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Abstract. The predictive power of logistic regression, sup-

port vector machines and bootstrap-aggregated classification

trees (bagging, double-bagging) is compared using misclas-

sification error rates on independent test data sets. Based on

a resampling approach that takes into account spatial auto-

correlation, error rates for predicting “present” and “future”

landslides are estimated within and outside the training area.

In a case study from the Ecuadorian Andes, logistic regres-

sion with stepwise backward variable selection yields lowest

error rates and demonstrates the best generalization capabil-

ities. The evaluation outside the training area reveals that

tree-based methods tend to overfit the data.

1 Introduction

The spatial prediction of landslide hazards is one important

field of geoscientific research in which statistical classifica-

tion rules have been applied. The aim of these methods is to

identify areas that are susceptible to future landsliding, based

on the knowledge of past landslide events and terrain param-

eters, geological attributes and other, possibly anthropogenic

environmental conditions that are associated with the pres-

ence or absence of such phenomena.

The primary objective of modelling landslide hazards

is the prediction of landslide-prone areas in space and/or

time. This contrasts with other areas of geomorphological

research, where similar classification problems occur, but

where the analysis of observed distribution patterns as re-

lated to environmental conditions is of primary interest. For

instance, Brenning (2005) applied logistic regression analy-

sis to determine factors influencing the spatial distribution of

rock glaciers. Based on this analysis, he characterized the

geomorphological niche of rock glaciers as related to topog-

raphy (size of the contributing area, horizontal curvature) and

climate (temperature, solar radiation).
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The question whether the analysis or prediction is the main

goal influences the choice of methods and error measures

to be studied. In the present work, the focus is on predic-

tion. Predictors of landslide hazard distribution are fitted

or “trained” on a training data set of observed landslide dis-

tribution and thematic data such as morphometric attributes

(slope, aspect etc.) and information on land use (deforesta-

tion, proximity to road, and other variables). In this predic-

tive context, the misclassification rate as measured on test

data sets is the primary quantitative measure for evaluating

the predictive power of a classification rule.

The objective of the present work is to review the present

practice of applied spatial landslide hazard modelling as re-

flected by the scientific literature, and to compare selected

statistical classification rules in a case study. Evaluation tech-

niques are introduced that take into account the spatial struc-

ture of the prediction problem and control spatial overfitting.

Two scenarios for the preparation of susceptibility maps

are distinguished: First, if multi-temporal landslide invento-

ries are available, successions of landslide distribution pat-

terns and land use may be used to predict future events.

Specifically, and along the lines of time series analysis, a

classifier is trained to predict landslide distribution at time

point t1 given environmental data from time points t0 and t1,

and landslide distribution at time point t0 as explanatory vari-

ables. Multi-temporal information is particularly important

since future landslide hazards partly depend on the scarps

of past events (Casadei et al., 2003) and should therefore be

modelled conditional on these. This will be done in the case

study, which is based on data from Stoyan (2000).

On the other hand, often multi-temporal inventories or pre-

cise knowledge on landslide age are lacking, and only the

current distributional pattern can be used to identify sus-

ceptible areas (Atkinson and Massari, 1998; Ohlmacher and

Davis, 2003).

Regarding the evaluation of predictive landslide mod-

elling techniques, this work proposes to adapt the cross-

validation technique (Efron and Gong, 1983; Efron and Tib-

shirani, 1986) to estimate misclassification errors of spatial
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and spatio-temporal prediction problems. Cross-validation

is a computationally-intensive estimation technique that is

based on subsequently partitioning a data set into subsets for

training and testing the classifier. It is important that the test

data is independent of the training data; an appropriate re-

sampling scheme will therefore be proposed.

2 Basic concepts and techniques

2.1 Classifiers

A classifier is a mathematical mapping that assigns an object

to a class based on known covariates describing the object.

It is fitted to or trained on a given training data set. This

data set consists of objects (here: grid points) with known

class membership (here: landslide or non-landslide) and a set

of also known covariates representing possibly relevant envi-

ronmental conditions such as morphometry (slope, curvature,

distance to ridge and others), land use and land cover (veg-

etation, infrastructure). Given a set of objects with known

covariates, the classifier may be used to predict the (most

likely) class membership. In some instances, it is desirable

to predict the probability of class membership instead of the

class membership itself.

