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Abstract—Endmember extraction is the process of selecting a
collection of pure signature spectra of the materials present in a
remotely sensed hyperspectral scene. These pure signatures are
then used to decompose the scene into abundance fractions by
means of a spectral unmixing algorithm. Most techniques avail-
able in the endmember extraction literature rely on exploiting the
spectral properties of the data alone. As a result, the search for
endmembers in a scene is conducted by treating the data as a
collection of spectral measurements with no spatial arrangement.
In this paper, we propose a novel strategy to incorporate spatial
information into the traditional spectral-based endmember search
process. Specifically, we propose to estimate, for each pixel vector,
a scalar spatially derived factor that relates to the spectral simi-
larity of pixels lying within a certain spatial neighborhood. This
scalar value is then used to weigh the importance of the spectral
information associated to each pixel in terms of its spatial context.
Two key aspects of the proposed methodology are given as follows:
1) No modification of existing image spectral-based endmember
extraction methods is necessary in order to apply the proposed
approach. 2) The proposed preprocessing method enhances the
search for image spectral endmembers in spatially homogeneous
areas. Our experimental results, which were obtained using both
synthetic and real hyperspectral data sets, indicate that the spec-
tral endmembers obtained after spatial preprocessing can be used
to accurately model the original hyperspectral scene using a linear
mixture model. The proposed approach is suitable for jointly
combining spectral and spatial information when searching for
image-derived endmembers in highly representative hyperspectral
image data sets.

Index Terms—Endmember extraction, hyperspectral data
processing, spatial–spectral analysis, spectral mixture analysis.

I. INTRODUCTION

HYPERSPECTRAL imaging has been transformed from

being a sparse research tool into a commodity product

that is available to a broad user community [1]. The wealth

of spectral information available from hyperspectral imaging

instruments has opened new perspectives in many applica-

tion domains, such as monitoring of environmental and urban

processes or risk prevention and response, including—among

others—tracking wildfires, detecting biological threats, and

monitoring oil spills and other types of chemical contamination.

Advanced hyperspectral instruments such as the National Aero-

nautics and Space Administration’s Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS) [2] are now able to cover the

wavelength region from 0.4 to 2.5 µm using more than 200
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contiguous spectral channels, each with a full-width at half-

maximum of about 10 nm.

Several analytical tools have been developed for hyperspec-

tral data processing in recent years, covering topics such as

dimensionality reduction, classification, data compression, or

spectral mixture analysis [3]–[5]. The underlying assumption

governing clustering and classification techniques is that each

pixel vector comprises the response of a single underlying

material. However, if the spatial resolution of the sensor is not

high enough to separate different materials, these can jointly

occupy a single pixel, and the resulting spectral measurement

will be a mixed pixel, i.e., a composite of the individual pure

spectra [6]. To deal with this problem, linear spectral mixture

analysis techniques first identify a collection of spectrally pure

constituent spectra, which are often called endmembers in the

literature, and then express the measured spectrum of each

mixed pixel as a linear combination of endmembers weighed

by fractions or abundances that indicate the proportion of each

endmember present in the pixel [7].

Over the last decade, several algorithms have been developed

for automatic or semiautomatic extraction of spectral endmem-

bers [8]. Classic techniques include the pixel purity index [9],

N-FINDR [10], iterative error analysis (IEA) [11], Optical

Real-time Adaptive Spectral Identification System (ORASIS)

[12], convex cone analysis [13], and an orthogonal subspace

projection (OSP) technique in [14]. Other advanced techniques

for endmember extraction have recently been proposed [15]–

[21], but none of them considers spatial adjacency. However,

one of the distinguishing properties of hyperspectral data is the

multivariate information coupled with a 2-D (pictorial) repre-

sentation amenable to image interpretation. Subsequently, most

of the endmember extraction algorithms previously mentioned

could benefit from an integrated framework in which both the

spectral information and the spatial arrangement of pixel vec-

tors are taken into account. To the best of our knowledge, only a

few attempts existing in the literature aimed at including spatial

information in the process of extracting spectral endmembers.

Two of the most representative efforts in this direction are

described here.

1) The automatic morphological endmember extraction [22]

algorithm runs on a full data cube with no dimensional

reduction and begins by searching the spatial neighbor-

hoods around each pixel in the image for the most spec-

trally pure and mostly highly mixed pixel. This task is

performed by using extended mathematical morphology

operators [23] of dilation and erosion, respectively. Each

spectrally pure pixel is assigned an “eccentricity” value,

which is calculated as the spectral angle distance (SAD)

between the most spectrally pure and the mostly highly

mixed pixel for the given spatial neighborhood. This
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process is iteratively repeated for larger spatial neigh-

borhoods of up to a predetermined maximum size. At

each iteration, the “eccentricity” values of the selected

pixels are updated. The final endmember set is obtained

by applying a threshold to the resulting grayscale “eccen-

tricity” image. The final endmembers are extracted after

a region growing process.

2) The spatial spectral endmember extraction (SSEE) [24]

algorithm comprises four steps.

1) It applies singular value decomposition to determine

a set of eigenvectors that describe most of the spectral

variance of image subsets.

2) It projects the entire image data onto the compiled

eigenvector set to determine a set of candidate end-

member pixels.

3) The algorithm analyzes the spatial and spectral char-

acteristics of the candidate endmember set to average

spectrally similar endmember candidates that are spa-

tially related.

4) Finally, the endmember set derived in the previous

step is reordered based on the spectral angle, thus

listing endmember candidates in order of spectral

similarity (from highest to lowest similarity).

It is important to briefly discuss the use of spectral averaging

in order to produce the final endmembers. It should be noted

that averaging candidate pixels is a common practice in several

endmember extraction methods, such as the IEA and SSEE, in

which candidate endmember pixels that are spectrally similar

are averaged to reduce the effects of noise and to average out

the subtle spectral variability of a given class (thus generating

a more representative endmember for the class as a whole). In

this case, although the averaging process will likely change the

original spectral signature of the endmember spectra, the aver-

aging itself can be advantageous. However, another alternative

that is pursued in this paper is to model the within-class spectral

variability by directing the search for spectral endmembers to

spatially homogeneous regions, in the hope of addressing three

desirable features for an endmember extraction algorithm.

1) Spatial information may be used as a guide to effectively

exploit spectral information.

2) The choice of the size and shape of the spatial context

around each pixel vector should not be a critical parame-

ter requiring fine-tuning; ideally, a spatial–spectral end-

member extraction algorithm should effectively behave

with different spatial window shapes and sizes.

3) Finally, it is highly desirable that the integration of spatial

and spectral information does not require significant mod-

ifications in the implementation of available endmember

extraction algorithms, which are, in most cases, fully

automated.

With the preceding features in mind, we develop a novel

framework for the integration of spatial and spectral informa-

tion in the process of endmember extraction. The proposed

approach is presented as a preprocessing module that can be

used in combination with available spectral-based endmember

extraction algorithms. Prior to addressing our approach, let us

first categorize four types of pixels (vectors) that can be found

in a hyperspectral scene, along the lines of the definitions given

in [25]. A pure pixel is a pixel that is made up of a single

spectral signature, as opposed to a mixed pixel, whose associ-

ated spectral signature consists of several different underlying

material substances. On the other hand, a homogeneous pixel is

a pixel whose spectral signature is similar to the signatures of

its surrounding pixels and can be considered as the opposite of

an anomalous pixel, whose signature is spectrally distinct from

the signatures of its neighboring pixels. It should be noted that

homogeneous and anomalous pixels may or may not be pure.

