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Abstract

The vast majority of microscopic data in biology of the cell nucleus is currently collected using fluorescence

microscopy, and most of these data are subsequently subjected to quantitative analysis. The analysis process

unites a number of steps, from image acquisition to statistics, and at each of these steps decisions must be made

that may crucially affect the conclusions of the whole study. This often presents a really serious problem because

the researcher is typically a biologist, while the decisions to be taken require expertise in the fields of physics,

computer image analysis, and statistics. The researcher has to choose between multiple options for data collec-

tion, numerous programs for preprocessing and processing of images, and a number of statistical approaches.

Written for biologists, this article discusses some of the typical problems and errors that should be avoided. The

article was prepared by a team uniting expertise in biology, microscopy, image analysis, and statistics. It con-

siders the options a researcher has at the stages of data acquisition (choice of the microscope and acquisition

settings), preprocessing (filtering, intensity normalization, deconvolution), image processing (radial distribution,

clustering, co-localization, shape and orientation of objects), and statistical analysis.

Abbreviations

CLSM confocal laser scanning microscope

FFT fast Fourier transform

FWHM full width at half maximum (parameter characterizing

the width of a peak in a curve)

HSA Homo sapiens, abbreviation used for human

chromosomes

ICA intensity correlation analysis

ICQ intensity correlation quotient

MRP median radial position

NA numerical aperture of an objective
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PALM photoactivated localization microscopy

PCA principal component analysis

PDM product of the differences from the mean, a parameter

used in ICA

PSF point spread function

SNR signal-to-noise ratio

STED stimulated emission depletion microscopy

STORM stochastic optical reconstruction microscopy

TIRF total internal reflection fluorescence

Introduction

Recent progress in nuclear biology has shown an

inherent connection between the spatial organization

and function of nuclei. Spatial arrangements of

chromatin loci in the nucleus have been considered

as critically important in transcriptional regulation

(Fraser & Bickmore 2007, Lanctot et al. 2007,

Sexton et al. 2007, Soutoglou & Misteli 2007).

Chromosome territories and chromosomal subregions

have been shown to have non-random radial nuclear

distribution, i.e., a more central or more peripheral

location in the nucleus itself (Croft et al. 1999,

Cremer et al. 2001, 2006, Bolzer et al. 2005, Kosak

et al. 2007, Neusser et al. 2007). There are indica-

tions that some chromosome territories also have a

non-random localization with respect to their neigh-

bors that persists from one cell cycle to the next

(Parada et al. 2002, Gerlich et al. 2003, Walter et al.

2003, Thomson et al. 2004, Kosak et al. 2007).

Individual genes, depending on their transcriptional

status, also tend to take specific positions in the

nucleus (Kosak & Groudine 2004, Ragoczy et al.

2006, Chuang & Belmont 2007, Dundr et al. 2007)

and, in particular, can associate with nuclear pores

(Taddei et al. 2006, Akhtar & Gasser 2007).

Transcriptional activity of genes also correlates with

their positions in chromosome territories or possibly

on loops expanding from them (Mahy et al. 2002,

Chambeyron & Bickmore 2004, Kupper et al. 2007)

and proximity to centromeric heterochromatin (Cobb

et al. 2000). Several recent studies have discussed the

importance of transient contacts between loci situat-

ed on the same chromosome or on different chromo-

somes (Spilianakis et al. 2005, Brown et al. 2006,

Lomvardas et al. 2006, Fraser & Bickmore 2007,

Simonis et al. 2007), as well as association of loci

with transcription factories (Osborne et al. 2007),

speckles (Shopland et al. 2003, Brown et al. 2006),

and other nuclear bodies (Dundr et al. 2007).

Although molecular methods for studying the posi-

tioning of DNA sequences have recently been

developed (Simonis et al. 2006, Zhao et al. 2006,

Hagege et al. 2007), they demand a large number

of nuclei from a single cell type and at a given stage

of the cell cycle, postmitotic terminal differentiation,

or physiological state and cannot replace the analysis

of single cells in tissues. The development of new

molecular technologies has thus stimulated interest in

microscopic studies of nuclear biology (Murray et al.

2007, Shiels et al. 2007).

The vast majority of microscopic data in cellular

and nuclear biology are now collected using fluores-

cent microscopy, and most of these data are then

analyzed using quantitative methods. Each step of

this work, from image acquisition to statistical

analysis, may crucially affect the conclusions of the

whole study: therefore expertise in the fields of

physics, computer image analysis, and statistics is

necessary. It is hoped that this article will help

biologists to cope with this problem. It was written

by a team uniting expertise in biology, microscopy,

image analysis, and statistics. We consider the

methodical options a researcher has at different

stages of the work. For the methods discussed, we

briefly explain the essence of the method (where

necessary), discuss how to use this method correctly,

and then consider the typical problems for which this

method is useful and note the errors that may occur

when using the method. When discussing image

acquisition and preprocessing, we have tried to

explain the available options in a language clear to

biologists. The part dealing with image analysis also

includes explanations of important established meth-

ods but concentrates on methods that have just

started to be applied in nuclear biology, as well as

on some original new approaches designed to solve

problems that have only very recently been raised by

biological studies. Although the focus of this article

remains nuclear biology, the methods discussed are

applicable to many other fields of cell biology.

Imaging and image analysis: Stages
of a single process

Biologists often consider the recorded images as a

Fstarting point_ for the analysis which results in some

measured quantities such as object sizes or positions.

In this article we suggest a more general view. The
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raw images are only an intermediate representation

of the data in a long processing pipeline. This

pipeline accumulates all effects that occur before

the digital image arrives in the computer. Under-

standing all of these effects will help to design better

experiments and to decide which image processing

steps (and which parameters) can improve the

validity and reproducibility of quantitative image

analysis.

The information contained in the raw image

depends on various parameters such as (1) illumina-

tion light; (2) the orientation and position of the

object under the microscope, if the object is

anisotropic; (3) interaction of the light with the

object, e.g., fluorescence (and autofluorescence),

absorption, reflection, refraction, diffraction; (4) the

Foptical transformation_ of the emitted light in the

microscope, resulting in magnification, blurring of

the image according to the point spread function

(PSF), and filtering of certain wavelengths; (5)

recording of the light intensityVfor each pixel in

the case of 2D evaluations of single optical sections

or for each voxel in the case of 3D evaluations of

entire image stacksVand conversion of the light

intensities into electric charges and the conversion of

these charges into digital numbers, e.g., to gray values

from 0 to 255. It is therefore necessary to ensure that

variation in these parameters does not affect the

finalVbiologicalVresults of the observations.

Conditions important for this, first of all, are:

� Proper calibration of the system (e.g., homoge-

neous illumination, reproducible setup of all

microscopic parameters)

� If necessary, preprocessing of the raw images to

remove (or reduce) alterations induced during

image acquisition (e.g., compensation for light

absorption in thick samples or for bleaching)

� Selection of measurements that are invariant to

arbitrarily chosen parameters of experimental and

analytical procedures and/or estimating the errors

associated with them

� Adequate statistical analysis of the data obtained.

Which microscope for which task

When choosing the type of a microscope, one must

consider several factors, the most important of which

are resolution, sensitivity, rejection of out-of-focus

signals, photo-induced specimen damage, and speed.

Table 1 summarizes these parameters for several

types of microscopes. When talking about resolution,

we mean the smallest distance at which two features

in an image are seen as separate objects. This is a

function of the microscope optics and the wavelength

of light used, and should not be confused with the

popular use of Fresolution_ to describe the number of

pixels on a CCD camera chip. The sensitivity is a

function of both microscope optics and the detector

system. A good sensitivity will typically allow small

amounts of label (potentially even single fluorophore

molecules) to be detected and minimize the amount

of photo-damage to the specimen during image

acquisition. Systems with the smallest number of

optical components, given a good detector, tend to

have the best sensitivity.

For sensitivity, it is thus hard to beat a widefield

microscope equipped with a good CCD camera. A

major disadvantage of the widefield microscope,

however, is the lack of optical sectioning. This

means that, rather than being rejected, light from

out-of-focus objects is simply spread out over a

larger area. This is a significant problem when trying

to extract 3D information from extended objects and

some form of optical sectioning is thus often

desirable. The established way of performing optical

sectioning is to use a confocal laser scanning

microscope (CLSM), where the sample is illuminated

point by point. As only one point is illuminated at

one time, a pinhole and a photomultiplier can be

substituted for the CCD detector. This combination

of spatial selectivity in both excitation and detection

gives good rejection of out-of-focus light (for a

manual on confocal microscopy see Pawley (2006).

A significant disadvantage in classical confocal

systems is that they are comparatively slow, even

though modern instruments have greatly gained in

speed. Although modern confocal systems are suffi-

ciently quick for routine studies of fixed material, their

speed is still not sufficient for the in vivo imaging of

structures that move and/or change shape quickly.

Spinning disk confocal microscopes greatly increase

the speed of scanning at the expense of a little resolu-

tion. Modern spinning disk systems equipped with

em-CCD technology and micro-lens arrays are often

more sensitive than their beam-scanning counterparts.

New structured illumination techniques such as OMX

(Gustafsson 2000, Carlton 2008) also offer optical
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sectioning, and an additional resolution increase,

while retaining most of the advantages of traditional

widefield techniques.

Two-photon confocal microscopy (Denk et al. 1990)

builds on confocal microscopy by using a pulsed

infrared laser source and the 2-photon absorption

effect to excite the fluorescence. Two-photon excita-

tion has the advantage that the probability of exciting

a fluorophore is negligible anywhere other than in the

focus of the laser. Owing to the longer wavelength,

scattering effects are also reduced and 2-photon

microscopy finds its most common applications in

imaging deep within thick biological specimens.

If the resolution obtained using widefield, confo-

cal, or structured illumination techniques is not

adequate, one might wish to use a technique such

as 4Pi (Hell & Stelzer 1992, Hell et al. 1994), STED

(Klar et al. 2000, Willig et al. 2006, 2007), or

PALM/STORM (Betzig et al. 2006, Hess et al. 2006,

Rust et al. 2006). While these advanced techniques

are not necessarily intrinsically more damaging than

other methods, achieving the same signal-to-noise

ratio over a smaller region requires a larger overall

number of photons and it is probably fair to say that a

brighter and more stable labeling is required. These

methods are also typically slower and more sensitive

to effects such as sample-induced aberration.

The resolutions given in Table 1 are for high

NA (63� or 100�) oil-immersion objectives as these

offer both the best resolution and the best sensitivity.

For quantitative work in fixed specimens, these

objectives should be used if available. Glycerol

objectives have a long working distance and are

optimal for thick samples (see, e.g., Martini et al.

2002). In living cells, water immersion lenses (also

63� or 100�) with a slightly lower NA and accord-

ingly lower resolution are usually used. These offer

a better match to the sample refractive index and

therefore better imaging deep in the sample.

In short (considering the instruments that are

currently in the market), for simple work not needing

3D resolution, for work with weakly labeled speci-

mens, and for most in vivo work, the widefield

microscope remains the microscope of choice. For

imaging where 3D information is important, a

standard confocal is a good option for fixed cells

and a spinning disk confocal is good for in vivo work.

TIRF (total internal reflection fluorescence) and

Table 1. Typical characteristics of several microscope types

Type Resolution

xYy (nm)a
Resolution

z (nm)a
Sensitivity Photodamage Optical sectioning Speed

Widefield 250 650 Good Good Noneb Good

Confocal 210 550 Fair Fair Good Poor

Two-photon 250 650 Poor Out of focus: good Good Poor

In-focus: poor

Spinning disk 230 600 Fair Fair Fair Good

TIRF 250 G200c Good Good Goodc Good

Structured illuminationd 130 350 Good Good Can be very good Fair

4PiYA (two-photon) 220 120 Poor Poor Very good Very poor

STEDe 90 (16) 550 (33) Poor Poor Good (very good) Very poor

PALM/STORMf
G30 õ60 Good Fair None/fair Very poor

aValues are Ftypical_ values for a well adjusted system, and thus slightly worse than the theoretical values. When commercial systems are

available, the values for these are given, rather than the best laboratory results.
bA good approximation to sectioning can be obtained for objects that have a constrained lateral extent by using deconvolution (see the

deconvolution section in this paper).
cWhether TIRFs ability to constrain imaging to a small region adjacent to the coverslip can really be considered z-resolution or sectioning

is moot.
dBased on figures for OMX (P. Carlton, personal communication, and Gustafsson 2000, the latter for lateral resolution only).
eBest laboratory results (Dyba & Hell 2002, Westphal & Hell 2005).
fPALM/STORM is new and rapidly moving field, and these values are likely to change soon. Some sectioning ability has been shown through

the use of either TIRF (Betzig et al. 2006) or 2-photon photoactivation (Fölling et al. 2007). The newest advanceVtrue z-resolution (Huang

et al. 2008)Yhas yet to be combined with optical sectioning. Several efforts are underway to increase the acquisition speed (e.g. Geisler et al.

2007), and although the acquisition speed for highly resolved images is still slow compared with other forms of light microscopy, this has not

prevented the technique from being used to good effect in vivo (Hess et al. 2007, Manley et al. 2008).
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2-photon microscopy are useful for membrane

objects and thick specimens, respectively.

Image acquisition

Sampling

Once one has decided which microscope to use,

several aspects must be considered when taking the

actual images. The most important of these is

probably sampling. In order to correctly recover all

the information in the image, the effective voxel size

must be small enough that the smallest possible

features are properly sampled. Failure to sample

properly results in the loss of resolution, as well as

the introduction of aliasing artifacts (spurious signals

appearing, and/or small signals disappearing com-

pletely). Sampling theory (often called the Nyquist,

or NyquistYShannon theorem) states that the sam-

pling frequency must be greater than twice the

highest frequency contained in the signal (a factor

of õ2.3 is often used in signal processing). When

applied to imaging, this corresponds to a constraint

on the maximum voxel size, namely that the voxel

size must be less than half the smallest possible

feature size. The smallest possible feature size is

usually equivalent to the resolution (depending on

the definition of resolution being used). For normal

confocal imaging, voxel sizes less than or equal to

80� 80� 200 nm are usually perfectly acceptable.