A great variety of classification methods has been devel-

oped by researchers in the fields of statistics and machine

learning (Hand, 1997). Common statistical approaches are

logistic regression (Hosmer and Lemeshow, 2000) and dis-

criminant analysis, both of which are based on linear com-

binations of the explanatory variables. More recent de-

velopments include support vector machines (SVM; Vap-

nik, 2001), artificial neural networks (ANN), and bootstrap-

aggregated classification trees (Breiman, 1996; Hothorn and

Lausen, 2003). Logistic regression, SVM and bootstrap-

aggregated classification trees will be presented and applied

later in this work (Sect. 5).

2.2 Error rates

The misclassification rate or error rate is one measure of

model performance. It is defined as the total proportion of

objects in a data set that is wrongly classified, i. e. of land-

slide grid points being predicted as non-landslides (false neg-

atives) and of non-landslide points being predicted as land-

slides (false positives).

An error rate that is measured on the training data set is

called the apparent misclassification error. This error rate

will not reflect the performance of the classifier on a test data

set. It will rather be too optimistic, i.e. a biased estimator of

the conditional or true error rate of the classifier on an infinite

test data set from the same distribution as the training data

set (Hand, 1997). The conditional error rate is the quantity

of interest in the assessment of classification rules.

An important property of the objects in a test data set is

to be independent of the objects in the training data set. This

poses a problem in the context of spatial data, where indepen-

dence between two observations may in many applications

only be assumed if their distance is greater than some thresh-

old, the range of autocorrelation, which may be empirically

estimated from the data set (Cressie, 1993).

Further parameters related to the error rate are the sen-

sitivity, i.e. the proportion of correctly predicted landslide

points, and the specificity, which measures the proportion

of correctly predicted non-landslide points. Depending on

the purpose of a study and on the cost associated with false-

positive and false-negative predictions, the sensitivity or the

specificity may be of different relevance in practice (Saisana

et al., 2004).

2.3 ROC plots

Many predictive modelling techniques such as logistic re-

gression provide predictions of landslide probability instead

of directly predicting the presence or absence of a landslide.

This makes it easier to adjust the classification rule to re-

strictions on sensitivities and specificities, and it also enables

us to assess the model’s predictive power independently of a

specific probability threshold that may be chosen to classify

a grid point as a potential landslide or non-landslide area.

Receiver-operating characteristic (ROC) plots can be used

for this purpose (Zweig and Campbell, 1993). These curves

are obtained by plotting all combinations of sensitivities (on

the y-axis) and proportions of false-negatives (1−specificity;

on the x-axis) that may be obtained by varying the decision

threshold.

The information contained in this plot is often summa-

rized by the area under the ROC curve (AUROC; Hosmer

and Lemeshow, 2000). This threshold-independent measure

of discrimination between both classes takes values between

0.5 (no discrimination) and 1 (perfect discrimination). As

for the error rates, the AUROC may be determined on test

or training data sets, the latter being referred to as apparent

AUROC in the present work.

2.4 Success rate and prediction rate curve

Two types of plots that are similar to the ROC curve have

frequently been used in landslide susceptibility modelling:

the success rate and prediction rate curves (cf. Chung and

Fabbri, 2003). The success rate curve is obtained by varying

the decision threshold and plotting the respective sensitivi-

ties against the total proportions of the data set classified as

landslide. This may be done on independent test data sets or

for the training data set, in which case the curve will here be

called apparent success rate curve.

Prediction rate curves are the same as success rate curves,

except that they are computed for landslide distribution pat-

terns (possibly in the training area) for a time point posterior

to the training data set’s temporal domain.

3 Review of modelling approaches

A review of recent publications reveals a large number of

papers and conference contributions dealing with predic-



A. Brenning: Spatial prediction models for landslide hazards 855

Table 1. Review of predictive modelling and evaluation approaches used in landslide modelling.

