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Abstract: The most dangerous landslide disasters always cause serious economic losses and human
deaths. The contribution of this work is to present an integrated landslide modelling framework,
in which an adaptive neuro-fuzzy inference system (ANFIS) is combined with the two optimization
algorithms of whale optimization algorithm (WOA) and grey wolf optimizer (GWO) at Anyuan
County, China. It means that WOA and GWO are used as two meta-heuristic algorithms to improve
the prediction performance of the ANFIS-based methods. In addition, the step-wise weight assessment
ratio analysis (SWARA) method is used to obtain the initial weight of each class of landslide influencing
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factors. To validate the effectiveness of the proposed framework, 315 landslide events in history
were selected for our experiments and were randomly divided into the training and verification sets.
To perform landslide susceptibility mapping, fifteen geological, hydrological, geomorphological,
land cover, and other factors are considered for the modelling construction. The landslide
susceptibility maps by SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-WOA, and
SWARA-ANFIS-GWO models are assessed using the measures of the receiver operating characteristic
(ROC) curve and root-mean-square error (RMSE). The experiments demonstrated that the obtained
results of modelling process from the SWARA to the SAWRA-ANFIS-GWO model were more accurate
and that the proposed methods have satisfactory prediction ability. Specifically, prediction accuracy by
area under the curve (AUC) of SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-GWO,
and SWARA-ANFIS-WOA models were 0.831, 0.831, 0.850, 0.856, and 0.869, respectively. Due to
adaptability and usability, the proposed prediction methods can be applied to other areas for landslide
management and mitigation as well as prevention throughout the world.

Keywords: landslide; evolutionary optimization algorithm; prediction accuracy; goodness-of-fit;
machine learning; China

1. Introduction

Landslides are some of the most fatal natural disasters worldwide, which greatly influences
human life and development of infrastructures in underdeveloped countries [1,2]. For instance, about
15,000 landslides happened in China between 2015 and 2017, which caused the economic loss of about
one million US dollars. Therefore, it is urgent to conduct studies on landslide susceptibility mapping
(LSM) and it is a primary and practical tool for mitigation and risk assessment [3].

In recent years, the assessment and management of landslides have resulted in significant
reduction in losses in several countries [4,5], where correlation on developments of landslide and
influencing factors is clarified. Persichillo et al. [6] found that the human activities have some influence
on sediment connectivity of landslides and the intensity of their occurrence. Safran et al. [7] inferred
that large landslides may locally inhibit incision by changing the river channels’ slope and width
and riverbed characteristics. Zhao et al. [8] found that landslide movement is a non-uniform and
non-rigid body motion which uses speckle and grayscale feature search methods. Gao et al. [9] found
that a rotated ellipsoid trend surface and a random field of residuals were influenced by the spatial
maximum rolling rainfall [10]. Rainfall can enlarge the weight of soil, alter the pore water pressure and
decrease the strength of soil, and trigger other types of landslides [11–13].

Although researchers are making tremendous efforts, prediction of landslide with high accuracy
is still challenging, especially in the regional scale [14,15]. The quality of landslide inventory
map has improved significantly with the use of new remote sensing techniques. For example,
Keyport et al. [16] analyzed pixel-level and object-level landslide detection methods using high
resolution remote sensing images, where major landslides were easy to recognize with a few errors.
However, quality of the landslide prediction is strongly dependent on the modelling approach [17],
therefore, various data-driven approaches have been considered, including logistic regression [18],
neural networks [19–25], support vector machine (SVM) [18,26–31], relevance vector machine [32],
least squares SVM [33,34], decision trees [35–39], logistic model trees [40], random forest [38,41,42],
gene expression programming [43]. However, no method or technique is the best for landslide
modelling at the regional scale for all regions.

One of the difficulties in landslide modelling at the regional scale is to handle landslide influencing
factors which are usually derived from various sources with different scales that may contain
uncertainties and imprecisions [44]. This requires new modelling methods other than traditional
data-driven approaches, which have abilities to deal with the above issues and enhance the model
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performance. Literature review shows that some approaches have been proposed, i.e., fuzzy
k-means [45], fuzzy logic [46,47], neural fuzzy [48–51], and fuzzy k-nearest neighbor [44], and
among them, the neural fuzzy, which is a hybrid of artificial neural network (ANN) with fuzzy logic,
has proven its efficient for landslide modelling in term of prediction accuracy [52,53]. However,
performance of the neural fuzzy model is strongly influenced by its weights for membership function
and finding these optimal weights is still a challenging task [54]. Recent developments of machine
learning (ML) have introduced new optimization algorithms, which could be used for optimizing
weights for membership function of the neural fuzzy model. Furthermore, ML techniques have recently
gained a good attention among environmental modeling research community as they are advantageous
in efficiently capturing the complex relationship between the environmental predictors and the
response, such as flood [55–63], earthquake [64,65], wildfire [66], sinkhole [67], droughtiness [68],
gully erosion [69,70], groundwater [71–74] and land/ground subsidence [75], and landslide in this
case [54,59,76–102]. Nevertheless, investigation of new optimization algorithms and the neural fuzzy
has not been carried out.

