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prof.dr ir R. Scha, Universiteit van Amsterdam, Nederland

dr M. de Rijke, Universiteit van Amsterdam, Nederland

dr Y. Venema, Universiteit van Amsterdam, Nederland

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Universiteit van Amsterdam

Nederland

The research was supported by the Institute for Logic, Language and Computation and

by the Informatics Institute of the University of Amsterdam.

Copyright c© 2002 by Marco Aiello

http://www.aiellom.it

Cover design and photography by the author.

Typeset in pdfLATEX.

Printed and bound by Print Partners Ipskamp, Enschede.

ISBN: 90–5776–079–7



A Mario e Gigina.

v





CONTENTS

Acknowledgments xi

1 Introduction 1

1.1 Reasoning about space . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Theory and practice . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The topo approach: expressiveness 7

2.1 Basic modal logic of space . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Topological bisimulation . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Connections with topology . . . . . . . . . . . . . . . . . . . 13

2.1.3 Topo-bisimilar reductions . . . . . . . . . . . . . . . . . . . 14

2.2 Games that compare visual scenes . . . . . . . . . . . . . . . . . . . 14

2.2.1 Strategies and modal formulas . . . . . . . . . . . . . . . . . 18

2.3 Logical variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The topo approach: axiomatics 23

3.1 Topological spaces and Kripke models . . . . . . . . . . . . . . . . . 23

3.1.1 The basic connection . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Analogies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 General completeness . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 The main argument . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Topological comments . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Finite spaces suffice . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Completeness on the reals . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Cantorization . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Counterexamples on the reals . . . . . . . . . . . . . . . . . 35

3.3.3 Logical non-finiteness on the reals . . . . . . . . . . . . . . . 39

3.4 Axiomatizing special kinds of regions . . . . . . . . . . . . . . . . . 42

3.4.1 Serial sets on the real line . . . . . . . . . . . . . . . . . . . 42

vii



3.4.2 Formulas in one variable over the serial sets . . . . . . . . . . 45

3.4.3 Countable unions of convex sets on the real line . . . . . . . . 48

3.4.4 Generalization to IR2 . . . . . . . . . . . . . . . . . . . . . . 49

3.5 A general picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 The deductive landscape . . . . . . . . . . . . . . . . . . . . 51

4 Logical extensions 53

4.1 Universal reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Alternative extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Hybrid reference . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Until a boundary . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Standard logical analysis . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Geometrical extensions 67

5.1 Affine Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Basic geometry . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.2 The general logic of betweenness . . . . . . . . . . . . . . . 69

5.1.3 Modal languages of betweenness . . . . . . . . . . . . . . . . 71

5.1.4 Modal logics of betweenness . . . . . . . . . . . . . . . . . . 74

5.1.5 Special logics . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.6 Logics of convexity . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.7 First-order affine geometry . . . . . . . . . . . . . . . . . . . 81

5.2 Metric geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 The geometry of relative nearness . . . . . . . . . . . . . . . 82

5.2.2 Modal logic of nearness . . . . . . . . . . . . . . . . . . . . 86

5.2.3 First-order theory of nearness . . . . . . . . . . . . . . . . . 90

5.3 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Mathematical morphology and linear logic . . . . . . . . . . 93

5.3.2 Richer languages . . . . . . . . . . . . . . . . . . . . . . . . 96

6 A game-based similarity for image retrieval 101

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 A general framework for mereotopology . . . . . . . . . . . . . . . . 102

6.2.1 Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.2 Comparison with RCC . . . . . . . . . . . . . . . . . . . . . 105

6.3 Comparing spatial patterns . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.1 Model comparison games distance . . . . . . . . . . . . . . . 107

6.4 Computing similarities . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.2 Polygons of the plane . . . . . . . . . . . . . . . . . . . . . . 111

6.4.3 The topo-distance algorithm . . . . . . . . . . . . . . . . . . 115

6.5 The IRIS prototype . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5.1 Implementing the similarity measure . . . . . . . . . . . . . . 119

viii



6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Thick 2D relations for document understanding 125

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 A logical structure detection architecture . . . . . . . . . . . . . . . . 128

7.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3.1 Document encoding rules . . . . . . . . . . . . . . . . . . . 129

7.3.2 Relations adequate for documents . . . . . . . . . . . . . . . 133

7.3.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4.1 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4.3 Discussion of the results . . . . . . . . . . . . . . . . . . . . 147

7.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8 Conclusions 151

8.1 Where we stand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.2 Final remarks on theory and practice . . . . . . . . . . . . . . . . . . 152

A A bit of topology 155

B Sorting transitive directed graphs 159

C Implementations 163

C.1 Topax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.2 IRIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.3 SpaRe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Bibliography 181

Index 193

Samenvatting 199

ix





ACKNOWLEDGMENTS

I believe that a PhD thesis is not the effort of an individual, but the final outcome of

a synergy. Since there is officially one author, I feel the urge to thank in these initial

pages the people involved in a way or another with my PhD project.

I arrived in Amsterdam four years ago as a lost soul. Unlike Voltaire’s Candide, I

found generosity, humor, inspiration and, most importantly, solid scientific values to

believe in. I realized my conversion to the ‘Amsterdam school’ was complete when I

received an email in which I was addressed as a “modal logician.” What a joy. I did

not even know what a ‘modal logic’ was till I moved my first steps in Amsterdam. If

today someone may recognize me as a credible scientist, I own it first and foremost to

Johan van Benthem.

One of the many qualities of Johan I had the privilege to appreciate, and I am sure

I share this feeling with many others, is his natural disposition of putting everyone

at ease. I could always raise a question, no matter how silly, and get a simple yet

illuminating answer. Every occasion to meet, discuss or even exchange emails with

Johan have been pleasurable events which I have and I will be looking forward to. In

short, Johan thank you.

I am deeply in debt with Arnold Smeulders for his continuous interest in my work,

for his warm supervision, and for an extreme availability. He provided me with vision-

ary questions, while leaving me a considerable amount of freedom in my research. I

only wish I could have answered more of his questions. Not to please him, but because

if I did, I would be a famous scientist today.

I am thankful to a number of researchers of the University of Amsterdam and CWI.

I could always knock on their doors and find an interested and competent mind at my

disposal, in particular, Rein van den Boomgaard, Kees Doets, Henk Heijmans, Dick de

Jong, Michiell van Lambalgen, Maarten Marx, Maarten de Rijke, and Yde Venema.

Special thanks go to Krzysztof Apt. Interacting with him has taught me a lot about

science and, also, on academic life’s pleasures and pitfalls. I have appreciated his trust

when he proposed to me to become the information director of the new ACM journal

he was founding, the Transactions on Computational Logic (TOCL). Our occasional

xi



Tuesdays lunches were both filled with precious information and humor. I should have

known he was a funny guy from the very beginning, after all on his homepage you can

read “Recent Publications (Important notice: I have read them all.)”

I also thank my co-authors. I have learned a great deal in many dimensions from

working with all of them: Johan van Benthem, Arnold Smeulders, Guram Bezhan-

ishvili, Maarten de Rijke, Christof Monz, Carlos Areces, the ‘trentini’ Luciano Sera-
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CHAPTER 1

INTRODUCTION

1.1 Reasoning about space

Spatial structures and spatial reasoning are essential to perception and cognition. Much

day-to-day practical information is about what happens at certain spatial locations.

Moreover, spatial representation is a powerful source of geometric intuitions that un-

derlie general cognitive tasks. How can we represent spatially located entities and

reason about them? To take a concrete domestic example: when we are setting a table

and place a spoon, what are the basic spatial properties of this new item in relation to

others, and to the rest of the space? Not only, there are further basic aspects to per-

ception: we have the ability to compare different visual scenes, and recognize objects

across them, given enough ‘similarity’. More concretely: which table settings are ‘the

same’? This is another task for which logic provides tools.

Constraining space within the bounds of a logical theory and using related formal

reasoning tools must be performed with particular care. One cannot expect the move

from space to formal theories of space to be complete. Natural spatial phenomena will

be left out of logical theories of space, while non-natural spatial phenomena could try

to sneak in (cf. the account of Helly’s theorem implications on diagrammatic theories

in [Lemon, 2002]). Paraphrasing Ansel Adams’ concern of space bound in a photo-

graph,1 one could say that space in nature is one thing; space confined and restricted

in the bounds of a formal representation and reasoning system is quite another thing.

Connectivity, parthood, and coherence, should be correctly handled and expressed by

the formalism, not aiming at a complete representation of space, but focusing on ex-

pressing the most perspicuous spatial phenomena.

The preliminary and fundamental step in devising a spatial reasoning framework

lays, thus, in the identification of which spatial behaviors the theory should capture and,

1“Space in nature is one thing; space confined and restricted by the picture edges is quite another

thing. Space, scale, and form must be made eloquent, not in imitation of painting arrangements, but in

terms of the living camera image.” [Adams, 1981]

1



2 • Chapter 1. INTRODUCTION

possibly, in the identification of which practical uses will be made of the framework.

A key factor is in appropriately balancing expressive power, completeness with respect

to a specific class of spatial phenomena, and computational complexity.

The blend of expressivity and tractability we are aiming at points us in the di-

rection of modal logics as a privileged candidate for the formalization task. We will

not go into details on modal logics or on the reason for which modal logics balance

nicely expressive power and computational complexity (one can refer to a number of

texts on the subject, including the recent [Blackburn et al., 2001] or the more specific

[Vardi, 1997]). To enjoy the theoretical part of the thesis, we assume the reader has

some basic knowledge of modal logic and its best-known possible world semantics

(also referred to as Kripke semantics). Strangely enough, even though knowledge of

Kripke semantics is helpful for better understanding the presented material, we are

going to make little use of it, and rather resort to topological semantics, introduced

about 30 years earlier than Kripke semantics by [Tarski, 1938]. Modern modal logics

of space need old modal logic semantics.

The attention on spatial reasoning stems, in the case of the present thesis, from

the interest in applications in the domains of image processing and computer vision,

hence, the sub-title Theory and Practice. But this is only one of the many motivations

for which spatial logics have been considered in the past. These range from the early

philosophical efforts [Whitehead, 1929, Lesniewski, 1983] to recent work motivated

by such diverse concerns as spatial representation and vision in AI [Shanahan, 1995,

Randell et al., 2001], semantics of spatial prepositions in linguistics [Herskovits, 1997,

Winter and Zwarts, 1997], perceptual languages [Dastani et al., 1997, Dastani, 1998],

or diagrammatic reasoning [Hammer, 1995, Gurr, 1998, Kerdiles, 2001]. The result-

ing logics are diverse, too. Theories differ in their primitive objects: points, lines,

polygons, regions (contrast [Tarski, 1938] against [Tarski, 1959]). Likewise, theo-

ries differ in their primitive spatial relations: such as inclusion, overlap, touching,

‘space’ versus ‘place’, and on how these should be interpreted: [Randell et al., 1992,

Bennett, 1995, Asher and Vieu, 1995]. There are mereological theories of parts and

wholes, topological ones (stressing limit points, and connection) and mereotopological

ones (based on parthood and external connection). Systematic accounts of the genesis

of spatial vocabulary date back to Helmholtz’ work on invariants of movement, but

no generally agreed primitive relations have emerged on the logic side. Moreover, ax-

ioms differ across theories: [Clarke, 1981, Clarke, 1985] vs [Pratt and Schoop, 1998]

vs [Casati and Varzi, 1999]. Also our modal approach has its predecessors of which we

mention [Segerberg, 1970, Segerberg, 1976, Shehtman, 1983, Bennett, 1995, Venema,

1992, Balbiani et al., 1997, Lemon and Pratt, 1998].