Citation Method Covariates Training data Evaluation

Ardizzone et al. (2002) Discriminant Morphometry, All grid points? Apparent error rate:

analysis geology, land use 22–23%; disagreement

between models based on

different inventories: 15.5%

Atkinson and Massari (1998) Logistic regression Morphometry, geology, 442 rupture zone Apparent success rates

vegetation centers; 1458

non-landslide

cells

Ayalew and Yamagishi (2005) Logistic regression Morphometry, geology, All grid points Apparent AUROC: 0.836,

proximity to roads (1 054 768 cells) Pseudo-R2: 0.195

Beguerı́a and Lorente (2002) Logistic regression Morphometry, satellite All grid points? Apparent error rate:

and thematic data 32%

Chi et al. (2002) Fuzzy inference Morphometry, geology, All grid points? Training and test areas;

network forest data prediction rate curves

Chung et al. (2002) Favourability Morphometry, geology, All grid points Temporal prediction

functions, fuzzy sets thematic data (437,019 cells) rate curve

Chung and Fabbri (2003) Likelihood ratio Success rates in

model separate test areas

and for future slides

Gorsevski et al. (2000) Logistic regression, Morphometry Sample of Apparent AUROC:

probit and grid points 0.713–0.716

complementary sensitivity 59%,

log-log model specificity 70%

Lee et al. (2003) Artificial neural Morphometry, vegetation, Random sample Separate test area

networks soils

Ohlmacher and Davis (2003) Logistic regression Slope, aspect, 2,022,861 None

geology, soils cells

Santacana et al. (2003) Discriminant Morphometry, Random sample Apparent error rate:

analysis thematic data 140+140 points; 18%

van Westen et al. (2003) Heuristic “weights Slope, geology, All grid points Apparent success

of evidence” thematic data rate curve

tive modelling of landslide hazards and the preparation of

statistically-based susceptibility maps. Table 1 gives an

overview of methods and data that have been used recently.

Logistic regression and discriminant analysis are the most

frequently chosen models. Likelihood ratio methods (Chung,

2003), which are kernel-based classifiers, are also popular

(cf. Chung and Leclerc 2003 for a review).

Statistical methods, if used for statistical inference, rely

on distributional assumptions, one of which is usually the

independence of the observations. This independence as-

sumption is violated in the case of sufficiently dense, espe-

cially gridded data, yielding e.g. invalid significance state-

ments (Ohlmacher and Davis, 2003; Ayalew and Yamagishi,

2005) or invalid estimates of landslide probabilities aggre-

gated over a surface (Chung and Fabbri, 2004, p. 165). In

the case of logistic regression, there are appropriate methods

available that explicitly model spatial autocorrelations (Au-

gustin et al., 1996; Gotway and Stroup, 1997; Venables and

Ripley, 2002). One such method is applied later in this work.

If prediction is the primary task of hazard modelling, the

analytical value of classifiers and hence the importance of

the significance of explanatory variables may be put aside,

and the evaluation of error and success rates as defined above

will deserve greater attention. However, a great part of the

published work measures the predictive power on the training

data set, yielding a too optimistic assessment if compared to

estimates obtained on independent test data sets.

Some authors use either test data from the training area

but for a different time period for evaluation (Chung et al.,

2002; Chung and Fabbri, 2003), or data from an adjacent test

area (Chung and Fabbri, 2003). Since landslide causes and

characteristics may vary systematically in space (e.g. due to

different geological conditions) and in time (e.g. due to dif-

ferent triggering rainfall intensities), they are drawn from dif-

ferent distributions, and estimated error rates or success rate

curves are hardly transferrable from one particular test data

set to the general landslide distribution in the study area. On

the other hand, if a random subset of the landslide popula-

tion is set aside (Santacana et al., 2003), spatial dependen-

cies between training and test data points separated by small

distances may produce too optimistic error estimates. Conse-

quently, the estimated error rates depend to a different extent
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Fig. 1. Location of the study area.

on the generalization capabilities of the classifiers. Different

evaluation strategies are therefore systematically compared

in the following case study.

4 Study area

The case study focuses on the surroundings of the Estación

Cientı́fica San Francisco (ECSF) in the Andes of Southern

Ecuador at 4◦1′ S and 79◦5′ W (Fig. 1). The ECSF area

has been investigated since the year 2000 within the com-

pound project “Functionality in a Tropical Mountain Rain-

forest” funded by the German Research Foundation (DFG).

The aim of this multidisciplinary research project is to an-

alyze the rainforest ecosystem of Southern Ecuador and to

elaborate options for its sustainable use. This ecosystem

is one of the hot spots of biodiversity on Earth (Beck and

Müller-Hohenstein, 2001; Bussmann, 2001; Richter, 2003).