When searching for image endmembers, it is possible to ex-

ploit the spatial similarity between adjacent pixels by defining

a criterion that is sensitive to the nature of both homogenous

and transition areas between different land-cover classes. In-

tuitively, the transition areas between two or more different

land-cover types would likely contain some mixed pixels. Con-

versely, by definition, an endmember is an idealized pure sig-

nature for a class [25]. Thus, it would be reasonable to assume

that pure pixels are less likely to be found in such transition

areas. In other words, if we assume that homogeneous areas

provide good candidate pixel vectors for endmember extraction

algorithms, then it is also possible to use the spatial information

to intelligently direct the spectral-based endmember search

process to these spatially homogeneous regions. In order to

accomplish this goal, our approach relies on the introduction

of a spatially based pixel similarity metric, which is used to

weigh the spectral signature associated to each pixel vector in

the scene according to its spatial context.

The remainder of this paper is organized as follows:

Section II formulates and describes the proposed preprocessing

method, including a geometric interpretation. Implementation

details and potential limitations of the proposed method are

also discussed. Section III describes the simulated and real

hyperspectral data sets used for evaluation purposes and briefly

reviews three spectral-based endmember extraction algorithms

that will be used in this work in conjunction with the pro-

posed preprocessing module to substantiate its advantages.

Experimental results analyzing the performance of the consid-

ered endmember extraction algorithms with and without the

proposed preprocessing method are discussed in Section IV.

Section V concludes with some remarks and a description of

future research avenues.

II. METHODOLOGY

A. Problem Formulation

Let us assume that a remotely sensed hyperspectral scene

with n bands is denoted by I, in which the pixel at the dis-

crete spatial coordinates (i, j) of the scene is represented by a

vector X(i, j) = [x1(i, j), x2(i, j), . . . , xn(i, j)] ∈ ℜn, where

ℜ denotes the set of real numbers in which the pixel’s spectral

response xk(i, j) at sensor channels k = 1, . . . , n is included.

Under the linear mixture model assumption, each pixel vector

in the original scene can be modeled using the following

expression:

X(i, j) =

p
∑

z=1

Φz(i, j) · Ez + n(i, j) (1)
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where Ez denotes the spectral response of endmember z,

Φz(i, j) is a scalar value designating the fractional abundance

of endmember z at pixel X(i, j), p is the total number of

endmembers, and n(i, j) is a noise vector. The solution of

the linear spectral mixture problem described in (1) relies on

a successful estimation of the number of endmembers p that

are present in the input hyperspectral scene I and also on the

correct determination of a set {Ez}
p
z=1 of endmembers and

their correspondent abundance fractions {Φz(i, j)}
p
z=1 at each

pixel X(i, j). Two physical constraints are generally imposed

into the model described in (1): 1) abundance nonnegativity

constraint (ANC), i.e., Φz(i, j) ≥ 0, and 2) abundance sum-to-

one constraint (ASC), i.e.,
∑p

z=1 Φz(i, j) = 1 [26].

In addition, we assume that the input data set I contains

homogeneous regions with pure pixels; therefore, a search

procedure aimed at finding the most spectrally pure signatures

in the input scene is feasible. In this case, the final set of image-

derived endmembers is denoted by Ω = (E1, . . . ,Ep) ⊂ I.

Several endmember extraction algorithms have been designed

to search for endmembers in a hyperspectral scene under the

pure pixel assumption previously described (some of these will

briefly be reviewed in Section III-A), but most of them do not

make use of spatial information.

We propose a novel preprocessing technique that can in-

corporate spatial information into the process of automatically

selecting spectral endmembers. The main idea behind our

preprocessing framework is to estimate, for each input pixel

vector, a scalar factor ρ(i, j), which is intimately related to the

spatial similarity between the pixel and its spatial neighbors,

and then to use this scalar factor to spatially weigh the spectral

information associated to the pixel. In order to define this

procedure in mathematical terms, let us first consider a square-

shaped spatial region with a size of ws × ws pixels that is

centered at pixel X(i, j). In this case, we assume that ws is

an odd number and that the processing window has a radius of

d = (ws − 1)/2 pixels. These values define the neighborhood

region that will be considered around each pixel under analysis.

With the preceding assumptions in mind, we can define a scalar

weight α(i, j) as follows:

α(i, j) =

i+d
∑

r=i−d

j+d
∑

s=j−d

β(r − i, s − j) · γ(r − i, s − j) (2)

with

γ(r − i, s − j) = γ (X(r, s),X(i, j)) (3)

where γ refers to a similarity measure calculated between the

central pixel X(i, j) and a neighboring pixel X(r, s). The value

resulting from this measure of similarity is weighed by β, which

is a scalar value that allows us to assign a different weight

to the values of γ calculated inside the region delimited by

the window with a size of ws × ws pixels. In particular, this

approach allows us to give more importance to pixels that

are spatially adjacent to the central pixel in the window, thus

reducing the weight associated to the values of γ calculated for

pixels that are more spatially distant from such central pixel.

With this approach, we obtain two main advantages.

1) For large values of ws, the weight associated to pixel vec-

tors that are more spatially distant from the central pixel

in each (ws × ws)-pixel neighborhood is decreased, thus

preventing the proposed framework from being extremely

sensitive to the values of ws defined a priori by the user.

2) For small values of ws, the lack of information about

pixels that are outside the (ws × ws)-pixel neighborhood

is not very critical since the weight associated to pixels

in close spatial vicinity of the central pixel of the window

is higher than the weight associated to other pixels that

could have eventually been encompassed by a larger

spatial window.

With the previous rationale in mind, we define a per-pixel

spatially derived weighing factor for endmember extraction by

the following quadratic expression:

ρ(i, j) =
(

1 +
√

α(i, j)
)2

. (4)

From (4), it turns out that ρ(i, j) ≥ 1, which places con-

straints on β and γ in (2). An easy way to guarantee the

nonnegativity of α(i, j) in (4) is to require both β and γ to

be nonnegative. As will be shown here, these requirements are

fulfilled in our proposed formulation. The preceding expression

can simply be used to scale the spectral response of an original

image pixel as follows:

X(i, j)′ =
1

ρ(i, j)

(

X(i, j) − I
)

+ I (5)

where the term X(i, j)′ denotes a spectral signature obtained

after weighing X(i, j) using spatial information, and I is the

centroid of the data cloud, which was computed as the mean of

all the pixel vectors in the original hyperspectral scene I.

B. Geometric Interpretation

A simple geometric interpretation of the weighing factor

described in (5) is shown in Fig. 1 and is given as a toy example

in which only two spectral bands of an input hyperspectral

scene are represented against each other for visualization pur-

poses. The idea behind our preprocessing framework is to

center each spectral feature in the data cloud around its mean

value and then shift each feature straight toward the centroid

of the data cloud (which is denoted by O′ in Fig. 1) using a

spatial–spectral factor given by (4). The shift of each spectral

feature in the data cloud is proportional to a similarity measure

calculated using both the spatial neighborhood around the pixel

under consideration and the spectral information associated to

the pixel but without averaging the spectral signature of the

pixel. The correction is performed, so that pixels located in

spatially homogenous areas (such as the pixel vector labeled

“1” in Fig. 1) are expected to have a smaller displacement with

regard to their original location in the data cloud than pure

pixels surrounded by spectrally distinct substances (e.g., the

pixel vectors labeled “2” and “3” in Fig. 1). Resulting from the

aforementioned operation, a modified simplex is formed, using

not only spectral but also spatial information. It should be noted
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Fig. 1. Geometric interpretation of the proposed preprocessing method.

that the vertices of the modified simplex are more likely to be

pure pixels located in spatially homogenous areas. Although the

proposed method is expected to privilege homogeneous areas

for the selection of endmembers, no pixel is excluded from

the competitive endmember extraction process following the

preprocessing. As can be inferred from Fig. 1, the proposed

method is also expected to be robust in the presence of outliers.