Owing to the low speed of confocal microscopes,

biologists have often tended toward under-sampling

(voxel size too large for the objective used). Modern

confocal instruments have a much higher speed that

solves this problem. If high resolution is not

necessary, one can rather use an objective with

smaller magnification and gain in the size of the

field of view and the depth of focus. While under-

sampling is generally inexcusable when the images

are going to be subjected to quantitative analysis, a

small amount of over-sampling (voxel size smaller

than necessary) is acceptable. Over-sampling fol-

lowed by averaging can in some circumstances be

used to improve the detection dynamic range (e.g.

4Pi with avalanche photodiode (APD) detectors).

Excessive over-sampling makes data acquisition

slower than necessary, increases photobleaching as

well as photodamage in vivo, and results in excessive

data volumes.

Signal-to-noise ratio and dynamic range

The second most important aspect of image acquisi-

tion, with reference to subsequent image processing,

is the signal to-noise-ratio (SNR) and the dynamic

range. Both these quantities should be maximized,

although constraints on labeling stability and acqui-

sition time will normally require some form of

compromise. SNR is the squared ratio of character-

istic intensities of signal and noise (the standard

deviation of signal intensity is also important in this

context). SNR can be increased by increasing illu-

mination intensity, or integration time, or by averag-

ing. Dynamic range is the range of discrete signal

levels available in the image data. Different detectors

have different dynamic ranges, for example, confocal

microscopes manufacturers often suggest an 8-bit

(256 values) dynamic range, though modern instru-

ments also allow 12 bits or more, whereas CCD

cameras more often use 12 bits (4096 values) or even

16 bits (65 536 values). A higher dynamic range will

result in larger file size. In any case, one should try to

make the best use of the available dynamic range. In

practice this means choosing the laser power and/or

photomultiplier voltage (in the case of confocal

microscopy) or integration time (for CCD cameras)

such that the maximum signal value (i.e., intensity

in the brightest portions of the studied sample) is

around 80% of the available dynamic range (to avoid

clipping, see below).

One should note that, for confocal measurements,

increasing the photomultiplier gain also increases the

noise. Therefore, given a sufficiently photostable

labeling, increasing the laser power is preferable to

increasing photomultiplier gain from a signal-to-

noise standpoint (the same argument applies for

modern electron-multiplying CCD cameras; an elec-

tron multiplication gain that is too high can be

detrimental to the overall signal-to-noise level).

While increasing illumination intensity is normally

safe in widefield imaging, increasing the laser power

must be approached with caution when using a

confocal microscope as there is a very real risk that

the fluorophores will be driven into saturation,

resulting in a dramatically increased rate of photo-

bleaching for a smaller than expected gain in signal.

Averaging or accumulation of several repeated

acquisition steps, an option always provided by

confocal software, is thus one of the main means for

increasing SNR, though photobleaching and, in case
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of live observations, the acquisition time should

also be taken into account. Both line averaging and

frame averaging are normally offered; which one is

preferable varies from microscope to microscope.

Stack averaging is also possible but may cause

misalignment of the channels in instruments with

mechanical control of the stage position. In most

cases it is preferable to set the direction of stack

acquisition so that the focus plane moves towards

the objective lens. In this case the deepest layers of

the sample that lose more emitted signal are imaged

first, when bleaching is minimal.

One common problem encountered with micro-

scopic imaging is clipping or saturation. This occurs

when the magnitude of a signal exceeds the available

dynamic range and results in out-of-range pixels

being assigned the maximum/minimum possible

value and, therefore, all information contained in

the real intensity values of these pixels being lost.

Clipping at the top end of the range (saturation) is

typically caused by either the photomultiplier gain

(confocal), integration time (CCD), or illumination

power being too high. At too high illumination

intensities (note that such intensities can be achieved

with moderate laser power when using a beam

scanning confocal), saturation of the fluorescence

transition can occur, leading to similar problems.

Clipping at the bottom of the range is typically due to

an incorrect photomultiplier offset setting and is

usually restricted to confocal modalities. Image

acquisition software of both confocal and widefield

systems usually allows additional manual setting of

the offset value, that is, setting all gray values below

the offset to zero. This setting reduces background

noise seen on the screen and written to the file. Such

setting is nothing other than a threshold that also

clips low-intensity signals. It should therefore be

used with care and kept to minimum; some back-

ground signal should be retained (see also Flat field

correction and background subtraction, below). Most

modern systems have lookup tables which use

contrasting colors (e.g. green/blue pixels in the Leica

Fglow_ colormap) to indicate clippingVit is very

advisable to use such lookup tables to choose

acquisition parameters.

Several image acquisition packages offer addi-

tional postacquisition steps, for example, correction

for bleaching and variations in the excitation inten-

sity. While useful in principle, such features should

be approached with caution, and only used when one

is aware of all the assumptions involved and is

confident that they are met. The bleaching/excitation

power correction, for example, is usually based on

the assumption that the integrated intensity in all

slices should be the same, a condition that is satisfied

only very rarely. We generally advise collecting

images without any corrections and correcting them,

if appropriate, later (see Preprocessing, below).

Chromatic shift: measuring and correcting for it

A systematic error that is almost always present in

microscopic data is chromatic shift: light of different

colors will be focused at slightly different positions.

The effect is particularly relevant along the

z-direction, where the chromatic shift is typically

worse than in the xYy plane. The amount of

chromatic shift depends on the microscope optics

and on the optical conditions within the sample itself.

Typical values of chromatic shift for a confocal

microscope using a good high-NA oil objective are

of the order of 10Y20 nm laterally and 100Y200 nm

axially, worsening considerably with increasing

depth into the sample (Figure 1). For poorly adjusted

systems and/or thick specimens, shifts of more than

100 nm laterally and 500 nm axially are not

uncommon. There is also some variation across the

field of view (although this is of a lesser magnitude,

and only really important for very precise distance

measurements). These chromatic shifts will lead to

errors, particularly in high-precision distance meas-

urements in 3D or in co-localization analysis (see

Co-localization, below). Luckily it is possible to

correct for them. The first step is to measure the

shifts, which can be done using multicolored fluo-

rescent beads (see Walter et al. 2006 for a detailed

protocol). Importantly, shift should be measured for

each optical path used. As the shift is sensitive to

temperature as well as any changes in instrument

alignment (even at the level which would be induced

by, e.g., removing and replacing the objective),

measurements should be performed regularly. How

the correction is done then depends on the analysis

being performed. If measuring distances, it is trivial

to add/subtract the measured 3D shifts to each of the

components of the measured distance vector before

calculating the absolute distance.

A common technique to obtain an image coarsely

corrected for the z-chromatic shift (rather than cor-

rected coordinates of certain points in the image as
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discussed above) is to cull slices from the top or

bottom of the stack, effectively moving the channels

by an integer multiple of the voxel size with respect

to each other. While this technique is often adequate

for removing the worst of the visual aberration, it is

usually not sufficient for precise distance measure-

ments or precise co-localization studies. If one

wishes to obtain a fully corrected image, the

procedure is a little more complex. One must

resample the channels, interpolating to the correct

voxel positions.

Preprocessing

The main goal of preprocessing is to reconstruct the

true fluorophore distribution as well as possible. This

includes compensation (or at least reduction) of

random and systematic errors that are caused by the

imaging process. A typical random error is intensity

noise. A typical systematic error is the point

spreading caused by the objective. Below we provide

a short overview of several of the most commonly

used variants of preprocessing, their application

areas, and the situations in which they should be

avoided. It is crucial to understand which preprocess-

ing may be applied to which experimental setup and

how it influences the measurements carried out on

the image. Changes induced by preprocessing are an

important reason for differences between results

obtained from the same biological material. Prepro-

cessing is essentially calculating modified intensi-

ties; more complex calculations usually result in a

stronger propagation of errors (see e.g., Wolf et al.

2007 for simple illustration of this propagation)

and inappropriately applied preprocessing (or inade-

quately selected parameters) will unpredictably bias

the results. In short, everything that is not really

needed should be avoided.

Flat field correction and background subtraction

Flat field correction (also called Fshading correction_)

is typically unnecessary for confocal microscopy,

which is of primary interest for this article, but we

will briefly discuss it because it may be of crucial

importance for widefield microscopy. It corrects for

systematic errors of the imaging process such as bias

and non-uniformity of illumination, or those caused

by the optics, the CCD-sensor, or by the conversion

of the electrical signal to gray values. Flat field

correction is usually performed by imaging of a

calibration sample with a uniform intensity and then

computing the gray value offset and scale factor for

each pixel; the latter are used to correct intensities in

other images. General non-uniformity of illumination

is often the case in widefield microscopy, especially

when people try to adjust for maximum brightness

Figure 1. Chromatic shift. (a) Images of Tetraspec beads (0.5 mm)

were acquired with a Leica SP5 confocal microscope using

excitation wavelengths and emission filters optimized for the

fluorochromes shown in the table. High-quality modern objective

lenses compensate for chromatic shift for the wave lengths

corresponding to visible part of the spectrum (FITC to Texas

Red). The 405 nm/DAPI channel in modern microscopes may

usually be fitted to the other channels at hardware level

(adjustment should be performed regularly by a professional).

Maximal axial shift is therefore observed for the 633 nm/Cy5

channel. The table shows mean shifts in relation to the 405 nm/

DAPI channel calculated from images of 10 beads. (b) A 3D

Amira reconstruction of a bead shows the effect of chromatic shift

for 405 nm/DAPI, 488 nm/FITC and 633 nm/Cy5 channels.
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going away from the optimal Koehler illumination.

In the typical single-cell analysis setup (the cell is

near the optical axis and it spans only a small portion

of the maximal field of view possible with the used

lens) and with a well-adjusted microscope, high-end

CCD sensors, and no dust particles in the optical

path, such non-uniformities are usually negligible.

While a non-uniform background can usually be

avoided, there are several factors causing a constant

background throughout the image and, correspond-

ingly, a constant gray value offset (Fadditional_

intensity) for all pixels. Here we address the offset

caused by the image acquisition system that does not

depend on sample and can therefore be determined

prior to imaging of the samples studied. Correct

determination and subtraction of this offset is

essential for all algorithms that strongly rely on the

proportionality of gray value to the light intensity

(e.g., fluorescence resonance energy transfer (FRET),

and deconvolution). The best way to determine the

background gray value is to record two calibration

images (A and B) of the same (non-bleaching)

sample, where the shutter time for the second image

(B) is halved. The background pixel gray value g is

then computed as g =mean(2BjA), which is easy to

perform, e.g., using the popular free image process-

ing software ImageJ (this software may be down-

loaded from ImageJ website: http://rsb.info.nih.gov/ij/;

a convenient installation of ImageJ for Windows with

a useful selection of plugins is also available at the

WCIF website: http://www.uhnresearch.ca/facilities/

wcif/imagej/index.htm). Furthermore, to avoid clipping

of low intensities, the offset in the analogYdigital

converter (which converts electrical signals to gray

values) is typically set so that zero intensity corre-

sponds to some low positive value. This produces a

constant Fbackground_ which should be determined as

described above and subtracted from the pixel gray

values of the images. Slightly negative gray values

may appear in the image after background subtrac-

tion, owing to positive and negative contributions

of the electronic noise in the sensor. Even though

negative intensities do not exist in reality, for many

image analysis processes (e.g., all linear and most of

the nonlinear filters, in particular, for deconvolution,

etc.), they should be retained and it is therefore

important to use a proper data type for the resulting

image: the 16-bit integer (which can store integer

gray values between j32 768 and +32 767) or 32-bit

float (which can store arbitrary gray values, e.g. 42.3

or j7.5). In addition to hardware offset setting as

described above, image acquisition software of both

confocal and widefield systems allows the user to

manually increase offset for images shown in the

screen and saved to files. Quite clearly such online

thresholding should be kept to minimum (see also

Signal-to-noise ratio and dynamic range).

� Software for image analysis that is strongly

dependent on the proportionality between pixel

gray values and light intensity usually performs

background subtraction based on the image itself,

sometimes invisibly for the user. It should be

taken into account that some such programs do not

handle negative intensities: in this case back-

ground subtraction should not be done.

� Background subtraction is also unnecessary if the

next processing step includes manual thresholding

or if only the differences between gray values are

used in the further processing.

Intensity normalization

The goal of intensity normalization is usually to

correct for systematic errors of the imaging process

that vary from experiment to experiment and can

therefore not be determined by a prior calibration.

This includes, for example, varying illumination

along the depth of the sample, absorption, bleaching

due to image acquisition, etc. Such corrections are

primarily important for fully automated systems to

ensure the reproducibility of results. In nuclear

studies, where CLSM images of individual cells are

usually processed separately with interactive tools

and thresholds are set manually, intensity normaliza-

tion is usually not needed. It may be used to facilitate

visual inspection, but for further processing it is

preferable to preserve the original gray values. On

the other hand, intensity normalization may improve

images for further processing if the real intensity

distributions of the images of different experiments

are nearly identical, except for a linear scaling of the

gray values between images (e.g. due to bleaching of

the fluorophore, Figure 2). These conditions are

fulfilled, for example, if the same object is recorded

at different times. Therefore, intensity normalization

may be very important for in vivo time-lapse studies.

Intensity normalization may also be useful for visual

analysis of the co-localization of signals.
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A very common normalization procedure is to use

the minimum and maximum gray value of the image,

to assign them the values of 0 and 255 (or another

arbitrarily selected maximal gray value), and change

other intensities proportionally. With this procedure

no information is lost, but the result will be strongly

affected if image contains outliers (very dark or very

bright pixels that are not part of the considered

structure). To avoid the effect of outliers, one can set

to 0 and 255 a small percentage of darkest and

brightest pixels (an option suggested by the ImageJ

software). A more robust alternative is to use the

median and the interquartile range, so that the nor-

malized image has a median of, e.g., 100, and an

interquartile range of, e.g., 80 (of course, the ratio of

the 2nd and 3rd quartiles should be retained). A dan-

ger of the two last-mentioned approaches is a

reduction in the dynamic range due to creation of

over- and undersaturated pixels, and the loss of

information due to the requantization of the gray

values (e.g. a scaled gray value of 42.3 will be

rounded to 42). The best way to avoid these problems

is to use 16-bit integer or 32-bit float (see Flat field

correction and background subtraction). If 8-bit gray

values must be used (e.g., owing to limitations of the

programs to be used subsequently for image analy-

sis), one can try to avoid over-/under-saturated

pixels, by a proper selection of the desired median

and interquartile range, for example. A good starting

point for this could be the median and interquartile

range of an appropriate image of the series.