The study area comprises 11.2 km2 and extends from 1720

to 3160 m a.s.l. Landslides were inventoried by Stoyan

(2000) at a scale of 1:8800. A total area of 0.94 km2 was

classified as active or inactive mass movements in the transi-

tion between shallow transitional landslides and debris flows

(Corominas, 1996; Stoyan, 2000). Landslide inventories

were compiled for the years 1962, 1969, 1976, 1989 and

1998.

Vegetation is dominated by mountain rainforests and

páramo. Slashing and burning and subsequent grazing take

place in the lower, northwestern part of the mapping area

along the road from Loja to Zamora. Landslide incidence is

highest in these intervened areas.

5 Methods

Using geomorphometric attributes and information on land

use, several statistical classifiers are applied to predict land-

slide incidence in the study area. The predictive capabili-

ties of these competing methods are compared based on mis-

classification error rates estimated using spatial and spatio-

temporal cross-validation approaches on independent test

data sets. The spatio-temporal prediction situation consists of

training classifiers based on all 1989 and pre-1989 data, and

to predict with this classifier post-1989 (i. e. year 1998) land-

slides based on the knowledge of pre-1998 landslides and of

land-use data of 1998. Conditions of 1989 are referred to

as “present” and 1998 as “future”. These future landslides

are only used for error estimation as described below, not for

training classifiers.

In general terms, different classifiers are fitted to training

data sets, and error rates are measured on the following four

types of independent test data sets: (1) Test points scattered

within the spatial domain of the training area, corresponding

to present conditions (spatial intra-domain error), (2) test

data within the spatial domain of the training area, but cor-

responding to the future inventory (spatio-temporal intra-

domain error), (3) test points outside the spatial domain

of a restricted training area representing present-day condi-

tions (spatial extra-domain error), and (4) test data outside

the training area and representing future conditions (spatio-

temporal extra-domain error). Independent test and training

data sets are obtained by applying empirically-derived dis-

tance buffers as described below in section 5.2

The difficulty of temporal and of extra-domain prediction

lies in possible differences in the stochastic distribution of

landslide events outside the spatial and temporal domain of

the training data set. Algorithms that are able to generalize

from the training data are expected to achieve better results

in these settings than algorithms that tend to overfit the pecu-

liarities of the training data.

Automated methods for training classification rules are

used in the present work. This approach allows to automati-

cally replicate training and test data sets and to apply cross-

validation to the estimation of misclassification error. This

would not be possible with classical statistical model-based

approaches, which rely on more or less interactive model fit-

ting by an expert. In addition, a qualitative comparison of

model-based and data-driven approaches is presented in the

discussion.

All analyses are performed within the open-source data

analysis environment R (version 1.9.1; R Development Core

Team, 2004).

5.1 Classifiers

In the case study, several variants of traditional and more re-

cent classification methods are applied, ranging from logis-

tic regression over support vector machines to bagging and

double-bagging. Artificial neural networks are not used here

because of the need for an adjustment of several hyperpa-



A. Brenning: Spatial prediction models for landslide hazards 857

rameters (number of layers, type of weight decay), which is

beyond the scope of this study (cf. Lee et al., 2003).

Logistic regression is a generalized linear model for bi-

nary response variables (Hosmer and Lemeshow, 2000). In

order to model the probability p of a positive outcome con-

ditional on the covariates, p is transformed from the interval

]0, 1[ to its logit ln(p/(1−p)). Logits are unbounded quanti-

ties and can be modelled linearly. Linear model coefficients

are interpreted in terms of multiplicative changes in the odds

p/(p−1) as a function of a risk factor. Logistic regression

is therefore a somehow natural way of analyzing the effect

of risk factors on hazard susceptibility. In the present work,

logistic regression is performed both after applying an au-

tomatic stepwise backward variable selection based on the

Akaike Information Criterion (AIC), which penalizes for the

number of explanatory variables (acronym glmstep), and us-

ing all available variables without selection (glm).

Spatial data are frequently autocorrelated up to a certain

distance called the range of autocorrelation (Cressie, 1993).