The aim of this study is, therefore, to patriotically fill this gap in literature through investigating
potential application of the whale optimization algorithm (WOA) and the grey wolf optimizer (GWO)
algorithm and the ANFIS algorithm for spatial probability of landslide occurrence in Anyang Country,
China. The WOA and GWO algorithms have been proven better than other popular meta-heuristic
algorithms, such as genetic algorithm (GA), ant colony optimization (ACO), and particle swarm
optimization (PSO) for optimization in various real world problems [103,104]. In addition, the step-wise
weight assessment ratio analysis (SWARA) method is used to evaluate the relationship between landslide
and influencing factors. To our best knowledge, the hybrid framework of SWARA-ANFIS-WOA and
SWARA-ANFIS-GWO has not been studied for landslide modelling. The prediction performance
of the proposed methods was evaluated using several objective measures of root-mean-square error
(RMSE), receiver operating characteristic (ROC) curve, and area under the ROC curve (AUC). Finally,
the effectiveness of the proposed methods was assessed by comparing the landslide susceptibility
maps with the historical landslide events.

2. Material and Methods

2.1. Introduction of the Study Area

Anyuan County, which has an area of about 2374.59 km2, is located in the south of Jiangxi Province,
China (Figure 1). Its longitude and latitude lie between 115◦9′52′′ to 115◦37′13′′ E and 24◦52′18′′

to 25◦36′52′′ N, respectively. The altitude of this area is from 132 m to 1180 m (msl). The climate
of Anyuan County is of a subtropical monsoon region. The average temperature in the period of
1960–2016 and the humidity are 18.3 ◦C and 76%, respectively. Meanwhile, the annual average sunshine
time and rainfall are about 72 and 108 days, respectively, and the average annual rainfall is 1562.1 mm.

There are two major rivers of Zhenjiang and Lianjiang in the Anyuan area and 37 reservoirs.
The geological map of the study area demonstrates that more than 29 geologic groups and units can be
observed, as shown in Table 1 and Figure 2, and the main lithological categories are carbonaceous
shale and coal seam, feldspar quartz coarse sandstone, granite, residual tuff; crystalline chip, diorite.
According to the fifth census data of China (http://www.ay.gov.cn/xxgk/tjxx), the population and
the Gross Domestic Product (GDP) of Anyuan County are 398,614 people and about 8.7 billion US
dollars per year. As for the population, 301,563 and 97,061 people are living in urban and rural
areas, respectively.

http://www.ay.gov.cn/xxgk/tjxx
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Table 1. Geological formations of the study area.

No. Unit Name Lithology

A
Hutian group Dolomite, biogenic limestone, dolomitic limestone

Two long (K-feldspar) granite

B
Zhong peng group Red sandstone, siltstone, silty shale
Zi shan group, Yun shan group Quartz conglomerate and carbonaceous shale

C Lu jing Unit Kimberley rock
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Table 1. Cont.

No. Unit Name Lithology

D

Lin shan group, Shui bei group Carbonaceous shale and coal seam
Luo ao group Feldspar quartz coarse sandstone
Ge xianshan group, Xishan pai unit Granite
Linsha group, Yuexing group Granite
Yu tian group, Ji long group Residual tuff; crystalline chip
Long zhou unit Diorite

E
Shui jiang unit, Nankeng unit Monzogranites
Gan zhou group, Zhou tian group Basalt, calcium mirabilite and halite

F Yang jiaqiao group Quartzite, siliceous rock

G
Da long group, Le ping group, Chang xing group Coal seam, flint limestone, siliceous rock
Tao xi group Biotite plagioclase leptynite, sericite schist

H Xia keng group Granodiorite

I
Hu cheng unit Tonalite
Gui keng unit, Shang you unit Granite

J Le chang group Slate, phyllite
He zi unit Peridotite, ophiolite, amphibolite

K Bacun group, Niu jiaohe group Silty slate, carbonaceous slate

Notes: A, B, C, D, E, F, G, H, I, J and K represent the lithology classes.

2.2. Data Preparation

2.2.1. Landslide Inventory Map

The initial step of LSM is to produce an accurate and reliable inventory map, which is always
obtained by field survey, image interpretation from remote sensing data and historical landslide records.
In this work, the landslide inventory map of Anyuan County with 315 landslide locations provided by
the Department of Land and Resources of the Jiangxi Province and the Jiangxi Meteorological Bureau.
In this map, the smallest and largest landslides are 2.4 m2 and 7,840 m2, respectively. The distribution
and impact of landslides with different sizes are greatly different. For instance, more than two-thirds
of the total landslides are small-scale (<200 m2) landslides, which have influenced 2352 people and
cause the economic loss of 0.1 million US dollars, followed by medium-scale (200–1000 m2) and
large-scale (>1000 m2) landslides, which have influenced 479 and 55 people and caused the economic
loss of 0.3 and 1 million US dollars, respectively. Meanwhile, heavy rainfall is another key factor for
landslide occurrence.

