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ABSTRACT

This study evaluated the geographically weighted regression (GWR) model
for landslide susceptibility mapping in Xing Guo County, China. In this
study, 16 conditioning factors, such as slope, aspect, altitude, topographic
wetness index, stream power index, sediment transport index, soil,
lithology, normalized difference vegetation index (NDVI), landuse, rainfall,
distance to road, distance to river, distance to fault, plan curvature, and
profile curvature, were analyzed. Chi-square feature selection method was
adopted to compare the significance of each factor with landslide
occurence. The GWR model was compared with two well-known models,
namely, logistic regression (LR) and support vcector machine (SVM).
Results of chi-square feature selection indicated that lithology and slope
are the most influencial factors, whereas SPI was found statistically
insignificant. Four landslide susceptibility maps were generated by GWR,
SGD-LR, SGD-SVM, and SVM models. The GWR model exhibited the
highest performance in terms of success rate and prediction accuracy,
with values of 0.789 and 0.819, respectively. The SVM model exhibited
slightly lower AUC values than that of the GWR model. Validation result of
the four models indicates that GWR is a better model than other widely
used models.
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1. Introduction

Landslide is a common phenomenon in mountainous areas (Lee et al. 2015; Xu et al. 2015). Land-
slides are ultimately driven by the topographic relief produced by fluvial and glacial erosion, and
these events are controlled by hill slope material (Larsen et al. 2010). Every year, landslides cause
substantial human deaths and mass economic loss worldwide (Beyabanaki et al. 2016; Carlini et al.
2016). Many scientists are engaged in research on landslide disasters; the key question is when and
where it will happen and what can be done (Chou et al. 2017; Chung et al. 2017). Landslide suscepti-
bility modelling is the most commonly used method to identify and predict landslides (Ciurleo et al.
2016; Conte et al. 2017). With the development of computers, many sophisticated models were used
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to predict landslides in recent years, using geographic information system (GIS) and remote sensing
(Dickson and Perry 2016; Fan et al. 2016). Climate change plays an important role in the environ-
ment and human life and exhibits some effect in the development and occurrence of landslides; in
particular, rainfall is the key factor (Feng et al. 2017; Franz et al. 2017). Earthquake is another
important factor that induces landslides.

In the past few decades, a lot of researches have been done on landslide susceptibility modelling,
however, the debate whether the physical or statistical theory can effectively explain the mechanism
of landslides is still ongoing (Osadchiev et al. 2016; Promper and Glade 2016). Various models have
been used in previous studies, such as frequency ratio, analytical hierarchy process, logistic regres-
sion (LR), artificial neural network (ANN), support vector machines (SVM), and fuzzy logic (Yilmaz
2010; Romano et al. 2016; Shi et al. 2016; Wang et al. 2016; Tien Bui et al. 2016, 2017a, 2017b; Chen
et al. 2017c, 2017f; Hong et al. 2017a, 2017c). Although these models performed quite well in land-
slide susceptibility mapping in different areas around the world, the best model to use has not yet
achieved consensus among the researchers (Webster et al. 2016; Wen and Jiang 2016). In more
recent years, new methods, such as statistical algorithms and machine learning based approaches
have continuously introduced more comprehensive landslide modelling methods (Wood et al. 2016;
Wu et al. 2016; Chen et al. 2017a, 2017b; Hong et al. 2017b, 2017d). Producing consistent spatial
prediction of landslides is a challenge because of the complex mechanisms of landslides, such as soil
condition, bedrock, topography, hydrology, and human activities (Yamao et al. 2016; Zieher et al.
2016).

According to the Ministry of Land and Resources of the People’s Republic of China (http://www.
mlr.gov.cn/), a total of 8,224 landslides have occurred in China in 2015. These landslides have
caused 229 deaths with 58 missing and 138 injured and the direct economic losses were US$2.49 bil-
lion. Jiangxi Province is prone to geological disasters and one of the high-risk provinces. Xing Guo
County is a hilly area and is surrounded by the mountains. Landslides commonly occur during the
rainy season.

This study was conducted because of the urgent need for landslide susceptibility assessment for
the local government and land-use planning. The objectives of this work are to (1) optimize the
landslide predictors for susceptibility mapping using chi-square method, (2) evaluate the geographi-
cally weighted regression (GWR) models for landslide susceptibility, and (3) compare the GWR
with well-known SVM and LR models. The analysis was performed using SPSS, Matlab R2015b,
and ArcMap10.3 software.

2. Study area

The Xing Guo area is located in the south of Jiangxi Province and lies between latitude 26�4 0N and
26�42 0N, and longitude 115�1 0E and 116�51 0E. It covers an area of approximately 3,215 km2

(Figure 1). The altitude of the area ranges from 109 to 1,196 m above mean sea level. The slope angle
of the study area varies between 0� to 67.5�. More than 43 geologic groups and units are recognized
in this area (Table 1). The main lithology of the study area consists of purple grey feldspar, quartz
sandstone, silty slate, light grey chert, and phyllite (Figure 2).

The land-use map of the area was classified into six categories, namely, bare, forest, grass, water,
farmland, and residential. Forest occupies the largest area (54.5%), whereas residential occupies
22.3%. Grass with farmland almost covers the same area (9.0%), and water covers 4.4%. Only 0.5%
land-use area is bare.

The study area is located in a subtropical monsoon climate region. According to the Jiangxi Prov-
ince Meteorological Bureau (http://www.weather.org.cn), the average annual rainfall in the Xing
Guo weather station for 1960–2012 is from 895.3 mm (1963) to 2284.5 mm (1997). The total num-
ber of precipitation days is 156, and the rainy season is mainly from March to August, which
accounts nearly 73.1% of the annual rainfall. In May and June, the average rainfall varies between
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Figure 1. Landslide location map of the Xing Guo area (China map come from National Geographic World Map [ESRI 2010]).
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240 and 250 mm per month. The average annual temperature is 18.8 �C. The average annual evapo-
ration is 1 635.8 mm, and the average relative humidity is 78%.