Importantly, if the conditions mentioned at the

beginning of the section are not satisfied (relative

intensity distribution in the images must be nearly

identical, in the first place), intensity normalization,

irrespective of method, will result in a unpredictable

change of the gray values and will cause strong cor-

ruption of results if the further processing steps use

absolute gray values or differences of gray values.

There are several other normalization techniques

based on histogram analysis, typically nonlinear.

Moreover, many common automated thresholding

techniques (e.g., Otsu thresholding or maximum-

entropy thresholding) are actually based on histo-

gram analysis.

Filtering

Filters are a big family of transformations, ranging

from simple to very complex ones, that change

intensity values of pixels (pixel values) based on

those for a group of pixels, e.g., neighboring ones

(Figure 3a). The most important class of filters (for

routine use) are linear filters. In discrete (e.g., pixel-

based) image processing, a linear filter replaces each

pixel value by weighted average over the pixel

values in its neighborhood (Figure 2a). The weights

for each pixel depend only on the position relative to

the considered pixel; the rule which determines these

weights is called the filter kernel. The mirrored

version of this kernel (i.e., the rule for setting values

Figure 2. Intensity normalization. (a) Confocal image (8-bit format) of a mouse fibroblast nucleus stained with T0-PRO3 to show

chromocenters. (b) The same image after simulated bleaching. The blue graphs show intensity histograms. Owing to nearly proportional

fluorophore intensities in these images (as is also the case for natural bleaching e.g. due to image acquisition), intensity normalization

improves both images. After this normalization, corresponding structures have similar gray values. This allows, for example, the same

threshold to be applied to all images of the series.
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in the neighborhood of a pixel from intensity in this

pixel) is often called the Fpoint spread function_

(PSF). When a linear filter is applied to an image that

contains only a single bright point on a black

background, the filtered image shows the PSF.

Another name for the application of a linear filter is

convolution. The physical effects during the optical

transformation of the emitted light in a microscope

can be well approximated by a linear filter or

(synonymously) by a convolution. In many image

processing programs, filters based on the FFT (fast

Fourier transform) are implemented: low-pass, band-

pass, high-pass filters, etc. Without going into detail,

we mention here that all these filters are just linear

filters with a certain filter-kernel. Computation via

the FFT only speeds up the processing, but the result

is identical to the direct implementation of a linear

filter.

As an example of a linear filter, we will consider

the Gaussian filter which is very common in image

Figure 3. Linear filtering and Gaussian filter. (a) Kernel of a 2D linear filter. Intensity in the pixel marked in red in the output image is

determined from the intensities of this and the neighboring pixels marked in red in the input image. The matrix on the left (illustrating how

kernels may be seen when using ImageJ) shows the weights for the pixels (in our case, they are symmetrical). The output intensity of the

target pixel is the sum of the weighted intensities of the pixels covered by the kernel. Usually the weights are normalized so that total

intensity in the image does not change after filtering (this is achieved by dividing theweights by the their sum). (b) Applying a Gaussian filter. The

radii for appropriate Gaussian filtering can be computed from the PSF. (b1) Original confocal image of a chromosome territory after FISH

with a chromosome paint. An optical section (xy, bottom left), xz and yz sections (top and right). The voxel size 60� 60� 325 nm, the PSF

size õ210� 210� 550 nm. (b2) Smoothing with the appropriate radius: the standard deviation of the Gaussian distribution used for kernel is

70� 70� 175 nm (1/3 of the respective PSF sizes). Noise is reduced. (b3) smoothing with a radius that is too high; the standard deviations of

the Gaussian distribution used for the kernel were 140� 140� 350 nm (more than half the respective PSF sizes). Fine details disappear.
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preprocessing and suggested by practically all soft-

ware packages. Its kernel is just a Gaussian distribu-

tion. It improves images by reducing random noise

that is usually caused by image acquisition, e.g., by

noise in the photomultipliers of the microscope

(Figure 3b). Gaussian filtering assigns each pixel a

value Faveraged_ across the neighboring pixels within

a certain radius. The resulting improvement is based

on the assumption of the normal distribution of light

intensity from a point light source, and a random

uniform (completely random) distribution of the

additive noise (white noise). Gaussian filtering may

be done in 2D (averaging in a single plane only) or

in 3D. If available, 3D filtering is preferable. Radius

(set by the user) usually has to be provided as the

standard deviation s for this Gaussian distribution

or as the full width at half maximum (FWHM),

which are related in a simple way: FWHM� 2.35s.

A radius that is too big causes averaging over too

large a region and loss of information: sharp bor-

ders and small structures will be lost (Figure 3, b3).

A radius which is too small may not result in the

desired noise reduction. An appropriate radius value

can actually be determined from the PSF of the

microscope: as a rule of thumb, radius should be

2Y3 times smaller, than PSF. Owing to the different

characteristics of the PSF in xYy- and z-directions,

the radius of the Gaussian filter should also be

different in xYy- and z-directions. Note that the radius

of the PSF and of the Gaussian have to be specified

in real-world coordinates (e.g., in micrometers). If

the image processing program needs the Gaussian

radii in pixels, the values have to be converted

according to the voxel sizes in xYy- and z-directions.

The resolutions in Table 1 were estimated as the

FWHM of the characteristic PSF for a high-NA

objectives.

� Gaussian filtering typically makes objects more

homogeneous with regard to intensity; their bor-

ders will be smoother. It therefore appears Feasier_

to set thresholds (though thresholds themselves do

not become less arbitrary).

� Gaussian filtering may be recommended for images

that suffer from random noise. For instance, noisy

background (outside image proper) is a good

reason to apply Gaussian filtering.

� Gaussian filtering does not improve the estimates

of the positions of the centers of objects, the

respective distances between them, etc.

� It also does not improve results of calculations

based on massive averaging of values for individ-

ual pixels.

� Gaussian filtering may strongly affect the borders

of objects: their smoothness, their surfaces. If

applications of this kind are used, one should be

especially careful with the correct choice of radius,

and the differences in the results that may be caused

by differences in chosen radius values.

Beside the large class of linear filters, there exists

an even larger class of nonlinear filters which replace

each pixel value with a nonlinear combination of the

pixel values in its neighborhood. A very common

nonlinear filter, the nonlinear counterpart of the mean

filter, is the median filter that may be applied for

de-noising images but does not smooth away the

edges. Other typical applications of nonlinear filters

are enhancement or weakening of certain structures

in the image, such as extraction of certain features

(e.g., edges). To improve spatial adaptivity, so-called

robust filters were introduced (see, e.g., Geman &

Reynolds 1992), as well as adaptive Gaussian filters

(see e.g., Brezger et al. 2007). Filters can be used to

detect spots in noisy images (see, e.g. Olivio-Marin

2002, Genovesio et al. 2006). Other topics in recent

research on filter design include holomorphic filters

for detection of complex structures (Reisert et al.

2007; see also Supplementary Material S1), or inter-

actively trainable Ffilters_ for the recognition of

certain 3D textures (Fehr et al. 2005; Ronneberger

et al. 2005).

Filters very easily trespass over the delicate

border between preprocessing and processing of

images. We would make two recommendations here.

First, if complex filters are needed, it is preferable to

consult an expert in the respective field. Second, we

would always advise relegating any complex trans-

formations of the input images to the image analysis

procedure, in which case they will be applied

equally to all data and will necessarily be tested

together with other procedures, and there will be

less chance to overlook their effect on final results

and conclusions.

Deconvolution

An optical image of a point-like object does not look

like a point but shows a 3D distribution of intensities
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described by the point spread function (PSF). This is

an inherent property of optical microscopes that

follows from the physical nature of light. As a result,

microscopic images are always blurred: the image is

contaminated by contributions from sources that are

situated away from the point of interest, for instance

in different optical planes. This image blurring can

be described as a linear filtering with the PSF (see

Filtering). Deconvolution applies inverse filtering

methods to correct images for this linear blur.

Although deconvolution is mostly associated with

high-magnification images, it is also important for

high-resolution imaging of large specimens using

low-magnification systems (Verveer et al. 2007).

Deconvolution is a broad topic and we will focus our

discussion on the aspects that are important for quan-

titative measurements. Discussion of other issues may

be found in several monographs and articles (Wallace

et al. 2001, Conchello & Lichtman 2005, Pawley

2006, Swedlow 2007), and a very useful review by

Wallace, Schaefer, Swedlow, Fellers and Davidson is

available online at the Microscopy Primer web site

(http://micro.magnet.fsu.edu/primer/digitalimaging/

deconvolution/deconvolutionhome.html).

Two basic types of deconvolution methods can be

distinguished, known as deblurring and image resto-

ration algorithms. Deblurring algorithms handle

single optical planes individually, rather than the

3D image (stack) as a whole. These algorithms

attempt to remove out-of-focus light by subtracting

the contribution of two neighboring image planes.

The main advantage is high speed that is due to the

relative simplicity of the calculations. However, the

result is only a rough approximation and these

algorithms should therefore not be used if the result

is to be interpreted quantitatively. Restoration algo-

rithms take into account the full image formation

process of the complete 3D stack. Since the blurring

with the PSF leads to a loss of information, the

inverse process is non-trivial, and as a result, these

algorithms are generally nonlinear and iterative in

nature. These algorithms repetitively calculate an

improved estimation of the true object that repro-

duces the observed image when blurred with the

known PSF. Modern algorithms use additional infor-

mation about the object such as non-negativity of the

intensities and smoothness assumptions to obtain a

result that is close to the true object. An increasingly

popular group are the so called blind deconvolution

algorithms (Boutet de Monvel et al. 2003, Holmes

et al. 2006), which do not require exact knowledge of

the PSF but rather attempt to estimate both the object

and the PSF simultaneously from the data.

Nowadays, since computers have become suffi-

ciently fast, nearly every package for image acquisi-

tion and analysis offers a deconvolution option.

However, deconvolution changes the raw data

strongly and the results may be very different

depending on how deconvolution was performed.

Therefore, a well-balanced practical approach is

crucial to assuring reproducibility of the results. In

this aspect there is a big difference between widefield

and confocal 3D images. Widefield images are so

strongly affected by blur that shortcomings of the

deconvolution are less important than for confocal

images (see Swedlow 2007 for discussion of decon-

volution of widefield stacks). The main application

where stacks of widefield images are currently used

is for live cell observations, which are not considered

in this article. The only (or at least, the main)

application where widefield stacks of fixed material

are currently unavoidable is multicolor 3D FISH

because widefield instruments are still necessary for

more than 5Y6 colors (Bolzer et al. 2005, Walter

et al. 2006). Confocal microscopy strongly reduces

blur at the hardware level, but noise levels in con-

focal images tend to be much higher compared with

widefield systems. Therefore, although confocal

images are obviously not free of blur, deconvolution

of such images needs a more detailed discussion of

the factors that affect the result.

The first of these factors is the PSF, which should

be determined as precisely as possible. In practice

one can use either a theoretically calculated PSF or

an experimentally measured PSF. The theoretical

PSF is calculated from the parameters of the optical

system (microscope type, refractive index of the

medium, numerical aperture (NA) of the objective,

etc.). The experimental PSF is generally extracted

from images of fluorescent beads. This is preferable,

especially for high-resolution studies, because the

optical parameters of individual microscopes and

high NA objectives can vary strongly (Swedlow

2007). In addition, PSFs may be different between

samples and even within a single sample if the cells

contain bodies with refractive indices that are

significantly different from those of their surround-

ings (yolk granules, chromocenters, etc.), as well as

within thick samples (e.g., Holmes et al. 2006; von

Tiedemann et al. 2006). Theoretically the use of
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blind deconvolution algorithms could alleviate these

problems. It should be noted, however, that the

quality of a blind deconvolution depends strongly

on the input image. Sparse images, with point-like

objects, are more suitable for this approach than

dense, complex images. For visualization tasks, blind

deconvolution may be an appropriate choice, but

quantification of heterogeneous images using such

algorithms should be done with great care.

The second cardinal factor is the actual deconvo-

lution algorithm that is employed. Various algo-

rithms are available that are based on different

assumptions about the properties of the data and of

the object. Statistical iterative algorithms such as

maximum likelihood estimation (MLE), maximum

entropy (ME), or expectation maximization (EM),

are somewhat more effective than simpler iterative

algorithms that do not take into account the statistical

properties of the data (see the Microscopy Primer

web site). Such algorithms are implemented by a

number of commercial vendors and some free pro-

grams are also available (e.g., xcosm at http://www.

essrl.wustl.edu/~preza/xcosm/; plugins for ImageJ

realizing more simple algorithms may also be of

interest for simpler tasks: see http://rsb.info. nih.gov/

ij/plugins/index.html). It should also be noted

that all deconvolution programs use various prepro-

cessing routines (for instance, background subtrac-

tion) and may modify the PSF (e.g., induce its

symmetry). Although not a part of the deconvolution

algorithm proper, this may affect the result (Wallace

et al. 2001, Swedlow 2007). Therefore, even differ-

ent implementations of the same algorithm may yield

different results.