2.2.2. Landslide Influencing Factors

In this study, fifteen landslide influencing factors, including altitude, slope, aspect, plan curvature,
profile curvature, stream power index (SPI), sediment transport index (STI), topographic wetness index
(TWI), lithology, distance to fault, distance to river, land use, normalized difference vegetation index
(NDVI), soil and rainfall (Figure 3). A DEM of the Anyuan area was obtained from the ASTER GDEM
Version 2 and we can produce the geomorphological factors of slope, altitude, aspect, curvature, SPI,
STI and TWI by using ArcGIS and SAGA-GIS software. In Figure 3a,b, altitude was divided into seven
categories of 132–282 m, 282–432 m, 432–582 m, 582–732 m, 732–882 m, 882–1032 m and >1032 m, and
slope was classified to eight angles of <20.0◦, 20.0–24.6◦, 24.6–29.2◦, 29.2–33.8◦, 33.8–38.4◦, 38.4–43.0◦,
43.0–47.6◦ and >47.6◦. As previous studies, aspect was classified to nine directions in Figure 3c,
including east, south, west, north, northwest, northeast, southwest, southeast and flat. Both of the
plan and profile curvatures were discriminated into three categories of <−0.001, (−0.001)–(0.001) and
>0.001, as shown Figure 3d,e.
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The factors of SPI, STI and TWI were divided into seven classes in Figure 3f–h, respectively. As for
the geological factors, there are eight groups in the lithological map in Figure 3i, and distance to fault
was initialized to six classes of 0–500 m, 500–1000 m, 1000–1500 m, 1500–2000 m, 2000–2500 m, and
>2500 m in Figure 3j. As for the hydrological factor of distance to river, it was classified to seven
intervals in Figure 3k, i.e., (1) 0–150, (2) 150–300, (3) 300–450, (4) 450–600, (5) 600–750, (6) 750–900, (7)
>900. The land use and NDVI can be obtained using a Landsat 7 ETM+ satellite image acquired on
12 October 2001. The values of NDVI are in the range of [−1, 1] and were separated into six classes of
<−0.05, (−0.05)–0.05, 0.05–0.15, 0.15–0.25, 0.25–0.35, 0.35–0.45, and >0.45 in Figure 3l. To obtain the
land use information, the supervised classification algorithm of maximum likelihood was used with
the overall accuracy of 91.2%, and the study area was classified to six objects of bare, forest, grass,
residential, farmland, and water in Figure 3m. Another land cover factor of soil was provided by
the Institute of Soil Science, Chinese Academy of Sciences (ISSCAS), China, into 5 different types of
ATc (Cumulic anthrosols), ACu (Humic acrisols), ALh (Haplic alisols), ACh (Haplic acrisols), and
RGc (Calcaric regosols) in Figure 3n. As for the factor of rainfall, the data from 23 rainfall stations for
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the period 1960–2015 were collected to produce the precipitation map in Figure 3o, and there are six
levels at an interval of 100 mm in this map. Finally, all the factor maps were resampled with a spatial
resolution of 25 m.

Figure 4 illustrates the proposed framework which mainly includes the four steps as follows.
(1) The landslide inventory map of the study area is compiled and the influencing factors are selected;
(2) The initial weights of each class of landslide condition factors evaluated by SWARA; (3) The landslide
modelling is conducted on the study area using the proposed ANFIS-WOA, and ANFIS-GWO methods.
(4) The experimental results are analyzed and evaluated.Appl. Sci. 2019, 9, x 9 of 34 
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2.3. The Initial Weights for Modelling Process

As a multiple-criteria decision analysis (MCDM) method, the step-wise weight assessment ratio
analysis (SWARA) algorithm was firstly introduced for assessing the correlation between factors by
computing a set of weights for each factor. There are two strategies for the SWARA algorithm. The
first strategy is to analyse the different situations and each layer of influential factors (criteria) is
prioritized based on the requirements and aims. The other strategy is experts’ knowledge, which is of
great importance to the prioritization of each layer of the influencing factors [105]. For clarification,
the SWARA algorithm is summarized in two steps:

Step 1: According to the relationship between the influencing factors, a decision-making
model based on experts’ judgement is developed and then the criteria are prioritized and sorted in
descending order.

Step 2: Compute weights for each factor.
First, each expert judges the prioritization of each criterion for each influencing factor. Then, the

comparative importance of the average value (CIAV) is given by [106]:

IAV =

∑N
i Di

N
(1)

where N is the number of experts and Di denotes the offered ranks by the experts for each factor.
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Then, the coefficient Ai is defined as follows:

Ai =

{
1 j = 1

CIAV + 1 j > 1
(2)

where j indicate the number of the factors.
The re-calculated weight D j is computed as follows:

D j =
CIAV − 1

A j
(3)

Finally, the relative weights of the criteria are represented as follows:

W j =
D j∑m

j=1 D j
(4)

where W j denotes the relative weight of the jth criterion and m represents the total of the criteria.

2.4. Landslide Prediction Models

2.4.1. ANFIS

The ANFIS is derived from the ANN and fuzzy logic [107]. The ANN model does not obtain
the output data from making decision. Although it has automatic learning capability and the fuzzy
logic is inverse of ANN model [108], the ANFIS algorithm has the advantages of both the ANN and
fuzzy logic models on producing input and output data in one framework [109], and it is known as
a commonly used data-driven model for solving nonlinear issues [110] in the fields of data processing
and fuzzy control [111].

This algorithm is based on the Takagi and Sugeno’s type by using two “If-Then” rules as
follows [112]:

Rule 1: If x1 and x2 are A1 and B1, respectively, then f1 = p1x1 + q1x2 + r1.
Rule 2: If x2 and x2 are A2 and B2, respectively, then f2 = p2x2 + q2x2 + r2.

where A1, A2, B1, and B2, are the fuzzy sets, pi, qi and ri are the parameters, x1 and x2 are input data
and f1 and f2 are output data [113]. The ANFIS system includes six layers and the detailed descriptions
on these steps can be referred in [112].