The above references have no pretense of being a complete overview of the liter-

ature on spatial formalisms and, even less, on applications of spatial formalisms. We

shall refer, discuss and compare our work with the literature, with previous approaches

and systems on a ‘local basis’. That is, relevant literature is discussed in each chap-

ter where appropriate in order to set the context, compare our approach with previous

ones, and identify future extensions of our own work based on previous efforts.
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1.2 Theory and practice

Our contribution with this thesis is twofold. On the one hand, we investigate new

and existing spatial formalisms with the explicit goal of identifying languages nicely

balancing expressive power and tractability. On the other hand, we study the feasibility

of practical applications of such qualitative languages of space, by investigating two

symbolic approaches to pattern recognition.

The structure of the thesis reflects the two sub-tasks. The first part reflects the

ethereal nature of our theoretical approach to space. The second part reflects a more

practical task , that is, applying spatial theories to real world problems.

Modal formalisms are the thread of the thesis. We walk through a family of modal

languages of space for topological, affine, metric and vector spaces. The task is not

that of compiling a drudging taxonomy of modal spatial languages, but rather to design

languages with specific expressive tasks. ‘Expressivity in balance’ is the motto here.

While walking through modal logics of space some steps will be mandatory. Some

basic languages are needed as they form the basic for any subsequent analysis. This is

the case of S4: a poor language in terms of expressivity, but, as it turns out, the min-

imal normal modal language with respect to topological interpretations. In fact, this

language will be our first test. On this language we shall introduce the topological se-

mantics (after Tarski), define adequate notions of bisimulations and model comparison

games, analyze completeness in modern terms (via canonical models), and more.

Our subsequent investigation concerns some striking facts about S4. First, we con-

sider completeness with respect to general topological spaces, to Cantor space, to the

real line, and further to serial sets of the real line and plane. Spatial finiteness arises

as a result. Then, we look at logical extensions. A typical example of this kind of lan-

guage is that of S4u, an extension by a universal modal operator. S4u is known in the

literature of spatial reasoning as Bennett [1995] used it to encode a decidable fragment

of the region connection calculus of Randell, Cui and Cohn [1992]. Further examples

comprise the spatial extension of the temporal Since and Until logic of [Kamp, 1968].

Our next move is from topology to geometric structures. This involves a major

semantic change. Topological interpretation is abandoned, and more custom possible

worlds semantics is used. In this context, modal logics tend to either be sorted (typical

example is that of having sorts for points and lines, and an incidence relation) or to

adopt dyadic modal operators. Our focus will be on logics of the second kind.

In [Tarski, 1959], Tarski introduces the notion of elementary geometry and pro-

vides a first order axiomatization in terms of two fundamental relations, that is, be-

tweenness and equidistance. These are sufficient for any affine or metric construction.

For instance, one can define parallelism, convexity, or the notion of an equilateral tri-

angle. But what happens if one considers betweenness in isolation? Further, what is

the modal fragment of languages of betweenness? And, are there alternative relations

for axiomatizing elementary geometry?

We answer these questions in our investigation of geometrical extensions to our

basic modal approach to space. At the end of our journey in this realm of modal logics,
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we arrive at a vector theory of shape: mathematical morphology. This mathematical

theory of shape lends itself naturally to modal representations, as its two basic oper-

ators, which mimic Minkowski’s operations in vector spaces, are easily axiomatized

in terms of modal ‘arrow logics’. It will be harder to maintain the balance between

expressivity and tractability as small deviations from the minimal axiomatization force

trespassing the limits of decidability. As a compensation, interesting new axiomatiza-

tions and open questions arise. All in all, we shall discover a number of intriguing facts

about topological and geometric spaces, thanks to a modal analysis of space.

When considering applications, the point of view on the logics of space analyzed in

our theoretical promenade shifts. Now interesting logics become those which can ex-

press region properties, rather than those merely referring to points, model comparison

games become interesting only if turned into distance measures, and boundaries of

regions play an even greater role.

There are even more general concerns when applying symbolic approaches to pat-

tern recognition problems: spatial coherence and brittleness. Spatial coherence regards

the way nature presents itself to observation, that is in a manner intrinsically hard to

capture symbolically. Elsewhere we have spelled out our personal concerns for spatial

coherency in the context of formal perceptual languages [Aiello and Smeulders, 1999].

We refer to [Florack, 1997] for an authoritative point of view.

Brittleness regards a risk ran by strict symbolic approaches when applied to real

world domains: they might break. There are various reasons for which a system can

show a brittle behavior. Little variations present in nature may result in misclassifi-

cations at the symbolic level. Thus, the misclassification propagates on to a wrong

analysis. The problem occurred in one of the practical systems we present, forcing the

introduction of a ‘less brittle’ interpretation of region relations.

We choose two significant problems in image processing and pattern matching as

our testing grounds: image retrieval and document image analysis.

Image retrieval is achieved by matching a description or a query image on a col-

lection of images. Symbolic approaches are successful in this field to the extent that

symbolic segmentation of the images is available. The matching process between a

query and a collection of images is a matter of comparison. When analyzing modal

logics of space we encounter a tool performing precisely this task: model comparison

games, which we apply to measure image similarity.

We believe that the field of document image analysis is ripe for symbolic ap-

proaches. Various decades of research in pattern matching have solved most of the

problems involved in basic document image processing. For example, current tech-

nology for skew estimation or optical character recognition is very accurate. One of

the present challenges lies in the management and grouping of all the basic layout in-

formation in order to achieve document understanding. Symbolic approaches are of

interest here, as there is formal structure to be detected in printed documents. One may

even argue, as we do, that the structure present in documents has the form of precise

formal rules. These are the rules followed, most often without awareness, by document
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authors and, with awareness, by compositors. It is by reverse engineering these rules

and by using them to analyze documents that we can achieve document understanding.

The overall conclusion over our practical experiences will help us understand where

they are effective and where not. Practical issues also prompt for interesting theoretical

questions, thus, closing the ‘vicious circle’ theory and practice—practice and theory.

The thesis is organized in seven technical chapters, plus an introductory and a conclu-

sions chapters, and three appendices. The chapters from 2 to 5 form the theoretical

core of the dissertation, while Chapters 6 and 7 are the practical component.

The first two chapters set the boundaries of our framework: Chapter 2 from the

expressive point of view, and Chapter 3 from the axiomatization one. Then, we an-

alyze two sorts of extensions of the framework. Logical extensions are presented in

Chapter 4, while geometrical ones are introduced in Chapter 5.

In Chapter 2, we revive the topological interpretation of modal logics, turning it into

a general language of patterns in space. In particular, we define a notion of bisimulation

for topological models that compares different visual scenes. We refine the comparison

by introducing Ehrenfeucht-Fraı̈ssé style games played on patterns in space.

In Chapter 3, we investigate the topological interpretation of modal logic in modern

terms, using the notion of bisimulation introduced in Chapter 2. We look at modal

logics with interesting topological content, presenting, amongst others, a new proof of

McKinsey and Tarski’s theorem on completeness of S4 with respect to the real line,

and a completeness proof for the logic of finite unions of convex sets of the reals.

In Chapter 4 we consider logical extensions to the topological modal approach to

space. The introduction of universal and hybrid modalities is investigated with respect

to the added logical expressive power. A spatial version of the tense Since and Until

logic is also examined. A brief comparison with higher-order formalisms gives a more

general perspective on (extended) modal logics of space.

In Chapter 5, we proceed with the modal investigation of space by moving to affine

and metric geometry, and vector algebra. This allows us to see new fine-structure

in spatial patterns suggesting analogies across these mathematical theories in terms of

modal, tense and conditional logics. Expressive power is analyzed in terms of language

design, bisimulations, and correspondence phenomena. The result is both unification

across the areas visited, and the uncovering of interesting new questions.

In Chapter 6, we take a different look at model comparison games for the pur-

pose of designing an image similarity measure for image retrieval. Model comparison

games can be used not only to decide whether two specific models are equivalent or

not, but also to establish a measurement of difference among a whole class of models.

We show how this is possible in the case of the spatial modal logic S4u. The approach

results in a spatial similarity measure based on topological model comparison games.

We move towards practice by giving an algorithm to effectively compute the similarity

measure for a class of topological models widely used in computer science applica-

tions: polygons of the real plane. At the end of the chapter, we briefly overview an

implemented system based on the game-similarity measure.



6 • Chapter 1. INTRODUCTION

In Chapter 7, we use a propositional language of qualitative rectangle relations to

detect the reading order from document images. To this end, we define the notion of

a document encoding rule and we analyze possible formalisms to express document

encoding rules such as LATEX, SGML languages, and others. Document encoding rules

expressed in the propositional language of rectangles are used to build a reading or-

der detector for document images. In order to achieve robustness and avoid brittleness

when applying the system to real life document images, the notion of a thick bound-

ary interpretation for a qualitative relation is introduced. The system is tested on a

collection of heterogeneous document images showing recall rates up to 89%.

The presentation ends with three appendices. Appendix A is a brief recall of basic

topological notions, useful for reading Chapters 2, 3, and 4. Appendix B presents an al-

gorithm for sorting directed transitive cyclic graphs in relation to the system presented

in Chapter 7. Appendix C overviews three implementations related to the thesis.

Material related to the thesis has been presented in various contexts. The contributions

are to be considered joint with the respective co-authors.

Chapter Co-authors reference

2 Johan van Benthem [Aiello and van Benthem, 1999], a short

version is to appear in a CSLI volume

[Aiello and van Benthem, 2002a]

3 Johan van Benthem [Aiello et al., 2001], submitted to the Journ-

Guram Bezhanishvili al of Logic and Computation

4, 5 Johan van Benthem [Aiello and van Benthem, 1999,

Aiello and van Benthem, 2002b], sub-

mitted as one paper to the Journal of

Applied non-Classical Logics

6 [Aiello, 2000, Aiello, 2001a], to appear in

the Journal of the Interest Group in Pure

and Applied Logic [Aiello, 2002b]

7 Arnold Smeulders manuscript submitted to ”Information Sci-

ences”

The material of Chapter 7 describes a component of a larger architecture. The latter

has been presented in various contexts: [Aiello et al., 2000, Todoran et al., 2001a], and

[Todoran et al., 2001b] which has been submitted to the Journal of Document Analysis

and Recognition.



CHAPTER 2

THE TOPO APPROACH: EXPRESSIVENESS

We begin our investigation of representations of space from a simple modal logic. Our

primary goals here are that of identifying the appropriate tools we need in the rest of

the thesis and instantiating them for the simplest modal spatial logic.

Perhaps we are already running too fast. We have assumed an agreement on the

meaning of the term ‘space’ and we have started to refer to spatial languages talking

about a simplest one. But the goal of assigning a unique meaning to the term space is

really open-ended and under-determined. Mathematicians have developed many differ-

ent formal accounts, ranging from less or more fine-grained geometries (affine, metric)

to more coarsely-grained topologies. Philosophers have even added formal theories

of their own, such as ‘mereology’, cf. [Casati and Varzi, 1999]. Qualitatively differ-

ent levels of description also arise naturally in computer science, viz. mathematical

morphology [Serra, 1982]. A similar diversity of grain levels arises in logic, which

provides many different spatial languages for talking about objects and their locations.

Our general paradigm is this hierarchy of levels, even though we develop our methods

mainly at the level of topology, cf. [Singer and Thorpe, 1967] or [Engelking, 1989].