It is important to notice that the modified simplex in Fig. 1 is

mainly intended to serve as a guide for a subsequent competi-

tive endmember extraction process, which is conducted using a

user-defined algorithm. However, such modified simplex is not

intended to replace the simplex in the input hyperspectral scene.

To achieve this, the spatial coordinates of the endmembers

extracted from the preprocessed image are retained, but the

spectral signatures associated to those spatial coordinates are

obtained from the original hyperspectral scene. This approach

is shown in Fig. 2, which provides a flowchart of the pre-

processing technique in combination with a certain endmember

extraction and spectral unmixing algorithm. As shown in Fig. 2,

the estimation of the number of endmembers is conducted using

the original hyperspectral image as input. On the other hand, the

modified hyperspectral image resulting from our spatial pre-

processing is only used as input to the endmember extraction

algorithm. The spatial coordinates of extracted endmembers

are retained and used to form a final set Ω, which comprises

the original image pixels at such coordinates. Then, a spectral

unmixing process is conducted using the original hyperspectral

image and the set Ω as inputs. As a result, no artifacts are

introduced in the process of estimating abundance fractions.

To conclude this section, we emphasize that the general

flowchart shown in Fig. 2 can be used in combination with

different techniques for endmember extraction and spectral

unmixing. In addition, the factor described in (4) can be defined

using different measures for the spectral similarity criterion γ
and the spatial weight function β defined in (2). In the next

section, we describe our empirical choices for both parameters

in this paper.

Fig. 2. Flowchart of the proposed method for incorporating spatial–spectral
information into the endmember extraction and unmixing process.

C. Spectral Similarity Measures and Spatial

Neighborhood Weight

Several pointwise distances can be considered in order to

compute the spectral similarity metric γ used in (4). In this

paper, we have used the SAD, which is a well-known metric for

hyperspectral data processing [4]. SAD can be used to measure

the spectral similarity between two pixel vectors X(i, j) and

X(r, s) as follows:

γ=SAD(X(i, j),X(r, s))=cos−1 X(i, j) · X(r, s)

‖X(i, j)‖ ‖X(r, s)‖
. (6)

It should be noted that SAD is given by the spectral angle

formed by n-dimensional vectors (in radians). As a result,

low SAD scores mean high spectral similarity between the

compared vectors. This spectral similarity measure is invari-

ant in the multiplication of X(i, j) and X(r, s) by constants

and, consequently, is invariant before unknown multiplicative

scalings that may arise due to differences in illumination and

angular orientation [6]. In addition, this similarity measure

satisfies the following properties: 1) SAD(X(i, j),X(r, s)) ≥
0, with 2) equality if and only if X(i, j) = X(r, s), and

3) SAD(X(i, j),X(r, s)) = SAD(X(r, s),X(i, j)).
On the other hand, spatial weight function β (excluding the

central pixel) is taken as proportional to the quadratic distance

of each pixel inside region ws and the central pixel, which is

normalized to sum to 1, i.e.,

β(i, j) ∝
1

(i2 + j2)
. (7)

Thus, the SAD spectral similarity score obtained after com-

paring the spectral signature associated to the central pixel with

that of its spatial neighbors receives more importance than the

scores obtained after comparing the same pixel with more dis-

tant neighbors. Notice that β and γ guarantee the positivity of α
in (4). At this point, ρ(i, j) ≥ 1 is verified, with equality if and

only if all the spectra in the window are identical. This follows
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from properties 1 and 2, and the fact that the values of β are

nonnegative and that their sum is strictly positive. By applying

(6) and (7), it is easy to deduce that, regardless of the size of the

considered window, the spatial-derived weighing factor defined

in (4) is bounded by values 1 ≤ ρ(i, j) ≤ 4 if the values of γ
in (6) are scaled to lie in the range [0, 1]. The justification

for using (4), instead of other possible formulations, such as

ρ(i, j) = 1 + α(i, j), is that, usually, α(i, j) is a small value

(lower than 1), so this value is increased by the square root. The

alternative formulation would lead to less displacement in the

simplex vertices.

D. Known Limitations of the Proposed Method

Before concluding our presentation of the proposed method-

ology, it is important to emphasize that, as a new approach,

there are some unresolved issues that may present challenges

over time. It is important to note that our preprocessing frame-

work will penalize the selection of anomalous pixels and in-

crease the probability that an endmember extraction algorithm

applied after the preprocessing ends up selecting the majority

of pixels that are homogeneous in nature. As a result, we

expect the proposed approach to be less effective in specific

tasks, such as detection of small targets or anomalous areas.

Although these areas are not theoretically excluded after the

preprocessing, such regions would be more penalized by our

proposed spatial–spectral homogeneity criteria. It is also worth

noting that, in any event, the term small in the previous sentence

relates to the size ws of a processing window that can be

controlled and defined in advance by the end user and to the

size of such window in comparison with observed objects.

As an additional remark, it is important to note that a possible

solution in overcoming the possible loss of anomalous end-

members could be the definition of a second filter that looks for

single pixels that are distinct from their surroundings, with both

homogeneous (the current implementation) and anomalous re-

gions having increased weight in the search for endmembers.

This solution is listed as one of the topics deserving future

research in this area.

III. EXPERIMENTAL SETUP

This section describes the setup for an experimental eval-

uation, with the ultimate goal of assessing the impact of the

proposed preprocessing technique on endmember extraction

and spectral unmixing. The section is organized as follows:

First, we describe the endmember extraction algorithms se-

lected for experiments in this paper. These algorithms have been

implemented in the Matlab environment, with the OSP and

N-FINDR written in house and vertex component analysis

(VCA) provided by the authors of the algorithm. Then, we

describe the simulated and real hyperspectral data sets used for

evaluation purposes in the next section.

A. Endmember Extraction Algorithms

While the selection of algorithms for performance compar-

ison is subjective, it is our desire to make our selection as

representative as possible. For that purpose, three well-known

endmember extraction algorithms have been selected for our

comparative study, including the N-FINDR algorithm in [10],

the VCA algorithm in [27], and the OSP algorithm in [14]. The

reasons for our selection are given as follows: 1) these algo-

rithms are representative of a class of convex geometry-based

techniques that have been successful in endmember extraction;

2) they are fully automated; 3) they always produce the same

final results for the same input parameters; and 4) they do not

require any input parameters other than the number of end-

members p to be detected by each method. We believe that the

three considered algorithms are sufficient to illustrate the ad-

vantages of the proposed spatial–spectral framework when the

same set of algorithms is used with and without the proposed

preprocessing technique. Before briefly reviewing our selected

algorithms, we emphasize that the recently developed concept

of virtual dimensionality (VD) [4] was used in this work to

estimate p, i.e., the number of endmembers to be extracted.