2.4.2. Whale Optimization Algorithm (WOA)

The WOA algorithm is a meta-heuristic optimization process that mimics humpback whales [103],
whose brain has the same spindle cells in the cortex as humans’ [114]. WOA is inspired from the
sole hunting method of colossal humpback whales [103] and is known as the bubble-net feeding
method [115]. This method is based on the unique pattern for catching far more fishes at once. A group
of whales come together and dive beneath the school of fishes by producing high pitch calls. At that
moment, the fishes flee to the surface, where the whales release the distinctive bubbles along a circle
of 9-shaped trail in an upward shrinking spiral around the fishes as an obstacle so that the fishes
cannot swim, as shown in Figure 5. Finally, the whales ascend to the surface with their mouths open
by the helix-shaped movement when the whale leader emits a hunting call [114]. The WOA can be
formulated as following steps:

(1) Encircling prey
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Encircling prey in the best position is the initial step in hunting prey. The humpback whales
look for the suitable position of prey and renew their positions based on the optimal known solution.
The solution can be represented by Equations (5) and (6):

→

D = |
→

C
→

X
∗

(t) −
→

X(t)| (5)

→

X(t + 1) =
→

X
∗

(t) −
→

A.
→

D (6)

where
→

X
∗

and
→

X are two position vectors and
→

X
∗

indicates the optimal solution obtained so far, t is the

current iteration. Furthermore,
→

A and
→

C specify the coefficient vectors that are given by:

→

A = 2
→
a .
→
r −

→
a (7)

→

C = 2
→
r (8)

where a is a linearly decreasing variable and r is a random vector in the range from 0 to 1.

(2) Bubble-net attacking method (exploitation phase).Appl. Sci. 2019, 9, x 11 of 34 
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This exploitation phase includes two processes given by:

(a) Shrinking encircling prey

In this mechanism, the values of
→
a and

→

A decrease in Equations (7) and (8). The vector
→

A has
a random value between [−a, a] and declines from 2 to 0. The new position can be reached using the
original and current optimal agent positions.

(b) Spiral position updating

Let (X, Y) and (X∗, Y∗) indicate the positions of the whale and prey and
→

D
′

the distance between
them; the whales mimic the helix-shaped movement according to spiral equation as follows:

→

X(t + 1) =
→

D
′

. ebl. cos(2πl ) +
→

X
∗

(t) (9)

where
→

D
′

= |
→

X
∗

(t) −
→

X(t)| is constant, and l is a random variable between [−1, 1], and b is constant.
A mathematical model is required for the updating of the whales’ position in optimization process
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because they swim towards the prey in two mechanisms of shrinking circle and spiral-shaped path.
The updating of the whales’ position is formulated as follows:

→

X(t + 1) =


→

X
∗

(t) −
→

A.
→

D i f p < 0.5
→

D
′

. ebl. cos(2πl ) +
→

X
∗

(t) i f p ≥ 0.5
(10)

where p is a random variable ranging from 0 to 1.

(3) Search for prey (exploration phase)

This phase can perform a global search when the whales search a randomly chosen agent.

This mechanism is used when
→

A has a random value larger than 1 or less than −1. The search for prey
can be modelled by the following equations:

→

D = |
→

C.
→

Xrand −
→

X| (11)

→

X(t + 1) =
→

Xrand −
→

A.
→

D (12)

where the position vector
→

Xrand is chosen randomly from the whales between the current population.
The flowchart of the WOA algorithm is illustrated in Figure 6.Appl. Sci. 2019, 9, x 12 of 34 
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2.4.3. Grey Wolf Optimizer (GWO)

The GWO algorithm is another meta-heuristic algorithm [104] and is derived from the hunting
behavior of the grey wolves and the social hierarchy in nature [116]. The Grey wolves live in pack by
a strict social dominant hierarchy and imitate the leadership hierarchy [117].
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The grey wolves have various groups for activities including hunting the prey. The social dominant
hierarchy of the grey wolves shown in Figure 7 has four forms: alpha (α), beta (β), delta (δ), and omega
(ω). The α-wolves are the top of the social hierarchy as leaders for making decisions whereas other
wolves follow them [118]. The β-wolves help the leaders and devise them. The δ-wolves situate the
next level and obey the α- and β-wolves. Finally, the ω-wolves have to submit to all of them [117].
The GWO technique has an optimization process similar to other meta-heuristic algorithms through
the collection of random candidate solutions [119], thus it is designed as a mathematically model for
grey wolves. Specifically, α, β, δ and ω are the fittest, second optimal, third optimal and the rest of
solutions, respectively [120].
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The process of hunting behavior of GWO is shown in Figure 7 and this algorithm includes four
phases described as follows:

(1) Encircling of prey

In the first phase, the grey wolves harass and encircle the prey during hunting. The parameter D
measures the distance between the grey wolf and the prey and is given by:

D = |
→

C.
→

XP(t) −
→

X(t)| (13)

where t represents the current iteration, and
→

XP and
→

X denote the position vectors of the prey and the

grey wolves, respectively, and the coefficient vector is defined by
→

C as follows:

→

C = 2.
→
r 1 (14)

where r1 is a random vector which is in the interval [0, 1]. The prey’s location can be represented
as follows:

→

X(t + 1) =
→

XP(t) −
→

A.
→

D (15)

The value of the coefficient
→

A is computed as follows:

→

A = 2a.r2 − a (16)

where a is a linearly decreasing variable and r2 is a random vector between [0, 1] as r1.

(2) Hunting

After the phase of encircling the prey, the hunting behavior is guided by α, β and δ, respectively,
since they have compressive information about the prey’s position. This behavior is shown as follows:

→

Dα = |
→

C1.
→

Xα −
→

X|,
→

Dβ = |
→

C2.
→

Xβ −
→

X|,
→

Dδ = |
→

C3.
→

Xδ −
→

X| (17)

→

X1 =
→

Xα −
→

A1.
→

D,
→

X2 =
→

Xβ −
→

A2.
→

D,
→

X3 =
→

Xδ −
→

A3.
→

D (18)



Appl. Sci. 2019, 9, 3755 13 of 32

where
→

X1,
→

X2 and
→

X3 indicate the position vectors of α, β and δ, respectively.
→

A1,
→

A2,
→

A3 and
→

C1,
→

C2,
→

C3 are the coefficients that can be computed using (14) and (16). The position of a grey wolf in search
space can be updated as follows:

→

X(t + 1) =

→

X1 +
→

X2 +
→

X3

3
(19)

The positions of other wolves update randomly according to the position of the prey.