Inside the topological level, one can identify a sub-hierarchy of languages of increas-

ing expressive power and logical complexity. We begin at the bottom of this hierarchy

with the simplest language. Simplest here means less expressive language, both from

a syntactic and a semantic point of view. The syntactic evidence to the claim of sim-

plicity will be provided in the present chapter.

The simple language is S4. The name will not surprise the modal logician since

S4 is a well known modal logic: the logic of partial orders. Maybe the surprise lies in

the fact that it is the simplest spatial logic, in place of K, which is the simplest normal

modal logic for possible worlds semantics. Again, explanations will follow.

In the present chapter, we recall the syntax and state the truth definition for S4 in

the spatial context. We proceed by providing the two fundamental tools tied to our

modal approach to space which keep us company for most of the thesis: topological

bisimulations and topological games.

7
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(a) (b) (c) (d) (e) (f)

singleton

open

Figure 2.1: A formula of the language S4 identifies a region in a topological space. (a)

a spoon, p. (b) the containing part of the spoon, ✷p. (c) the boundary of the spoon,

✸p∧✸¬p. (d) the container part of the spoon with its boundary, ✸✷p. (e) the handle of

the spoon, p∧¬✸✷p. In this case the handle does not contain the junction point handle-

container. (f) the joint point handle-container of the spoon, ✸✷p ∧ ✸(p ∧ ¬✸✷p): a

singleton in the topological space.

The chapter is rich in visual examples that should help in grounding intuitions of

the logic and of the tools we define. The images of the chapter—and of the following

ones—borrow from the daily activity of eating, in particular cutlery is the running

example in the figures. Unless stated otherwise, all depicted items are to be considered

subsets of IR2 equipped with the standard topology (that defined by the unitary disks).

Closed contours indicate that the set is not only the contour, but also all the points

inside. Of course, these spoons and forks should be taken with a grain of salt: our

framework is completely general.

For the convenience of the reader, and to make the thesis as much as possible self-

contained, we recall the basic topological definitions in Appendix A.

2.1 Basic modal logic of space

In the 30s, Tarski provided a topological interpretation and various completeness the-

orems ([McKinsey and Tarski, 1944, Rasiowa and Sikorski, 1963]) making modal S4

the basic logic of topology. In the topological interpretation of a modal logic, each

propositional variable represents a region of the topological space, and so does every

formula. Boolean operators such as negation ¬, or ∨, and ∧ are interpreted as com-

plement, union and intersection, respectively. The modal operators diamond and box,

become the topological closure and interior operators. More precisely, the modal logic

S4 consists of:

• a set of proposition letters P ,
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Formula Interpretation

⊤ the universe

⊥ the empty region

¬ϕ the complement of a region

ϕ ∧ ψ intersections of the regions ϕ and ψ
ϕ ∨ ψ union of the regions ϕ and ψ
✷ϕ interior of the region ϕ
✸ϕ closure of the region ϕ

Figure 2.2: Formulas of S4 and their intended meaning.

• two constant symbols ⊤,⊥,

• Boolean operators ¬,∧,∨,→, and

• two unary modal operators ✷,✸.

Formulas are built by means of the following recursive rules:

• p such that p ∈ P is a well formed formula,

• ⊤,⊥ are well formed formulas,

• ¬ϕ, ϕ∨ψ, ϕ∧ψ are well formed formulas if ϕ and ψ are well formed formulas,

• ✷ϕ and ✸ϕ are well formed formulas if ϕ is well formed formula.

In Figure 2.2, the intended meaning of some basic formulas is summarized. These are

pictured more vividly in Figure 2.1 with a spoon-shaped region. The intuitions about

the language are reflected in its semantics, which involves the idea of special regions

denoted by proposition letters. Topological models (topo-model) M = 〈X,O, ν〉 are

topological spaces (X,O) plus a valuation function ν : P → P(X). Conversely, we

will sometimes strip the valuation from a topo-model, and just consider its underlying

topological space. This is like working with frames in the usual Kripke semantics.

2.1.1. DEFINITION (TOPOLOGICAL SEMANTICS OF S4). Truth of modal formulas is

defined inductively at points x in topological models M :

M,x |= ⊥ never

M,x |= ⊤ always

M,x |= p iff x ∈ ν(p) (with p ∈ P )

M,x |= ¬ϕ iff not M,x |= ϕ
M, x |= ϕ ∧ ψ iff M,x |= ϕ and M,x |= ψ
M, x |= ϕ ∨ ψ iff M,x |= ϕ or M,x |= ψ
M, x |= ϕ→ ψ iff if M,x |= ϕ, then M,x |= ψ
M, x |= ✷ϕ iff ∃o ∈ O : x ∈ o ∧ ∀y ∈ o : M, y |= ϕ
M, x |= ✸ϕ iff ∀o ∈ O : if x ∈ o, then ∃y ∈ o : M, y |= ϕ
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As usual we can economize by defining ϕ ∨ ψ as ¬ϕ→ ψ, and ✸ϕ as ¬✷¬ϕ.

One of Tarski’s early results was this. Universal validity of formulas over topological

models has the modal logic S4 as a sound and complete proof system. The standard

axiomatization is:

✸A↔ ¬✷¬A (Dual.)

✷(A→ B)→ (✷A→ ✷B) (K)

✷A→ A (T)

✷A→ ✷✷A (4)

Modus Ponens and Necessitation are the rules of inference:

ϕ→ ψ ϕ

ψ
(MP)

ϕ

✷ϕ
(N)

For a closer fit to topological reasoning, however, it is better to work with an equivalent

axiomatization:

✷⊤ (N)

(✷ϕ ∧✷ψ)↔ ✷(ϕ ∧ ψ) (R)

✷ϕ→ ϕ (T)

✷ϕ→ ✷✷ϕ (4)

Modus Ponens and Monotonicity are the only rules of inference

ϕ→ ψ ϕ

ψ
(MP)

ϕ→ ψ

✷ϕ→ ✷ψ
(M)

In addition, consider the following derived theorem of S4:

✷A ∨✷B ↔ ✷(✷A ∨✷B) (or)

Axiom (Dual.) reflects the topological duality of interior and closure. Axiom (K)

does not have an immediate interpretation, but it is equivalent to theorems (N) and (R),

which do (cf. [Bennett, 1995]). (N) says the whole space is open. (R) is the finite

intersection condition on a topological space. Next, (or) says that open sets are closed

under finite unions. (Closure under arbitrary unions requires an infinitary extension

of the modal language.) Finally, axiom (T) says every set contains its interior, and (4)

expresses inflationarity of the interior operator. Further principles of S4 may define

special notions in topology. For instance, the derived rule

if ✷(ϕ↔ ✸✷ϕ), then ✷(✷¬ϕ↔ ✷✸✷¬ϕ)

says that if a set is closed regular, so is its ‘open complement’.
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Figure 2.3: A spoon is bisimilar to a ‘chop-stick’. The relation among points that

match is highlighted via the double headed arrows.

2.1.1 Topological bisimulation

Once we have a language for expressing properties of visual scenes, we can also for-

mulate differences between such scenes. This brings us to the notion of ‘sameness’ for

spatial configurations associated with our language, and hence to techniques of com-

parison. The following is the topological version of a well-known notion from modal

logic and computer science ([van Benthem, 1976, Park, 1981]).

2.1.2. DEFINITION (TOPOLOGICAL BISIMULATION). Consider the language S4 and

two topological models 〈X,O, ν〉, 〈X ′, O′, ν ′〉. A topological bisimulation is a non-

empty relation ⇌ ⊆ X ×X ′ such that if x ⇌ x′ then:

(i) x ∈ ν(p)⇔ x′ ∈ ν ′(p) (for any proposition letter p)

(ii) (forth condition): x ∈ o ∈ O⇒ ∃o′ ∈ O′ : x′ ∈ o′ and ∀y′∈o′ : ∃y∈o : y ⇌ y′

(iii) (back condition): x′ ∈ o′ ∈ O′⇒ ∃o ∈ O : x ∈ o and ∀y ∈ o : ∃y′ ∈ o′ : y ⇌ y′

We call a bisimulation total if it is defined for all elements of X and of X ′. We over-

load the symbol ⇌ extending it to models with points: 〈X,O, ν〉, x ⇌ 〈X ′, O′, ν ′〉, x′
requires also that x ⇌ x′. If only the atomic clause (i) and the forth condition (ii) hold,

we say that the second model simulates the first one.

To motivate this definition, one can look at the ‘topological dynamics’ of the back and

forth clauses, seeing how they make x, x′ lie in the same ‘modal setting’. Further

motivations come from a match with modal formulas, and basic topological notions.

2.1.1. EXAMPLE (SPOON AND CHOP-STICK). Is a spoon the same as a chop-stick?

The answer depends of course on how we define this cutlery. Suppose we let the

spoon be a closed ellipse plus a touching straight line and the chop-stick a straight line

touching a closed triangle (cf. Figure 2.3). Let us regard both as the interpretation of

some fixed proposition letter p in their respective models. Then we do have a topo-

bisimulation by matching up (a) the two ‘junction points’, (b) all points in the two
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handles, and likewise for (c) the interiors, (d) the remaining boundary points, and (e)

all exterior points in both models.

Many more examples and cutlery related pictures of topologically bisimilar and not

spaces can be found in the technical report [Aiello and van Benthem, 1999].

Crucially, modal spatial properties are invariant for topo-bisimulations:

2.1.3. THEOREM. Let M = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν ′〉 be models with bisimilar

points x ∈ X, x′ ∈ X ′. For all modal formulas ϕ, M,x |= ϕ iff M ′, x′ |= ϕ.

Proof Induction on ϕ. The case of a proposition letter p is the first condition on ⇌.

As for conjunction, M,x |= ϕ ∧ ψ is equivalent by the truth definition to M,x |= ϕ
and M,x |= ψ, which by the induction hypothesis is equivalent to M ′, x′ |= ϕ and

M ′, x′ |= ψ, which by the truth definition amounts to M ′, x′ |= ϕ ∧ ψ. The other

Boolean cases are similar. For the modal case, we do one direction. If M,x |= ✷ϕ,

then by the truth definition we have that ∃o ∈ O : x ∈ o ∧ ∀y ∈ o : M, y |= ϕ. By

the forth condition, corresponding to o, there must exist an o′ ∈ O′ such that ∀y′ ∈ o′
∃y ∈ o y ⇌ y′. By the induction hypothesis applied to y and y′ with respect to ϕ,

then ∀y′ ∈ o′ : M ′, y′ |= ϕ. By the truth definition of the modal operator we have

M ′, x′ |= ✷ϕ. Using the back condition one proves the other direction likewise. QED

To clinch the fit, we need a converse. In general this fails, and matters become delicate

(see [Blackburn et al., 2001]). The converse does hold when we use an infinitary modal

language—but also for our finite language over special classes of models. Here is a nice

illustration: finite modally equivalent pointed models are bisimilar.

2.1.4. THEOREM. LetM = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν ′〉 be two finite models, x ∈ X ,

and x′ ∈ X ′ two points in them such that for every ϕ, M,x |= ϕ iff M ′, x′ |= ϕ. Then

there exists a bisimulation between M and M ′ connecting x and x′.