Despite the fact that the VD may not necessarily correspond

to the intrinsic dimensionality of the data, it has been shown in

the literature that this criterion is useful in practice, because it

can provide a good estimate of the number of spectrally distinct

signatures that characterize the given data set. The VD concept

formulates the issue of whether a distinct signature is present

or not in each of the spectral bands as a binary hypothesis

testing problem, where a so-called Neyman–Pearson detector

is generated to serve as a decision maker based on a prescribed

PF (i.e., false alarm probability). In light of this interpretation,

the issue of determining an appropriate value for p is further

simplified and reduced to setting a specific value of PF . As

will be shown in experiments, a suitable empirical choice is

PF = 10−3 or PF = 10−4, where the method used in this work

to estimate the VD is the one developed by Chang [4] (referred

to as the Harsanyi–Farrand–Chang (HFC) method), which was

later modified by including a noise-whitening process as pre-

processing to remove the second-order statistical correlation.

The purpose is that signal sources can be decorrelated from the

noise to achieve better signal detection. The resulting method

will be referred to as the noise-whitened HFC (NWHFC).

1) N-FINDR: This algorithm looks for the set of pixels with

the largest possible volume by inflating a simplex inside the

data. The procedure begins with a random initial selection of

pixels. Every pixel in the image must be evaluated in order

to refine the estimate of endmembers, looking for the set of

pixels that maximizes the volume of the simplex defined by

selected endmembers. The volume of the simplex is calculated

with every pixel in place of each endmember. The correspond-

ing volume is calculated for every pixel in each endmember

position by replacing that endmember and finding the resulting

volume. If the replacement results in an increase in volume, the

pixel replaces the endmember. This procedure is repeated until

there are no more endmember replacements. The mathematical

definition of the volume of a simplex formed by a set of

endmember candidates Ω is proportional to the determinant of

the set augmented by a row of ones. The determinant is only

defined in the case where the number of features is p − 1, with

p being the number of desired endmembers [5]. Since, in hy-

perspectral data, typically n ≫ p, a transformation that reduces

the dimensionality of the input data is required. In this work,
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the principal component transform has been used, although

another widely used alternative that decorrelates the noise in the

data is the maximum noise fraction [28]. As a final comment,

it has been observed that different random initializations of

N-FINDR may produce different final solutions. Thus, our

N-FINDR algorithm was implemented in iterative fashion,

so that each sequential run was initialized with the previous

algorithm solution, until the algorithm converges to a simplex

volume that cannot further be maximized. Our experiments

show that, in practice, this approach allows the algorithm to

converge in a few iterations only.

2) OSP: This algorithm starts by selecting the pixel vector

with maximum length in the scene as the first endmember.

Then, it looks for the pixel vector with the maximum ab-

solute projection in the space orthogonal to the space linearly

spanned by the initial pixel and labels that pixel as the second

endmember. A third endmember is found by applying an or-

thogonal subspace projector to the original image, where the

signature that has the maximum orthogonal projection in the

space orthogonal to the space linearly spanned by the first

two endmembers. This procedure is repeated until the desired

number of endmembers p is found.

3) VCA: This algorithm also makes use of the concept of

OSPs. However, as opposed to the OSP algorithm previously

described, the VCA exploits the fact that the endmembers are

the vertices of a simplex and that the affine transformation of

a simplex is also a simplex [27]. As a result, VCA models the

data using a positive cone, whose projection onto a properly

chosen hyperplane is another simplex whose vertices are the

final endmembers. After projecting the data onto the selected

hyperplane, the VCA projects all image pixels to a random

direction and uses the pixel with the largest projection as

the first endmember. The other endmembers are identified in

sequence by iteratively projecting the data onto a direction

orthogonal to the subspace spanned by the endmembers already

determined. The new endmember is then selected as the pixel

corresponding to the extreme projection, and the procedure is

repeated until a set of p endmembers is found [27]. In our

experiments with VCA, we select the corresponding pixel orig-

inal spectra as the VCA solution and not the noise-smoothed

solution produced by the original algorithm. In practice, our

approach is expected to slightly reduce the performance of

VCA for low signal-to-noise (SNR) ratios, but we also be-

lieve that this decision allows a fair comparison of VCA to

N-FINDR and OSP, which do not incorporate such noise re-

duction stage.

B. Synthetic Hyperspectral Data Sets

Our primary reason for using simulated imagery as a com-

plement to real data analysis is that all the details of the

simulated images are known in advance. These details can

efficiently be investigated, because they can individually and

precisely be manipulated. As a result, algorithm performance

can be examined in a controlled manner. Specifically, we have

generated two distinct spatial patterns, which are then used

to simulate linear mixtures of reflectance signatures selected

from a spectral library compiled by the U.S. Geological Survey

Fig. 3. Synthetic data sets used for experiments. (a) Abundance fractions for
spectral signatures (left) S1 and (right) S2 in simulated scene DS01. (b) (Left
to right) Abundance fractions for spectral signatures S1, . . . ,S5 in simulated
scene DS02. (Black) 0% abundance. (White) 100% abundance.

(USGS).1 The reflectance spectra of 22 USGS ground mineral

spectra (including, among others, alunite, buddingtonite, cal-

cite, kaolinite, muscovite, chlorite, jarosite, montmorillonite,

nontronite, and pyrophilite), which were convolved to AVIRIS

wavelengths and selected due to their known presence in the

AVIRIS Cuprite image2 that will be used later on in real data

experiments, have been managed in computer simulations to

generate two synthetic data cubes comprising distinct spatial

patterns, where the ground-truth fractional abundance maps for

those scenes are shown in Fig. 3(a) and (b), respectively. The

synthetic data sets were generated as follows:

1) DS01: This scene, with a size of 100 × 50 pixels,

simulates a spatial pattern in which the abundances of two spec-

tral signatures designated by S1 and S2 are assigned using a

spatial–sinusoidal shape, in which their abundances are defined

by equations Φ1(i, j) = (1/2)(1 + sin(ξ)) and Φ2(i, j) =
(1/2)(1 − sin(ξ)), respectively, with ξ = 0 + (2π/99)(j − 1).
In both cases, j = 1, . . . , 100 represents the image rows, and

i = 1, . . . , 50 represents the image columns. All the pixels in

the same column share the same fractional abundances, as

shown in Fig. 3(a).

2) DS02: This scene, with a total final size of 80 ×
80 pixels, was created by using five spectral signatures, i.e.,

S1, S2, S3, and S4 (which were arranged at the corners of the

image) and S5 (which was arranged at the center of the image).

The scene was simulated, so that signature abundance decreases

linearly away from the specified points (from 100% to 0%

abundance) being the radius of the resulting circles of 32 pixels

in size. In order to avoid the presence of pure pixels at the corner

of the simulated scene, a mirroring technique was applied to the

image borders to replicate such borders in symmetric fashion,

thus obtaining the spatial abundance patterns that are shown in

Fig. 3(b). The spectral signatures used to simulate the two syn-

thetic scenes previously described were randomly selected from

the 22 mineral ground spectra taken from the USGS library.

Zero-mean Gaussian noise was finally added (in different

SNR proportions, from 10 : 1 to 300 : 1) to the two aforemen-

tioned scenes to simulate contributions from ambient (clutter)

and instrumental sources, following the procedure described in

[13]. Here, the SNR is defined as the ratio of the mean signal to

the standard deviation of the noise.

1http://speclab.cr.usgs.gov/spectral-lib.htm
2http://speclab.cr.usgs.gov/PAPERS/tetracorder/
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Fig. 4. (a) False color composition of the AVIRIS Indian Pines scene. (b) Ground-truth map containing 16 mutually exclusive land-cover classes.