The third factor is the selection of the parameters

that control the deconvolution algorithm. These

parameters must be selected carefully to obtain an

optimal result. The software that implements the

algorithm should give guidance for the proper

settings, but since manual adjustment of the param-

eters is usually necessary, the effect of changing any

parameter should be understood. Which parameters

are important depends strongly on the type of

algorithm that is used. However, two aspects are

important for most modern deconvolution algo-

rithms: the number of iterations and parameters that

affect the smoothness of the result. Owing to the loss

of information resulting from blurring, on one hand,

it is difficult to recover small features; on the other

hand, artifacts such as over-sharpened edges and fake

structures (features absent in the sample) are easily

introduced by deconvolution. Moreover, existing

noise in the data can be amplified. Constraining the

result to sufficiently smooth solutions (Fforbidding_

physically unrealistic features mentioned above) can

prevent this. Some algorithms do not do this

explicitly, and in this case artifacts will arise if the

number of iterations is too high. In these types of

algorithms the choice of the number of iterations is

critical for limiting noise amplification and obtaining

a good result. A good example of an algorithm that

critically depends on the number of iterations is the

MLE algorithm that is found in many popular

software programs. The optimal number of iterations

depends on the signal-to-noise ratio (SNR) of the

data and must be set by the user (Figure 4). This is

done either directly or by monitoring some parameter

that quantifies the difference between the results of

successive iterations. Although such parameters are

usually good rules of thumb, the number of iterations

remains an arbitrary user-defined setting. As men-

tioned above, many modern algorithms impose

smoothness constraints on the result (regularization),

where features that are not sufficiently smooth with

regard to intensity gradients and contours are not

accepted. In this case the number of iterations is less

critical: after a given number of iterations the result

will no longer change much, and the algorithm can

safely be terminated. Although the user can often

control the number of iterations, in this case it is not

a critical parameter provided that the algorithm is not

terminated too early. Many software packages re-

quire the SNR as an input and use it to control the

number of iterations and other parameters in an

empirical fashion, alleviating the burden to the user

of selecting proper parameters (Figure 4).

The SNR of the data is therefore an important

factor that determines the quality of the deconvolu-

tion result. Data should be acquired at an SNR that is

as high as possible; reasonable oversampling also

improves deconvolution results (see Sampling; see

also Cannel et al. 2006). In this respect it is useful to

experiment with the instrument settings to optimize

SNR without compromising other important features.

Some estimate of the achieved SNR can be obtained

from the image data. However, its assessment from

the image itself is not easy and demands certain

assumptions about what is signal and what is noise in

the particular image. It will often still be necessary to

manually tweak the SNR setting (or the relevant
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algorithm parameters directly) to optimize the result

(Figure 4). When the SNR of the data is estimated

too high, parameters can easily be set such that the

contrast in the result is too high and low-intensity

objects are suppressed. Errors caused by spherical

aberration also may become prominent in the decon-

volution result. To avoid such artifacts it is some-

times better to assume a lower SNR and decrease

the number of iterations, or to impose more smooth-

ing in the deconvolution. However, assessing the SNR

too low leads to parameter settings that can cause

insufficient removal of blur, leading, for instance, to a
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poor resolution of neighboring bright structures and an

incorrect estimation of their numbers.

Deconvolution can cause characteristic artifacts

depending on such problems as spherical aberration,

errors in the measured PSF, or inadequate setting of

parameters (McNally et al. 1999, Markham &

Conchello 2001, Wallace et al. 2001; also see the

Microscopy Primer web site). We emphasize that the

quality of deconvolved images is not a simple

question of a Fgood_ or a Fbad_ result but involves

many trade-offs that depend on the particular

application that one has in mind. For instance, small

black circles in the gray background are obviously

artifacts that appear with an increasing number of

iterations. However, if the deconvolution is termi-

nated before they appear, blur may not have been

sufficiently removed and an incomplete separation of

bright features is often observed. Thus, the parame-

ters of the deconvolution algorithms should be adjusted

according to the type of objects one is interested in.

Application of deconvolution to a particular

problem with the goal of quantitative interpretation

of the result requires a great deal of experimentation.

In any case, if deconvolution of images is planned,

enough information about the distribution of intensi-

ties has to be collected; therefore, images should

preferably be acquired using a high dynamic range

(12- or 16-bit format: see Signal-to-noise ratio and

dynamic range for advantages and disadvantages of

these formats). To optimize deconvolution results,

different algorithms should be tested and the param-

eters of the algorithm should be optimized using

representative data. Changing several parameters

makes the problem of robustness multidimensional

(i.e. values for iteration number, SNR, and threshold

after deconvolution must be explored in combina-

tion). We would suggest the following tentative

advice for the deconvolution of confocal images:

� Deconvolution is an extremely important tool for

qualitative exploring biological structures, even

though usage of this tool requires some manual

optimization of parameter settings.

� We do not encourage routine deconvolution of all

confocal images irrespective of the method of

further analysis (as suggested by some authors). In

particular, this applies to images that will be

analyzed based on object centers or by averaging

intensities in pixels over large parts of the image.

The results of such computations are not much

affected by blur (see below, Measured parameters

robust to threshold settings), and deconvolution

could easily reduce reproducibility, rather than

improve the results.

� Deconvolution may be very useful when quantita-

tive image analysis involves determining the

number of objects, or determining direct physical

contact (or lack of it) between objects of the

same or different type. However, in this case

attention must be paid to assuring robustness of

the results to settings made by a user or, at least,

to the estimation of the error associated with the

parameter setting (see Estimating the error asso-

ciated with arbitrary settings, below).

Figure 4. An example of deconvolution. (a) Raw image of a fibroblast with replication foci labeled in early to mid S-phase; a section from a

confocal stack. Yellow lines (arrows) mark two line ROIs (regions of interest (ROIs) 1 and 2). (b) Deconvolution of this stack using the

maximum likelihood estimation (MLE) algorithm. The figure shows the results of deconvolution in the regions including line ROIs (arrows)

marked as 1 and 2 in (a). Deconvolution was performed with iteration numbers (17 to 28) automatically determined by the user setting of

the Fquality threshold_ to 0.1 as recommended by the manufacturer of the software we used (Huygens, SVI) and different SNR settings.

(c, d) Intensity profiles after deconvolution with different SNR settings for linear ROIs 1 and 2, respectively. This example illustrates some of

the problems that one encounters when optimizing the deconvolution parameters. The implementation of the MLE algorithm used by us

depends critically on both iteration number and SNR setting. Very similar deconvolved images may be obtained with different combinations

of SNR and iteration number (data not shown). At higher SNR settings (and with higher iteration numbers) the resulting contrast between the

objects is higher, and the peaks in the intensity profiles are sharper, while smoothness of the deconvolved image decreases. Transmission

electron microscopic data indicate that replication foci are small (diameter õ100Y120 nm, up to 200 nm) and situated at least 200 nm from

each other (Koberna et al. 2005). Because of the small size of replication foci, their angular appearance after deconvolution with high SNR

settings (25Y30) can probably be interpreted as an artifact, suggesting that the optimal setting for this image (with respect to the number of

iterations used) is 20 or slightly more. Note, however, that higher SNR settings often allow resolution of two parts in elongated foci (red

arrows in bYd). Presenting them as two intensity peaks (two foci) at a distance of 400Y500 nm from one other is feasible from the physical

point of view and may reflect the real situation. Optimizing deconvolution parameters for objects with variable structure and a genuine lack of

a sharp border (e.g. chromosome territories, cf. Figures 2 and 12) would be much more difficult than in this example.

R
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Robustness of measurements

Robustness of parameters estimated from images is

strongly affected by all steps in the process of image

acquisition and analysis. The obtained gray values

are never an exact representation of the true

fluorophore distribution. Whatever efforts one makes

to calibrate the image acquisition system, it is usually

impossible to ensure exact reproducibility of gray

values in different experiments. Additionally, the

unavoidable natural biological variation of the

samples will cause significant variation in the finally

observed gray values. On the other hand, for most

purposes it is necessary to separate objects of interest

from the rest of image. Most often this is achieved

by specific staining and by segmentation of the

object of interest by intensity thresholding. Intensity

threshold is the most prominent, though not the

only, arbitrarily set parameter in image processing

(e.g., see Deconvolution, above). A reasonable

threshold value is relatively easy to set when the

structures of interest are known and their intensities

are relatively constant in the image: in this case one

chooses such a threshold value that the correct

structures are selected. For the majority of applica-

tions, however, a single Fcorrect_ threshold simply

does not exist. This is the case with all objects that

do not have a sharp border: chromosome territories

stained with chromosome paints are a clear example

of this kind.

Estimating the error associated with arbitrary

settings

The best solution to this problem is to use measures

that are not dependent on absolute gray values, or at

least that do not change within a reasonably wide

range of thresholds. If this is not possible, one

usually still has the option to determine the final

value of the measure with a certain (known) error. In

particular, one can search for a threshold which is

surely too low and a threshold which is surely too

high, and compute, for example, volumes for a range

of thresholds between these extremes. The resulting

estimate is not a single value, but a range.

Measured parameters robust to threshold settings

Here we mean, in the first place, using centers of

objects and distances between them instead of borders

and distances from borders. Provided that an object is

not highly asymmetrical, the positions of the centers

(geometrical or intensity centers of gravity) are rea-

sonably robust against threshold settings (Figure 5). In

particular, blur (out-of-focus light) is not an exception

here: by and large, provided that PSF is symmetrical

Figure 5. Robustness of the positions of the centers of objects. (a) Human fibroblast with two chromosome territories visualized using FISH

with the respective chromosome paint. (b) Gray value profile for chromosome paint along the white line in (a). Setting a certain threshold

corresponds to cutting the peaks at certain gray level (orange lines). The distance (d) between two chromosome territories measured between

chromosome territory borders (dborders) depends strongly on the selected threshold. The distance between the chromosome territory centers

(dcenters ) is very robust to the selected threshold. In this case the centers are taken to be the centers of the corresponding portions of peak

width, i.e. the geometrical centers: intensities within the thresholded area are not taken into account. Intensity centers of gravity that weight

thresholded pixels with their gray levels tend to be even more robust than geometrical centers.
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and varies only slightly across the sample (which is

usually true for nuclear biology studies using CLSM),

the positions of object centers are only slightly

affected by blur (see also Deconvolution).

Combination of parameters robust

to threshold setting

Although absolute parameters (surface, volume, total

fluorescence intensity) nearly always strongly depend

on threshold setting, their combinations may be

much more robust. This approach was used success-

fully, for example, for comparison of chromosome

territories of active and inactive X chromosomes (Xa

and Xi, respectively). While volume and surface

measured for Xa and Xi clearly decrease as higher

thresholds are used, the Xi/Xa ratios proved to be

reasonably constant for both volume and surface (Eils

et al. 1996). To find such parameters and prove their

robustness, it is important to test them in a suffi-

ciently wide range of threshold values. For example,

one can start from a threshold value just above the

level where background is apparently segmented

together with the object and end with a value which

obviously divides an object to several parts.

Relative measurements (internal controls)

One way to obtain robust results is to design

experiments so that some reference structures (inter-

nal controls) are present in the biological sample. In

this way one can reliably address two problems: first,

to test whether certain parameters are different for

the object of interest and the internal control (in this

case the internal control should be maximally

comparable to the object of interest); second, to test

whether a certain parameter is different between two

objects of interest when measured using the same

reference. Selection of a useful internal control is not

always straightforward. The main criterion is that

unavoidable variations between experiments should

change the desired measure and the internal control

in the same way. The structures present in the same

nucleus as the object of interest are usually the best

option. For example, in many cases one can use

active and inactive X chromosomes as reciprocal

controls and simply measure differences in parameter

values between them. For experiments designed in

such a manner, statistical analysis using tests for

dependent samples (paired t-test or Wilcoxon signed-

rank test, etc.) can be used to test for differences

between the control and the object of interest or

across several objects of interest. Exact description

of shape and many other morphometric parameters is

difficult, and their variation is usually high (see

Shape and orientation of objects). Therefore, when

shapes are considered, the use of reasonable internal

controls is mostly more efficient than comparison of

the observed distribution with some theoretical

distribution.

Normalization: advantages and pitfalls

Normalization of any parameter is a very strong tool

for reducing variation. Accordingly, any normaliza-

tion should be justified in each case when it is used.

(as stated, e.g., in the statistical checklist for authors

of Nature: Fany data transformations are to be clearly

described and justified_). The idea behind normali-

zation is transparent: one transforms one of the two

analyzed parameters so that the relation between

them becomes linear or the effect of some third

factor is excluded, which simplifies the analysis.

Normalization is both useful and dangerous. An

example of justified normalization was discussed

above (see Intensity normalization). Unsuitable nor-

malization can strongly alter the results:

� Normalization generally transforms data in a

linear fashion. It makes sense only if the relation

is indeed not too different from a linear one

(nonlinear transformations are also possible, but

their justification is much more difficult). Size

normalization is the most common case of misuse,

especially when objects of different shape are

normalized by their linear size.

� After normalization, the estimates may lose their

physical meaning. Clear examples are (1) transient

contacts between chromatin regions and (2) dis-

tance from a gene to the peripheral heterochromatin.

� One finds normalization by maximal or minimal

observed values surprisingly often in biological

publications, in particular, by minimal and max-

imal size. For normalization one should always

use some robust parameters: mean, median, or

centile (e.g., 95% level; the median is the 50%

centile).
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Choice of objects for image acquisition

The remaining part of the article considers several

typical questions targeted by nuclear biology studies,

the methods of image analysis, and statistical

evaluation. Before we consider these questions, a

remark should be made on a topic both very

important and rarely discussed. Quite clearly, the

results of statistical analysis and the final conclusions

of a study can be reliable only if the material for

analysis was chosen randomly: it is important to

avoid unintentional bias toward, for example,

expected results. Really random choice procedures

are rarely possible for practical reasons, but there are

rules of thumb that help to avoid bias:

� Criteria that determine which objects are suitable

for the analysis should be formulated before image

acquisition; in case of nuclei after FISH they are

usually (i) well-preserved shape of the nucleus, (ii)

presence of all targeted signals, and (iii) absence

of clear artifacts

� A good option is to choose objects at a small

magnification or observe nuclear counterstain and

then check whether they satisfy the suitability

criteria.

� Another option is to include in the analysis groups

of objects, rather than individual objects. As an

example of an appropriate rule: if a nucleus is

chosen for analysis, all other nuclei observed in

the same field of view (with such a magnification

that a field usually contains several nuclei) and

satisfying the suitability criteria should also be

used.

Radial distribution

General

The classic example for this problem is the distribu-

tion of chromosome territories in nuclei. It has been

shown that chromosome territory positions within the

nucleus are non-random and, depending on the cell

type, correlate strongly with chromosome gene

content (Croft et al. 1999, Bridger et al. 2000) and/

or chromosome size (Sun et al. 2000, Cremer et al.