(3) Attacking prey (exploitation)

The process of hunting finishes when the prey stops moving. Mathematically,
→

A is linearly

decreased from 2 to 0. The exploration trend happens when |
→

A| < 1 and |
→

C| < 1. At this moment,
the wolves attack the prey.

(4) Searching of prey (exploration)

The Grey wolves track and chase the prey. The pursing prey is known as the exploration phase
in GWO algorithm [121]. The parameters α, β, and δ have the duty of guidance roles in this process.

If |
→

A| > 1, it means the grey wolves diverge and scatter in different directions for searching of the prey.

After finding it, they converge to attack [118]. The coefficient
→

C provides a random weight for the

prey while |
→

C| > 1 and promotes the exploration phase. In addition,
→

C models the natural obstacles in
hunting for the grey wolves [122]. The flowchart map of the GWO algorithm is shown in Figure 8.Appl. Sci. 2019, 9, x 14 of 34 
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2.4.4. Particle Swarm Optimization (PSO)

PSO as a Meta-heuristic algorithm was introduced by Kennedy et al., 1995 [123,124]. The ability
to optimize nonlinear problems and fast convergence as well as a few computations are the most
remarkable features of this algorithm. These features make PSO significantly different from other
evolutionary algorithms such as genetic algorithms. This algorithm stems from being used by the
swarm intelligence of birds and fishes, which they apply it to discover the best means to find food.
In this algorithm, each bird is implemented as a particle which in fact represents a solution to the
problem. These particles are searched in n-dimensional space, where n is the number of problem
parameters, to find the optimum answer for the problem. To this aim, particles are randomly scattered
in the search space. Then in each iteration, based on Equations (20) and (21) each particle adjusts its
location by finding the best location that it has ever been in and the best one adjacent to its neighbor.

Supposing xt
i =

(
xt

i1, xt
i2, . . . , xt

in

)
and vt

i =
(
vt

i1, vt
i2, . . . , vt

in

)
are respectively the location and rate

of change in location of the i-th particle in t-th iteration, therefore, according to Equations (1) and (2),
the location and rate of change in location of the i-th particle in t + 1-th iteration can be determined
as follows:

vt+1
i = ω.vt

i + c1.r1.
(

pt
i − xt

i

)
+ c2.r2.

(
gt

i − xt
i

)
with− vmax ≤ vt+1

i ≤ vmax (20)

xt+1
i = xt

i + vt+1
i (21)

where, xt
i is the previous location of i-th particle, pt

i is the best location found by gt
i the i-th particle,

,is the best location found by other particles and r1, r2 are random numbers from 0 to 1. Moreover,
the three parameters ω, c1 and C2 are the cognitive coefficient, social coefficient, and inertia weight,
respectively. It should be noted that there are diverse articles in order to set these parameters. In this
paper, they are determined based on the following equations:

ω =
1

2ln2
and c1 = c2 = 0.5 + ln2 (22)

It is noteworthy that this algorithm continues until the best location found by each particle is the
equal of the best position chosen by all the particles. In other words, all the particles are concentrated
in one point of space, and in fact, the answer to the problem is optimized.

3. Results and Validation

3.1. Correlation between Landslides and Influencing Factors Based on SWARA

Table 2 lists the correlation between landslides and influencing factors based on SWARA. In this
table, the SWARA weight for slope is highest of 0.19 for the class of >47.6◦, indicating the highest
possibility of landslide occurring. For aspect, the highest SWARA weight of 0.3 is obtained in the
direction of south. In terms of altitude, the class 882–1032 m (0.33) was assigned with the highest
SWARA weight of 0.33. The highest SWARA weights of 0.51 and 0.55 for plan and profile curvatures
are achieved in the classes of >0.001 and <−0.001, respectively. For the three factors of SPI, STI and TWI,
the highest SWARA weights of 0.32, 0.7, and 0.6 are reached in the classes of 800–1000, 30–40 (50–60),
and 3–5, respectively. The lithology of the class C resulted in the best SWARA weight of 0.36. For the
distance to fault and river, the highest SWARA weights 0.11 and 0.21 are computed for the distances of
0–500 and 600–750, respectively. The classes of forest and 0.35–0.45 for land use and NDVI were given
the best SWARA weight of 0.53 and 0.4, respectively. The soil of ACu has the greatest SWARA weight
of 0.54 and the SWARA weight for rainfall is highest of 0.21 in the classes of 1500–1600 mm. Also,
one of the main advantages of this method is that considered the relative weights of each influencing
factor compare to each other. Result shows that slope angle and Plan curvature have a highest and
lowest impact on the landslide occurrences respectively (Table 3).
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Table 2. Spatial relationship between landslides and influencing factors by the step-wise weight
assessment ratio analysis (SWARA) algorithm.