C. Real Hyperspectral Data Sets

1) AVIRIS Indian Pines Scene: This scene, with a size of

145 × 145 pixels, was acquired by the AVIRIS sensor in June

1992 over the Indian Pines area in northwestern Indiana, which

is a mixed agricultural/forest area, early in the growing season.

The scene comprises 220 spectral channels in the wavelength

range of 0.4–2.5 µm. After an initial screening, several spectral

bands were removed from the data set due to noise and water

absorption phenomena, leaving a total of 190 radiance channels

to be used in the experiments. For illustrative purposes, Fig. 4(a)

shows a false color composition of the AVIRIS Indian Pines

scene, whereas Fig. 4(b) shows the ground-truth map avail-

able for the scene, which is displayed in the form of a class

assignment for each labeled pixel, with 16 mutually exclusive

ground-truth classes. These data, including ground truth, are

available online,3 which is a fact that has made this scene a

widely used benchmark for testing the accuracy of hyperspec-

tral data classification algorithms. Unfortunately, no ground-

truth information about the location of pure pixels and/or the

true fractional abundances of endmembers is available for this

scene (as it is often the case in most real-world applications).

Despite the lack of ground truth at subpixel levels, an alternative

strategy will be used in this work to validate the quality of

extracted endmembers using available labeled pixels, as will be

described in Section IV-B.

2) AVIRIS Cuprite Scene: The second real scene used in

experiments is the well-known AVIRIS Cuprite data set, which

is available online in reflectance units4 after atmospheric cor-

rection. This scene has widely been used to validate the perfor-

mance of endmember extraction algorithms. The portion used

in experiments corresponds to a subset of the sector with 250 ×
200 pixels that is labeled as f970619t01p02_r02_sc03.a.rfl in

the online data. The scene comprises 224 spectral bands be-

3http://aviris.jpl.nasa.gov/html/aviris.freedata.html
4http://aviris.jpl.nasa.gov/html/aviris.freedata.html

tween 0.4 and 2.5 µm, with a full-width at half-maximum of

10 nm. Prior to the analysis, several bands were removed due

to water absorption and low SNR in those bands, leaving a total

of 192 reflectance channels to be used in the experiments. The

Cuprite site is mineralogically well understood [29], [30] and

has several exposed minerals of interest, including those used

in the USGS library considered for the generation of simulated

data sets. These laboratory spectra, which were convolved in

accordance with AVIRIS wavelength specifications, will be

used to assess endmember signature purity in this work. At

this point, it is important to note that many of the mineral

spectra in the USGS library are not from the Cuprite area. Thus,

the best match between an image endmember and one in the

USGS library spectra does not necessarily mean the best match

with the Cuprite endmember. In addition, some minerals do not

occur in pure form in the area (specifically at the 20-m spatial

resolution of the sensor).

IV. COMPARATIVE PERFORMANCE ANALYSIS

This section describes a set of experiments that use both

simulated and real hyperspectral data to conduct a compre-

hensive analysis of the proposed preprocessing method when

combined with standard endmember extraction algorithms. For

that purpose, we test the same set of algorithms with and

without spatial preprocessing. As a result, the effect of using

the proposed preprocessing can be isolated and substantiated.

In order to ensure the fairest possible comparison, the best

performance must be obtained from each alternative method.

Then, prior to a full examination and discussion of results, it

is important to outline parameter values used for endmember

extraction algorithms. The fact that the only input parameter to

the three selected algorithms is p, which is the number of end-

members to be detected by each method, allows us to separately

investigate the impact of the proposed preprocessing module

from other distinct algorithm features. On the other hand, the

only input parameter of our preprocessing (window size ws)

will carefully be analyzed in the following experiments.
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A. Experiment 1: Synthetic Hyperspectral Data Sets

In this section, we conduct an experiment-based evaluation

of our proposed spatial preprocessing framework using the two

simulated scenes DS01 and DS02 with different SNR values.

In particular, we focus on evaluating the performance of a

hyperspectral data-processing chain made up of the following

steps: spatial preprocessing (optional), endmember extraction

(N-FINDR, OSP, and VCA), and fully constrained linear spec-

tral unmixing (FCLSU) that performs a least-squares fitting of

(1) with the ANC and ASC constraints [26]. The number of

endmembers to be extracted from the simulated scenes was

fixed (to p = 2 in DS01 and p = 5 in DS02) based on prior

knowledge. In order to better quantify our findings, each run

of the aforementioned full data-processing chain was repeated

25 times, each time using a distinct simulated hyperspectral

data set with the same abundance fractions shown in Fig. 3, but

with a random choice of endmembers (without repetitions in

the same scene) randomly obtained from the 22 USGS spectral

signatures.

Two different metrics have been used to compare the perfor-

mance of the aforementioned data-processing chain, with and

without spatial preprocessing. The first metric is the SAD be-

tween each extracted endmember and the set of available USGS

ground-truth spectral signatures. This allows us to identify the

USGS signature, which is most similar to each endmember au-

tomatically extracted from the scene by observing the minimum

SAD distance reported for such endmember across the entire set

of USGS signatures. A second metric has also been used based

on the assumption that, in the simulated images, the abundance

fractions of each endmember are known on a per-pixel basis. In

order to define this metric, let s be the total number of columns

and l be the total number of rows in the simulated hyperspectral

image. In addition, let Ek be an endmember extracted from the

simulated image and Sk be the spectral signature in the USGS

library, which is most similar to endmember Ek. Similarly, let

Φ̂k(i, j) denote the FCLSU-estimated abundance of Ek at the

pixel with spatial coordinates (i, j), with Φk(i, j) being the

true abundance of Sk at the same pixel. A simple statistical

measurement to evaluate the similarity of true versus estimated

fractional abundances is the root mean square error (RMSE)

between the true and FCLSU-estimated fractional abundances

associated to a certain endmember Ek, which is given by

RMSE(Ek,Sk)=

⎛

⎝

1

s × l

s
∑

i=1

l
∑

j=1

(

Φk(i, j)−Φ̂k(i, j)
)2

⎞

⎠

1

2

.

(8)

With the preceding expression in mind, an average RMSE

score can be calculated as follows:

RMSE =
1

p

p
∑

k=1

RMSE(Ek,Sk). (9)

For illustrative purposes, Fig. 5(a) shows the SAD-based

spectral similarity scores between extracted endmembers and

ground-truth signatures in simulated scene DS01, whereas

Fig. 5(b) shows the RMSE-based similarity scores between

estimated and true fractional abundances in the same simulated

scene. On the other hand, Fig. 5(c) and (d) shows the same

results for simulated scene DS02, respectively. We emphasize

that each bar result given in Fig. 5 corresponds to the average

of 25 runs. The figures report the results for N-FINDR (green

color in the figure), OSP (red), and VCA (blue), without spatial

preprocessing (shown in the figure as ws = 0) and with spatial

preprocessing, using different window sizes, i.e., from ws = 3
to ws = 11. In all cases, the SAD- and RMSE-based results

are multiplied by a constant scalar value (100) to facilitate the

representation.

As shown in Fig. 5, the three compared algorithms provided

endmembers that resulted in lower SAD-based scores when

spatial preprocessing was used, compared with those obtained

without spatial preprocessing for both DS01 [see Fig. 5(a)] and

DS02 [see Fig. 5(c)]. A similar observation can be made for

RMSE-based scores for both DS01 and DS02. As expected, as

SNR increases, the SAD- and RMSE-based error scores signif-

icantly decrease. An interesting observation, however, can be

made for simulated scene DS02 with a very low SNR of 10 : 1.