2001, Habermann et al. 2001, Bolzer et al. 2005,

Mayer et al. 2005, Neusser et al. 2007); radial

positions of chromosomes are not identical in normal

and malignant cells (Cremer et al. 2003) and are an

important factor contributing to probabilities of chro-

mosome translocations (Boei et al. 2006, Meaburn

et al. 2007). Recently the interest also focused on

the positions of individual loci (Dietzel et al. 2004)

and groups of genes with certain properties, e.g.,

representing gene-rich and gene-poor regions

(Kupper et al. 2007). Studies of the radial distribu-

tion of chromosome territories and chromosomal

subregions also provided important information

about the evolution of the nuclear architecture and

its relation to the evolution of the karyotype

(Habermann et al. 2001, Tanabe et al. 2002, Neusser

et al. 2007).

Considering radial distribution, one wants (1) to

determine whether, for example, objects tend to be

situated in the central or the peripheral part of the

nucleus or (2) to demonstrate a difference in the

radial distributions of two types of objects. In some

sense, radial distribution is a basic problem for mea-

surements in the nucleus because it implicitly affects

many parameters, such as characteristic distances

between objects of different kinds (see Boei et al.

2006 with regard to positions of chromosome

territories).

Two basic approaches exist to analyzing the radial

distribution of the defined nuclear objects, depending

on the reference used to measure distances: nuclear

center or nuclear border (Figure 6a,b). Although the

nucleus does not have a structurally marked center,

technically it is easy to define nuclear center as the

center of gravity of nuclear counterstain. Intensity of

counterstain in individual voxels may be taken into

account (counterstain center of gravity) or not

(geometrical center). The two centers, however, will

really differ only when nuclei are strongly and

asymmetrically heterogeneous: if they contain a large

nucleolus or chromocenters. All initial publications

on radial distribution used a nuclear center-based

approach. It is known, however, that active euchro-

matin predominantly occupies inner positions in the

nucleus, while transcriptionally inactive heterochro-

matin tends to locate near the nuclear border (and

around nucleoli). Moreover, it has been shown that

some genes move away from the nuclear envelope in

case of transcriptional activation and back to it in

case of inactivation (Kosak & Groudine 2004,

Chuang et al. 2006, Ragoczy et al. 2006, Chuang &

Belmont 2007). Therefore, a number of studies have
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Figure 6. Radial distribution: general concepts. (aYc) References and distance measurements used for the analysis of radial distribution.

Black lines show subdivision of the nuclear space into shells, often used for calculations. (a) Reference: nuclear center, absolute distance. (b)

Reference: nuclear border, absolute distance. (c) Reference: nuclear center, relative distance measured as the ratio of the absolute distance to

the nuclear center to the length of the respective nuclear radius. In this case shells have the same relative radius. (dYg) Graphs showing the

radial distribution of signal exemplified by three Fchromosome territories_ (1, 2, 3) with a different distribution of signal (d). For all three

chromosome territories, more signal is present near to the nuclear periphery; i.e. the proportion of signal situated at certain radial distance

decreases from the border to the center (e). If the volume available at the nuclear periphery and in the center is taken in account, a different

preference of the three chromosome territories may be demonstrated: no preference, preferential peripheral positioning and preferential

central positioning, respectively (f). If the nucleus is divided into shells, radial distributions may be calculated as shown (g). (h, i) An

example (based on real material) showing different preferred radial positioning for two chromosomes (red and green); nuclear DNA

counterstain (blue) shows no preference. (j, k) The median radial position (MRP) is determined by the radial position of the surface dividing

the respective objects to two equal parts. CT, chromosome territory.
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determined radial distributions using the nuclear

border for reference (Kupper et al. 2007, Neusser

et al. 2007). Even though the nuclear border

(envelope) is a real structure, it is technically more

difficult for practical use than the nuclear center,

since one needs to threshold either the nuclear

counterstain or the nuclear envelope, e.g., by staining

the lamina. Therefore, the reference strongly depends

on the respective threshold setting, whereas the

position of the center of a segmented nucleus is

robust against variations in threshold. Furthermore,

segmenting the nucleus may be difficult because of

bright chromocenters and, sometimes, dark nucleoli,

which cause convexities and concavities (Fbumps and

dints_) in the nuclear surface when using a straight-

forward thresholding procedure. A simple approach

to obtaining amore appropriate estimate for the nucleus

border was recently suggested (O. Ronneberger and

M. Keuper, unpublished results) that can be applied

if the curvature of the border is significantly lower

than the curvature of its uneven regions (Figure 7).

The necessity to study the spatial organization of

genomes in nuclei of native tissues has recently

raised a problem of segmentation of nuclei from

tissue section images, where nuclei have irregular

shape and often Ftouch_ one another. Such segmen-

tation can be done, for example, using commercial

AMIRA software (Mercury Computer Systems,

Boston, USA), though doing it accurately for nuclei

of irregular shape is quite time consuming. A

dedicated program has also been developed recently

(Gudla et al. 2008).

If the nuclear center is used as reference, for each

voxel in the signal one determines the distance from

this voxel to the nuclear center (Figure 6a). When the

nuclear border is chosen for reference, for each voxel

in the signal the distance to the nearest point in the

nuclear border is determined (Figure 6b) in a cur-

rently available implementation (see Albiez et al.

2006). This approach (called distance transform) is a

simple, but not generally optimal, solution: compare

a voxel within a concavity of the border and a voxel

situated at the same minimal distance from its con-

vex region. Irrespective of the reference, the dis-

tance may be weighted or not weighted by intensity

in this voxel. Three related pieces of information

may be extracted from these data (Figure 6dYi).

(1) Radial signal intensity distribution: the distribu-

tion of signal intensity in the nucleus (this is the

distribution of the number of voxels with signals

above threshold, if there was no weighting). This

distribution shows which proportion of the total sig-

nal is situated at given radial position (Figure 6e,h).

(2) Preferred localization: considering all voxels that

constitute the total nuclear volume, central positions

are less abundant than the peripheral ones. If one

corrects for this different abundance (the propor-

tions of voxels situated at a certain distance from

the center; in other words, the difference in volume

between central and peripheral shells of the same

width), one learns which positions are preferentially

taken by certain types of signals (Figure 6f,i). A

disadvantage of this approach is a low precision for

the central part of the nucleus (which has a small

Figure 7. Computation of a smooth nuclear border. (a) DNA counterstain of a mouse fibroblast showing bright chromocenters. (b) An

attempt to define the nuclear border by straightforward thresholding yields inadequate results; in particular, basal and apical surfaces are

compromised by blur from chromocenters. (c) A much more appropriate border may be defined using a simple smoothing procedure. First a

thresholded binary image of the nucleus is prepared (background 0, foreground 255). This image will simply show a bumpy white nucleus on

black background depicted by the white borderline in (b). This image is then smoothed with a 3D Gaussian filter with radius of 1/3Y1/2 of the

size of the bumps in both xy and z directions and then thresholded at the gray level of 128. This procedure is repeated several times. In the

resulting binary image the Fbumps and dints_ in the border are eroded, whereas the rest of the nuclear border remains practically unchanged.
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volume). (3) For each stained structure in a nucleus,

one can also determine the surface that has a

constant distance from the reference (center or

border) and divides the nucleus in such a way that

half of the structure lies inside this surface and the

other half is outside it (Figure 6j,k). This surface

characterizes the median position of the signal, and

its distance from the reference may be called

median radial position (MRP), in our case, in the

nucleus. The radial distribution and preference

curves discussed above have some disadvantages.

They are dependent on the threshold settings for the

nuclear border. Furthermore, although they are

sufficient to show the trend of the signal distribu-

tion, defining their errors is difficult because signal

densities in neighboring shells are not independent.

MRP is least dependent on the threshold settings for

signals and allows sufficiently robust analysis of the

data using routine statistical tests. Therefore, it is

currently the most practically important piece of

information.

The statistical analysis follows the same scheme

with any approach (it will be illustrated using an

example shown in Figure 8). One has a sample of

nuclei with MRPs for each signal in each nucleus.

Note that MRPs for different signals from the same

nucleus are not independent (e.g., they are affected

in a similar way by the shape of the nucleus). MRP

values in sufficiently big samples usually show a

statistically significant deviation from normality

(Figure 8d); we therefore suggest always to use

non-parametric tests. Correspondingly, we recom-

mend Wilcoxon signed rank test for comparison of

a single signal with nuclear counterstain and Friedman

repeated measures ANOVA on ranks followed by

Dunn_s test for pairwise differences in case of two and

more signals. Assuming that they are implemented

using some statistical software (e.g., SigmaStat or

many others), it will first be tested whether the distri-

bution of signals depends on signal type in a statis-

tically significant way for the whole data set. Then,

if it does, the significance of pairwise differences

will be checked (Figure 8f). We recommend in all

cases to include nuclear counterstain in the analysis.

If there is no significant difference between at least

one of the signals of interest and the counterstain,

it may mean that sample size (the number of the

nuclei studied) was simply too small.

An important issue in the analysis of the radial

distribution is the decision about description of data

in 3D or 2D. Here we mean not the type of image

acquisition (confocal stacks vs single widefield

images), but the model for data description. A

characteristic example here is the two variants of

the radial distribution of chromosomes within the

interphase nuclei expressed most pronouncedly in

spherical and very flat nuclei, respectively (for

review see Foster & Bridger 2005). In voluminous

nuclei (such as spherical nuclei of human lympho-

cytes), radial positions of chromosomes correlate

with their gene content. This is clearly a 3D

distribution. By contrast, in flat nuclei (such as those

of human fibroblasts) chromosome territories often

expand from the basal to the apical nuclear surface.

Therefore, chromosome territory distribution may

reasonably be analyzed in 2D, considering individual

nuclear sections or even projections of entire stacks

(Bolzer et al. 2005). In this case, radial positions of

territories were found to correlate with chromosome

size but not with gene content: territories of small

chromosomes were all located close to the nuclear

center, while territories of large chromosomes were

located at the nuclear edge (Figure 9). Nevertheless,

accurate 3D analysis revealed a non-random distri-

bution of gene-rich chromosome territory 19 and

gene-poor chromosome territory 18 along the basi-

apical axis of the nucleus (Neusser et al. 2007),

which corresponds to the 3D gene content-dependent

distribution of chromosome territories in voluminous

nuclei.

The relative radius approach

Several early studies on relative chromosome terri-

tory arrangements used lymphocyte nuclei that have

a very regular spherical shape (Park & De Boni 1998,

Croft et al. 1999, Boyle et al. 2001). To compensate

for size variation, the authors determined the relative

radius of signals (Figure 6c): the position of each

voxel is presented as the proportion of the radius

going through this voxel (note that radial position

thus depends on segmentation of the nuclear border).

The relative radius approach was later also applied to

non-spherical nuclei. This approach transforms all

shapes to spheres (3D) or circles (2D), which

strongly distorts the distribution of physical distances

in flat or spindle-shaped nuclei. The relative radius

approach has been applied in studies of lymphocytes

and similar cells (Kosak et al. 2002, Ono et al. 2007),

often in combination with methanolYacetic acid fix-
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ation following hypo-osmotic treatment. This treat-

ment yields highly flattened nuclei with considerably

increased xYy diameters. While such nuclei are

ideally suitable for 2D analysis, it is important to

note that radial positions of signals do not change

proportionally (Kozubek et al. 2000). Nevertheless,

in some cases the loss of 3D information may be less

important than quick image acquisition of large

numbers of nuclei. The following consideration helps

to establish preliminary correspondence between the

radial positions calculated from projections and

respective 3D positions in a sphere. For a signal

uniformly distributed over the surface of a sphere

with radius R, the MRP of the distribution resulting

from projection to a plane (rm) is

rm ¼
R

ffiffiffi

3
p

2
� 0:866R

The relative radial positions observed in biological

studies using the 2D approach are typically in the

range 0.5Y0.7, which is understandable. On one hand,

as mentioned above, even signals wholly restricted

to the surface of a spherical nucleus cannot have

radial position above 0.866. On the other hand, the

whole internal sphere with the radius of R/2 con-

tains only 12.5% of its volume, while half of the

volume is contained in the outer shell with width of

only 0.2R.

Reference determined by the studied signals

If the internal structure of the nucleus is not

symmetrical, it may be reasonable, for the analysis

Figure 8. Radial distribution of genes transcriptionally active

(housekeeping) and silent in mouse ganglion cells: from images to

statistical analysis. (a) Three ganglion cell nuclei (projections of

confocal stacks) showing the result of FISH with cocktail probes

for three housekeeping genes and three genes silent in ganglion

cells. The same color code (red, silent; green, active; blue, nuclear

counterstain) was used for all parts of the figure. A small sample

(20 nuclei) was analyzed. (bYd) Relative radius approach (b) and

the analysis of absolute distances from the nuclear border (c) gave

qualitatively similar results, indicating a more internal localization

of the active genes. (d, e) The distributions of the MRPs (d) and

median MRP values (e) are also different. The shape of ganglion

cell nuclei is rather uniform, therefore MPR values for counterstain

show only small variation. MPR values for genes are more variable

and their distributions are asymmetrical. Error bars show 95%

confidence interval for the median MRP values. (f) Statistical

analysis shows a statistically significant relation between the type

of signal and MRP; pairwise comparison confirms statistically

significant differences between radial positions (MRPs) of signals.

This example illustrates that the Friedman test (which takes into

account that signals from the same nucleus are dependent) should

have more power for this analysis, than the KruskalYWallis test

(which does not use this information).

Figure 9. Radial distribution of two chromosomes (HSA1 and

HSA20) in the nuclei of human fibroblasts: comparison of 2D and

3D models. This figure illustrates the importance of choosing a

correct model for the analysis of the radial distribution. (a) Three

projections of a representative fibroblast nucleus with HSA1 (red)

and HSA20 (green) after FISH with respective chromosome paints.

Note that more central position of HSA20 is observed only in XY

projection: in flat nuclei most chromosomes contact the cell border

at the apical or basal surface of the nucleus. (b) The distribution of

the two chromosome territories was studied in a sample of 25

nuclei using the relative radius approach, either using a 2D model

(the nuclear border was determined from the projection of the

nucleus) or a 3D model (using the real nuclear border). In the latter

case the more central position of HSA20 and the difference in the

distribution of the two chromosome territories were notably

underestimated.