Influencing
Factors Classes No. of Pixels No. of Landslide SWARA Weight

Slope angle
(degree)

<20.0 2656308 0 0.01
20.0–24.6 460317 116 0.11
24.6–29.2 312393 95 0.14
29.2–33.8 188594 46 0.11
33.8–38.4 101643 35 0.16
38.4–43.0 46703 16 0.16
43.0–47.6 18080 4 0.10

>47.6 7394 3 0.19

Aspect

Flat 1200 0 0.00
North 504881 12 0.03

Northeast 433690 14 0.04
East 479731 40 0.13

Southeast 482847 70 0.23
South 487601 97 0.30

Southwest 431966 45 0.16
West 480314 22 0.07

Northwest 489202 15 0.04

Altitude (m)

132–282 739706 4 0.01
282–432 1504606 75 0.06
432–582 867013 148 0.22
582–732 442338 39 0.11
732–882 174022 35 0.26

882–1032 55289 14 0.33
>1032 8458 0 0.00

Plan curvature
<−0.001 1791191 146 0.43

(−0.001)–(0.001) 171530 0 0.06
>0.001 1828711 169 0.51

Profile curvature
<−0.001 1835414 184 0.55

(−0.001)–(0.001) 33142 0 0.06
>0.001 1922876 131 0.39

SPI

0–50 2957565 221 0.10
50–100 372535 48 0.16
100–200 224014 25 0.14
200–400 129200 10 0.11
400–800 66033 8 0.15

800–1000 12254 3 0.32
>1000 29831 0 0.01

STI

0–10 2366364 90 0.04
10–20 797385 129 0.16
20–30 300375 43 0.15
30–40 129124 22 0.17
40–50 67080 9 0.14
50–60 39877 7 0.17
>60 91227 15 0.16

TWI

<3 444 0 0.01
3–5 1400515 200 0.61
5–7 1708346 98 0.23
7–9 514871 17 0.14
>9 167256 0 0.01
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Table 2. Cont.

Influencing
Factors Classes No. of Pixels No. of Landslide SWARA Weight

Lithology

A 26836 0 0.01
B 27889 4 0.12
C 2422 1 0.36
D 1159282 126 0.09
E 710946 32 0.04
F 76373 6 0.06
G 508520 41 0.07
H 6902 0 0.01
I 142618 21 0.13
J 719372 61 0.07
K 410272 23 0.05

Distance to faults
(m)

0–500 516832 60 0.21
500–1000 466826 37 0.15

1000–1500 436370 44 0.19
1500–2000 381470 43 0.20
2000–2500 329017 26 0.15

>2500 1660917 105 0.11

Distance to rivers
(m)

0–150 1001961 47 0.07
150–300 799934 72 0.15
300–450 703245 64 0.15
450–600 543309 59 0.18
600–750 388246 48 0.21
750–900 220837 16 0.12

>900 220837 16 0.11

Land use

Bare 656 0 0.00
Forest 1839583 243 0.53
Grass 748647 45 0.24

Residential 189281 5 0.11
Farmland 994815 22 0.09

Water 18450 0 0.00

NDVI

<(−0.05) 110766 2 0.04
(−0.05)–0.05 195838 7 0.07

0.05–0.15 503739 18 0.07
0.15–0.25 1185193 58 0.10
0.25–0.35 1322962 141 0.20
0.35–0.45 455283 88 0.40

>0.45 17651 1 0.12

Soil

ATc 319882 2 0.02
ACu 1035811 153 0.54
ALh 117324 6 0.19
ACh 2290342 154 0.25
RGc 28073 0 0.00

Rainfall (mm)

<1100 85055 0 0.01
1100–1200 427735 16 0.05
1200–1300 1631694 74 0.06
1300–1400 1040983 134 0.17
1400–1500 433154 67 0.20
1500–1600 78140 13 0.21
1600–1700 38958 5 0.17

>1700 55713 6 0.14
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Table 3. Calculate weight of influencing factors by the SWARA algorithm.

Influencing Factors CIAV Aj wj = (W(j−1))/Aj Weight wj/Sigma wj

Slope angle (o) 1.000 1.000 0.105
Rainfall 0.05 1.050 0.952 0.100
Lithology 0.1 1.100 0.866 0.091
Soil 0.06 1.060 0.817 0.086
Land use 0.06 1.060 0.771 0.081
NDVI 0.07 1.070 0.720 0.076
Distance to Rivers (m) 0.07 1.070 0.673 0.071
Distance to faults (m) 0.03 1.030 0.653 0.069
TWI 0.05 1.050 0.622 0.066
SPI 0.08 1.080 0.576 0.061
Altitude 0.1 1.100 0.524 0.055
STI 0.1 1.100 0.476 0.050
Aspect 0.3 1.300 0.366 0.039
Profile curvature 0.3 1.300 0.282 0.030
Plan curvature 0.5 1.500 0.188 0.020