In this case, we observed that the OSP algorithm did not seem to

benefit from the spatial preprocessing, resulting in high SAD-

and RMSE-based error scores. This effect may be attributed to

the higher complexity of simulated scene DS02, which contains

ternary mixtures in addition to binary mixtures. However, a

similar effect on RMSE was also observed for the same OSP

algorithm when applied to simulated scene DS01 with an SNR

of 30 : 1 [see Fig. 5(b)]. Although the SNR values of 10 : 1 and

30 : 1 previously reported are very low in comparison to those

routinely achieved in the design of state-of-the-art imaging

spectrometers, such as AVIRIS [2], our experiments reveal that

additional attention must be taken when using the proposed

method to process significantly noise-degraded images.

Overall, the results in Fig. 5 suggest that the incorporation

of spatial information prior to endmember extraction can be

beneficial since a clear pattern of improvement on both SAD-

and RMSE-based error scores was observed for all the consid-

ered algorithms. In addition, the results reported are not very

sensitive to the size ws of the preprocessing window, which

seems to be a positive aspect for the practical use of the method.

This is mainly due to the quadratic square-based distance

weighing strategy implemented by (7). Fig. 6 shows an example

of the behavior of the spatial weighing factor ρ when applied

to all the pixels in one of the randomly generated versions of

simulated data set DS02 (with an SNR of 50 : 1), considering

three window sizes of ws = 3, ws = 5, and ws = 11.

In an attempt to explain the significance of the obtained

results, we also have conducted a simple statistical analysis of

the accuracy of results shown in Fig. 5. Specifically, the paired

differences between the accuracies obtained using the endmem-

ber extraction algorithms with and without spatial preprocess-

ing have been compared using a test of statistical significance

based on the randomization reference distribution [31]. Let

us consider the hypothesis that the accuracies obtained using

spatial preprocessing (ws > 0) and those obtained without

using such preprocessing (ws = 0) are the same. If we assume

that this hypothesis is true, then the differences measured for

each distinct run (which results in a pair of accuracy results)

Authorized licensed use limited to: Antonio Plaza. Downloaded on July 19, 2009 at 17:01 from IEEE Xplore.  Restrictions apply.



ZORTEA AND PLAZA: SPATIAL PREPROCESSING FOR ENDMEMBER EXTRACTION 2687

Fig. 5. (a) SAD-based spectral similarity scores between extracted endmembers and ground-truth USGS signatures in the first simulated scene DS01. (b) RMSE-
based similarity scores between FCLSU-estimated and ground-truth abundance fractions in the first simulated scene DS01. (c) SAD-based spectral similarity scores
between extracted endmembers and ground-truth USGS signatures in the second simulated scene DS02. (d) RMSE-based similarity scores between FCLSU-
estimated and ground-truth abundance fractions in the second simulated scene DS02. Three different endmember extraction algorithms are compared: (green)
N-FINDR, (red) OSP, and (blue) VCA. In all cases, ws = 0 indicates no spatial preprocessing, and ws > 0 indicates spatial preprocessing (prior to endmember
extraction) using different window sizes.

Fig. 6. Spatial representation of the weighing factor ρ calculated for one of
the randomly generated versions of simulated scene DS02 (with an SNR of
50 : 1), using spatial window sizes of (left) ws = 3, (middle) ws = 5, and
(right) ws = 11.

should not be related to their individual values and merely affect

the sign associated with those differences. With this assumption

in mind, the sequence of sign differences observed for the

25 runs is therefore one of 225 equiprobable outcomes. To

test the aforementioned hypothesis, the average difference d̄

actually observed and shown in Fig. 5 may be compared with

the other 225 average differences that could have resulted from

different random outcomes. The complete set of 225 differences

is obtained by averaging the 25 differences with all possible

combinations of plus and minus signs. Thus, the probability

pd̄ for the actual value indicates the number of times that

the differences produced by the randomization process provide

values of differences greater than the actual value. Specifically,

our statistical significance test (summarized in Table I) has

been computed, including 10 000 of such randomizations. From

Table I, it can be observed that, for most of the considered algo-

rithms and SNR values, the actual difference is quite unusual (in

many cases, pd̄ < 1%), which indicates that the randomization

test revealed a statistically significant decrease in the estimation

errors, which can directly be related to the application of our

proposed spatial preprocessing method.

A more detailed evaluation of the overall performance of

the proposed preprocessing method is shown in Tables II
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TABLE I
STATISTICAL SIGNIFICANCE LEVELS (IN PERCENTAGE) FOR SAD- AND RMSE-BASED ERROR SCORES (IN PARENTHESES) OBTAINED IN EXPERIMENTS

WITH SIMULATED HYPERSPECTRAL DATA SETS DS01 AND DS02 AT DIFFERENT SNRS. THESE PERCENTAGES INDICATE THE STATISTICAL

SIGNIFICANCE OF THE RESULTS REPORTED, WITH LOW PERCENTAGES (< 1%) MEANING HIGH SIGNIFICANCE AND

HIGHER PERCENTAGES INDICATING LOWER SIGNIFICANCE

TABLE II
NUMBER OF TIMES THAT THE PROPOSED SPATIAL PREPROCESSING

METHOD WINS-TIES-LOSES (OUT OF 25 RUNS),WHEN COMPARED WITH

THAT WITHOUT SPATIAL PREPROCESSING PRIOR TO ENDMEMBER

EXTRACTION FROM SIMULATED SCENE DS01. THE SCORES ARE

OBTAINED USING SAD AND RMSE (IN PARENTHESIS)

and III, which report the number of runs (out of 25) in which the

SAD and RMSE scores, respectively, were better than, equal

to, and worse than the respective values without using spatial

preprocessing. As reported in Tables II and III, preprocessing

does not always guarantee better results, but it does frequently

produce results that are equal to or better than the results

obtained without using spatial preprocessing.

B. Experiment 2: AVIRIS Indian Pines Scene

Our analysis with this real hyperspectral scene begins with

the estimation of the number of endmembers p present in the

original scene, using the VD concept in [32]. After estimating

this value via the NWHFC method (using different values of

false alarm probabilityPF ), a reasonable estimate for the VD was

18 when PF = 10−3 or lower. It should be noted that the spatial

TABLE III
NUMBER OF TIMES THAT THE PROPOSED SPATIAL PREPROCESSING

METHOD WINS-TIES-LOSES (OUT OF 25 RUNS) WHEN COMPARED WITH

THAT WITHOUT SPATIAL PREPROCESSING PRIOR TO ENDMEMBER

EXTRACTION FROM SIMULATED SCENE DS02. THE SCORES ARE

OBTAINED USING SAD AND RMSE (IN PARENTHESIS)

preprocessing stage did not significantly affect the estimation

of the number of endmembers in the scene, which is a highly

desirable feature. The value p = 18 seems reasonable in light of

the number of distinct land-cover classes labeled in the ground-

truth map displayed in Fig. 4(b). Therefore, only the experi-

ments for a case study with p = 18 are discussed in this section.