Proof To get a bisimulation between the two finite models, we stipulate that u ⇌ u′

if and only if u and u′ satisfy the same modal formulas. The atomic preservation

condition for a bisimulation holds since the modal ϕ include all proposition letters. We

now prove the forth condition. Suppose that u ⇌ u′ where u ∈ o. We must find an

open o′ such that u′ ∈ o′ and ∀y′ ∈ o′∃y ∈ o : y ⇌ y′. Now, suppose there is no such

o′. Then for every o′ containing x′ ∃y′ ∈ o′ : ∀y ∈ o : ∃ϕy : y 6|= ϕy and y′ |= ϕy. In

words, every open o′ contains a point y′ with no modally equivalent point in o. Taking

the finite conjunction of all formulas ϕy, we get a formula Φo′ such that y′ |= Φo′ and

¬Φo′ is true everywhere in o. Slightly abusing notation, we write o |= ¬Φo′ . This line

of reasoning holds for any open o′ containing x′ as chosen. Therefore, there exists a

collection of formulas ¬Φo′ for which o |= ∧
o′
¬Φo′ . Since x ∈ o, by the truth definition

we have x |= ✷
∧
o′
¬Φo′ . By the fact that x and x′ satisfy the same modal formulas, it

follows that x′ |= ✷
∧
o′
¬Φo′ . But then, there exists an open o∗ (with x′ ∈ o∗) such that
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o∗ |= ∧
o′
¬Φo′ . Since o∗ is an open containing x′, is one of the o′, i.e. o∗ |= ¬Φo∗ . But

we had supposed that for all opens o′ there was a point y′ |= Φo′ , so in particular the

y′ of o∗ satisfies Φo∗ . We have thus reached a contradiction: which shows that some

appropriate open o′ must exist. The back clause is proved analogously. QED

2.1.2 Connections with topology

The preceding results provide a match with logical definability. But topo-bisimulations

are also related to purely topological notions. Let us consider only topological frames

now, without valuations. Clearly, we have the following implication:

2.1.5. THEOREM. Homeomorphism implies total topo-bisimulation.

But not vice-versa! Homeomorphisms provide much more ‘analogy’ between two

spaces than topo-bisimulations. A trivial way of seeing this is as follows. Any two topo-

logical spaces are bisimilar. One can just take the full Cartesian product of their points.

Nevertheless, this is not a trivialization of the notion. First, specific topo-bisimulations

may be of independent interest – e.g., those preserving additional properties’ of points

(encoded in topo-models), where no similar trivial example exists. Second, the back

clause of topo-bisimulation resembles the characteristic property of continuous maps.

This fact provides a foothold for a systematic ‘modal logic analysis’ of topological

behavior. E.g., existential modal formulas constructed from literals, conjunction, dis-

junction and box only are preserved under simulations.

2.1.6. THEOREM. Let M = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν ′〉 be two models, with a sim-

ulation ⇁ from M to M ′, such that x ⇁ x′. Then, for any existential modal formula

ϕ, M,x |= ϕ only if M ′, x′ |= ϕ.

This result explains how continuous maps preserve basic topological properties. The

following fact is just one typical illustration:

2.1.7. COROLLARY. Let f be a surjective continuous map from 〈X,O〉 to 〈X ′, O′〉. If

the space 〈X,O〉 is connected, then so is 〈X ′, O′〉.

We leave the proof of Corollary 2.1.7 for Section 4.1. The reason for postponing the

proof is the need of extra logical power at the language level, more precisely, one needs

universal quantification over points. The origin of this need comes from the topological

component of the theorem which expresses a global property. In fact, a surjectiveness

claim is a claim of involvement for all points of the codomain space.

2.1.2. REMARK (INFORMATION TRANSFER). Various (bi-)simulations transfer log-

ical information across topological spaces. A case in point are ‘Chu morphisms’ relat-

ing topological spaces that are ‘adjoint’ in an abstract sense (cf. [van Benthem, 1998]).

Existential modal formulas are then mirrored in general first-order ‘flow formulas’.
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2.1.3 Topo-bisimilar reductions

In many contexts, bisimulations and simulations are used to find minimal models. This

is useful, for instance, to find minimal representations for labeled transition systems

having certain desired properties modally expressible. Topo-bisimulation can be used

for finding a minimal representation for a determined spatial configuration. For exam-

ple, consider a spoon with two handles, as depicted in Figure 2.6.a. The spoon has 7

‘salient’ points, these satisfy the formulas reported in Figure 2.4.

Point Formula

1 ✷p
2 ✸p ∧✸¬p
3 ✷¬p
4 p ∧ ¬✸✷p ∧✸✷¬p
5 ✸✷p ∧✸(p ∧ ¬✸✷p)
6 p ∧ ¬✸✷p ∧✸✷¬p
7 ✸✷p ∧✸(p ∧ ¬✸✷p)

Figure 2.4: Formulas true at points of the model in Figure 2.5.

It is easy to find an S4 Kripke model satisfying the 7 formulas above, for instance,

the one in Figure 2.5.a. By a bisimulation one ‘reduces’ it to a minimal similar one.

The topo-bisimilar reduction is presented in the table on the right of Figure 2.6.

From the reduced model one can ‘reconstruct’ the pictorial example, that is, a spoon

with only one handle, Figure 2.6.b. Checking the topo-bisimilarity of Figure 2.6.a and

Figure 2.6.b is an easy task to perform. We do not spell out the general method used

here for transforming topological models into Kripke ones (and back); but it should be

fairly clear from the example.

The claim is not that one should move back and forth from topological and Kripke

semantics to find minimal models. Our goal is to show that topo-bisimulations enable

the reduction of spatial models in the same way that bisimulations enable the reduction

of Kripke models. A general algorithm for deciding topo-bisimulation is still missing,

but one for a specific class of models will be presented and used in Chapter 6.

2.2 Games that compare visual scenes

Topo-bisimulation is a global notion of comparison. But in practice, we are inter-

ested in fine-structure: what are the ‘simplest differences’ that can be detected be-

tween two visual scenes? For this purpose, we introduce topo-gamestopological game

that generalize Ehrenfeucht-Fraı̈ssé comparison games between first-order models, see

[Doets, 1996]. Similarity and difference between visual scenes will then have to do

with strategies for players comparing them.
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Figure 2.5: The reduction of a topological model to a minimal topo-bisimilar one.

From a spoon with two handles to one with only one.

2.2.1. DEFINITION (TOPOLOGICAL GAME). Consider two topo-models 〈X,O, ν〉 ,
and 〈X ′, O′, ν ′〉, a natural number n and two points x1 ∈ X, x′1 ∈ X ′. A topological

game of length n, with starting points x1, x
′
1—notation TG(X,X ′, n, x1, x

′
1)—consists

of n rounds between two players: Spoiler and Duplicator. Each round proceeds as

follows:

(i) Spoiler chooses a model Xs and an open os containing the current point xs of

that model

(ii) Duplicator chooses an open od in the other modelXd containing the current point

xd of that model

(iii) Spoiler picks a point x̄d in Duplicator’s open od in the Xd model

(iv) Duplicator finally picks a point x̄s in Spoiler’s open os in Xs

The points x̄s and x̄d become the new current points of the Xs and Xd models, respec-

tively. After n rounds, two sequences have been built:

{x1, o1, x2, o2, . . . , on−1, xn} {x′1, o′1, x′2, o′2, . . . , o′n−1, x
′
n}

with xi ∈ oi, and oi ∈ O (analogously for the second sequence). After n rounds, if

xi and x′i (with i ∈ [1, n]) satisfy the same atoms, Duplicator wins. (Note that Spoiler

already wins ‘en route’, if Duplicator fails to maintain the atomic match.) A winning

strategy (‘w.s.’ for short) for Duplicator is a function from any sequence of moves by

Spoiler to appropriate responses which always ends in a win for Duplicator. The same

notion applies to Spoiler. An infinite topological game is one without a finite limit to

the number of rounds. In this case, Duplicator wins if the matched points continue to

satisfy the same atoms.
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Figure 2.6: The reduction of the spoons of Figure 2.5 via a bisimulation on the corre-

sponding Kripke models. In the table, the bisimulation relation.
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1 Round 2 Rounds 3 Rounds

(a) (b) (c)

Figure 2.7: Games on two spoons with two different starting points. On top, the num-

ber of rounds needed by Spoiler to win.

The opens in the game sequence do not play any role in determining which player

wins, but they visually guide the development of the game. For instance, the following

intuitive ‘Locality Principle’ holds. Players lose no winning strategies if we restrict

their moves to choosing opens that are contained in the previous open.

2.2.1. EXAMPLE (PLAYING ON SPOONS). Consider the three configurations in Fig-

ure 2.7. (a) The leftmost game starts with a point on the boundary of the spoon versus

an interior point of the other spoon. Spoiler can win this game in one round by simply

choosing an open set on the right spoon completely contained in its interior. Duplica-

tor’s open response must always contain a point not in the spoon, which Spoiler can

then pick, giving Duplicator no possible response. (b) In the central game, a point on

the handle is compared with a boundary point of the spoon’s container. Spoiler can

again win the game, but needs two rounds this time. Here is a winning strategy. First,

Spoiler chooses an open on the left spoon containing the starting point but without

interior points. Any open chosen by Duplicator on the other spoon must contain an

interior point. Spoiler then picks such an interior point. Duplicator’s response to that

can only be a boundary point of the other model (on the handle) or a point outside of

the spoon. In the latter case, she loses at once – in the former, she looses in one round,

by reduction to the previous game. (c) Finally, on the left the junction between handle

and container is compared with a boundary point of the container. In this game, Spoiler

will chose an open on the right model, avoiding points on the handle of the spoon. Du-

plicator is forced to chose an open on the left containing points on the handle. Spoiler

then picks such a handle point. Duplicator replies either with an interior point, or with

a boundary point of the right spoon. Thus we are back with game (b), and Spoiler can

win in the remaining two rounds.

The topological dynamics of these games is appealing. E.g. it is instructive to check

that other initial choices for Spoiler may very well lead to his losing the game! (E.g.,

let Spoiler start in the right-hand model in (b)). A strategy guarantees a win only for
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those who follow it. . . One can also make some more general mathematical observa-

tions here. In particular, topo-games are always determined: either Duplicator has a

winning strategy, or Spoiler has one.

2.2.1 Strategies and modal formulas

The fine-structure provided by games measures differences in terms of the minimum

number of rounds needed by Spoiler to win. These same differences may also be

formulated in terms of our modal language. To see this, we need the notion of modal

rank, being the maximum number of nested modal operators in a formula. For instance,

the modal ranks of the formulas in Figure 2.1: p, ✷p, p ∧ ¬✷p, ✸✷p, p ∧ ¬✸✷p,

✸✷p ∧✸(p ∧ ¬✸✷p), are 0, 1, 1, 2, 2, and 3, respectively. We are now ready for our

main result.

2.2.2. THEOREM (ADEQUACY). topological game!adequacy Duplicator has a w.s. in

TG(X,X ′, n, x, x′) iff x and x′ satisfy the same formulas of modal rank up to n.

Proof The left to right direction is proven by induction on the length n of the game

TG(X,X ′, n, x, x′). If n = 0 and Duplicator has a winning strategy, this means

that the points x, x′ satisfy the same proposition letters, and hence the same Boolean

combinations of proposition letters, i.e., the same modal formulas of modal rank 0.

