coefficients specified. 

Extrapolation down to the core boundary shows that the total rms poloidal field 

15YlYr- 
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there is about 3.9G. If the extrapolation is valid, we know the 3.7G coming from 
n < 8 to about 0-3G, but there is also about 1 G coming from higher harmonics. 

The extrapolated secular variation is very poorly known; the field from har- 
monics with n < 6 is known only to about 50 per cent, and we cannot do more than 
guess at the total magnitude. Also, any shielding by induced currents in the mantle 
will have relatively much more effect on the secular variation than on the main field. 

It is clear that attempts to use the extrapolated secular variation to investigate, for 
example, the conservation of magnetic flux from the core (Booker 1969), or the core 
surface velocity pattern (Ball, Kahle & Vestine 1969; Malin & Saunders 1973), will 
be subject to very large uncertainties. 

School of Physics, 
University of Newcastle upon Tyne NE1 7RU. 
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