According to the Xing Guo County government, a total of 3,653 people in the study area are
affected by the landslides (Hong et al. 2015). The estimated damages to properties are approximately

Table 1. Types of geological formation of the Xing Guo area.

Class Main lithology Geology group and unit

A Grey-green sandstone, silty slate, slate containing carbon Ba cun group, Gao tan group
B Quartz conglomerate, conglomerate coarse sandstone, calcareous

sandstone, carbonaceous shale and coal
Zi shan group, Yun shan group, San mentang
group, Zhang dong group

Light grey dolomite, biological limestone, dolomitic limestone Hu tian group, Da pu group, Ma ping group
C Purple sandstone, pink siltstone, silty shale, grey-green sandstone Zhong peng group, Xia shan group, Yun shan

group
Yellow calcareous siltstone and mudstone; purplish red sandstone Zi shan group, San meng tang group, Zhang dong

group
D Kimberlite Lu jin unit
E Granodiorite Xin quan unit

Adamellite Gu yinzhai unit, Huang po unit, Xiao bu unit, Yuan
xiao unit

Adamellite, Granodiorite Ge xianshan unit, Ken qian unit, Yue xin unit, Heng
shan unit, Ma zijian unit

F Brick red, purple conglomerate, pebbly sandstone, andesitic tuff,
Yi Ding basalt, calcium Glauber’s salt, rock salt

Gui feng group, Tang bian group, He kou group,
Ganzhou group, Mao dian group

G Moraine clay conglomerate, magnetite quartzite, conglomerate,
even cherts

Yan jiaqiao group

H Grey-green feldspar quartz sandstone, silty phyllite, slate black
folder; Shen tuff and slate

Tang tou group, Hu lin group, Shen shan group

I Fine-grained biotite monzonite granite, fine-grained two-mica
monzogranite

Qiao tou unit, Qing xi unit, Fu cheng unit,Tu qiao
unit

J Purple grey feldspar, quartz sandstone, silty slate; light grey chert,
phyllite

Le changxia group, Ba li group, Lao hutang group,
Gui keng unit

Figure 2. Geologic map of the study area.
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US$4 million. However, in the study area not much preventive measures have been carried out to
predict the location of landslides and prevent the damages caused by them. Therefore, analysing
landslides in this area is crucial. The main factor that causes landslides in the Xing Guo area is the
high amount of rainfall.

3. Data

3.1. Landslide inventory map

The landslide inventory map consisted of 79 landslide locations which was obtained from the
Department of Land and Resources (http://www.jxgtt.gov.cn/) and the Meteorological Bureau of
the Jiangxi Province (http://www.weather.org.cn/). The landslide inventory data was prepared by
the aforementioned agencies through various means such as multiple field survey, and interpretation
of 10-m resolution Google Earth images with a zoom-in and zoom out tools. Figure 3 shows some
examples of landslides from Google Earth images.

The landslide movement in the study area is mainly categorized into two types, translational
slides (49) and rotational slides (79) (Figure 4). As different types of landslides have different occur-
rence mechanisms, thus they are required to be studied separately for better assessment. Therefore,
this study focused on modelling rotational landslides, as there were more data available (79 com-
pared to 49) where better assessment and comparison could be done.

To calculate the volume of landslides, the thickness and headscarp area were used from the digital
elevation model (DEM). Then, the volume of a landslide (Vs) was calcuated as a wedge geometry
model using the following equation (McAdoo et al. 2000):

Vs ¼
1

2
Asð Þ h:cos að Þ;ð (1)

where As is the area of landslide headscarp (m2), h is the height of headscarp (m), and a is the scar
slope angle in degrees. The volume of the smallest landslide is 30 m3, the largest is 60,000 m3, and
the average is 874.2 m3. Large-volumed landslides (>1000 m3) occurred in the study area and
affected 831 people. These landslides accounted for only 10.5% of the total number of landslides.
Around 46.5% of the landslides are medium-volumed (200–1000 m3) and affected 1,066 people.
Small-volumed landslides (<200 m3) affected 851 people accounting for 42.8% of the total land-
slides. The spatial distribution of the landslide locations along with their types is shown in Figure 4.

The dates of landslide occurrences are almost unknown. Thus, based on a random process, the
landslide inventory data (79 landslides) was partitioned into two subsets (70/30). The first subset
includes 55 landslide locations which are then used as training dataset, whereas the remaining 24
landslide locations were used as validation dataset.

Figure 3. Google Earth images of typical landslides.
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3.2. Landslide conditioning factors

Overall, 16 landslide conditioning factors were analysed in this study area, such as slope, aspect, alti-
tude, TWI, SPI, STI, soil, lithology, Normalized Difference Vegetation Index (NDVI), land use, rain-
fall, distance to road, distance to river, distance to fault, plan curvature, and profile curvature. Chi-
square method was employed to compare the significance of each factor with landslide occurrence.

A DEM for the study area was acquired from the ASTER Gdem (http://gdem.ersdac.jspacesys
tems.or.jp/) at a scale of 30 m. Using this DEM, slope, altitude, aspect, plan curvature, profile curva-
ture, streams, TWI, SPI, and STI were extracted in ArcGIS 10.2.