R
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of DNA loci, to use the center of gravity of all

studied signals as a reference point for their radial

distribution. For example, this approach helped to

demonstrate that NORs (nucleolar organizers) of all

NOR-bearing chromosomes tend to cluster (Teller

et al. 2007). NORs actually cluster around the nucle-

olus, and the discussed approach compensated for the

variation in the position of the nucleolus. Strictly

speaking, this approach requires that signals have

similar radial distributions, but in practice differences

between them, if they exist, may also be demonstrat-

ed using this approach. When the number of signals

is small, absolute radial positions will tend to be

smaller than the results based on the geometrical

center of the nucleus. Practical observations showed,

however, that when the distribution of signals is

reasonably symmetrical, even six signals are usually

enough for this approach to estimate realistically

radial positions and differences between them. In

particular, using a sample of 44 nuclei we determined

radial positions of chromosome territories 4, 7, and

21 in HeLa cells (chromosome 7 was triploid, so that

there were 7 chromosomes per cell). Estimations based

on this approach and the relative radius approach

differed by less than 5% (data not shown). Using the

center of gravity as a reference, one can also demon-

strate a trend to asymmetrical positioning, as was done

for centromeres in nuclei of early mouse embryos

(Merico et al. 2007).

Choice of the approach to study radial distribution

To validate the different approaches to analyzing a

radial signal distribution we performed a special

simulation study (see Supplementary Material S2).

Importantly, our model allowed variation in the

shape of modeled nuclei. Our goal was to assess the

discriminating power of different approaches with

regard to (1) presence of pattern: deviations from a

random uniform distribution (i.e., the one where

probability for signal occurrence is equal in all points

of the nuclear volume); (2) type of pattern: first of

all, preferred signal location at the center or

periphery of the nucleus; (3) strength of pattern: i.e.

the degree of attraction to certain structures used as a

parameter in these models; and (4) sensitivity to the

shape of nuclei. Our simulation studies confirmed

that the distribution of MRPs in samples of nuclei is

more suitable for discrimination of the various

patterns than the distributions of all observed dis-

tances, regardless of the specific measure employed.

The simulation studies and observations on real

material may be summarized into the following

recommendations:

� Adequate results of the analysis depend in the first

place on the adequate choice of model (e.g., 3D or

2D) that corresponds best to the organization of

the studied nuclei and the targeted problem.

� Use of the nuclear center or nuclear border for

reference is equally effective with regard to

detection of the deviation from a random distribu-

tion, of the preferential localization toward the

center or periphery, and of different degrees of

such a preference. These measures cannot detect

clustering as a deviation from random distribution.

� Use of the nuclear border as reference is preferable

when absolute physical distances from the nuclear

border or differences in such distances are biolog-

ically important.

� Use as the reference of the center of gravity of

signals is efficient when major asymmetrical struc-

tural differences are observed within the nucleus.

� When observed differences in radial positioning

are considered, it should be taken into account that

all measures (with partial exception for the adap-

tive center approach) are sensitive to the shape of

the nuclei: that is, similar differences will result

from a non-random distribution of signal in a pop-

ulation of spherical nuclei and a random uniform

distribution in a population of non-spherical

nuclei.

Variation in shape and size of nuclei is a very

important issue for studies of radial positioning. The

longest absolute distances from a given reference

point are represented only in the fraction of largest

nuclei. Size normalization does not solve this

problem because radial distributions depend very

strongly on the shape of the nuclei (see below). As

normalization transforms data in a linear fashion

(proportionally), one can reliably compare only

nuclei that have the same or similar shape. Calcu-

lations based on absolute values yield reliable

information about differences between signals, which

is usually sufficient for biological interpretation of

results. In particular, the main advantage of using the

nuclear border for reference, measuring real physical
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distances from the real nuclear envelope to loci, is

lost after normalization. Real spatial information is

distorted especially strongly when data for each

nucleus of a sample are normalized independently

by the size of this nucleus. It is therefore strongly

advisable to characterize samples by median (or

mean, if appropriate) MRP values calculated from

absolute MRP values for individual nuclei and

respective median (or mean) size of nuclei. These

two parameters may then be used for comparison of

samples. The relative radius approach may be

preferable when the shapes of compared nuclei are

not too different from spherical (or are discoidal) and

has proved to be useful for general, architectonic

comparisons.

Distances between signals and clustering

To determine the centers of the objects of interest

and to measure the distances between them is a

relatively simple task. Distances indeed provide

important information about various biological pro-

cesses. For instance, a change in the distance to a

flanking control locus may indicate relocation of a

transcriptionally activated locus (Morey et al. 2007),

while distances between chromosomes and loci are

useful for understanding their non-random spatial

arrangement which plays an important role in chro-

mosome translocations (Neves et al. 1999, Roix et al.

2003, Meaburn et al. 2007, Soutoglou et al. 2007).

When several objects, e.g., FISH signals of several

genes, are present, one can measure distances

between them. The median of these distances

calculated for each cell may then be used as an

observation in a sample of nuclei and samples of

different nuclei may be compared on this basis using

standard statistical tests. However, this approach is

less efficient than comparing radial positions of

signals. The set of distances from each signal to

each other has intrinsically high variationVlarger

numbers of nuclei are needed. Another possibility is

to use angles. First, one can measure angles between

three objects (A, B, C). Such angles, however, have

physical meaning only if the objects are indeed

successive parts of a higher-order object (e.g.,

neighboring subregions of the same chromosome).

Second, one can measure the central angle between

two objects, the angle AOB, where O is the center of

the nucleus. However, as the nuclear center is not

physically real, angles for objects situated close to

the center are very imprecise. In short, though central

angles were successfully used in several studies

(Kozubek et al. 2002, Bolzer et al. 2005), the same

information in most cases may be obtained more

effectively from the analysis of distances.

Distances between objects provide information on

clustering. A number of recent publications indicated

transient (Fkissing_) or permanent spatial proximity

of genomic loci with other loci or various nuclear

structures. This proximity is ascribed very important

roles in transcriptional regulation, the formation of

transcription factories and X chromosome inactiva-

tion (for reviews see Fraser & Bickmore 2007, Misteli

2007, Sexton et al. 2007, Soutoglou & Misteli 2007).

Especially in the case of transient contacts, the

observer of fixed cell nuclei sees the objects not in

direct proximity but at different distances from one

other, with a certain excess of smaller distances: they

are clustered. The opposite trend to clustering is

called exclusion. If excluding objects are numerous,

exclusion leads to an ordered uniform distribution of

objects: all distances between them tend to be

maximal and hence equal. If excluding objects are

sparse, an excess of large distances between them is

observed. An excess of large or small distances is a

typical statistical problem, often solved by compar-

ison of the observed distribution of distances with a

theoretical one that would occur in the case of a

random uniform distribution of objects. In practice,

methods of this kind have been applied only under

the assumption of a spherical shape of the nucleus

(Kozubek et al. 2002). We will here consider only

methods that do not need assumptions about a

theoretical distribution. They are based on compari-

son of different signals stained in the same nucleus.

A medium to large number of objects forming

small clusters

Consider a rather general case of soft clusters: both

the number of objects per cluster and distance

between objects in the cluster are allowed to vary

between nuclei. A medium number means here 8Y10

or more. Although the formulation of this problem

may seem vague, its solution is straightforward. The

analysis is based on the distance from a signal to its

nearest neighbor (NN distance) which is an estab-
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lished measure to describe patterns of clustering or

exclusion. The distributions of the NN distances dis-

criminate well between a random uniform distribu-

tion and different degrees of clustering or exclusion.

They are also reasonably robust against the variation

of the shape of the observed nuclei (the smaller are

the NN distances in comparison to nuclear size, the

less the shape of the nucleus affects their distribu-

tion). Nevertheless, it is preferable to compare two or

more types of objects in the same nuclei, to avoid the

influence of nuclear size. As an example we discuss

10 signals forming clusters of 2Y4 signals.

One determines the NN distance (d) for each

signal in a nucleus (d1 to d10 in our case) and

characterizes a nucleus by their median values (M1 to

Mn in the case of n nuclei). The degree of clustering

for signals of different type may then be compared

simply by MannYWhitney tests (comparison across

groups of nuclei) or Wilcoxon signed-rank tests

(comparison of distributions of two kinds of signals

from the same nucleus) on the medians M. If the

analyzed signals have different radial distribution,

but form similar clusters, a difference in radial

distribution will not affect the result. On the other

hand, it should be taken into account that a difference

in radial distribution will affect NN distances. The

method discussed does not describe the number of

signals per cluster or distance between clusters, but

these parameters may be estimated independently.

With a larger number of signals per nucleus it is

possible to use spatial point pattern methodology

(see, e.g., Beil et al. 2005, Buser et al. 2007). This

approach allows a more detailed analysis of the

observed patterns because it does not reduce the

information to median NN distances in individual

nuclei.

Comparison between cells (independent samples)

Another simple case for analysis and important for

nuclear biology is clustering of two homologous loci

when the distance between them is measured in

different cell samples (e.g., different stages of cell

cycle). For instance, it has been demonstrated that a

temporary contact between the two X chromosome

territories in nuclei of female embryos is necessary

for X-chromosome inactivation (Bacher et al. 2006,

Xu et al. 2006). To prove this contact, Xu and co-

authors measured distances between pairs of Xic loci

at the time point when these loci were supposed to

cluster, as well as before and after it. The difference

between the distributions of such distances was

shown to be significant by a KolmogorovYSmirnov

(KS) test. It was also emphasized that the observed

maximal distances between distributions accumulated

in the range of small distances, that is, the difference

was due to an excess of clustered (lying close to one

other) Xic loci. Additionally, lack of clustering was

demonstrated for another locus situated on the X

chromosome not far from the Xist region.

An opposite example is the recent study of

Angelman syndrome/PraderYWilli syndrome (AS/

PWS) loci by Teller et al. (2007). Transient cluster-

ing of these loci at the late S-phase has earlier been

suggested as a possible mechanism for maintenance

of opposite imprinting, while Teller and co-authors

argued against kissing of AS/PWS loci. Using

ANOVA on ranks (KruskalYWallis test followed by

Dunn_s pairwise comparisons) they analyzed distan-

ces between AS/PWS loci at different stages of the

cell cycle. They found no difference between the

stages of the cell cycle. Lack of a functionally

meaningful association was supported by the fact

that variation between nuclei at all stages was several

times grater than the differences between the stages.

A methodologically related problem is the cluster-

ing of loci from the same chromosome that may play

an important role in regulation of these loci. If the

genetic distance between loci is large, the methods

discussed above are wholly appropriate. In case of

genetic distances of 3Y5 Mb and less, it appears more

productive to apply methods used to study chromatin

folding (Yokota et al. 1995, Simonis et al. 2006),

which are based on the analysis of the relation

between genetic and nuclear distances between loci.

Comparison within the same cells (dependent

samples)

Two pairs of genes represent the simplest situation in

which heterologous genes from different chromo-

somes come to spatial proximity. Several examples

have been reported (Spilianakis et al. 2005, Brown

et al. 2006, Lomvardas et al. 2006). In particular,

active alpha- and beta-globin genes, as well as active

homologous alpha-globin loci, are frequently juxta-

posed in human erythroblast nuclei. However, neither

beta-globin nor globins in mouse erythroblasts tend

to be found in spatial proximity (Brown et al. 2006),

which emphasizes the necessity of rigorous quan-
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titative analysis for each particular experimental

system. The problem is difficult, however, because

distances between loci depend strongly on their

radial distributions, as was clearly illustrated for

chromosome territories by Boei et al. (2006).

Hence, we consider genes A and B represented by

visually indistinguishable homologous alleles A1,A2

and B1,B2. An important property of heterologous

clusters is that an A allele can cluster with any of the

two B alleles, and vice versa. We here propose a

simple test (Figure 10) related to the test suggested

by Shiels et al. (2001). This approach had a power

(sensitivity) of practically 1 for the detection of

clustering of either homologous or heterologous pairs

with a maximal distance up to 40% of the nuclear

radius for simulated data and a significance level of

5% for as few as 5 replications. Performance of the

test was not affected by the distribution of signals

(random uniform or giving preference to a peripheral

position). Most importantly, the test also proved to be

very robust to differences in the radial positioning of

genes A and B. For simulated data, performance of

the test was practically unchanged for median

relative radial positions of the two genes of 0.3 and

0.7, respectively. It should be noted, however, that

owing to the complicated geometrical dependences

between dhet and dhom (see Figure 10), this test can be

slightly anti-conservative (it tends to find differences

where there are none), especially for large numbers

of replications (i.e., large sample size, which,

however, is rarely a problem for biologists collecting

small samples of 3D data) and one-sided hypotheses.

With more than two genes, the number of possi-

ble combinations increases and formulation of the

hypothesis to be tested becomes a very difficult task.

If the chosen hypothesis is not too complicated, an

appropriate test can be designed. Unfortunately, the

power of such tests may prove low even for simple

hypotheses. We illustrate this issue for the simplest

possible case: three genes and the hypothesis that

there is only one type of cluster, namely heterolo-

gous clusters composed of one allele of each gene

(see Supplementary Material S3).

Clustering of genes to nuclear bodies

The close physical proximity of distant genomic loci

in the nuclear space is currently often explained by

the targeting of these genes to the same nuclear

structures (Fraser & Bickmore 2007): transcription

factories (Ragoczy et al. 2006, Osborne et al. 2007),

speckles (Shopland et al. 2003, Moen et al. 2004,

Brown et al. 2006), and PML bodies (Shiels et al.

2001, Wang et al. 2004). In vivo observations by

Dundr et al. (2007) showed that upon activation

transgene arrays of small nuclear RNA genes (U2)

moved to relatively immobile Cajal bodies. This

introduces one more important problem: the analysis

of the degree of association of genes with these

nuclear structures. One can simply try to estimate the

ratio of signals that stay in direct contact with nuclear

bodies, but defining such contact, e.g., by overlap or

position within some threshold distance from the

nuclear body, is not easy and is mostly arbitrary.

Analysis of this issue as a clustering problem is

therefore very promising. A serious (though univer-

sal) difficulty in application of this method is that

owing to variation in intensity of staining and visual

fusion of nuclear structures themselves the segmen-

tation of, e.g., speckles and Pol II foci is difficult.