Now for the inductive step. Suppose that Duplicator has a winning strategy σ in

TG(X,X ′, n, x, x′). We want to show that X, x |= ϕ iff X ′, x′ |= ϕ, when the modal

rank of ϕ is n. By simple syntactic inspection, ϕ must be a Boolean combination of

formulas of the form ✷ψ where ψ has modal rank less or equal to n − 1. Thus, it

suffices to prove that X, x |= ✷ψ iff X ′, x′ |= ✷ψ. Without loss of generality, let us

consider the first model. Suppose that X, x |= ✷ψ. By the truth definition there exists

an open o (with x ∈ o) such that ∀u ∈ o : X, z |= ψ. Now, assume that the n-round

game starts with Spoiler choosing o in X . Using the strategy σ, Duplicator can pick an

open o′ such that x′ ∈ o′ and ∀u′ ∈ o′ : X, u′ |= ψ. Now Spoiler can pick any point u′

in o′. Duplicator can use the information in σ to respond with a point u ∈ o, conclud-

ing the first round, so that the remaining strategy σ′ is still winning for Duplicator in

TG(X,X ′, n− 1, u, u′). By the inductive hypothesis, the fact that X, u |= ψ (where ψ
has modal rank n − 1) implies that X ′, x′ |= ψ. Thus we have shown that all u′ ∈ o′
satisfy ψ, and hence X ′, x′ |= ✷ψ. The other direction is analogous.

The right to left direction is again proven by induction on n. If n = 0, then x and

x′ satisfy the same non-modal formulas. In particular, they satisfy the same atoms,

which is winning for Duplicator, by the definition of topological game. Now for the

inductive step. Without loss of generality, let us assume that Spoiler picks an open set

o containing x in X in the first round of TG(X,X ′, n, x, x′) game. Now, take the set

{DESn−1(z)|z ∈ o}, where DESn−1(z) denotes all the formulas up to modal rank n−1
satisfied at z. This set is not finite per se, but we can simply prove the following
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2.2.3. FACT (LOGICAL FINITENESS). There are only finitely many modal formulas of

depth k up to logical equivalence.

Therefore, we can write one Boolean formula to describe this open set o, namely∨ ∧
DESn−1(z). Since this is true for all z ∈ o, by the truth definition we have

that X, x |= ✷
∨ ∧

DESn−1(z) (a formula of modal rank n). By hypothesis, x and

x′ satisfy the same modal formulas of modal rank n, so X ′, x′ |= ✷
∨ ∧

DESn−1(z).
This last fact, together with the truth definition implies that there exists an open o′

such that ∀z′ ∈ o′ : X ′, z′ |= ∨ ∧
DESn−1(z). This is the open that Duplicator must

choose to reply to Spoiler’s move. Now Spoiler can pick any point u′ in o′. Such a

point satisfies at least one disjunct
∧

DESn−1(z), and we let Duplicator respond with

z ∈ o. As a result of this first round, z, u′ satisfy the same modal formulas up to modal

depth n − 1. Hence by the inductive hypothesis, Duplicator has a winning strategy

for TG(X,X ′, n − 1, z, u′). Putting this together with our first instruction, we have a

winning strategy for Duplicator in the n-round game. QED

This is the usual version of adequacy: slanted towards similarity. But in our pic-

torial examples, we rather looked at Spoiler. One can also set up the proof of Theo-

rem 2.2.2 so as to obtain an effective correspondence between (a) winning strategies for

Spoiler, (b) modal ‘difference formulas’ for the initial points. Here is an illustration.

2.2.2. EXAMPLE (MATCHING STRATEGIES WITH FORMULAS). Look again at Fig-

ure 2.7. The strategies described for Spoiler are immediately linked to modal formulas

that distinguish the two models. Suppose the spoons are denoted by the proposition

letter p and hence the background by ¬p. In the game on the left, ✷p is true of the

starting point of the right spoon, and its negation ✸¬p is true of the starting point of

the other spoon. The modal depth of these formulas is one and therefore Spoiler can

win in one round. In the central case, a distinguishing formula is ¬✸✷p, which holds

for the starting point on the left spoon, but not for that on the right. The modal depth

is 2, which is the number of rounds that Spoiler needed to win the game. Finally, a

formula of modal depth 3 that is only true of the point on the left spoon of the leftmost

game is: ✸(p ∧ ¬✸✷p). The negation of this formulas is true on the other starting

point, thus justifying Spoiler’s winning strategy in 3 turns.

There is still more fine-structure to these games. E.g., visual scenes may have sev-

eral modal differences, and hence more than one winning strategy for Spoiler. Also,

recall that topo-games can be played infinitely. Then the winning strategies for Dupli-

cator (if any) are precisely the various topo-bisimulations between the two models. For

further details, see [Aiello and van Benthem, 1999], [van Benthem, 1999]—and also

[Barwise and Moss, 1996].

Before considering completeness of S4 with respect to topological spaces in the

next chapter, we remark an alternative modal approach to axiomatizing topology.
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2.3 Logical variations

Tarski’s interior modality ✷ iff ∃o ∈ O : x ∈ o∧∀y ∈ o : M, y |= ϕ is actually a mix-

ture of elements of different sorts. A ✷ϕ formula is true in a point x whenever there

exist an open set containing the point x itself and such that all points of the set satisfy ϕ.

The definition quantifies at the same time over points and over sets of points connected

by the incidence relation of set membership. Naturally, there is an alternative take on

the basic topological approach to topological reasoning: a ‘stepwise’ approach sepa-

rating points from open sets, thus splitting Tarski’s modality into two separate modal

quantifiers. The resulting modal logic was studied in [Dabrowski et al., 1996] and in

Georgatos’ PhD thesis [Georgatos, 1993]. The main motivation of their work is that

of modeling, with “weak logical systems whose primitives are appropriately chosen,”

logics of knowledge. In particular, with such a logic one can focus on the notion of ef-

fort in contraposition with that of view. The authors also explicitly mention the added

motivation of having devised a tool of potential use for visual reasoning. We share the

motivation and here place their language in our map of spatial logics to tour.

The definition of a model is analogous to that of topological models presented in

Section 2.1 and the truth definition for the new modal operators becomes:

M,x, o |= ✷p ϕ iff ∀y ∈ o : M, y, o |= ϕ
M, x, o |= ✸s ϕ iff ∀o′ ⊆ o ∈ O : x ∈ o′ ∧M,x, o′ |= ϕ

where x, y ∈ X are points and o, o′ ∈ O are open sets. The relation with Tarski’s

interior modality is quite straightforward:

✷ϕ if ✸s ✷p ϕ

Proof The truth definition of the formula ✸s ✷p ϕ states M,x, o |= ∀o′ ⊆ o ∈ O :

x ∈ o′ ∧ ∀y ∈ o′ : M, y, o |= ϕ. On the other hand, in the truth definition of ✷

there is no reference to an open set, so the previous truth definition becomes M,x |=
∃o ∀o′ ⊆ o ∈ O : x ∈ o′ ∧ ∀y ∈ o′ : M, y, o |= ϕ, which trivially simplifies to

M,x |= ∃o x ∈ o ∧ ∀y ∈ o : M, y, o |= ϕ which is precisely the definition of ✷ϕ.

QED

The two level language affords a nice new view on the S4-behavior of our original

topological interpretation. E.g., consider the behavior of the S4 axioms.

✷ϕ→ ϕ becomes ✸s ✷p ϕ→ ϕ, (2.1)

which, in a two-sorted modal logic, expresses the fact that the accessibility relation

for s is contained in the converse of that for p. This is a natural connection between

‘x ∈ A’ and ‘A ∋ x’. Note that reflexivity vanishes!

✷ϕ→ ✷✷ϕ becomes ✸s ✷p ϕ→ ✸s ✷p ✸s ✷p ϕ, (2.2)

which follows from

✷p ϕ→ ✷p ✸s ✷p ϕ
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which is simply a minimally valid consequence of conversion (ψ → ✷p ✸s ψ). The rest is

an application of the valid modal base rule “from γ → σ to ✸s γ → ✸s σ.”

✷ϕ ∧✷ψ → ✷(ϕ ∧ ψ) becomes ✸s ✷p ϕ ∧✸s ✷p ψ → ✸s ✷p (ϕ ∧ ψ), (2.3)

a principle which has no obvious meaning in a two-sorted modal language. We can

analyze its meaning by frame correspondence techniques [Blackburn et al., 2001], to

obtain:

∀A,B : ((x ∈ A ∧ x ∈ B)→ ∃C : (x ∈ C ∧ ∀y ∈ C : y ∈ A ∨ y ∈ B)).

The full axiomatization of the logic is known [Dabrowski et al., 1996]. The set modal-

ity ✸s has the S5 axiomatization, while the point modality ✷p retains the S4 axiomatiza-

tion. Depending on which models we consider there is a number of different interaction

axioms that also hold. If we consider models for which the set O follows the laws of

open spaces, rather than just being a family of subsets with no specific structure (cf.

neighbourhood semantics), one gets:

✸s ✷p ϕ→ ✷p ✸s ϕ (Cross)

✸p ϕ ∧✷s ✸p ψ → ✸p (✸p ϕ ∧✷s ✸p ψ ∧✸s ✸p ✷s (ϕ ∨ ψ)) (Union)

Either way, whether by a single modality defined by a second-order existential and an

universal quantifiers or by a two-sorted modal logic defined by first-order quantifica-

tions, there is a landscape of possible modal languages for topological patterns whose

nature is by no means understood. For instance, one would like to understand what are

natural well-chosen languages for simulations, and also, what are the complexity jumps

between languages and their logics in this spectrum.





CHAPTER 3

THE TOPO APPROACH: AXIOMATICS

Regarding the modal box as an interior operator, one gets the feeling for why the modal

logic S4 is complete with respect to arbitrary topological spaces as modal logic axioms

mimic Kuratowski’s topological axioms. But there are classical results with much

more mathematical content, such as McKinsey and Tarski’s beautiful theorem stating

that S4 is the complete logic of the reals, and indeed of any metric separable space

without isolated points. Even so, the topological interpretation has always remained

something of a side-show in modal logic and intuitionistic logic, often tucked away

in notes and appendices. The purpose of this chapter is to take it one step further as

a first stage in a program of independent interest, viz. the modal analysis of space

—showing how one can get more generality, as well as some nice new questions. In

particular, this chapter contains (a) a modern analysis of the modal language S4 as

presented in Chapter 2 in terms of ‘topo-bisimulation’, (b) a number of connections

between topological models and Kripke models, (c) a new general proof of McKinsey

and Tarski’s Theorem (inspired by [Mints, 1998]), (d) an analysis of special topological

logics on the reals, pointing toward a landscape of spatial logics above S4.

3.1 Topological spaces and Kripke models

The purpose of this section is a link-up with the better-known world of ‘standard’

semantics for modal logic. At the same time, this comparison increases our under-

standing of the ‘topological content’ of modal logic.

3.1.1 The basic connection

The standard Kripke semantics is a particular case of its more general topological se-

mantics. Recall that an S4-frame (henceforth ‘frame’, for short) is a pair 〈W,R〉, where

W is a non-empty set and R a quasi-order (transitive and reflexive) on W . Call a set

X ⊆ W upward closed if w ∈ X and wRv imply v ∈ X .

23
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3.1.1. FACT. Every frame 〈W,R〉 induces a topological space 〈W, τR〉, where τR is the

set of all upward closed subsets of 〈W,R〉.

It is easy to check that τR is a topology onW , and that the closure and interior operators

of 〈W, τR〉 are respectively R−1(X) and W − R−1(W − X), where R−1(w) = {v ∈
W |vRw} and R−1(X) =

⋃
w∈X R

−1(w), for w ∈ W , X ⊆ W . Indeed, τR is a rather

special topology on W : for any family {Xi}i∈I ⊆ τR, we have
⋂
i∈I Xi ∈ τR. Such

spaces are called Alexandroff spaces, in which every point has a least neighborhood.

In frames, the least neighborhood of a point w is evidently {v ∈ W |wRv}, which is

usually denoted by R(w).
Conversely, every topological space 〈W, τ〉 naturally induces a quasi-order Rτ de-

fined by putting

wRτv iff w ∈ {v} iff w ∈ U implies v ∈ U , for every U ∈ τ .