3.2. Application of the Integrated ANFIS Methods

To construct the training and verification sets, the same number of 315 non-landside grid cells
were first randomly selected using ArcGIS. Then, 70% landside and non-landside grid cells were used
for model building, and the remaining landside and non-landside grid cells were used for assessing
the prediction performance [125–128]. It is better to noted that in this stage, only the weights of
each factors by SWARA method is considered for integration. Once the training and verification sets
were constructed, the SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-WOA and
SWARA-ANFIS-GWO methods were used to predict landslide susceptibilities for Anyuan County.
In the proposed framework, the meta-heuristic algorithms were programmed using MATLAB software,
and the parameters of membership functions were optimized [129–132]. The GWO, WOA, and PSO
algorithms enhance the prediction accuracy of ANFIS. Firstly, a given weight is assigned to each class
and each influencing factor, and then, an output is computed. Consequently, each weighted class is
considered as input data for ANFIS to find the weight of each factor. In the next stage, GWO, WOA,
and PSO based on ANFIS are implemented to optimize the obtained weight of ANFIS in the earlier
stage. Figure 9 shows a mathematic example that how these algorithms run and lead to enhance the
power prediction of ANFIS algorithm.
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Figures 10–12 show the accuracy of training and verification processes for the
SWARA-ANFIS-GWO and SWARA-ANFIS-WOA, and SWARA-ANFIS-PSO methods, respectively.
The RMSE was selected to assess the prediction performance of the three methods in both
training and verification phases. The results demonstrate that the RMSE for SWARA-ANFIS-PSO,
SWARA-ANFIS-WOA and SWARA-ANFIS-GWO methods were 0.099, 0.1, and 0.099 in the training
phase and 0.120, 0.11, and 0.1 in the verification phase, respectively. Meanwhile, GWO can optimize
the better parameters of membership functions than that of WOA in both the training and verification
phase. To evaluate the efficiency of the two methods, the cost function values are calculated and
plotted versus each iteration of convergence graph for the three proposed methods, as shown in
Figure 13. The cost function values of ANFIS-GWO, SWARA-ANFIS-WOA and SWARA-ANFIS-PSO
are stable after 17, 362, and 49 iterations, which validates that SWARA-ANFIS-GWO is more efficient
than SWARA-ANFIS-WOA and SWARA-ANFIS-PSO.Appl. Sci. 2019, 9, x 19 of 34 
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Figure 13. Convergence plot of the SWARA-ANFIS-GWO, SWARA-ANFIS-WOA and SWARA-ANFIS-
PSO methods.

3.3. Preparation of Landslide Susceptibility Mapping

To produce the final resultant maps, the landslide susceptibility index (LSI) for each pixel was
used to indicate the landslide probability occurrence in a certain area. In this work, the LSI measure
is estimated for the study area, and the resultant maps were reclassified to five levels using the
natural break method [133]. Figure 14 shows five resultant maps by the SWARA, SWARA-ANFIS,
SWARA-ANFIS-PSO, SWARA-ANFIS-WOA, and SWARA-ANFIS-GWO methods. Results show
that according to the SWARA-ANFIS-WOA model, the moderate class has the largest area (20.80%),
followed by low (20.32), very low (19.82%), high (19.68%), and very high (19.38) classes. For the
SWARA-ANFIS-GWO model, the percentages are 37.66%, 32.39%, 12.22%, 11.52%, and 6.1% for
the very low, low, moderate, high, and very high classes, respectively. For the SWARA model, the
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percentages are 19.60%, 20.22%, 19.95%, 19.95%, and 20.28% for the very low, low, moderate, high,
and very high classes, respectively. For the SWARA-ANFIS model, the percentages are 0.24%, 32.23%,
20.60%, 17.02%, and 29.91% for the very low, low, moderate, high, and very high classes, respectively.
For the SWARA-ANFIS-PSO model, the percentage are 15.72%, 22.55%, 22.86%, 18.50%, and 20.37% for
the very low, low, moderate, high, and very high classes (Figure 15).Appl. Sci. 2019, 9, x 23 of 34 
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3.4. Validation of the Resultant Maps

To objectively evaluate the proposed methods, the ROC and AUC measures were used. In the
ROC curve, the specificity and sensitivity are on the x- and y-axis, respectively [134,135]. Figure 16a,b
demonstrate the ROC using the training and verification sets for the SWARA, SWARA-ANFIS,
SWARA-ANFIS-PSO, SWARA-ANFIS-WOA, and SWARA-ANFIS-GWO methods, respectively. It can
be observed that SWARA-ANFIS-WOA and SWARA-ANFIS-GWO can obtain the AUCs of 0.897 and
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0.900 when using the training set and 0.856 and 0.869 when using the verification set. Furthermore, these
observations are in accordance with the analysis with the RMSE results. Additionally, some methods
and optimization algorithms such as SWARA, SWARA-ANFIS, and SWARA-ANFIS-PSO are used for
comparison of the obtained results. Accordingly, results conclude that based on the training dataset the
AUC for SWARA, SWARA-ANFIS, and SWARA-ANFIS -PSO are 0.836, 0.894, and 0.894, respectively.
However, these results for validation dataset are 0.831, 0.831, and 0.850, respectively. The experimental
results demonstrate that both the two proposed new hybrid evolutionary optimization algorithms can
show the satisfactory performance and SWARA-ANFIS-GWO can achieve more accurate prediction
accuracy than that of SWARA-ANFIS-WOA.
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4. Discussion