The slope angles were from 0� to 67.5� (Figure 5a). Slope angle is an important indicator in land-
slide formation because of its relationship with the gravitational force (Chen et al. 2017e). In general,
the potential likelihood for landslides to occur increases with increasing of the slope angle. However,
some favourable conditions are necessary. The aspect map (Figure 5b) was produced into nine classes,
flat (¡1), north (337.5�–360�, 0�–22.5�), northeast (22.5�–67.5�), east (67.5�–112.5�), southeast
(112.5�–157.5�), south (157.5�–202.5�), southwest (202.5�–247.5�), west (247.5�–292.5�), and north-
west (292.5�–337.5�). The direction of a slope face can affect the physical and biotic features of the
slope and can significantly influence the local climate (microclimate). In some regions, patterns of soil
differences related to differences exist. Thus, slope aspect indirectly affects the landslides (Pourghasemi
et al. 2012; Jebur et al. 2014; Wen et al. 2016). The altitude map varied between 109 and 1196 m
(Figure 5c). TWI is the major factor used to quantify the topographic control on hydrological pro-
cesses, and it is a function of both the slope and flow direction. The formula of TWI is given as

TWI ¼ ln
As

b

� �

(2)

Figure 4. Landslide inventory map.
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where As is the specific catchment area (m2/m) and b is slope angle in degrees. The TWI map in this
study was from 3.0 to 43.8 (Figure 5d). Stream power index (SPI) is the rate of energy at which water
flows. SPI is defined as the movement of solid particles, typically because of a combination of gravity
acting on the sediments. The formula of SPI is given as

SPI ¼ As � tanb (3)

where As is the specific catchment area (m2/m) and b is slope angle in degrees.

Figure 5. (a) Slope; (b) aspect; (c) altitude; (d) topographic wetness index (TWI); (e) stream power index (SPI); (f) sediment trans-
port index (STI); (g) soil; (h) lithology; (i) NDVI; (j) land use; (k) rainfall; (l) distance to roads; (m) distance to rivers; (n) distance to
faults; (o) plan curvature; (p) profile curvature.
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On the other hand, STI explains the procedure of slope failure and deposition (Jebur et al. 2014).
The formula of STI is as follows:

STI ¼
As

22:13

� �0:6

�
sinb

0:0896

� �1:3

(4)

where As is the specific catchment area (m2/m) and b is slope angle in degrees.

Figure 5. (Continued)
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Equation (4) shows that the sediment transportation is controlled by the catchment area and
slope angle. In general, the larger STI, the more water accumulates at the bottom of the catchment
which then causes erosion.

The SPI and STI values ranged between 0 to 58,733,748 and 0–92,239.7, respectively (Figure 5e,f).
The soil map was constructed into eight groups, namely, Ach, ACu, Alh, Atc, CMd, CMo, RGd, and
WR (Figure 5g). The soil map was prepared in 1995 by the Institute of Soil Science, Chinese Acad-
emy of Sciences (http://www.issas.ac.cn/). Figure 1 shows the geological map of the study area at a
scale of 1:200,000. The lithology map was obtained from China Geology Survey (http://www.cgs.
gov.cn/) (see Table 1). The lithology map (Figure 5h) was constructed into eight groups (A, B, C, D,
E, F, G, H, I, and J). The NDVI values varied between ¡0.48 and 0.56 (Figure 5i). The map was
obtained from the Landsat 7 ETM+ satellite images, which were acquired on 10 December 1999.
These images were obtained from the US Geological Survey (http://landsat.usgs.gov/).

Human activity plays an important role in changing land use in recent years. Land use is a
human activity that significantly affects natural resources, soil, and plants. The land-use map was
produced based on Landsat 7 ETM+ satellite images. Overall, six classes were recognized, namely,
water, residential area, forest land, bare land, farmland, and grassland. The land-use map was pro-
duced using the Maximum likelihood supervised method with an accuracy of 92.5% (Figure 5j). The
mean annual precipitation data were collected from the 29 rainfall stations were subsequently used
to create the rainfall map (Figure 5k). A simple IDW (inverse distance weighted) interpolation
method was used to produce the rainfall map. The precipitation data were extracted from a database
from the government of Jiangxi Province Meteorological Bureau (http://www.weather.org.cn). Road
and river networks were constructed into five group categories that undercut slopes larger than 15�,

Figure 5. (Continued)
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and were extracted from the topographic map at a scale of 1:50,000. Subsequently, the distance to
road maps (Figure 5l) and the distance to river maps (Figure 5m) were prepared. The fault lines
were extracted from the geological map at a scale of 1:200,000 and were employed to construct the
distance to faults map. The value ranged from 0 to 25,875 m (Figure 5n). Furthermore, the plan and
profile curvatures were extracted from the DEM and classified into three classes, flat, convex and
concave (Figure 5o,p). The plan curvature which is created by intersecting a horizontal plane with
the surface controls the divergence and convergence of water during the slides flow. On the other
hand, the profile curvature is constructed by considering a profile parallel to the direction of the
maximum slope. The profile curvature causes the acceleration or deceleration of water flow on the
surface.

To assemble the conditioning factor maps and landslide inventory, the vector datasets were con-
verted into raster data format with the reference scale of DEM (30 m). Finally, the factor maps and
the landslide inventory data were combined to construct the matrix to develop the regression mod-
els in statistical software. The rows of the matrix contained the attributes of the predictor maps,
whereas the columns represented the landslide and non-landslide samples. Aspect, soil, lithology,
and land-use data were used as categorical variables whereas the remaining variables were used as
continuous. To avoid the sensitivity of the models to the reclassification procedure of the continuous
variables, they were not further reclassified into subclasses.