Classical logistic regression, which assumes independent ob-

servations, will therefore yield wrong significance statements

for model coefficients. A variant of logistic regression that

honors spatial autocorrelation (glmspat) is included here. It

is based on penalized quasi-likelihoods and implemented in

the R function glmmPQL (Venables and Ripley, 2002). The

iterative fitting algorithm is numerically more demanding

and less stable than the one used for ordinary logistic regres-

sion. Therefore only a manually preselected set of (the most

important) geomorphometric and thematic covariates could

be used in the present context of repeated automated model

fitting. The spatial correlation structure was represented by a

fixed spherical correlogram with a range parameter of 180 m

as derived from empirical residual correlograms of an ad-hoc

ordinary logistic regression.

Support vector machines are a more recently developed

method that is based on nonlinear transformations of the

covariates into a higher-dimensional feature space (Vapnik,

2001). In this space, an optimal separating hyperplane is

computed. In this work, C-classification is performed with

radial basis functions as kernels, and shrinking heuristics are

applied. The SVM implementation of the R package e10711

is used with default parameter settings.

Classification trees recursively split the covariate space

into disjoint subsets (Breiman et al., 1984). These subsets

are assigned to one of the classes, landslide or non-landslide.

An object from the test data set is dropped down the tree in

order to determine the subset it belongs to and hence to pre-

dict its class membership.

Since classification trees are instable with respect to slight

modifications of the training data set, bootstrap-aggregation

techniques such as bagging have been proposed (Breiman,

1by D. Meyer, Institute of Information Systems, Vienna Uni-

versity of Economics and Business Administration, based on code

by Chih-Chung Chang and Chih-Jen Lin, Department of Computer

Science and Information Engineering, National Taiwan University,

Taipei.

1996). Bagging consists of training separate classification

trees on random subsamples of the data set. The bootstrap-

aggregated prediction is obtained by majority voting among

these trees. In this work, 25 bootstrap replications are used.

Double-bagging (Hothorn and Lausen, 2003) is an exten-

sion of bagging that combines classification trees with other

classifiers, in this work with stabilized linear discriminant

analysis (Läuter, 1992; dbagslda), logistic regression (dbag-

glm) and SVM (dbagsvm). Specifically, one of these classi-

fiers is trained on the out-of-bag sample, i.e. the part of the

training data set that is not included in the bootstrap sam-

ple. The prediction function of this classifier (in the case of

discriminant analysis, the discriminant function) is used as

an additional covariate in bootstrap-aggregated tree growth.

This makes predictions smoother and more efficient than in

bagging, and uses the information contained in the out-of-

bag sample. Bagging and double-bagging are implemented

in the R package ipred2.

5.2 Estimation of error rates

Misclassification rates are used to compare the predictive

power of classifiers. While in a practical context different

cost may be associated with both error types (false-positives

and false-negatives), here both are treated as equally impor-

tant since a more appropriate cost function is not available.

Furthermore, independently of the proportion of landslide

and non-landslide areas in the inventory maps, all analy-

ses presented here are based on balanced training and test

data sets of 50% landslide and 50% non-landslide samples.

These simplifications were made in order to focus on dif-

ferences between the classifiers that are independent of the

actual prevalence of landslides.

Traditional cross-validation is based on partitioning the set

of observations into equally-sized subsets to train the classi-

fier on all but one of these subsets and test it on the remaining

one (Efron and Gong, 1983; Efron and Tibshirani, 1986). Er-

rors measured on these test data sets are averaged over all test

data sets in order to obtain an overall error estimate. Cross-

validation assumes that (pairs of) observations in different

subsets of the partition are independent. In a spatial context,

this is not easy to achieve.

The following procedure is used to extract appropriate

test and training data sets from the gridded landslide inven-

tory: First, an empirical correlogram was estimated from the

(logit-scale) residuals of an ad-hoc logistic regression model

of landslide distribution. The correlogram shows an approxi-

mate range parameter of 180 m, indicating that the random

component of landslide susceptibility distribution is auto-

correlated at distances below this threshold. If the random

field is assumed to be second-order stationary and Gaussian,

model errors at pairs of points more than 180 m apart may be

considered independent. If the assumptions do not hold, the

2by T. Hothorn, Institute of Medical Informatics, Biometry and

Epidemiology, University of Erlangen-Nürnberg, Erlangen, Ger-

many.
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mentioned minimum distance between points is a necessary

condition for independence. It is therefore an important con-

straint for spatial cross-validation that the minimum distance

of each test data point to the training data points is greater

than the correlogram range.