These are no universal guidelines for choosing landslide influencing factors, the number and
range of the classes of these factors [51]. Therefore, based on the geomorphological and geological
characteristics of the study area, data availability and other landslide susceptibility studies, fifteen
influencing factors were taken into account for modelling the process in this work. Meanwhile, the
SWARA technique was used to assess the correlation between landslides and influencing factors.
Accordingly, the SWARA weights revealed that most landslides occurred with a slope above 47.6◦.
In this case, the shear stress is dominated on the shear strength which results in landslide incidence
using the gravity force. Also, the south-facing slope is more susceptible to landslide occurrence in
comparison to the other directions. Since most of the rainfall in the study area occurred in this aspect,
wet-and-dry cycles lead to decreasing the shear strength of soil and creating the landslide. This result
is in concordance with the work in [51], which states that the rainfall is a crucial factor for landslide
occurrence on south-facing slopes. When the altitude is lower than 432 m or higher than 1032 m,
the frequency of landslide occurrence is very low. Although most of the landslides (148 landslides)
occurred in the class of 432–582 m which covered an area of about 22.87%, the highest SWARA weight
was obtained between 882 and 1032 m. However, at the middle altitude, 14 landslides occurred only
have an area of 1.46% of the study area. The plan and profile curvature are less than -0.001, which
represent that concave (negative) from of slope is the most susceptible to landslide occurrence due
to having more concentration of water and erosion rather than convex (positive value) and flat (zero
value). The SPI can indicate the erosion power of the stream, and the SWARA weights are larger
as the SPI is increased. However, few landsides (only 3 landslides) occurred in the last class of this
factor (800–1000). The STI classes of 30–40 and 50–60 obtained the highest SWARA weight, which
showed the significant influence on the landslide occurrence. The SWARA weight of TWI increases
when larger areas are involved in runoff generation. Since 200 landslide locations (63.49%) occurred
in TWI between 3 and 5 (36.93% of the study area), this class of TWI was more effective in landslide
occurrence. The most significant class of lithology was obtained for C unit (Kimberley rock) with the
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SWARA weight of 0.36. It was noted that only one landslide event occurred in this class of lithology,
which covered the smallest section of the study area (less than 1%). The highest SWARA weight (0.21)
was acquired for distance to fault less than 500 m, which indicated that about 19% of the landsides
occurred due to fault activities in 13.63% of the study area. Results of correlation between distance to
river and landside occurrence also depicted that the class of 600–750 m distance from the river was
more effective on landslide incidence in the study area. The land use has indirect impact on landslide
occurrence. Basically, forest class of land use was specified as the most susceptible class rather than
the other classes due to having 243 landslides (77.14%) on 48.52% of the study area. The results also
concluded that NDVI between 0.35 and 0.45, ACu type of soil, and rainfall between 1500 and 1600 mm
were recognized as the most susceptible classes to landslide occurrence rather than other classes of
influencing factors. In other words, these classes were more effective and had a significant role on
landslide modelling process and preparing susceptibility maps.

Recently, hybrid machine learning model had been widely applied for landslide susceptibility
modelling, for example, Pham et al. [136] used the novel hybrid model Bagging-based Naïve Bayes
Trees (BAGNBT) at Mu Cang Chai district, located in northern Viet Nam, and the result showed that
BAGNBT is a promising and better alternative method for landslide susceptibility modeling and
mapping. Moayedi et al. [137] applied artificial neural network (ANN) optimized with particle swarm
optimization (PSO) for the problem of landslide susceptibility mapping (LSM) prediction, and the
result showed that PSO-ANN model showed higher reliability in estimating the LSM compared to the
ANN. Tien Bui et al. [90] developed a new ensemble model which is a combination of a functional
algorithm, stochastic gradient descent (SGD) and an AdaBoost (AB) Meta classifier namely ABSGD
model to predict the landslides in the Sarkhoon watershed, located within the Zagros Mountains, Iran,
and the result showed that the combined use of a functional algorithm and a Meta classifier prevents
over-fitting, reduces noise, and enhances the power prediction of the individual SGD algorithm for
the spatial prediction of landslides. To summarize, there is no algorithm that works perfectly for all
optimization problems, and new algorithms must be applied and verified to determine the one that
is most efficient [113]. It is also recommended to use some soft-computing benchmark algorithms
and conventional methods to assess the validity of the proposed models. In order to manage and
decrease the cost and destructive effects of landslide disasters, policy makers, governments, planners,
and managers need to develop more reliable and precise landslide susceptibility maps.

5. Conclusions

Landslides are one of the most influential environmental challenges due to transiting a large
amount of sediment to the closest stream, and loss of life and property as well. Therefore, landslide
susceptible maps are the most practical tool to landslide mitigation. In this work, we introduce
two novel hybrid machine leaning methods for LSM. Specifically, the ANFIS-based technique was
improved by being combined with WOA, GWO, and PSO, and three proposed SWARA-ANFIS-WOA,
SWARA-ANFIS-GWO and SWARA-ANFIS-PSO methods are introduced and the result is compared
with SWARA and SWARA-ANFIS without any optimization process. For the proposed framework,
the landslide inventory map of the study area is first compiled, and the influencing factors are selected.
Then, the SWARA algorithm is used to obtain the initial weight of each class of landslide condition
factors. Next, the landslide modelling is conducted on the study area using SWARA-ANFIS-WOA,
SWARA-ANFIS-GWO, and SWARA-ANFIS-PSO. Finally, the landslide susceptibility maps are assessed
using several objective measures. In general, the conclusion of this can be summarized as follows:

(1) SWARA-ANFIS-GWO has the best result in terms of the convergence of objective function in
comparison to SWARA-ANFIS-WOA.

(2) SWARA-ANFIS-GWO outperforms SWARA-ANFIS-WOA and thus is a better tool for landslide
susceptibility modelling.
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(3) The hybrid SWARA-ANFIS-GWO method has better goodness-of-fit and prediction accuracy
and can produce more accurate reliable results. Therefore, it is recommended for LSM in other
dangerous areas.

(4) In the study area, the landslides are prone to occur under conditions of slop with >47.6◦, south
aspect, altitude with 882–1032 m, plan curvature with >0.001, profile curvature with <−0.001,
SPI with 800–1000, TWI with 3–5, lithology of Lu jing Unit, distance to fault with 0–500 m,
distance to river with 600–750 m, forest land-uses, NDVI with 0.35–0.45, soil of ACu and
1500–1600 mm rainfall.

Therefore, we recommend the ANFIS-GWO hybrid method as a promising technique to be used
in other areas with more caution. It should be noted that the results of this study were obtained for
the study area, which proposes that further studies should be considered in other areas with different
geomorphological and geological characteristics. Since there are some uncertainties such as landslide
inventory map, methods, raster resolution, and sample size, further attention should be paid to achieve
reliable landslide susceptibility maps in regional scales.
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