4. Method

4.1. Overall Flowchart

Figure 6 shows the overall GWR modelling workflow implemented in ArcGIS software. First, the
necessary input data was gathered and managed in a proper data storage location. Then, 16 landslide
conditioning factors were derived from various sources and by different methods. The details are
explained in Section 3.2. In the GWR modelling stage, three main steps were applied. To optimize
the landslide conditioning factors and selection, a chi-square factor optimization method was
adopted. Then, by using an empirical analysis, the parameters of the GWR model were selected

Figure 6. Overall workflow of GWR modelling for landslide susceptibility mapping.
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based on the training dataset, i.e. 30% of the whole landslide inventory data. Then, the spatial weight
matrix was constructed using the optimized landslide conditioning factors and the landslide loca-
tions. Finally, the developed GWR regression model was applied to predict the probability of land-
slide occurrence in the remaining pixels locations in the dataset. The pixels that had values close to
1, interpreted as a high probability, whereas the pixels with values close to 0 interpreted as the low
probability of landslide occurrence. Next, the landslide susceptibility was mapped by using the
weighted sum function of ArcGIS. In this step, the estimated weight of each factor was used to over-
lay the landslide conditioning factors producing the landslide susceptibility index. Then, the land-
slide susceptibility index was converted into a probability by re-scaling into the range of 0–1 by
using a linear function. After that, the probability raster map was reclassified into five classes of
landslide susceptibility by the quantile classification approach. Finally, the landslide susceptibility
map was validated by calculating the success and prediction rates using the testing dataset.

4.2. Factor optimization – chi-square method

To evaluate the performance of different types of models, the quality of input data should be as high
as possible to reach an accurate and reliable conclusion (Julong 1989; Breiman 2001; Wang 2005).
The quality assessment for input data is essential because of the difficulty in preparing the landslide
inventory map. Selecting significant parameters (landslide predictors) is another important step
prior to landslide susceptibility modelling (Moh’d A Mesleh 2007). In this study, chi-square based
factor optimization method was adopted to select significant landslide predictors for modelling pur-
pose (Lineback Gritzner et al. 2001).

Pearson chi-square is the main test used to determine the significance of the relationship between
different categorical variables (Satorra and Bentler 2001; Ye and Chen 2001). Its concept is based on
computing the expected frequencies in a two-way table (i.e. no relationship exists between the varia-
bles) (Press 1966). The value of the chi-square and its significance level depend on the overall num-
ber of observations and the number of cells in the table (Regmi et al. 2010; Bryant and Satorra
2012). To calculate the importance of landslide predictors using chi-square method, the null hypoth-
esis was defined first. The null hypothesis states that knowing the level of a landslide predictor does
not help predict landslide occurrence (Sarkar and Kanungo 2004). The variables are independent.

H0: Variable X (e.g. slope) and variable Y (e.g. landslide occurrence) are independent.

H1: Variable X (e.g. slope) and variable Y (e.g. landslide occurance) are not independent:

x2 ¼
X

n

i¼1

Oi � Eið Þ2

Ei
(5)

where Oi is the observed frequency count at level i of variable X and Ei is the expected frequency
count at level i of Variable X.

After the calculating the chi-square statistical value and the P-value for each predictor variable,
the P-value was evaluated against the significance level (0.05) to estimate the relationship between
the landslide predictor and landslide occurrence. A high chi-square value implies a high indicator
performance to identify the landslides.

4.3. GWR

GWR is a spatial regression technique, which is widely used in geography and other disciplines
(Brunsdon et al. 1996; Fotheringham et al. 1998; Brunsdon et al. 1999). Regression parameters in
different geographic locations tend to exhibit various results (Leung et al. 2000; Brunsdon et al.
2001). The regression parameters are consistent with the changes of geographical positions (Atkin-
son et al. 2003; Song et al. 2014; Song et al. 2016). In utilizing the global spatial regression model,
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regression parameter estimation will be the regression parameters in the entire study area; the aver-
age value cannot reflect the regression parameters of the real feature space (Blanco-Moreno et al.
2008; Griffith 2008; Pirdavani et al. 2014b). Therefore, a model must be identified to deal with this
problem.

In simple linear regression, the dependent variable is modelled as a linear function of a set of
independent or influential variables as follows:

yi ¼ a0 þ
X

k ¼ 1;m

akxik þ ei i ¼ 1; 2; . . . ; n (6)

where yi is the ith observation of the dependent variable, xik is the ith observation of the kth indepen-
dent variable, the ei is independent normally distributed errors terms with zero means, and each ak
must be determined from a sample of n observations (Brunsdon et al. 1996; Pirdavani et al. 2014a).

GWR is a relatively simple technique that extends the traditional regression framework of the
equation by allowing local variations in the rates of change. Thus, the coefficients in the model are
specific to a location i instead of being global estimates. The regression equation is calculated as

yi ¼ ai0 þ
X

k ¼ 1;m

aikxik þ ei i ¼ 1; 2; . . . ; n (7)

where aik is the value of the kth parameter at location i. Equation (7) is a special case of Equation (6)
where all the functions are constants across space. Point i, at which estimates of the parameters are
obtained, is completely generalizable and not only needs points at which data are collected (Bruns-
don et al. 1996; Lukawska-Matuszewska and Urbanski 2014).

The GWR produces localized versions of all standard regression diagnostics, including goodness-
of-fit measures, such as R2, and produces localized parameter estimates. The localized parameter
estimates is useful for understanding the application of the model being calibrated and exploring
the possibility of adding additional predictors to the model (Fotheringham et al. 1998).

In this sense, the difference between GWR and the spatial error approach is that spatial drift from
‘average’ global relationships is measured directly in the former, whereas it is measured as a second-
order effect through the spatial distribution of residuals in the latter (Kimsey et al. 2008; Spurna
2008). The GWR is also used to improve our understanding of the processes being modelled, and
thus separate local spatial anomalies in terms of each predictor (Brunsdon et al. 1999; Wei and Qi
2012).