In the present case study, first a set of 20 landslide and 20

non-landslide grid points is sampled from the study area in

order to use it as a spatial test data set for the prediction of

“present-day” (1989) landslide distribution. In addition, for

spatio-temporal error estimation, samples of the same size

are drawn from the inventory of “future” (1998) landslides.

Based on the mentioned ad-hoc estimate of the correlogram

range of ∼180 m, all grid points within this distance from

both test data sets are excluded from the area from which the

training data set is drawn randomly.

The size of the training data set is varied in order to deter-

mine how the different methods are able to deal with an in-

creasing spatial dependence of the data. The largest training

data set consists of 1600 landslide and 1600 non-landslide

points. It is split into two disjoint data sets of 800+800 and

then four data sets of 400+400 points each.

This procedure of sampling both 20+20 test samples and

an independent 1600+1600 training data set is repeated

50 times independently. Spatial and spatio-temporal intra-

domain error rates are estimated on the corresponding test

data sets. These estimates based on independent test data

sets are estimates of the respective conditional misclassifica-

tion rate.

Since it is not only desirable to achieve good predictions

within the area spanned by the training data set, in a second

evaluation approach the ability of predicting spatial trends

beyond the training area is measured by means of extra-

domain error rates. For this purpose, two subareas in the ex-

treme southwest and northeast are used as test areas. These

subareas, which comprise about half the mapping area, rep-

resent an intervened area with high landslide incidence and a

high-elevation area with low incidence. The area from which

training data sets are drawn is separated from the test areas by

a 180 m wide buffer in order to achieve independence. Both

spatial and spatio-temporal error rates are calculated for the

test areas.

The estimated error rates are compared to the results of the

best classifier for each of the scenarios by means of a paired

t-test. To adjust for multiple testing, a Bonferroni correction

was applied to control family-wise error rates (Westfall and

Young, 1993). The Bonferroni correction consists of multi-

plying all p-values by the total number of tests performed in

an analysis.

5.3 Explanatory variables

Digital elevation models (DEM) have become inexpensive

sources of topographic information and hence a data base for

the computation of geomorphometric attributes that are re-

lated to mass movements. For the present case study, a set

of standard topographic attributes has been derived from a

DEM created by Stoyan (2000), which is based on contour

lines and corrected according to air photos and field measure-

ments. The nominal resolution of the DEM is 5 m. Similar

to the papers discussed earlier in this work, the terrain pa-

rameters used range from local parameters (elevation, slope,

aspect, plan, profile and total curvature, convergence index)

to parameters that depend on topological site characteristics

(contributing area, its height, mean slope and mean aspect;

vertical distance to channel network and from ridge). In the

case of skewed variables or variables for which a nonlinear

relationship is to be expected, simple transforms (logarithm;

binary splits such as “distance to past landslides smaller than

200 m”) were added without regard of the covariates’ actual

empirical relation to the response, i. e. without fitting the co-

variates to the data manually. Terrain parameters were com-

puted using the software SAGA3.

Multi-temporal land use and deforestation patterns in the

study area as compiled by Stoyan (2000) were used as ad-

ditional covariates. These covariates are categorical vari-

ables such as a binary variable representing the polygonal

deforestation areas. In addition, distance parameters were

computed for such areas, and a set of binary splits of these

variables was produced (e.g. “distance to road smaller than

200 m”). Reliable geological information is not available at

the scale of the inventory.

6 Results

6.1 Extra-domain error rates

Logistic regression with stepwise variable selection achieved

the lowest estimates of conditional error rates both for the

spatial prediction of “present” landslides and the spatio-

temporal prediction of “future” landslides outside the train-

ing area. This is true for all sizes of training data sets con-

sidered. Best results are obtained for the largest training

data sets, the overall optimum being an error rate of 0.24

for present and 0.32 for future landslides (Table 2). This

method is followed by logistic regression without variable

selection in the case of spatial prediction, and by logistic re-

gression with spatial autocorrelation structure in the case of

future landslides.

SVM achieve average results as regards estimates of con-

ditional error rates, with comparatively better results for

present landslides than for future ones. Bagging and double-

bagging perform considerably worse than the other methods

regarding the conditional error estimates. There are no great

differences within this group of classifiers, independently of

the method trained on the out-of-bag sample.