The only available information a priori is a ground-truth map

that assigns a (hard) class label to each image pixel, with no

further information about subpixel abundance fractions. In this

context, our hypothesis is that a set of high-quality endmem-

bers (and their corresponding FCLSU-estimated abundance

fractions) may allow reconstruction of the original hyperspec-

tral scene [by means of (1)] with higher precision than a set of

low-quality endmembers. In other words, our main goal in ex-

periments with this scene is to analyze the reconstruction error,

which can be seen as an indirect assessment of the accuracy of
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TABLE IV
INDIVIDUAL AND OVERALL RMSE-BASED RECONSTRUCTION ERRORS OBTAINED AFTER COMPARING THE ORIGINAL AVIRIS INDIAN PINES SCENE

WITH A RECONSTRUCTED VERSION OF THE SAME SCENE USING THE FULLY CONSTRAINED LINEAR MIXTURE MODEL IN (1) AND THE ENDMEMBERS

EXTRACTED BY OSP, N-FINDR, AND VCA ALGORITHMS. TWO CASES ARE REPORTED FOR EACH ALGORITHM: WITHOUT SPATIAL PREPROCESSING

(ws = 0) AND WITH SPATIAL PREPROCESSING PRIOR TO ENDMEMBER EXTRACTION, USING WINDOW SIZES OF ws = 3, ws = 5, AND ws = 9

both the endmember extraction and the linear spectral unmixing

stages. It should be noted that the same FCLSU unmixing algo-

rithm is always used to estimate the fractional abundances of

different sets of endmembers produced by different algorithms

with and without spatial preprocessing, thus allowing us to

individually substantiate the impact of spatial preprocessing.

The metric employed to evaluate the goodness of the

reconstruction is the RMSE between the original and re-

constructed hyperspectral scenes, which can be defined as

follows. Let us assume that I
(O) is the original hyperspectral

scene and that I
(R) is a reconstructed version of I

(O), which

was obtained using (1) with a set of endmembers and their

corresponding FCLSU-estimated fractional abundances. Let us

also assume that the pixel vector at spatial coordinates (i, j)
in the original hyperspectral scene is given by X

(O)(i, j) =

[x
(O)
1 (i, j), x

(O)
2 (i, j), . . . , x

(O)
n (i, j)], whereas the correspond-

ing pixel vector at the same spatial coordinates in the re-

constructed hyperspectral scene is given by X
(R)(i, j) =

[x
(R)
1 (i, j), x

(R)
2 (i, j), . . . , x

(R)
n (i, j)]. With the preceding nota-

tion in mind, the RMSE between the original and reconstructed

hyperspectral scenes is calculated as follows:

RMSE
(

I
(O), I(R)

)

=
1

s × l

s
∑

i=1

l
∑

j=1

(

1

n

n
∑

k=1

[

x
(O)
k (i, j)−x

(R)
k (i, j)

]2
) 1

2

. (10)

Table IV reports the overall RMSE scores calculated using

(10) and also the individual per-class RMSE scores calculated

using only the spatial coordinates of the pixels labeled as

belonging to a certain land-cover class in the ground-truth

map available for the AVIRIS Indian Pines scene. In each

reconstruction, we used the endmembers extracted by OSP,

N-FINDR, and VCA with (ws = 3, ws = 5, and ws = 9) and

without spatial preprocessing (ws = 0). From Table IV, it

can be observed that spatial preprocessing allows a significant

reduction in both the overall and individual RMSE scores. This

is particularly the case for land-cover classes made up of homo-

geneous pixels (e.g., Corn, Grass, and Soybeans), whereas the

land-cover classes mainly formed by anomalous pixels (e.g., the

Bldg–Grass–Trees class) exhibit a less significant reduction in

individual RMSE scores. This is expected as the preprocessing

module privileges homogeneous areas. Finally, Table IV also

reveals that the overall RMSE error after comparing the original

scene with a reconstructed version using endmembers produced

after spatial preprocessing was always lower than a recon-

structed version without preprocessing, with ws = 5 shown

as an example. The aforementioned observations are shown

in Fig. 7, which graphically represents the per-pixel RMSE

errors obtained after reconstructing the AVIRIS Indian Pines

scene using the endmembers extracted by OSP, N-FINDR, and

VCA from the original image [Fig. 7 (left column)] and from a

preprocessed version using ws = 5 [Fig. 7 (right column)].

C. Experiment 3: AVIRIS Cuprite Scene

The number of endmembers p for the AVIRIS Cuprite scene

was first estimated using the NWHFC method [32], where a

reasonable estimate for the VD seemed to be 14 when false
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Fig. 7. RMSE-based reconstruction errors (in percentage, multiplied by a
constant factor of 100) obtained after comparing the original AVIRIS Indian
Pines scene with a reconstructed version of the same scene using the fully
constrained linear mixture model in (1) and the endmembers extracted by the
(a) OSP, (b) N-FINDR, and (c) VCA algorithms. Two cases are reported for
each algorithm: (leftmost column) without spatial preprocessing and (rightmost
column) with spatial preprocessing prior to endmember extraction, using a
window size of ws = 5.

alarm probability PF was set to 10−4−10−6. As was already

observed in our experiments with the AVIRIS Indian Pines data

set in the previous section, the proposed spatial preprocessing

did not significantly affect the estimation of the number of

endmembers.

As a result, experiments in this section will be presented for

a specific case study in which p = 14.

The only reference information available for the AVIRIS

Cuprite scene is a USGS spectral library containing the most

representative spectral signatures of the minerals present in the

Cuprite mining district in Nevada.5 An experiment-based cross-

examination of the algorithm endmember extraction accuracy is

presented in Table V, which tabulates the SAD scores obtained

after comparing the USGS library spectra, with the corre-

sponding endmembers extracted by the considered endmember

extraction algorithms, with (ws > 0) and without (ws = 0)
spatial preprocessing.

5Reference information about the mapping of such materials in the Cuprite
mining district using the Tetracorder method developed by the USGS is
also available at http://speclab.cr.usgs.gov/PAPERS/tetracorder. However, the
Tetracorder method also used the USGS library as a criterion for producing the
mapping.

It should be noted that Table V was originally intended to

display only the smallest SAD scores of all endmembers with

respect to each USGS signature for each considered algorithm.

The constraint imposed to establish the spectral matchings,

where the term matching denotes the association of an end-

member obtained by a certain algorithm with a single spectral

signature in the USGS library, is that, once an endmember has

been matched with a certain USGS signature, this signature

is immediately removed from the library, so that subsequent

endmember matchings are only possible with the remaining

library spectra. As a result, a blank value in Table V indicates

that the USGS spectrum could not be matched with any of

the extracted endmembers. We are aware that this matching

procedure is suboptimal in the sense that it may strongly depend

on the order in which endmembers are matched (e.g., two or

more endmembers may result in a minimum SAD distance

value when compared with the same library signature, and in

this case, the endmember that is matched in the first place may

indeed affect subsequent matching of the remaining endmem-

bers). In order to avoid this problem, all such matchings in

our experiments have been performed by repeating the process

10 000 times, each one with a random rearrangement on the

order of the 14 endmembers to be matched, thus randomizing

the initial state of the process. As the final criterion, the best

global match is considered to be the one with the minimum

average SAD value across all runs. This criterion has been

applied to all the endmember extraction algorithms tested in

our experiments.