The main idea of GWR is a spatial weight matrix; the result of GWR is influenced by selecting
different spatial weighting functions ( Spurna 2008; Ogneva-Himmelberger et al. 2009). Regardless
of the specific weighting function employed, the essential idea of GWR is that for each point i, a
“bump of influence” exists around i corresponding to the weighting function in such a way that sam-
pled observations near to i have more influence in the estimation of i’s parameters than that of sam-
pled observations that are farther away (Brunsdon et al. 1996).

The main function of GWR is as follows:

4.3.1. Distance threshold function

Distance threshold function is the simplest and widely used method of the spatial weighting function
and is expressed as

Wij ¼
1; dij<D

0; dij>D

�

(8)

where D is the distance threshold and dij is distance from return point i to data point j.
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4.3.2. Gaussian function

The essential idea of Gaussian function is to select a continuous monotonically decreasing function
to express the relationship betweenWij and dij as

Wij ¼ exp � dij=b
� �2

� �

(9)

where b is defined as the bandwidth. If i and j coincide, the weight of data at that point will be com-
bined and the weight of other data will decline according to a Gaussian curve as the distance
between i and j increases (Fotheringham et al. 1998; Kumar et al. 2012).

4.3.3. Bisquare function

Equations (8) and (9) can reach to a compromise solution which have a desirable property of
excluding all data points greater than some distance from, as well as the analytically desirable prop-
erty of continuity. An example of the bisquare function is given as

Wij ¼
1� dij=b

� �2
h i2

; dij � b

0; dij> b

8

<

:

(10)

Equation (10) excludes points outside radius d but tapers the weighting of points inside the
radius. Thus, Wij is a continuous and once differentiable function for all points less than d units
from i (Zhang and Mei 2011; Chen et al. 2012).

Many previous works discussed the application of GWR (Harris et al. 2010; Koutsias et al. 2010;
Paez et al. 2011; Zhang et al. 2011). To address the limit of the least square sum of squares, CV
approach was suggested for local regression (Cleveland 1979) and is given as

CV ¼
1

n

X

n

i ¼ 1

yi � ŷ 6¼i bð Þ
h i2

(11)

where ŷ 6¼i bð Þ is the fitted value of yi with the observations for point i omitted from the calibration
process. This approach can counteract the ‘wrap-around’ effect because when b becomes very small,
the model is then calibrated on samples near i and not at i itself.

4.4. Stochastic gradient descent – log loss (logistic regression)

Stochastic gradient descent (SGD) is a stochastic solution of the gradient descent optimization for
minimizing an objective function which is in a form of a sum of differentiable functions (Cleveland
1979; Langford et al. 2009; Bottou 2010; Bach 2014). One can generalize the loss function using
Equation (12). The loss function consists of two parts, namely, loss term and a regularization term.
These two terms can be written as follows:

J wð Þ ¼
X

i

L mi wð Þð Þ þ λR wð Þ (12)

mi ¼ y ið Þ fw x ið Þ
� �

(13)

y ið Þ 2 �1; 1f g (14)

fw x ið Þ
� �

¼ wT x ið Þ (15)
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The log loss equivalent to the cross entropy loss function is used to train an LR model:

JðwÞ ¼ λkwk2 þ

X

i

yilog gwðx
ið ÞÞ þ ð1� yiÞðlog1� gðxðiÞÞÞ; yðiÞ 2 0; 1f g (16)

gw x ið Þ
� �

¼
1

1þ e�fw x ið Þð Þ

fw x ið Þ
� �

¼ wT x ið Þ

1� g x ið Þ
� �

¼
1

1þ e�fw x ið Þð Þ

Thus, Equation (17) can be written as

JðwÞ ¼ kwk2 þ
X

i
log1þ e�yðiÞ fwðx

ðiÞÞ (17)

L mð Þ ¼ log1 þ e�m

mi ¼ y ið Þ þ fw x ið Þ
� �

y ið Þ ¼
�1 if y ið Þ ¼ 0

1 if y ið Þ ¼ 1

�

4.5. Stochastic gradient descent – hinge loss (SVM)

The loss term for soft margin SVM is presented below (Bottou 2010). We use Lhinge to represent the
hinge loss:

JðwÞ ¼
1

2
kwk2 þ

X

i

maxð0; 1� yiwtxiÞ (18)

¼
1

2
kwk2 þ

X

i

maxð0; 1�miðwÞÞ (19)

¼ R2 wð Þ þ
X

i

Lhinge mið Þ: (20)

4.6. Support vector machine

SVM is essentially a nonlinear data processing method that differs from neural networks. The for-
mer is based on structure risk minimization principle, whereas the latter is based on empirical risk
minimization principle (Hong et al. 2015). These novel structure risk minimization principles are
based on firm mathematical foundations and produce profound changes in understanding machine
learning (Jebur et al. 2015). SVM has the following characteristics (Ren et al. 2015; Shahabi et al.
2015):

(1) Simple structure.
(2) Convex optimization, no local minimum.
(3) Sparse representation: The direction of the optimal separating super-plane is a linear combi-

nation of training samples. The coefficient that is contained in each sample reflects its impor-
tance. All the information about classification is contained in support vectors whose
coefficients are not zero. If non-support vectors are removed or shifted slightly, re-training
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leads to the same solution as before. In other words, the solution only depends on support
vectors.

(4) Modularization: SVM is composed of two modules, namely, a general-purpose learning
machine and a domain-specific kernel function. Thus, we can design learning algorithm and
kernel function in a modular way. This process is crucial for theoretical analysis and engi-
neering implementation.

The most common formula of SVM classification is given as

g xð Þ ¼ sign
X

n

i ¼ 1

yiaiK xi; yið Þ þ b

 !