6.2 Intra-domain error rates

Error rates obtained for independent test points within the

spatial domain of the training data set show a different be-

havior compared to the extra-domain error rates (Table 3).

3by O. Conrad, Geographical Institute, University of Göttingen,

Germany.
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Table 2. Extra-domain error rates for present and future landslide prediction.

Spatial error rate Spatio-temporal error rate

Classifier 3200 1600 800 400 3200 1600 800 400

glmstep 0.238 0.247 0.261 0.283 0.324 0.329 0.340 0.355

glm 0.263 0.276 0.297 0.327 0.371 0.379 0.390 0.406

glmspat – 0.339 0.347 0.354 – 0.333 0.330 0.332

svm 0.327 0.302 0.302 0.321 0.386 0.372 0.370 0.384

bagging 0.376 0.375 0.385 0.385 0.418 0.422 0.413 0.404

dbagslda 0.482 0.454 0.429 0.409 0.450 0.428 0.409 0.399

dbagglm 0.449 0.447 0.407 0.388 0.449 0.435 0.413 0.403

dbagsvm 0.382 0.376 0.387 0.391 0.426 0.420 0.413 0.405

Table 3. Intra-domain error rates for present and future landslide prediction.

Spatial error rate Spatio-temporal error rate Apparent error rate

Classifier 3200 1600 800 400 3200 1600 800 400 3200 1600 800 400

glmstep 0.290 0.295 0.301 0.317 0.343 0.344 0.351 0.358 0.187 0.186 0.181 0.171

glm 0.317 0.315 0.329 0.345 0.350 0.352 0.359 0.378 0.176 0.171 0.161 0.137

glmspat – 0.338 0.339 0.334 – 0.327 0.314 0.336 – 0.267 0.264 0.240

svm 0.326 0.319 0.319 0.324 0.343 0.340 0.330 0.337 0.117 0.127 0.133 0.133

bagging 0.379 0.330 0.313 0.310 0.374 0.348 0.344 0.332 0.001 0.001 0.001 0.002

dbagslda 0.370 0.335 0.310 0.312 0.381 0.360 0.345 0.334 0.001 0.001 0.001 0.001

dbagglm 0.354 0.331 0.311 0.310 0.370 0.352 0.333 0.332 0.000 0.001 0.001 0.002

dbagsvm 0.373 0.337 0.316 0.312 0.361 0.349 0.338 0.335 0.001 0.001 0.001 0.002

In the case of conditional error rates for the distribution

of present landslides, logistic regression with variable selec-

tion (glmstep) generally achieves the best results (lowest er-

ror rate: 0.29). For small sample sizes, error rates slightly

increase, and there is no significant difference if compared to

bagging and double-bagging predictors. These overfit, yield-

ing highest error rates for large sample sizes. SVM does a

good job for all sample sizes.

As regards the prediction of future landslides within the

spatial training domain, logistic regression with spatial de-

pendence (glmspat) achieves lowest estimated conditional er-

ror rates. However, there is no significant difference com-

pared to the other classifiers, since the general variability of

error rates is greater than in the previous setting.

Estimated apparent error rates are much lower than the

previously presented unbiased estimates of the conditional

misclassification rate. Tree-based methods achieve apparent

error rates < 1%, while SVM and logistic regression yield

apparent error rates of more than half the unbiased estimates

of the conditional error.

Since apparent error rates may be taken as (possibly too

optimistic) upper bounds of the true error rate (Hand, 1997),

and since glmspat generally performed quite well on inde-

pendent test data, it is suggested that logistic regression with

stepwise variable selection is very close to the minimum er-

ror rates that may be achieved with this class of classifiers

and the covariates at hand. The estimated extra-domain er-

ror rates are lower than intra-domain errors. This can be at-

tributed to the circumstance that the proportion of probably

man-made landslides is greater in the test area than in the

training area; man-made landslides are apparently easier to

predict than landslides in the less intervened areas.

6.3 Susceptibility maps

Figure 2 shows susceptibility maps for spatial intra-domain

prediction using logistic regression with variable selection,

double-bagging combined with logistic regression, and sup-

port vector machines.