This is called the specialization order in the topological literature. Again it is easy to

check that Rτ is transitive and reflexive, and that every open set of τ is Rτ -upward

closed. Moreover, Rτ is anti-symmetric iff 〈W, τ〉 satisfies the T0 separation axiom

(that is, any two different points are separated by an open set). Hence Rτ is a partial

order iff 〈W, τ〉 is a T0-space.

Combining the two mappings, R = RτR , τ ⊆ τRτ
, and τ = τRτ

iff 〈W, τ〉 is an

Alexandroff space. Indeed, wRτRv iff w ∈ {v} iff w ∈ R−1(v) iff wRv. Also, as every

open set of τ is Rτ -upward closed, τ ⊆ τRτ
. Finally, τ = τRτ

iff every Rτ -upward

closed set belongs to τ iff every point of W has a least neighborhood in 〈W, τ〉 iff

〈W, τ〉 is an Alexandroff space.

The upshot of all this is a one-to-one correspondence between quasi-ordered sets

and Alexandroff spaces, and between partially ordered sets and Alexandroff T0-spaces.

Since every finite topological space is an Alexandroff space, this immediately gives

a one-to-one correspondence between finite quasi-ordered sets and finite topological

spaces, and finite partially ordered sets and finite T0-spaces.

There is also a one-to-one correspondence between continuous maps and order

preserving maps, as well as open maps and p-morphisms. Indeed, let two topolog-

ical spaces 〈W1, τ1〉 and 〈W2, τ2〉 be given. Recall that a function f : W1 → W2

is continuous if f−1(V ) ∈ τ1 for every V ∈ τ2. Moreover, f is open if it is con-

tinuous and f(U) ∈ τ2 for every U ∈ τ1. It is well-known that f is continuous iff

f−1(X) ⊆ f−1(X), and that f is open iff f−1(X) = f−1(X), for every X ⊆ W2.

Next, for two quasi-orders 〈W1, R1〉 and 〈W2, R2〉, f : W1 → W2 is said to be

order preserving if wR1v implies f(w)R2f(v), for w, v ∈ W1. f is a p-morphism

if it is order preserving, and in addition f(w)R2v implies that there exists u ∈ W1

such that wR1u and f(u) = v, for w ∈ W1 and v ∈ W2. It is well-known that

f is order preserving iff R−1
1 f−1(w) ⊆ f−1R−1

2 (w), and that f is a p-morphism iff

R−1
1 f−1(w) = f−1R−1

2 (w), for every w ∈ W2.

Putting this together, one easily sees that f is monotone iff f is continuous, and

that f is p-morphism iff f is open.
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As an easy consequence we obtain that the category ATop of Alexandroff spaces

and continuous maps is isomorphic to the category Qos of quasi ordered sets and order

preserving maps, and that the category ATop+ of Alexandroff spaces and open maps

is isomorphic to the category Qos+ of quasi ordered sets and p-morphisms. Similarly,

the category ATopT0
of Alexandroff T0-spaces and continuous maps is isomorphic to

the category Pos of partially ordered sets and order preserving maps, and the category

ATop+
T0

of Alexandroff T0-spaces and open maps is isomorphic to the category Pos+

of partially ordered sets and p-morphisms.

In the finite case, we get that the category FinTop of finite spaces and continu-

ous maps is isomorphic to the category FinQos of finite quasi ordered sets and or-

der preserving maps, and that the category FinTop+ of finite topological spaces and

open maps is isomorphic to the category FinQos+ of finite quasi ordered sets and p-

morphisms. Similarly, the category FinTopT0
of finite T0-spaces and continuous maps

is isomorphic to the category FinPos of finite partially ordered sets and order preserv-

ing maps, and the category FinTop+
T0

of finite T0-spaces and open maps is isomorphic

to the category FinPos+ of finite partially ordered sets and p-morphisms.

3.1.2 Analogies

The tight connection between modal frames and topological spaces explains the earlier-

mentioned analogies in their semantic development, such as locality and invariance for

bisimulation. It may be extended to include other basic modal topics, such as corre-

spondence theory [van Benthem, 1985]. Likewise, the modern move toward extended

modal languages makes equally good sense for the topological interpretation. Many

natural topological notions need extra modal power for their definition: good exam-

ples are the basic separation axioms. We just saw that, among the quasi orders, partial

orders correspond to topological spaces satisfying the T0 separation axiom. But this

difference does not show up in our basic modal language: S4 is complete with respect

to arbitrary partial orders. Defining separation axioms requires various expressive ex-

tensions of the modal base language.

Finally, in a more technical sense, there still seems to be a vast difference. The

format of the topological interpretation looks more complex than the usual one which

quantifies over accessible worlds only. For, it involves a second-order quantification

over sets of worlds, plus a first-order quantification over their members. But this differ-

ence is more apparent than real, because the quantification is over open sets only, and

we may plausibly think of topological models as two-sorted first-order models with

separate domains of ‘points’ and ‘opens’, see Section 2.3.

3.2 General completeness

The preceding section shows that standard modal models are a particular case of a

more general topological semantics. Hence, the known completeness of S4 plus the
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topological soundness of its axioms immediately give us general topological complete-

ness. Even so, we now give a direct model-theoretic proof of this result. It is closely

related to the standard modal Henkin construction, but with some nice topological

twists. (Compare [Chellas, 1980] for the quite analogous case of modal ‘neighborhood

semantics’.)

3.2.1 The main argument

Soundness is immediate, and hence we move directly to completeness. Call a set Γ
of formulas of L (S4–)consistent if for no finite set {ϕ1, . . . , ϕn} ⊆ Γ we have that

S4 ⊢ ¬(ϕ1 ∧ · · · ∧ ϕn). A consistent set of formulas Γ is called maximally consistent

if there is no consistent set of formulas properly containing Γ. It is well-known that Γ
is maximally consistent iff, for any formula ϕ of L, either ϕ ∈ Γ or ¬ϕ ∈ Γ, but not

both. Now we define a topological space out of maximally consistent sets of formulas.

3.2.1. DEFINITION (CANONICAL SPACE). The canonical topological space is the pair

SL = 〈WL, τL〉, where:

• WL is the set of all maximally consistent sets Γmax;

• τL is the set generated by arbitrary unions of the following basic sets BL =

{✷̂ϕ| ϕ is any formula }, where ϕ̂ =def {Γmax ∈ WL| ϕ ∈ Γmax}. In other

words, basic sets are the families of the form: Uϕ = {Γmax ∈ WL|✷ϕ ∈ Γmax}.

Let us first check that SL is indeed a topological space.

3.2.2. LEMMA. BL forms a basis for the topology.

Proof We only need to show the following two properties:

• For any Uϕ, Uψ ∈ BL and any Γmax ∈ Uϕ ∩ Uψ, there is Uχ ∈ BL such that

Γmax ∈ Uχ ⊆ Uϕ ∩ Uψ;

• For any Γmax ∈ WL, there is Uϕ ∈ BL such that Γmax ∈ Uϕ.

Now, (N) implies that ✷⊤ ∈ Γmax, for any Γmax. Hence WL = ✷̂⊤ and the sec-

ond item is satisfied. As for the first item, thanks to (R), one can easily check that
̂✷(ϕ ∧ ψ) = ✷̂ϕ ∩ ✷̂ψ. Hence Uϕ ∩ Uψ ∈ BL, and so BL is closed under finite inter-

sections: whence the first item is satisfied. QED

Next we define the canonical topological model.

3.2.3. DEFINITION (CANONICAL MODEL). The canonical topological model is the

pair ML = 〈SL, νL〉, where:
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• SL is the canonical topological space;

• νL(P ) = {Γmax ∈ XL| P ∈ Γmax}.

The valuation νL equates truth of a proposition letter at a maximally consistent

set with its membership in that set. We now show this harmony between the two

viewpoints lifts to all formulas.

3.2.4. LEMMA (TRUTH LEMMA). For all modal formulas ϕ,

ML, w |=L ϕ iff w ∈ ϕ̂.

Proof Induction on the complexity of ϕ. The base case was just described. The

case of the Booleans follows from the following well-known identities for maximally

consistent sets:

• ¬̂ϕ = WL − ϕ̂;

• ϕ̂ ∧ ψ = ϕ̂ ∩ ψ̂.

The interesting case is that of the modal operator ✷. We do the two relevant impli-

cations separately, starting with the easy one.

⇐ ‘From membership to truth.’ Suppose w ∈ ✷̂ϕ. By definition, ✷̂ϕ is a basic

set, hence open. Moreover, thanks to axiom (T), ✷̂ϕ ⊆ ϕ̂. Hence there exists an open

neighborhood U = ✷̂ϕ of w such that for any v ∈ U , v ∈ ϕ̂, and by the induction

hypothesis, ML, v |=L ϕ. Thus ML, w |=L ✷ϕ.

⇒ ‘From truth to membership.’ Suppose ML, w |=L ✷ϕ. Then there exists a basic

set ✷̂ψ ∈ BL such that w ∈ ✷̂ψ and for all v ∈ ✷̂ψ, ML, v |=L ϕ. By the induction

hypothesis, ∀v ∈ ✷̂ψ, v ∈ ϕ̂: i.e., ✷̂ψ ⊆ ϕ̂. But this implies that the logic S4 can prove

the implication ✷ψ → ϕ. (If not, then there would be some maximally consistent set

containing both ✷ψ and ¬ϕ.) But then we can prove the implication ✷✷ψ → ✷φ,

and hence, using the S4 transitivity axiom, ✷ψ → ✷φ. It follows that ✷̂ψ ⊆ ✷̂φ, and

hence the world w belongs to ✷̂φ. QED

Now we can clinch the proof of our main result.

3.2.5. THEOREM (COMPLETENESS). For any set of formulas Γ,

if Γ |=L ϕ then Γ ⊢S4 ϕ.

Proof Suppose that Γ ⊢S4 ϕ. Then Γ ∪ {¬ϕ} is consistent, and by the Lindenbaum

Lemma it can be extended to a maximally consistent set Γmax. By the Truth Lemma,

ML,Γmax |=L ¬ϕ, whence Γmax 6|=L ϕ, and we have constructed the required counter-

model. QED
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3.2.2 Topological comments

Let us now look at some topological aspects of this construction. In proving the box

case of Truth Lemma, we did not use the standard modal argument, which crucially

invokes the distribution axiom of the minimal modal logic. Normally, one shows that,

if a formula ✷φ does not belong to a maximally consistent set Γ, then there exists some

maximally consistent successor set of Γ containing ¬ϕ. This is not necessary in the

topological version at this stage. We only need the reflexivity and transitivity axioms,

plus the Lindenbaum Lemma on maximally consistent extensions. The modal distri-

bution axiom still plays a crucial role, but that was at the earlier stage of verifying that

we had really defined a topology. This different way of ‘cutting the cake’ provides an

additional proof-theoretic explanation why S4 is the weakest axiom system complete

for topological semantics. Moreover, the divergence with the ‘standard’ argument ex-

plodes the prejudice that one single ‘well-known’ interpretation for a language must

be the only natural one. Comparing our construction with the standard Henkin model

for S4 〈WL, RL, |=L〉, the basic sets of our topology SL are RL-upward closed. Hence

every open of SL is RL-upward closed, and SL is weaker than the topology τRL corre-

sponding to RL. In particular, our canonical space is not an Alexandroff space.