(21)

where n denotes the number of training data points. Moreover, xi and yi are training and testing pat-
tern, respectively. b represents the bias term, and K xi; yið Þ is the kernel function.

In general, four types of kernels are used with SVM classifier, radial basis function (RBF), polyno-
mial (PL), sigmoid (SIG), and linear (LN). In this research, the RBF kernel was selected because of
the most common kernel function used in landslide susceptibility mapping and because it is less sen-
sitive to outliers (Yao et al. 2008). The mathematical representation of RBF is shown as

Radial basis function : Kðxi; yiÞ ¼ ð�gkXi � XjkÞ; g> 0; (22)

where K xi; yið Þ is the kernel function, g is the gamma term in the kernel function for all kernel types
except linear, d is the polynomial degree term in the kernel function for the polynomial kernel, r is
the bias term in the kernel function for the polynomial and sigmoid kernels, and g, d, and r are
user-defined parameters; the correct definition of these parameters can increase the accuracy of the
SVM solution (Su et al. 2015; Tehrany et al. 2015; Chen et al. 2016; Hong et al. 2016). Many previous
works applied SVM methods in landslide susceptibility modelling (Chen et al. 2016; Hong et al.
2016).

4.7. Statistical evaluation measures

In this study, statistical index-based evaluations and receiver-operating characteristic (ROC) curve
have been used to validate the produced landslide susceptibility maps. Statistical indexes such as
sensitivity and specificity were used (Su et al. 2015; Chen et al. 2016, 2017g, 2017h). These metrics
were calculated based on the confusion matrices resulting from the GWR, SGD-LR, SGD-SVM, and
SVM models and the landslide inventory map:

Sensitivity ¼
TP

TP þ FN
(23)

1� specificity ¼
FP

FP þ TN

where TP is the number of landslide points correctly classified to the landslide class and TN is the
total number of non-landslide points correctly classified to the non-landslide class. FN is the
number of landslide points classified to the non-landslide class, and FP is the non-landslide points
classified to the landslide class (Frattini et al. 2010; Hong et al. 2016; Chen et al. 2017i).

On the other hand, the ROC curve which is a standard method to validate the general perfor-
mance of landslide susceptibility models were constructed by plotting sensitivity and 100-specificity
indexes (Pham et al. 2016). The area under the ROC curve was calculated to validate quantitatively
the general performance of the landslide susceptibility models. The higher the AUC value, the better
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performance of landslide models. The performance of landslide models is perfect when the AUC is
equal to 1.0 (Tien Bui et al. 2017b; Chen et al. 2017d). In addition, success curve rates and prediction
curve rates were constructed using the landslide training and validation datasets, respectively. The
success curve rate shows the performance of a landslide model to fit the training dataset, whereas
the prediction curve rate depicts the performance of landslide models to predict landslides in
unsampled areas.

Validation of landslide susceptibility maps is an important task that should be conducted to con-
firm the usability of the final maps using all kind of models. In the current study, landslide suscepti-
bility maps produced by the four models were validated by comparing the susceptibility map with
the training and the testing data. To conduct this process, 79 landslides were randomly separated
into two datasets; 55 (70%) landslides were selected as the training data and the remaining 24 (30%)
landslides were used as testing data.

5. Result

5.1. Results of chi-square factor optimization

Figure 7 shows the results of the chi-square test on the observed distribution and the expected distribu-
tion of the landslide occurrence based on posterior probabilities calculated using the 16 variables. The
highest chi-square value (119.13) was observed for the slope factor indicating the high contribution of
this factor to the rotational landslide occurrence in the study area. In addition, the chi-square values of
the altitude, STI, distance to river, and aspect factors are greater than 60. However, the factors distance
to road, plan curvature, NDVI, and land use had relatively low chi-square values below 10.

To select the best subset of landslide conditioning factors, a threshold of the chi-square value
must be established. No standard methods were developed to select these thresholds because these
methods depend on the characteristics of the study area and datasets used. Therefore, the factor sub-
set selection depends on the analyst. In our case, three experiments with best 5, 10, and 15 factors
were conducted to select the best subset for GWR modelling. The success and prediction rates of the
four models (SVM, SGD-SVM, SGD-LR, GWR) using the three-factor subsets are shown in Table 2.
In general, the results demonstrated that a larger number of landslide conditioning factors obtain a
higher prediction accuracy except with SGD-LR model. The best accuracies of SVM, SGD-SVM,
and GWR were obtained with using 15 factors. On the other hand, the highest accuracy of SGD-LR

Figure 7. Chi-square importance of landslide conditioning factors.
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was obtained with 10 factors. Increasing the number of factors from 10 to 15 affects the accuracy of
the SVM, SGD-SVM, and GWR models. The prediction accuracy of GWR was increased from 0.83
to 0.85 when the number of factors increased from 10 to 15. Therefore, considering the focus of this
paper (i.e. GWR modelling) the 15 factors were used to produce the landslide susceptibility maps
for the study area.

5.2. Results of spatial correlation among landslide locations in the study area

The estimation of parameter coefficients by GWR required the mapping of spatial correlation
among landslide locations in the study area. The spatial correlations among landslide locations were
calculated and represented by a spatial weight matrix. This matrix is a representation of the spatial
structure of landslide data. The spatial weights matrix imposes a structure on the landslide data,
which is crucial to select a conceptualization that best reflects how features actually interact with
each other. In this study, the inverse distance was selected because it is most appropriate than other
available methods in ArcMap 10.2. The spatial weight matrix is employed to generate the spatial cor-
relation map of landslides in the study area.