Logistic regression shows a smooth prediction surface, ex-

cept for areas with changes in the categorical variables such

as land-use boundaries or pre-existing landslide scarps. SVM

predictions look similar, but show finer spatial structuring be-

cause the method incorporates more complex variable trans-

formations into the predictor. Interestingly, SVM predicts

an altitudinal increase in landslide susceptibility towards the

mountain situated in the extreme southeast of the study area.

This (unrealistic) feature is missing in the logistic regression

map.

In contrast to logistic regression, the tree-based predictions

of bagging and double-bagging are not continuous func-

tions of the covariates. They produce a complex predic-
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Fig. 2. (a) The overall distribution of landslides (yellow), and, (b)–(d), landslide susceptibility maps produced with logistic regression,

double-bagging and support vector machines.

tion pattern with isolated grid points of high susceptibility

and some abrupt changes within short distances. These pat-

terns hinder the construction of susceptibility maps that can

be used in practice at the given scale, since individual high-

susceptibility grid points are spread over the entire mapping

area. The higher generalization capability of SVM and espe-

cially of logistic regression are desirable features for hazard

zonation.

6.4 Stability considerations

Both SVM and tree-based method are very stable algorithms.

Ordinary logistic regression is also rather stable, but is sub-

ject to the limitations of any linear model regarding the non-

collinearity of covariates. This sometimes causes problems

in the case of automated stepwise variable selection with

many covariates, especially when interaction terms are in-

volved, which was avoided here for this reason.

Logistic regression with spatial autocorrelations as imple-

mented by glmmPQL in R was the least stable method. Some

subjectively less relevant covariates could not be included in

these models since the full set of variables frequently pro-

duced errors. In addition, 512 MB of RAM were not enough

for glmmPQL to run on a training data set of 3200 autocor-

related points. This method was also by far the slowest one.

7 Discussion

The results of the case study show that logistic regression

with stepwise variable selection is flexible enough to com-

pare favorably with machine-learning algorithms such as

SVM and double-bagging. In contrast especially to the lat-
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ter, overfitting is not a serious problem for logistic regression.

Differences between the classifiers were greatest for predic-

tions outside the training area (extra-domain error rates).

The large differences between biased apparent error rates

and “true”, conditional error rates underlines the importance

of using a spatial cross-validation technique based on repli-

cated independent test data sets. This is crucial in the case of

highly flexible machine-learning algorithms, and less prob-

lematic if logistic regression is applied.

Regarding the model-based representation of spatial de-

pendence in logistic regression, the results obtained with

glmmPQL suggest that a statistically correct model is not

needed to achieve good predictive properties. However, if

statistical inference on model coefficients are a secondary

objective for analytical purposes, an adequate representation

of the spatial autocorrelation structure is mandatory, but sub-

ject to the uncertainties of fitting a covariance structure to the

data.

Logistic regression and SVM produce sufficiently smooth

prediction surfaces as for creating landslide susceptibility

maps. Tree-based methods are more prone to producing spa-

tial artifacts such as sudden changes in predicted landslide

probability on rather smooth terrain surfaces.

While only automatic model-building algorithms have

been considered so far, the interactive, manual analysis and

variable selection in conjunction with logistic regression is a

serious alternative. Experienced spatial modelers will easily

recognize certain (univariate) nonlinearities in the relation-

ship between the response variable and a covariate, or the

need for applying transformations to the data. These data

modelling tasks may also be achieved by flexible machine-

learning algorithms, but only at the risk of overfitting the

training data. Human analysts, in contrasts, make use of con-

straints that arise from their domain knowledge, which may

especially be useful in the case of extra-domain predictions.

8 Conclusions

Logistic regression with stepwise variable selection is an ad-

equate method for the prediction of landslide susceptibility.

In the present case study, this method compares favorably to

machine-learning classifiers, which are more prone to over-

fitting. In addition, variants of logistic regression that are

able to represent spatial autocorrelation structures may be ap-

plied for analytical purposes.

Even if a purely data-driven approach is used, the es-

timated apparent and more relevant conditional error rates

demonstrate how important it is to take into account spatial

autocorrelations during model evaluation.

Beyond the use of misclassification error rates, related

quality measures such as the sensitivity and specificity of the

classifier will have to be controlled in practice, depending on

the specific aims of a susceptibility map to be created. For

this purpose, appropriate cost functions have to be defined

for both error types. It will be of particular importance to

account for the spatial variability of these cost functions de-

pending on infrastructure and land use.
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