The statistical problem can be formulated as

follows: we have several genes (G-objects) that

may cluster to a similar or higher number of, e.g.,

nuclear bodies (B-objects). When the number of

signals analyzed is large, there are established meth-

ods to determine clustering or exclusion between

signals of two different types. They are implemented,

for instance, in the GeoStoch Software (Mayer et al.

2004) and in the Fspatstat_ package for R (Baddeley

& Turner 2005). However, very few attempts have

been made to apply such methods to cell biology data

(Beil et al. 2005, 2007, Jinno et al. 2007).

When the numbers of nuclei studied and/or the

number of signals observed are small, the problem

becomes even more difficult because not only the

number and the radial distributions of objects but

also the characteristic sizes of the objects play a role.

To our knowledge, only one method of analysis

which is applicable in such a situation has been

published (Shiels et al. 2001). For each nucleus, they

record the mean of the cross nearest-neighbor

distances (cNN distances) for each nucleus. cNN

distances are the shortest distances from the center

of each object of type G to the center of an object an

object of type B (d1i for nucleus i). In a similar way

the authors determine the mean of NN distances

between two B-objects OR (sic!) a B- and a G-object

(d0i for nucleus i). In order to test whether a

particular gene tends to be close to at least one

nuclear body, a paired t-test with pairs d0i, d1i is
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used. Large negative differences (d0ij d1i) indi-

cate that genomic loci tend to be closer to nuclear

bodies than nuclear bodies are to one another, that is,

they indicate clustering of genes to nuclear bodies.

This test is appealing because of its conceptual

simplicity and easy implementation using standard

statistical software. It is also conservative in the

sense that it is biased against the support of the

hypothesis of clustering and tends to overestimate

exclusion (the proof is omitted). For example, in the

case of two genes and six nuclear bodies located in

the nucleus completely randomly (i.e., randomly

uniformly), the hypothesis of random distribution

was incorrectly rejected at the rate of 15% in the

Figure 10. Analysis of the positioning of heterologous genes.

550 O. Ronneberger et al.



two-sided t-test at a significance level of 5% (sample

size 30 nuclei).

A relatively simple permutation test may be used

as an alternative method to determine whether

G-objects (genes) tend to cluster with B-objects

(nuclear bodies). As an example we consider a

simple model situation in which six genes are

probabilistically associated with 15 bodies. The

maximal distance between the centers of objects of

two types (e.g. the maximal radius of a nuclear body)

is 10% of the diameter of the circular nucleus. We

use cNN distances to measure the degree of cluster-

ing between objects of different types. To determine

whether these distances differ significantly from what

we would expect if the positioning of B-objects and

G-objects was independent of each other, we devel-

oped a simple permutation test (Figure 11).

For simulated data, this permutation test performed

markedly better than the paired t-test described

above. Its rate of false positives corresponds to the

nominal significance level if positioning of G- and

B-objects is independent. In almost all other situa-

tions that we considered (varying numbers of B- and

G-objects with different average sizes of B-objects

and different strengths of clustering between B- and

G-objects), the rate of true positives is larger than

that of the paired t-test. Especially as the number

of B-objects increases or the degree of clustering

Figure 11. Analysis of the positioning of genes and nuclear bodies.
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between G- and B-objects becomes weaker, the paired

t-test often shows misleading significant positive

values of the difference (d0ij d1i), indicating exclu-

sion between G- and B-objects, even if in reality

they are clustered. However, the power of both the

permutation test and the paired t-test for identifying

weak clustering is low (data not shown).

Shape and orientation of objects

In addition to non-random positioning, nuclear

structures may have specific shapes and orientations

related to their functions. A well-known example of

this kind is difference in shape between chromosome

territories of active and inactive X chromosomes

(Eils et al. 1996).

Roundness factors

Roundness factors (in a general sense) are shape

parameters comparing the analyzed object with a

sphere. They are ratios of surface areas and volumes

measured and calculated (e.g., ratio of the measured

volume of an object and the volume of a sphere with

the same surface area as that measured for the

Figure 12. Description of the shape and orientation of objects. (a, b) Description of shape with roundness factors. The measured perimeter of

an object in 2D (correspondingly its surface area in 3D) depends strongly on the selected landmark density: the perimeter of the profile of a

chromosome territory is 16.5 mm with fine landmark density (a) and only 11.6 mm with a coarser landmark density (b). The area is less

affected: 5.66 mm2 and 5.55 mm2, respectively. The resulting roundness factors are very different: 0.26 and 0.52. (c, d) Description of shape

and orientation by PCA. The shape of an object can be approximated with an ellipse in 2D (c) and with an ellipsoid in 3D (d). The radii of the

ellipse are the square root of the eigenvalues and the orientation of the axes is defined by the eigenvectors. The yellow arrow shows the

orientation of the optical axis.

552 O. Ronneberger et al.



object). Hence, they directly use surface areas and

volumes. Although ratios can reduce the effects of

arbitrary threshold setting, the compensation will be

satisfactory only if a certain linearity condition is

satisfied. Moreover, calculating surface areas or

circumferences from images is not straightforward:

for highly structured (fractal) surfaces (like those of

chromosome territories), a single true surface area

simply does not exist! The area obtained always

increases if the density of landmarks used to

calculate surfaces is increased. If smoothing is

applied to the raw data or to the extracted surface,

the area obtained will decrease. Volume measure-

ments are usually not sensitive to the landmark

density or smoothing: as a result, the landmark

density greatly affects the roundness factor value

(Figure 12a,b). Furthermore, roundness factors can-

not differentiate between a star and an ellipse/

ellipsoid.

Principal component analysis

A more robust alternative for shape description is

principal component analysis (PCA). In this case the

spatial distribution of intensities within the object is

analyzed. In other words, one thinks of an object as a

cloud built of voxels with different intensities. PCA

is equivalent to fitting a 2D or 3D Gaussian

distribution to the object, and can be depicted by

fitting an ellipse (2D) or an ellipsoid (3D) to the

object. PCA finds the direction of the largest variance

(standard deviation), the direction of the second

largest variance, perpendicular to the first, and so

on. The results are eigenvectors (pointing in the

found directions) and eigenvalues (the variances in

these directions). They can be depicted by drawing

an ellipse (2D) or an ellipsoid (3D) whose radii are

proportional to the square roots of the eigenvalues

(Figure 12c,d). Although describing a cloud of

irregular form (as chromosome territories often look

like) by an ellipsoid might seem oversimplified, it

should be understood that a more detailed shape

description would also demand more parameters.

Ellipses and ellipsoids are the best description of a

shape that may be given for 2D and 3D shapes with

only two or three parameters, respectively.

Principal components are threshold-robust in the

same manner as the centers of objects (see Robustness

of measurements and Figure 5) and are computed in

a way similar to calculation of centers. Of course,

PCA does not differentiate between a symmetrical

star and a circle. Furthermore, PCA is based on

variances and therefore has the same Fshortcomings_

as variances in 1D, namely a high sensitivity to

outliers (individual voxels situated far from the

considered object will have a disproportionate effect

on the shape of the estimated ellipse/ellipsoid).

Nevertheless, PCA assures a reasonable and robust

description of overall shapes. Aspect ratios (ratios of

eigenvalues) allow one to differentiate between

overall shapes: sphere-like, spindle-like, disk-like.

Directions of axes may be compared to a specific

direction or plane. For example, one can compare

orientation of the nucleus in relation to some surface

(e.g., of the slide on which cells were grown , to

give the simplest example) (Figure 12d) or analyze

the orientation of a structure with regard to the

inward/outward direction in the nucleus.

Cells in some tissues are polarized, symmetrically

(e.g., smooth-muscle cells) or in a unipolar fashion

(e.g., epithelial cells). Correspondingly, the question

rises about the positions of chromosome territories

and chromosomal subregions relative to the axes of

such cells. Preliminary data (T. Cremer_s laboratory,

unpublished) suggest that in such cases centromeres

indeed may have differential non-random distribution

along the nuclear axis. PCA is useful here to assess

the orientation of the nucleus. Some of the problems

of this kind may be studied using the dedicated

software, FILO, that is now under development (P.R.

Gudla and S.J. Lockett, personal communication).

Co-localization

The term co-localization is often used to describe the

positioning of two objects close to one other, which

we discussed in the previous paragraph. Here we

consider co-localization in the narrow sense: the

trend for signals from different fluorochrome tags to

be present in the same or in different pixels. If the

centres of objects labeled by different fluorochromes

tend to be situated at a distance notably smaller than

characteristic sizes of these objects, or the size of the

larger of the two objects, then fluorochromes co-

localize or one of them localizes to the other,

respectively. One can also draw a line through an

object and consider the distributions of the two

fluorochrome intensities along this line (Bolte et al.

2004). Provided that the signal-to-noise ratio in the
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object is sufficiently high, the degree to which

FWHM values (full width at half maximum: the

length of the line drawn through an intensity peak at

the middle of its height) of two channels overlap

suggests a measure for co-localization, especially

appropriate when the sizes of the objects are known.

However, this method is time consuming (Bolte &

Cordelieres 2006) and correction for chromatic shift

should be taken into account for small objects.

Correction for chromatic shift is of course important

for any co-localization study (see Chromatic shift:

measuring and correcting for it).

Other methods of co-localization analysis do not

consider objects and do not take into account

positions of pixels: the values will not change if

pixels are shuffledVthe same way for both channels,

of course. These methods consider pixel intensities.

All these methods can be implemented using a col-

lection of plugins for ImageJ. Three extreme cases

are possible: (1) co-localization, the more Red, the

more Green; (2) exclusion (or contra-localization),

the more Red, the less Green; (3) no co-localization,

intensities of Red and Green are independent. The

usual statistical measure in such cases is the Pearson

correlation coefficient, which is indeed often used to

study co-localization (Manders et al. 1993, Bolte &

Cordelieres 2006). Unfortunately, this solution is

often not appropriate. A good qualitative idea about

the relation between intensities of two fluorochromes

is given by plots showing relative frequency of

pixels with given intensities in the Red and Green

channels (Figure 13d,e). Nearly always such plots

show that the majority of pixels in the image have

low signals in both channels (Figure 13e). This is

not necessarily caused by background: many labeled

macromolecules do indeed show high concentrations

in small nuclear domains, while in large parts of the

nucleus the genuine concentrations of fluorochrome

are very low, close to the background level. A good

example of such a distribution is given by many

histone modifications: the same modifications are

present essentially everywhere, though they may be

notably enriched in chromatin regions with certain

transcriptional status (Vakoc et al. 2005, Kouzarides

2007). The high proportion of pixels with low

intensities dramatically affects the Pearson correla-

tion coefficient; in particular, strong negative corre-

lation is observed very rarely for unprocessed

images. Manders et al. (1993) suggested the overlap

coefficient, which is similar to the Pearson correla-

tion but not sensitive to coincident small intensities

in both channels. However, it still depends strongly

on the proportion of pixels with small intensities

because of pixels where the intensity in the other

channel is high. For instance, data shown in Figure 13

yield Pearson correlation R =j0.03 and Manders

overlap coefficient Rm= 0.69. Both these values are

not too different from 0 and 0.5, representing

independence of channels. Exclusion from the anal-

ysis of the pixels with small intensities by applying

the thresholds shown in Figure 13e results in

R =j0.79 and Rm = 0.13, which indicate mutual

exclusion. Still, because pixels in the left bottom

corner of the used range persist, the observed values

remain notably different from those showing com-

plete contra-localization (j1 and 0, for R and Rm,

respectively). Useful qualitative information may

also be obtained by mapping fluorochrome intensities

to the image: in the simple map showing the dis-

tribution of intensities above and below the chosen

thresholds one immediately sees that at the sites

where fluorochromes are present in high concentra-

tion, they avoid each other (Figure 13f). Maps may

also be based on ratios of fluorochrome intensities

(setting a reasonable threshold is important also for

these maps, because ratios of low intensities are not

informative).

Manders and co-authors (1993) also suggested

several measures that characterize co-localization

with regard to each channel: in particular, the

proportion of the total intensity in one channel

coincident with non-zero intensity in the other

channel (this parameter describes how much of,

e.g., the Red is coincident with Green). Later Costes

et al. (2004) and van Steensel et al. (1996) suggested

approaches that estimate Pearson correlation after

transformation of one of the channels. It is notewor-

thy that if two fluorochromes co-localize, the

intensities in a pixel will tend to be either both

above the mean level, or both below it. On this basis

Li et al. (2004) developed ICA (intensity correlation

analysis), which makes use of PDM (product of the

differences from the mean) values for pixels.

PDM= (Aj a)(Bj b), where the upper-case letters

denote pixel intensities in two channels and lower-

case letters are respective means for the whole

image. ICA plots show qualitatively the trend to

co-localization, contra-localization, or independent

distribution in a very clear way (Fsymmetrical_ for

co- and contra-localization) and allow PDM mapping
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of the image (Figure 14). For the quantitative

estimation of co-localization, the intensity correlation

quotient (ICQ) is used (Li et al. 2004, Khanna et al.

2007). ICQ is the proportion of pixels with PDM > 0

reduced by 0.5 to vary from j0.5 to 0.5 (complete

contra- and co-localization, respectively). As PDM

depends on mean intensities, ICQ is also threshold

dependent.