Figure 8 shows the results of the spatial correlation among landslide locations in the study area.
In a physical sense, the spatial weights indicate the variations of landslide locations in terms of spa-
tial distribution. In other words, the geographical location is an important indicator for a landslide,
and each landslide location was compared with the neighbouring landslides using the Euclidean dis-
tance. This process was important to ensure that landslides have influences according to their spatial
distributions and relations to neighbour slides. The correlations were estimated as continuous values
ranged from 0 to 1. However, these correlations are shown as categorical classes. Thus, the interpre-
tation of the map becomes significantly easier. The spatial correlations were categorized into three
classes, namely, weak relationship (0–0.6), moderate relationship (0.61–0.7), and strong relationship
(0.71–1), by the quantile method. Few landslides in the study area were highly correlated. This result
can be observed in the west and middle parts of the study area. However, most landslides exhibited
weak and moderate spatial relationships, which can be seen in the east, south, and some parts in
north of the study area. This map was used to generate landslide susceptibility by GWR method,
which is presented in the next section.

5.3. Landslide susceptibility modelling

Four landslide susceptibility maps were produced for the study area by employing GWR, SGD-LR,
SGD-SVM, and SVM models (Figure 9). The first examination of the susceptibility maps shows that
all the models agree that the northwest part of the study area is highly susceptible to rotational land-
slides. The maps show that the majority of the study area has low/moderate susceptibility to land-
slides. GWR and SGD-LR models produced maps where the high and very high susceptibility
classes have larger areas compared with SVM models.

Using the 15 landslide conditioning factors, the SVM, SGD-SVM, SGD-LR and GWR models
were constructed using the training data. The ROC curves and AUC values of the four models are

Table 2. The success and prediction rates of the four models with 5, 10, and 15 landslide conditioning factors.

SVM SGD-SVM SGD-LR GWR

Experiment
Success
rate

Prediction
rate

Success
rate

Prediction
rate

Success
Rate

Prediction
rate

Success
Rate

Prediction
rate

Best 5 factors 0.67 0.62 0.68 0.63 0.81 0.82 0.79 0.79
Best 10
factors

0.73 0.68 0.74 0.68 0.83 0.85 0.84 0.83

Best 15
factors

0.79 0.73 0.81 0.75 0.83 0.83 0.87 0.85
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presented in Figure 10. The GWR model exhibits the highest performance in terms of success rate
and prediction rate with values of 0.87 and 0.85, respectively. The SGD-LR model exhibited slightly
lower success and prediction rates (0.83) than GWR model. The SGD-SVM model showed better
success and prediction rates than the normal SVM model. The success rates of SGD-SVM and SVM
models were 0.81 and 0.79, respectively. In addition, the prediction rates of these models were
slightly lower than success rates. Overall, the result of the validation of the four models indicates
that GWR is a better model than other widely used models.

Table 3 shows the estimated coefficient values for the landslide conditioning factors by the mod-
els developed in the current study. The coefficients were standardized using the expression presented
in Equation (24). The result illustrates that the four landslide susceptibility models are consistent in
terms of altitude, slope, NDVI, and aspect, which are the most important factors that contribute to
landslides in the study area:

Ws;i kð Þ ¼
Wi kð Þ �minWi kð Þ

maxWi kð Þ �minWi kð Þ
; k ¼ 1; 2; 3; 4 (24)

where Ws;i kð Þ is the standardized weight at kth approach, Wi kð Þ is the calculated weight by the kth
approach, and i is the identity number of each parameters (e.g. i value of slope = 8).

6. Discussion

Producing accurate landslide susceptibility maps is difficult because of several reasons, such as soil
condition, bedrock, topography, hydrology, and human activities. Therefore, the comparative study
of landslide susceptibility models is progressing in the scientific literature. In this study, four models

Figure 8. Spatial correlation of landslide locations in the study area.
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were assessed, namely, GWR, SGD-LR, SGD-SVM, and SVM. A total of 79 landslides and 16 condi-
tioning factors, such as slope, aspect, altitude, TWI, SPI, STI, soil, lithology, NDVI, land use, rainfall,
distance to road, distance to river, distance to fault, and plan curvature, profile curvature, were ana-
lysed. Only the significant factors were used in the susceptibility mapping.

Figure 9. Landslide susceptibility maps: (a) GWR, (b) SGD-LR, (c) SGD-SVM, and (d) SVM.

Figure 10. ROC curves. Success rate (left) and prediction rate (right).
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6.1. Impact of landslide conditioning factors

In this study, the chi-square method was used to select significant landslide conditioning factors to
be used in susceptibility models. This process can reduce over-fitting to the training data and speed
up the classification process. In addition, non-significant factors may generate severe multicollinear-
ity, which can disrupt regression estimates. Therefore, employing this technique was important in
landslide mapping, which was conducted in the current study. The chi-square method evaluated
landslide factors individually with respect to the presence or absence of landslides. The results
revealed that SPI factor is not significant for landslide susceptibility modelling in the study area
whereas slope and altitude were determined to be the most influential factors. In the generated
regression models, the slope was given a high coefficient, which indicates its importance for the spa-
tial prediction of landslides. However, plan curvature was given a relatively low coefficient by the
four models. As a result, the interpretation of the estimated coefficients in the models cannot
describe the importance of landslide factors by evaluating only one model. To explain the causes of
landslides, several models should be analysed. This analysis is crucial to determine the important
factors that cause landslides.

6.2. Prediction accuracy of the models

The comparative study of the four models showed that the prediction rate of the four models is quite
close to each other. The highest prediction rate of (0.85) was achieved by the GWR model. The
results also revealed that the SGD learning approach could improve the prediction accuracy of land-
slides in SVM models. The success and prediction rates of the traditional SVM were slightly lower
than the SGD-SVM approach. In addition, according to the successive and predictive curve rates,
the performance of SGD-LR is higher than SGD-SVM using the training dataset. The hyperpara-
meters of the SVM model could be fine-tuned such that it could perform well on the training data-
set. The predictive rate of SGD-SVM is lower than those of SGD-LR. This indicates that the global
LR model has more generalization capability and less sensitive to over-fitting.