Here are some further topological aspects of the above construction. First, it is

worthwhile to compare Stone’s famous construction which uses the alternative basis

{ϕ̂|ϕ any formula}, yielding a space which we denote by 〈WL, τS〉. It is well-known

that 〈WL, τS〉 is homeomorphic to the Cantor space—and so, up to homeomorphism,

〈WL, τS〉 is compact, metric, 0-dimensional, and dense-in-itself. The basis of our

topology, however, was the sub-family {✷̂ϕ|ϕ any formula}. Now every subtopology

of one that is compact and dense-in-itself is also compact and dense-in-itself. There-

fore, we get these same properties for our canonical topological space. But we can be

more precise than this.

3.2.6. FACT. The canonical topology is actually the intersection of the Kripke and

Stone topologies.

In other words, τL = τRL ∩ τS . Indeed, since τL ⊆ τRL and τL ⊆ τS , obviously

τL ⊆ τRL ∩ τS . Conversely, since every base set ϕ̂ of Stone’s topology is RL-upward

closed iff ϕ̂ = ✷̂ψ for some ψ, τRL ∩ τS ⊆ τL, and τL = τRL ∩ τS .

One can also connect modal formulas and topological properties more directly, by

giving a direct proof of the fact that SL is compact and dense-in-itself. The former fact

goes just as for the Stone space, but we display it for the sake of illustration.

3.2.7. LEMMA. SL is compact.

Proof Ad absurdum, there is a family {✷̂ψi}i∈I ⊆ BL such that
⋃
i∈I ✷̂ψi = WL,

and for no finite subfamily {✷̂ψi1 , . . . , ✷̂ψin} we have ✷̂ψi1 ∪ · · · ∪ ✷̂ψin = WL. Let

Γ = {¬✷ψi}i∈I .
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3.2.8. CLAIM. Γ is consistent.

Proof Ad absurdum, there is a finite number of formulas ¬✷ψ1, . . . ,¬✷ψn ∈ Γ
such that S4 ⊢ ¬(¬✷ψ1 ∧ · · · ∧ ¬✷ψn). Hence S4 ⊢ ✷ψ1 ∨ · · · ∨ ✷ψn. But then

✷̂ψ1 ∪ · · · ∪ ✷̂ψn = WL, which is a contradiction. QED

Since Γ is consistent, it can be extended to a maximally consistent set Γmax. Obviously

¬✷ψi ∈ Γmax for any i ∈ I . Hence Γmax ∈ ¬̂✷ψi for any i ∈ I . Since ¬̂✷ψi =

WL − ✷̂ψi, Γmax ∈ WL − ✷̂ψi for any i ∈ I . Hence Γmax ∈ WL −⋃
i∈I ✷̂ψi, which

contradicts our assumption. Thus, SL is compact. QED

3.2.9. LEMMA. SL is dense-in-itself.

Proof Suppose there was an isolated point w in SL. Then there is a formula ✷ϕ with

✷̂ϕ = {w}. This means ✷ϕ ∈ w and for any ψ, ψ ∈ w iff S4 ⊢ ✷ϕ → ψ, which

is obviously a contradiction—since we are working in a language with infinitely many

propositional letters. QED

3.2.10. COROLLARY. S4 is the logic of the class of all topological spaces which are

compact and dense-in-itself.

Still, the canonical topological space SL is neither 0-dimensional nor metric (it is not

even a T0-space). So, SL is not homeomorphic to the Cantor space. In the next section,

we show how to get completeness of S4 with respect to the Cantor space by a different

route.

3.2.3 Finite spaces suffice

We conclude with an observation that is important for later arguments. The whole

construction in the completeness proof would also work if we restricted attention to the

finite language consisting of the initial formula and all its subformulas. All definitions

go through, and our arguments never needs to go beyond it. This means that we only get

finitely many maximally consistent sets, and so non-provable formulas can be refuted

on finite models, whose size is effectively computable from the formula itself. Note

however that the obtained finite model will not necessarily be dense-in-itself.

3.2.11. COROLLARY. S4 has the effective finite model property w.r.t. the class of topo-

logical spaces.

Incidentally, this also shows that validity in S4 is decidable, but we forego such

computability issues in this thesis.
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The resulting models have some interesting topological extras. Consider any finite

modal frame F = 〈W,R〉. We define some auxiliary notions. For any w ∈ W , let

C(w) = {v ∈ W |wRv & vRw}. Call a set C a cluster if it is of the form C(w)
for some w: the cluster generated by w. C(w) is simple if C(w) = {w}, and proper

otherwise. w ∈ W is called minimal if vRw implies wRv for any v ∈ W . A cluster C
is minimal if there exists a minimal w ∈ W such that C = C(w). Next, call F rooted

if there is w ∈ W such that wRv for any v ∈ W : w is then a root of F . This w needs

not be unique: any point from C(w), the initial cluster of F , will do.

Evidently, a finite Kripke frame F is rooted iff it has only one minimal cluster.

Topologically, this property is related to the earlier notion of connectedness. A topo-

logical space 〈W, τ〉 is connected if its universe cannot be written as a union of two

disjoint open sets. 〈W, τ〉 is well-connected if W = U ∪V implies W = U or W = V ,

for any U, V ∈ τ . Obviously well-connectedness is a stronger notion than connect-

edness. It corresponds to 〈W,Rτ 〉 being rooted. For this observe that, dually, well-

connectedness can be stated as follows:

For any two closed subsets C,D of 〈W, τ〉, C ∩D = ∅ implies C = ∅ or D = ∅.

3.2.12. LEMMA. A finite Kripke frame is rooted if and only if the corresponding topo-

logical space is well-connected.

Proof Suppose 〈W,R〉 is a rooted Kripke frame with a root w, and 〈W, τR〉 the cor-

responding topological space. Let X1 and X2 be closed sets of 〈W, τR〉 such that

X1 ∩ X2 = ∅. By an easy dualization of the notions of Section 3.1.1, a set X ⊆ W
is topologically closed iff it is downward closed in the ordering, that is u ∈ X and

vRu imply v ∈ X , for any u, v ∈ W . Now if both X1 and X2 are non-empty, then w
belongs to both of them, which is a contradiction. Hence one of them should be empty,

and 〈W, τR〉 is well-connected.

Conversely, suppose 〈W,R〉 is not rooted. Then there are at least two different

minimal clusters C1 and C2 in W . Since C1 and C2 are minimal clusters, they are

downward closed, and hence closed in 〈W, τR〉. Moreover, since they are different,

C1 ∩ C2 = ∅. Hence 〈W, τR〉 is not well-connected. QED

This allows us to improve on Corollary 3.2.11.

3.2.13. THEOREM. S4 is the logic of finite well-connected topological spaces.

Proof It suffices to observe the following. If a modal formula has a counter-example

on a finite Kripke model, it fails in some point there. But then by standard ‘Locality’, it

also fails in the submodel generated by that point and its relational successors, which

is rooted—and hence transforms into a well-connected topological space. QED
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Again, there is a downside to such an upgraded completeness result. What it also means

is that the basic modal language cannot define such a nice topological property as well-

connectedness. As we saw in Section 2.4, the definition of connectedness requires

introduction of additional modalities. So does well-connectedness.

Finally, let us mention that for refuting non-theorems of S4 it is enough to restrict

ourselves to the class of those finite rooted models for which every cluster is proper.

As we already mentioned in Section 3.1.1, having only simple clusters topologically

corresponds to the T0 separation axiom, which in finite case is equivalent to the TD
separation axiom (every point is obtained as intersection of an open and a closed sets).

Consequently, having only proper clusters topologically corresponds to the fact that no

point can be obtained as intersection of an open and a closed sets. Call spaces with this

property essentially non-TD. Then we can improve a little bit on Theorem 3.2.13:

3.2.14. THEOREM. S4 is the logic of finite well-connected essentially non-TD topo-

logical spaces.

Proof Suppose a modal formula ϕ has a counter-example on a finite rooted Kripke

model M = 〈W,R, |=〉. Then replacing every cluster of W by an n-element cluster,

where n is the maximum among the sizes of the clusters of W , we obtain a new frame

〈W ′, R′〉. Obviously 〈W,R〉 is a p-morphic image of 〈W ′, R′〉. This allows us to

define |=′ on 〈W ′, R′〉 so that ϕ has also a counter-example on M ′ = 〈W ′, R′, |=′〉.
Now every cluster of W ′ is proper, hence 〈W ′, R′〉 transforms into a well-connected

essentially non-TD topological space. QED

3.3 Completeness on the reals

As early as 1944, McKinsey and Tarski proved the following beautiful result, which is

an expansion of a completeness theorem by Tarski for intuitionistic propositional logic

from 1938:

3.3.1. THEOREM (MCKINSEY AND TARSKI). S4 is the complete logic of any metric

separable dense-in-itself space.

Most importantly, this theorem implies completeness of S4 with respect to the real

line IR. It also implies completeness of S4 with respect to the Cantor space C.

Our presentation does not present any startling new results improving on this the-

orem. It rather takes a systematic look at its proof, and what it achieves. The original

algebraic proof in [McKinsey and Tarski, 1944] was very complex, the later more topo-

logical version in [Rasiowa and Sikorski, 1963] is not much more accessible. Recently,

Mints [Mints, 1998] replaced these by a much more perspicuous model-theoretic con-

struction, extending earlier ideas of Beth and Kripke to get faster completeness of S4
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with respect to the Cantor space. We generalize its model-theoretic structure, using

topo-bisimulations, and also provide a modification for completeness on the reals.

Our strategy in the following subsections starts from the standard modal complete-

ness for S4 involving counter-examples on finite rooted models, and then exhibits a

topo-bisimulation resulting in “tree-like” topological model homeomorphic to the Can-

tor space C. We then show how to extract completeness of S4 with respect to the reals

from the completeness of S4 with respect to C.

3.3.1 Cantorization

Our starting point is an arbitrary modal formula which is not provable in S4. We have

already seen that such a non-theorem can be refuted on a finite rooted Kripke model.

Now we show how to transform the latter into a counterexample on the Cantor space

C. Our technique is selective unraveling, a refinement of the unraveling technique

[Blackburn et al., 2001].

SupposeM = 〈W,R, |=〉 is a finite rooted model with a rootw. Our goal is to select

those infinite paths of M which are in a one-to-one correspondence with infinite paths

of the full infinite binary tree T2. In order to give an easier description of our construc-

tion, we assume that every cluster ofW is proper. This can be done by Theorem 3.2.14.

Now start with a root w, and announce (w) as a selective path. Then if (w1, . . . , wk)
is already a selective path, introduce a left move by announcing (w1, . . . , wk, wk) as

a selective path; and introduce a right move by announcing (w1, . . . , wk, wk+1) as a

selective path if wkRwk+1 and wk 6= wk+1. (Since we assumed that every cluster of W
is proper, such wk+1 will exist for every wk.)

To make this idea precise, we need some definitions. For u, v ∈ W , call v a strong

successor of u if uRv and u 6= v. Write SSuc(u) for the set of all strong successors

of u. Since we assumed that every cluster of W is proper, SSuc(u) 6= ∅ for every

u ∈ W . Suppose v1, . . . , vn is a complete enumeration of SSuc(u) for every u ∈ W .

Now define a selective path of W recursively:

1 (w) is a selective path;

2 If (w1, . . . , wk) is a selective path of length k, then (w1, . . . , wk, wk+1) is a se-

lective path of length k + 1, where wk+1 = wk;

3 If (w1, . . . , wk) is a selective path of length k, then (w1, . . . , wk, wk+1) is a se-

lective path of length k + 1, where wk+1 = vi with i ≡ k(mod n);1

4 That’s all!

1In other words, wk+1 is the first strong successor of wk in the complete enumeration of SSuc(wk)
which has not appeared in any selective path of length k; if all strong successors of wk have already

appeared in one of selective paths of length k, then we start over again and put wk+1 to be the first

strong successor of wk in the complete enumeration of SSuc(wk).
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Use Σ to denote the set of all infinite selective paths of W . For a finite selective

path (w1, . . . , wk), let

B(w1,...,wk) = {σ ∈ Σ| σ has an initial semgnet (w1, . . . , wk)}.