None of the measures discussed above may be

recommended for all cases. Our experience suggests

that different measures may be more appropriate for

different samples. If the distribution of fluoro-

chromes is asymmetrical (e.g., small spots of the

Red on large patches of Green), asymmetrical

measures (e.g., the proportion of Red pixels coinci-

dent with Green ones, weighted or not weighted by

the intensities of Red) correspond better to the nature

of data. The sensitivity of all quantitative measures

of co-localization to intensity thresholds (and the

combination of thresholds for the two channels)

raises two serious problems. The first problem is

uniform handling of nuclei within a sample. Here one

currently has to rely on arbitrary setting of thresholds

by the researcher (the results of automatic thresh-

olding or using a certain centile of integrated

intensity rarely look satisfactory to biologists; see

also Intensity normalization). SecondlyVand even

more importantVis the range of intensities to be

analyzed. On one hand, when fluorescence intensities

are low, a threshold is difficult to set; on the other

hand, genuinely low intensities cannot be ignored

(Fay et al. 1997, Tashiro et al. 2000). Deconvolution

Figure 13. An example of co-localization analysis: DNA and over-expressed Rad51-GFP in nuclei of transgenic human fibroblasts. (a)

Replicationally labeled DNA. (b) Over-expressed Rad51-GFP forming Ffibers_. (c) Overlay. Images (aYc) show an optical mid-section of the

nucleus. (d) Color scatterplot shows which combinations of intensities of the two channels in a pixel are present in the image and which color

they have. (e) Frequency scatterplot shows how common are the pixels with certain combinations of intensities. Frequency is coded by color:

from dark magenta marking single pixels through red to yellow marking the most common pixels with low intensity in both channels. Setting

intensity thresholds corresponds to drawing lines in a plot. (f) Distribution of pixel intensities in the nucleus. Red, intensity of DNA signal

above the threshold; green, intensities of Rad51 is above the threshold; yellow, both above the thresholds; black, both below the thresholds.
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has been reported to improve the results of co-

localization analysis (Landmann & Marbet 2004;

Sedarat et al. 2004), however, problems with the

choice of the deconvolution parameters and repro-

ducibility of the deconvolution results cannot be

ignored (see Deconvolution), especially with regard

to diffuse signals with low intensity. To work around

this problem, Tashiro et al. (2000) used the solution

discussed by us in general in the earlier section

Estimating the error associated with arbitrary set-

tings. They considered co-localization at a low

threshold level (all signal included, even though

some noise too) and a high level (nothing but signal

is included, albeit not all signal). Furthermore, the

co-localization trend may be different for high and

low fluorochrome intensities (ICA graphs show this

point especially clearly). Let us consider a simple

example. Medics and patients co-localize pretty well

in hospitals where their concentrations are high, do

not co-localize in general, and may even contra-

localize when richer and poorer quarters of a city are

considered: all three facts are informative. For the

analysis of co-localization it is strongly advisableV

irrespective of the measure of co-localizationVto use

a range of thresholds (to assure robustness) and/or

analyze co-localization differentially for appropriate

intensity ranges.

Concluding remarks

The problems of quantitative image analyses of

nuclear architecture and cell structure in general

discussed in this article are complex. Perspectives for

the progress in the next few years depend on ongoing

developments in different research areas. Most impor-

tantly, the development of new light-microscopic

techniques has overcome the classical Abbe limit of

conventional light-microscopic approaches and allows

them to reach a resolution previously restricted to

electron microscopy. It can be predicted that struc-

tures with dimensions below some 100 nm and quite

realistically down to some 10 nm can be resolved by

new light-microscopic instrumentation within the next

few years. Configurations of transcriptionally active

and silent genes within their chromatin context will

hopefully be directly visualized. However, we do not

expect that light-microscopic setups with ultra-high

resolution will outcompete electron-microscopic

approaches. The whole range of microscopic

approaches must be used in combination to extract the

maximum possible information.

Higher resolution makes the demands for reliabil-

ity of all steps involved in quantitative microscopic

analysis even more demanding. In particular, the

demands for structural preservation increase strongly

in order to solve topographical problems at the

ultrastructural level. Although in this article we have

focused on the confocal laser scanning microscope,

which is still the workhorse for 3D microscopic

studies, the problems that need to be solved to assure

reliability of quantitative 3D (space) and 4D (space

Figure 14. Co-localization analysis using ICA: nuclear speckles,

heterochromatin and nuclear counterstain in human fibroblasts. (a)

Nuclear counterstain, TO-PRO-3. (b) Heterochromatin,

immunostaining with an antibody against anti-H3K27me3. (c)

Color scatter plot. (d, e) ICA plots for counterstain; crosshair

shows mean intensities for TO-PRO-3 (d) and heterochromatin (e).

In both plots, points corresponding to higher intensity levels are in

the positive PDM range, showing that fluorochromes are co-

localized. (f) PDM mapping of the nucleus. Color code for PDM

values is shown in the scale on the left side of the figure. The

regions where intensities strongly covariate are highlighted in

yellow. In this case they are represented mainly by the layer of

peripheral heterochromatin along the nuclear border. Brighter blue

staining marks regions enriched in H3K27me3. (g) Nuclear

speckles, staining with an antibody against the speckle marker

protein SC35. (h) Overlay of the heterochromatin and speckle

staining. (i) Color scatter plot. (j, k) ICA plots for speckles (j) and

heterochromatin (k). In both plots points corresponding to higher

intensity levels are in the negative PDM range, showing that

fluorochromes are contra-localized. (l) PDM mapping of the

nucleus. Mutual exclusion of fluorochromes (blue) is especially

prominent in the layer of peripheral heterochromatin and in

speckles. Images (a), (b), (g) and (h) show a confocal mid-

section of the nucleus.

R

Table 2. Measures that facilitate reliability of image analysis

& Appropriate choice of the microscope type and good calibrations

of the instrument.

& Correct choice of image acquisition settings.

& Planning of the approach to data analysis as a part of planning the

biological experiments.

& Appropriate choice of image transformations performed at the

preprocessing stage and as a part of image analysis; thorough

consideration of the effect of all these transformations and

possible artifacts.

& Avoidance of preprocessing and processing that is not clearly

justified by the aims of the study and the nature of the raw data.

& Correct choice of appropriate statistical tests.

& Discussion of approaches to preprocessing, processing and

statistical analysis with specialists if they are not well established

for the intended task.
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and time) image analysis (Table 2) are, by and large,

the same with all types of microscopic setups.

Progress in organic chemistry and molecular biology

has already increased the spectrum of specific

fluorescent labels for both proteins and nucleic acids

for studies not only of fixed but also of living cells.

This spectrum will certainly continue to increase and

help to develop multicolor labeling schemes with

fluorochrome combinations which cover the entire

range of the visible spectrum and beyond much more

densely than possible to date and with properties that

allow the reliable discrimination of all fluorochromes

from each other. Bleed-through of fluorescence from

one channel into another has remained a major

problem of image recording in multicolor formats.

Fluorochromes with improved bleaching properties

are also urgently needed, which allow tracing even of

single fluorescent molecules over long periods of

time.

The prospects of imaging techniques at the single-

cell level should be weighed against new molecular

approaches to study the 3D organization of the

genome. For example, it has recently become

possible to detect close proximity of genomic loci

in the interphase nucleus using purely molecular 3C/

4C/5C methods (Simonis et al. 2006, Zhao et al.

2006, Hagege et al. 2007) and a similar method

(PLA, proximity ligation analysis) has been sug-

gested for proteins (Soderberg et al. 2006). While

these methods can pinpoint DNA and protein

interactions in cis (loci on the same chromosome)

and in trans (loci on different chromosomes), their

power is not unlimited. For instance, discriminative

features of the different, presently discussed models

of nuclear architecture (see Cremer & Cremer 2006

for review) cannot be tested by 3C/4C/5C methods.

Most importantly, 3C/4C/5C methods provide infor-

mation for DNA interactions on a statistical basis and

therefore require large samples of nuclei subjected to

cross-linking of DNA and proteins. Nevertheless,

new factual data obtained using this and other

methods have attracted attention to the spatial

parameters of nuclear architecture that only recently

did not seem functionally important. Despite the

simplicity of their formulation, many of the respec-

tive problems are very complex. Improved methods

of imaging and image analysis will help to solve

these problems. It is the combination of new

molecular, microscopic and image analysis methods

that will determine progress of nuclear studies in the

near future.
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Jähne B, eds. Pattern Recognition. Proceedings of the 29th

DAGM. Berlin: Springer, pp. 415Y424.

Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T (2003)

Spatial proximity of translocation-prone gene loci in human

lymphomas. Nat Genet 34: 287Y291.

Ronneberger O, Fehr J, Burkhardt H (2005) Voxelwise gray scale

invariants for simultaneous segmentation and classification

pattern recognition. In: Kropatsch W, Sablating R, eds. Pattern

Recognition. Proceedings of the 27th DAGM. Berlin: Springer,

pp. 85Y92.

Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging

by stochastic optical reconstruction microscopy (STORM). Nat

Methods 3: 793Y795.

Sedarat F, Lin E, Moore EDW, Tibbits GF (2004) Deconvolution

of confocal images of dihydropyridine and ryanodine receptors

in developing cardiomyocytes. J Appl Physiol 97: 1098Y1103.

Sexton T, Schober H, Fraser P, Gasser SM (2007) Gene regulation

through nuclear organization. Nat Struct Mol Biol 14: 1049Y1055.

Shiels C, Islam SA, Vatcheva R et al. (2001) PML bodies associate

specifically with the MHC gene cluster in interphase nuclei.

J Cell Sci 114: 3705Y3716.

Shiels C, Adams NM, Islam SA, Stephens DA, Freemont PS

(2007) Quantitative analysis of cell nucleus organisation. PLoS

Comput Biol 3: e138.

Shopland LS, Johnson CV, Byron M, McNeil J, Lawrence JB

(2003) Clustering of multiple specific genes and gene-rich

R-bands around SC-35 domains: evidence for local euchromatic

neighborhoods. J Cell Biol 162: 981Y990.

Simonis M, Klous P, Splinter E et al. (2006) Nuclear organiza-

tion of active and inactive chromatin domains uncovered by

chromosome conformation capture-on-chip (4C). Nat Genet 38:

1348Y1354.

Simonis M, Kooren J, de Laat W (2007) An evaluation of

3C-based methods to capture DNA interactions. Nat Methods

4: 895Y901.

Soderberg O, Gullberg M, Jarvius M et al. (2006) Direct

observation of individual endogenous protein complexes in situ

by proximity ligation. Nat Methods 3: 995Y1000.

Soutoglou E, Misteli T (2007) Mobility and immobility of

chromatin in transcription and genome stability. Curr Opin

Genet Dev 17: 435Y442.

Soutoglou E, Dorn JF, Sengupta K et al. (2007) Positional stability

of single double-strand breaks in mammalian cells. Nat Cell Biol

9: 675Y682.

Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA (2005)

Interchromosomal associations between alternatively expressed

loci. Nature 435: 637Y645.

Sun HB, Shen J, Yokota H (2000) Size-dependent positioning of

human chromosomes in interphase nuclei. Biophys J 79: 184Y190.

Swedlow JR (2007) Quantitative fluorescence microscopy and

image deconvolution. Methods Cell Biol 81: 447Y465.

Taddei A, Van Houwe G, Hediger F et al. (2006) Nuclear pore

association confers optimal expression levels for an inducible

yeast gene. Nature 441: 774Y778.

Tanabe H, Muller S, Neusser M et al. (2002) Evolutionary

conservation of chromosome territory arrangements in cell

nuclei from higher primates. Proc Natl Acad Sci U S A 99:

4424Y4429.

Tashiro S, Walter J, Shinohara A, Kamada N, Cremer T (2000)

Rad51 accumulation at sites of DNA damage and in postrepli-

cative chromatin. J Cell Biol 150: 283Y291.

Teller K, Solovei I, Buiting K, Horsthemke B, Cremer T (2007)

Maintenance of imprinting and nuclear architecture in cycling

cells. Proc Natl Acad Sci U S A 104: 14970Y14975.

Thomson I, Gilchrist S, Bickmore WA, Chubb JR (2004) The

radial positioning of chromatin is not inherited through mitosis

but is established de novo in early G1. Curr Biol 14: 166Y172.

Vakoc CR, Mandat SA, Olenchock BA, Blobel GA (2005) Histone

H3 lysine 9 methylation and HP1gamma are associated with

transcription elongation through mammalian chromatin. Mol

Cell 19: 381Y391.

van Steensel B, van Binnendijk EP, Hornsby CD et al. (1996)

Partial colocalization of glucocorticoid and mineralocorticoid

receptors in discrete compartments in nuclei of rat hippocampus

neurons. J Cell Sci 109: 787Y792.

Verveer PJ, Swoger J, Pampaloni F, Greger K, Marcello M, Stelzer

EH (2007) High-resolution three-dimensional imaging of large

specimens with light sheet-based microscopy. Nat Methods 4:

311Y313.

von Tiedemann M, Fridberger A, Ulfendahl M, Tomo I, Boutet de

Monvel J (2006) Image adaptive point-spread function estima-

tion and deconvolution for in vivo confocal microscopy.Microsc

Res Tech 69: 10Y20.

Wallace W, Schaefer LH, Swedlow JR (2001) A workingperson_s

guide to deconvolution in light microscopy. Biotechniques 31:

1076Y1082.

Walter J, Schermelleh L, Cremer M, Tashiro S, Cremer T (2003)

Chromosome order in HeLa cells changes during mitosis and

early G1, but is stably maintained during subsequent interphase

stages. J Cell Biol 160: 685Y697.

Walter J, Joffe B, Bolzer A et al. (2006) Towards many colors in

FISH on 3D-preserved interphase nuclei. Cytogenet Genome Res

114: 367Y378.

Wang J, Shiels C, Sasieni P et al. (2004) Promyelocytic leukemia

nuclear bodies associate with transcriptionally active genomic

regions. J Cell Biol 164: 515Y26.

Westphal V, Hell SW (2005) Nanoscale resolution in the focal

plane of an optical microscope. Phys Rev Lett 94: 143903.

Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy

with continuous wave beams. Nat Methods 4: 915Y918.

Willig KI, Kellner RR, Medda R, Hein B, Jakobs S, Hell SW

(2006) Nanoscale resolution in GFP-based microscopy. Nat

Methods 3: 721Y723.

Quantitative analysis of nuclear structures 561



Wolf DE, Samarasekera C, Swedlow JR (2007) Quantitative analy-

sis of digital microscope images. Methods Cell Biol 81: 365Y96.

Xu N, Tsai CL, Lee JT (2006) Transient homologous chromosome

pairing marks the onset of X inactivation. Science 311: 1149Y52.

Yokota H, van den Engh G, Hearst JE, Sachs RK, Trask BJ (1995)

Evidence for the organization of chromatin in megabase pair-

sized loops arranged along a random walk path in the human

G0/G1 interphase nucleus. J Cell Biol 130: 1239Y1249.

Zhao Z, Tavoosidana G, Sjolinder M et al. (2006) Circular

chromosome conformation capture (4C) uncovers extensive

networks of epigenetically regulated intra- and interchromo-

somal interactions. Nat Genet 38: 1341Y1347.

562 O. Ronneberger et al.