One of the main advantages of GWR is that it can integrate geographical location and other land-
slide conditioning factors for estimating the spatial distribution of landslides and reflects the non-
stationary spatial relationship between these factors and landslide occurrence probability. The spa-
tial variations exhibit in landslide conditioning factors within the study area is a challenge when
using most of statistical and data mining methods. A factor can have either positive or negative

Table 3. The estimated coefficient values for the landslide conditioning factors by the models
developed in the current study.

Weight value (standardized by Equation 1)

Factor SVM SGD-SVM SGD-LR GWR

Altitude 0.488 0.747 0.889 0.587
Aspect 0.319 0.461 0.498 0.296
Distance to fault 0.525 0.631 0.738 0.475
Land use 0.383 0.579 0.627 0.404
Lithology 0.224 0.448 0.456 0.246
NDVI 1.000 1.000 1.000 1.000
Plan curvature 0.118 0.000 0.000 0.000
TWI 0.309 0.359 0.334 0.239
STI 0.000 0.327 0.361 0.063
Soil 0.110 0.400 0.300 0.192
Slope 0.953 0.955 0.989 0.924
Distance to road 0.462 0.576 0.619 0.448
Distance to river 0.108 0.344 0.460 0.157
Rainfall 0.288 0.459 0.328 0.306
Profile curvature 0.419 0.517 0.481 0.413
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effect on landslide occurrence in these methods. On the other hand, the GWR method generates
local regression models that vary according to the geographic location in the study area. Compared
with other traditional models, GWR achieved better accuracy and explained the spatial distribution
characteristics of landslides in the study area. However, the results of the current study showed that
the GWR model could achieve better accuracy with 15 factors compared to LR where it achieved the
highest prediction accuracy with only 10 factors. Using a large number of factors in GWR modelling
can yield to a severe multicollinearity problem where the GWR model cannot be efficiently built.
Therefore, further improvements in factor optimization for GWR should be explored and deeply
investigated. Another important point is the temporal correlation of landslides. With comprehensive
landslide inventory data where the temporal information is available, the GWR model can be further
enhanced to include spatial-temporal modelling for landslide susceptibility mapping. Furthermore,
because GWR is a local regression method, the spatial resolution of the input data can have a signifi-
cant effect on its accuracy and performance. Thus, the effects of the spatial resolution of input data
on GWR modelling is recommended to be studied in future works.

6.3. Contribution of the study and results of previous studies

Comparative study of modelling methods is a classical research area in landslide susceptibility
assessment. The main goal of these works is to understand the prediction capability of the models
and the effect of their hyperparameters in different environments on different datasets. Even though
the science in this field has progressed a lot, several models including GWR have not been fully
understood in the context of landslide modelling. The contribution of this study is to understand
the prediction accuracy of the GWR model and its sensitivity to the number of landslide condition-
ing factor in the case study of Xing Guo area (China).

As landslide occurrences and conditioning factors have spatial variations, global models such as
neural network or LR ignore autocorrelation characteristics of data between the landslide locations
in susceptibility modelling. In the literature, several studies have compared spatial regression and
global models. Erener and D€uzg€un (2010) found that the spatial regression model which estimates
the coefficients at local scale has better generalization performance (AUC = 0.83) than the LR model
(AUC = 0.74). Feuillet et al. (2014) suggested that GWR-based modelling provides significant inputs
for landslide susceptibility mapping, by highlighting local drivers, indecipherable in global models.
More recently, Yu et al. (2016) developed a landslide susceptibility model utilizing the GWR
approach and they found that their model outperforms the SVM model in terms of prediction capa-
bility by up to 19%. In addition, they indicated that the slope and distance from drainage are greatly
significant for landslide occurrence in their study area. In our study, according to the coefficients
estimated by the GWR, the slope and distance from the river are influential factors. Other studies
such as by Park and Kim (2015) and Sabokbar et al. (2014) have shown that high prediction accu-
racy better than global LR model can be achieved by the GWR model for landslide susceptibility
mapping.

7. Conclusion

In this paper, a comparative experiment between GWR, SVM, and LR for landslide susceptibility
mapping is presented using multisource data of the Xing Guo area in China. The GWR model was
developed using the significant factors selected by the chi-square method. Several subsets of land-
slide factors were analysed and the sensitivity of the GWR model to the number of the selected fac-
tors is reported. The results of the comparative study showed that the GWR outperforms the SVM
and LR models in terms of prediction capability. Based on the results obtained from the current
study, GWR can be used for the spatial prediction of landslides and it is comparable to the well-
known methods (i.e. SVM and LR). The landslide susceptible zones represent an important base for
assessing landslide hazard and risk over the study area. Consequently, the generated maps could be
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useful to local authorities and decision makers for selecting suitable locations for future land-use
planning and implementation of development.

However, there are several points that need to be considered in future works as follows: (1) the
GWR model was found to perform better when using 15 landslide factors compared with using less
number of factors. In this context, other optimization methods (i.e. Random Forest, Ant Colony)
should be investigated to attempt reducing the number of factors while preserving the prediction
accuracy of the model. This can improve the general performance of the GWR model; reducing the
multicollinearity problem and the sensitivity of the model to overfitting especially in data-scarce
environments. The second point that needs to be addressed is the integration of the spatial regres-
sion models (e.g. GWR) with other statistical and data mining methods to improve the prediction
capability of the landslide susceptibility models. Finally, with comprehensive landslide inventory
data, both spatial and temporal autocorrelations can be investigated in the spatial regression model
or in the integrated models.
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