With the aforementioned considerations in mind, the quanti-

tative results provided in Table V reveal that most of the relevant

minerals in the USGS library can accurately be matched with

spectral endmembers extracted by the different methods tested

although some of the matchings involving minerals, such as

Alunite, Calcite, Pyrophylite, or Sphene, seem to be dependent

on the algorithm and spatial preprocessing window used. The

analysis reported in Table V also suggests that the use of

spatial information can improve the overall accuracy of spectral

matching, as can be observed by analyzing the average SAD

scores reported in the last row of the table. Specifically, these

average results reveal that the use of spatial information can

improve the accuracy of spectral matchings in both the OSP and

N-FINDR algorithms. It should be noted that the reference

USGS signatures used for comparison were not actually col-

lected in the Cuprite mining district, and this makes an as-

sessment of the endmembers difficult. In order to analyze the

preceding results in more detail and substantiate the impact

of spatial preprocessing on the VCA algorithm, further exper-

iments were conducted using the RMSE criterion (based on

the reconstruction of the original image using extracted end-

members and their FCLSU-estimated fractional abundances),

as described in previous sections.

Table VI shows the RMSE-based errors obtained after recon-

structing the original AVIRIS Cuprite scene using the endmem-

bers provided by different methods and their corresponding

FCLSU-estimated fractional abundances, where (10) was used

to produce the quantities reported in the table. As shown in

Table VI, when the reconstruction was performed using the

endmembers produced after spatial preprocessing (ws > 0),
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TABLE V
SAD-BASED SPECTRAL SIMILARITY SCORES (MULTIPLIED BY A CONSTANT FACTOR OF 100) BETWEEN SPECTRAL SIGNATURES

CONTAINED IN THE USGS LIBRARY AND THEIR CORRESPONDING ENDMEMBERS EXTRACTED FROM THE AVIRIS CUPRITE

SCENE BY THREE DIFFERENT ALGORITHMS (OSP, N-FINDR, AND VCA) WITHOUT SPATIAL PREPROCESSING (ws = 0)
AND WITH SPATIAL PREPROCESSING, USING WINDOW SIZES OF ws = 3, ws = 5, AND ws = 9

TABLE VI
OVERALL RMSE-BASED RECONSTRUCTION ERRORS (MULTIPLIED BY A

CONSTANT FACTOR OF 100) OBTAINED AFTER COMPARING THE

ORIGINAL AVIRIS CUPRITE SCENE WITH A RECONSTRUCTED VERSION

OF THE SAME SCENE USING THE FULLY CONSTRAINED LINEAR MIXTURE

MODEL IN (1) AND THE ENDMEMBERS EXTRACTED BY OSP, N-FINDR,
AND VCA ALGORITHMS. TWO CASES ARE REPORTED FOR EACH

ALGORITHM: WITHOUT SPATIAL PREPROCESSING (ws = 0) AND WITH

SPATIAL PREPROCESSING PRIOR TO ENDMEMBER EXTRACTION, USING

WINDOW SIZES OF ws = 3, ws = 5, ws = 7, ws = 9, AND ws = 11

the RMSE errors were lower for all considered algorithms,

although a degradation in performance was generally observed

when the size of the preprocessing window was ws = 7 or

higher. These results may be due to the low spatial resolution

of the AVIRIS Cuprite scene (20-m pixels), leading us to

believe that very large window sizes may not be as effective

in characterizing the spatial–spectral information contained in

low spatial resolution hyperspectral scenes. In addition, the

effectiveness of the preprocessing is likely scene dependent, in

the sense that it may be more effective with scenes containing

homogeneous regions.

Fig. 8 shows the per-pixel RMSE errors obtained after re-

constructing the original image using the endmembers obtained

by different algorithm images (leftmost column) and also the

reconstruction errors using endmembers obtained after spatial

preprocessing using a window with a size of ws = 5 (rightmost

column). As it was also the case with the AVIRIS Indian Pines

scene, the three endmember extraction algorithms shown in

Fig. 8 (i.e., OSP, N-FINDR, and VCA) resulted in lower per-

pixel RMSE errors when the proposed spatial preprocessing

technique was used prior to the endmember extraction stage.

Finally, as an indication of the preprocessing time required

by our proposed module, if we consider a spatial element of

window size ws = 5 pixels, the proposed method (implemented

in Matlab) takes about 92 s to preprocess the considered

AVIRIS Cuprite scene in a desktop computer with a CPU clock

of 2.4 GHz and 2 GB of random access memory.

V. CONCLUSION AND FUTURE RESEARCH LINES

The incorporation of spatial information into the process of

extracting endmembers from hyperspectral image data sets has

been a long-awaited goal by the remote-sensing community.

Several well-known algorithms have been used for the task

of extracting endmembers by considering only the spectral

properties of the data when conducting the search. However,

there is a need to incorporate the spatial arrangement of the

data in the development of endmember extraction and spectral

unmixing algorithms.

The main contribution of this paper is the development of a

simple yet effective methodology that simultaneously integrates

both the spatial and spectral sources of information contained

in the hyperspectral data. The proposed method allows for
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Fig. 8. RMSE-based reconstruction errors (multiplied by a constant factor
of 100) obtained after comparing the original AVIRIS Cuprite scene with
a reconstructed version of the same scene using the fully constrained lin-
ear mixture model in (1) and the endmembers extracted by the (a) OSP,
(b) N-FINDR, and (c) VCA algorithms. Two cases are reported for each
algorithm: (leftmost column) without spatial preprocessing and (rightmost
column) spatial preprocessing prior to endmember extraction, using a window
size of ws = 5.

the incorporation of spatial information into existing image

spectral-based endmember extraction algorithms, without the

need for these algorithms to be modified. Instead, the proposed

approach works as an independent but complementary spatial

preprocessing module for endmember extraction using the stan-

dard hyperspectral processing chain.

Our experiments, using both simulated and real data sets,

revealed that the proposed approach is quite promising in

the sense that it can take advantage of spatial information

in order to intelligently guide the traditional spectral-based

approach to extract endmembers from a hyperspectral scene.

An advantage of the proposed approach is that the only required

input parameter for spatial preprocessing, i.e., size ws of the

spatial window, is not a critical parameter that requires fine-

tuning. Our experimental results also indicate that the physical

representation (via a fully constrained linear mixture model)

of a set of endmembers extracted using spatial–spectral in-

formation and their corresponding abundance fractions can be

used to provide a good reconstruction of the original data.

This approach allowed us to evaluate the effect of the pro-

posed preprocessing framework using a simple reconstruction-

based approach, which does not require detailed ground-truth

information about the original scene, which is generally very

costly to obtain in terms of time and finance. The results

obtained in our experiments indicate that the linear mixture

model, when improved by the integration of spatial and spectral

information in the task of selecting endmembers, is able to

provide a relatively good characterization of general landscape

conditions in two highly representative AVIRIS hyperspectral

scenes, which have thoroughly been studied in the literature.

Despite the aforementioned remarks, further experimentation

should be conducted in future work to address some unresolved

issues that may present challenges over time. Specifically, we

are planning on incorporating a two-filter strategy in our imple-

mentation that looks at both highly homogeneous regions and

single pixels that are distinct from their surroundings (anom-

alous pixels), with both having increased weight in the search

for endmembers. An evaluation of different distance measures

to be used in the extension of the proposed preprocessing

framework is another key topic that deserves future research.

In addition, tests with alternative spatial-weighing formulations

should also be conducted. It would also be useful to explore

the behavior of the proposed preprocessing method in cases

where the linear mixture model assumption is no longer valid to

describe the mixing systematics of the observed materials, thus

conducting a more detailed evaluation of linear versus nonlinear

mixture models in different application domains. An investiga-

tion of the use of the proposed methodology in conjunction with

source separation techniques, such as those described in [33],

is also a topic that deserves future research. Finally, efficient

parallel implementations based on high-performance comput-

ing architectures are being currently tested at our laboratory

in order to provide the proposed methodology with real-time

capabilities.
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