Define a topology τΣ on Σ by introducing

BΣ = {B(w1,...,wk)|(w1, . . . , wk) is a finite selective path of W}

as a basis. To see that BΣ is a basis, observe that B(w) = Σ, and that

B(w1,...,wk) ∩B(v1,...,vm) =





B(w1,...,wk) if (v1, . . . , vm) is an initial segment

of (w1, . . . , wk),
B(v1,...,vm) if (w1, . . . , wk) is an initial segment

of (v1, . . . , vm),
∅ otherwise.

In order to define |=Σ note that every infinite selective path σ of W either gets sta-

ble or keeps cycling. In other words, either σ = (w1, . . . , wk, wk, . . . ), or σ =
(w1, . . . , wn, wn+1, . . . ), where wi belongs to some cluster C ⊆ W for i > n. In

the former case we say that wk stabilizes σ, and in the latter that σ keeps cycling in C.

Now define |=Σ on Σ by putting

σ |=Σ P iff





wk |= P if wk stabilizes σ,

ρ(C) |= P if σ keeps cycling in C ⊆ W, where ρ(C) is some

arbitrarily chosen representative of C.

All we need to show is that 〈Σ, τΣ〉 is homeomorphic to the Cantor space, and that

MΣ = 〈Σ, τΣ, |=Σ〉 is topo-bisimilar to the initialM . In order to show the first claim, let

us recall that the Cantor space is homeomorphic to the countable topological product

of the two element set 2 = {0, 1} with the discrete topology. So, C ∼= 2ω with the

subbasic sets for the topology being U =
∏

i∈ω Ui, where all but one Ui coincide with

2, or equivalently with the basic sets for the topology being U =
∏

i∈ω Ui, where all

but finitely many Ui coincide with 2.

To picture the Cantor space, one can think of the full infinite binary tree T2: starting

at the root, one associates 0 to every left-son of a node, and 1 with every right-son. Then

the points of the Cantor space are the infinite branches of T2.

3.3.2. PROPOSITION. 〈Σ, τΣ〉 is homeomorphic to C.

Proof Suppose σ = (w1, w2, w3, . . . , wk, . . . ) ∈ Σ, where w1 = w is a root of W .

With each wk (k > 1) associate 0 if wk−1 = wk, and associate 1 if wk is a strong



34 • Chapter 3. THE TOPO APPROACH: AXIOMATICS

successor of wk−1. Denote an element of 2 associated with wk by g(wk) and define

G : Σ→ 2ω by putting

G(w1, w2, w3, . . . , wk, . . . ) = (g(w2), g(w3), . . . , g(wk), . . . ).

It should be clear from the definition that G is a bijection. In order to prove that it is

a homeomorphism, we need to check that G is open. So, suppose B(w1,...,wk) is a basic

open set of τΣ. Then

G(B(w1,...,wk)) = {g(w2)} × · · · × {g(wk)} × 2ω

is a basic open of C, G preserves basic opens, hence preserves opens. Conversely,

suppose U = 2k−1 × {ck} × 2ω, where ck = 0 or 1, is a subbasic open of C. Then

G−1(U) =
⋃

g(wk)=ck

B(w1,...,wk),

which obviously belongs to τΣ. Thus, G is open, hence a homeomorphism. QED

It is left to be shown that MΣ is topo-bisimilar to M . Define F : Σ→ W by putting

F (σ) =

{
wk if wk stabilizes σ,
ρ(C) if σ keeps cycling in C.

F is well-defined, and surjective. (For any wk ∈ W , F (σ0, wk, wk, . . . ) = wk, where

σ0 is a (finite) selective path from w1 to wk.)

3.3.3. PROPOSITION. F is a total topo-bisimulation between MΣ = 〈Σ, τΣ, |=Σ〉 and

M = 〈W,R, |=〉.

Proof Recall from the previous section that a finite topological space 〈W, τR〉 is as-

sociated with 〈W,R〉 (since 〈W,R〉 is rooted, 〈W, τR〉 is actually well-connected). Let

us check that F : 〈Σ, τΣ〉 → 〈W, τR〉 is open. Recall that R(v), for v ∈ W , are basic

opens of τR. So, in order to check that F is continuous, we need to show that the F
inverse image of every R(v) is open in τΣ. Observe that for any v ∈ W ,

F−1(R(v)) =
⋃

k∈ω, vRwk

B(w1,...,wk),

which is an element of τΣ. Indeed, suppose σ ∈ ⋃
k∈ω, vRwk

B(w1,...,wk). Then σ be-

longs to one of B(w1,...,wk) with vRwk. But then wkRF (σ), which together with vRwk
and transitivity of R imply that vRF (σ). So, F (σ) ∈ R(v), and σ ∈ F−1(R(v)).
Conversely, suppose σ ∈ F−1(R(v)). Then F (σ) ∈ R(v), and vRF (σ). Now ei-

ther wk stabilizes σ, or σ keeps cycling in a cluster C. In the former case, σ =
(w1, . . . , wk, wk, . . . ), where wk = F (σ). Hence, σ ∈ B(w1,...,wk) with vRwk. In

the latter case, σ = (w1, . . . , wn, wn+1, . . . ), where wi ∈ C for i > n, and F (σ) =
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ρ(C). Hence, σ ∈ B(w1,...,wn,wn+1) with vRwn+1. In either case, F−1(R(v)) ⊆⋃
k∈ω, vRwk

B(w1,...,wk). Thus, F−1(R(v)) =
⋃
k∈ω, vRwk

B(w1,...,wk), and F is contin-

uous.

In order to show that F preserves opens, consider any basic set B(w1,...,wk) of τΣ
and show that F (B(w1,...,wk)) is open in τR. For this we show that

F (B(w1,...,wk)) = R(wk).

Suppose v ∈ F (B(w1,...,wk)). Then there exists σ = (w1, . . . , wk, . . . ) ∈ B(w1,...,wk)

such that F (σ) = v. Hence, we have that wkRv. Conversely, suppose wkRv. Consider

a (finite) selective path σ0 from w1 to v containing (w1, . . . , wk) as an initial segment.

Then σ = (σ0, v, v, v, . . . ) ∈ B(w1,...,wk) and F (σ) = v. Hence F (B(w1,...,wk)) =
R(wk), which is a basic open of τR. So, F is open.

Moreover, as follows from the definition of |=Σ,

σ |=Σ P iff F (σ) |= P.

Now, since every continuous and open map satisfying this condition is a topo-bisimulation

(cf. Theorem 2.1.5), so is our F . QED

3.3.4. THEOREM. S4 is complete with respect to the Cantor space.

Proof Suppose S40 ϕ. Then by Theorem 3.2.13 there is a finite rooted Kripke model

M refuting ϕ. By Theorem 3.2.14 we can assume that every cluster of M is proper.

By Propositions 3.3.2 and 3.3.3 there exists a valuation |=C on the Cantor set C such

that 〈C, |=C〉 is topo-bisimilar to M . Hence, ϕ is refuted on C. QED

3.3.2 Counterexamples on the reals

In the previous subsection, we described how selective unraveling transforms coun-

terexamples on a finite rooted Kripke model M into counterexamples on the Cantor

space C. In this subsection we show how to transfer counterexamples fromM to (0, 1).
As a result, we obtain a new proof of completeness of S4 with respect to the real line.

Our strategy is similar to that in Section 3.3.1: we start with a non-theorem of S4

having a counterexample on a finite rooted Kripke modelM = 〈W,R, |=〉whose every

cluster is proper. Then we construct the set Σ of all selective paths of W , and subtract

a proper subset Λ of Σ, which is in a one-to-one correspondence with (0, 1). After

that we define a topology τΛ on Λ so that 〈Λ, τΛ〉 is homeomorphic to (0, 1) with its

natural topology. Finally, we define a valuation |=Λ on Λ, and show that 〈Λ, τΛ, |=Λ

〉 is topo-bisimilar to M . Note that since τΛ is pretty different from τΣ, the topo-

bisimulation between 〈Λ, τΛ, |=Λ〉 and M is not simply the restriction of the topo-

bisimulation between 〈Σ, τΣ, |=Σ〉 and M constructed in Section 3.3.1, but rather its

appropriate modification.
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Recall from Section 3.3.1 that in selective unraveling we had three different types

of selective branches: going infinitely to the left, infinitely to the right, or infinitely

zigzagging. Also recall that a selective branch σ is going infinitely to the left if σ =
(w1, . . . , wk, wk, . . . ); σ is going infinitely to the right if σ = (w1, . . . , wn, wn+1, . . . ),
where wk+1 is a strong successor of wk for any k ≥ n; and finally, σ is zigzagging if

σ = (w1, . . . , wn, wn+1, . . . ), where there are infinitely many k ≥ n with wk+1 = wk,

and there are also infinitely many k ≥ n with wk+1 being a strong successor of wk.

In order to transfer counterexamples from M to (0, 1), in the definition of selective

unraveling we need to restrict ourselves only to those branches which are either going

infinitely to the left or are infinitely zigzagging. That is, we define a real path of W to

be a selective path of W either going infinitely to the left or infinitely zigzagging.

Denote by Π the set of all real infinite paths of W . So, Π is the subset of the set Σ
of all selective infinite paths of W consisting of all selective paths going infinitely to

the left or infinitely zigzagging. Therefore, Π is in a one-to-one correspondence with

the set of those infinite branches of the infinite binary tree T2 which either have 0 from

some node on or are infinitely zigzagging.

This correspondence sets up the desired connection between Π and (0, 1). To see

this recall the dyadic representation of a number from [0, 1]. Let x ∈ [0, 1]. To construct

an infinite branch α = (an)n∈ω of T2 representing x observe that either x ∈ [0, 1
2
] or

x ∈ [1
2
, 1]. In the former case put a1 = 0 and in the latter case put a1 = 1. Assume

x ∈ [0, 1
2
]. Then either x ∈ [0, 1

4
] or x ∈ [1

4
, 1

2
]. Again in the former case put a2 = 0

and in the latter case put a2 = 1. Continuing this process, we get an infinite branch

α = (an)n∈ω of T2 which in turn represents x.

Note that there are two ways for the dyadic representation of 1
2
: (0, 1, 1, 1, . . . ) or

(1, 0, 0, 0, . . . ). In general, there are two ways for the dyadic representation of any

number m
2n ∈ [0, 1] (m,n ∈ ω, 0 < m < 2n): either as (a1, . . . , ak, 1, 0, 0, 0, . . . ) or

as (a1, . . . , ak, 0, 1, 1, 1, . . . ). Therefore, if we throw away all infinite branches of T2

having 1 from some node on plus (0, 0, 0, . . . ), we obtain a one-to-one correspondence

between (0, 1) and the remaining infinite branches of T2. Hence, there exists a one-to-

one correspondence between (0, 1) and Λ = Π− {(w,w,w, . . . )}.
Suppose (w1, . . . , wk−1, wk, wk, . . . ) ∈ Λ (wk−1 6= wk) represents m

2n ∈ (0, 1).
Also suppose

C(w1,...,wk) = {λ ∈ Λ| the initial segment of λ is (w1, . . . , wk)}.

(Observe that C(w1,...,wk) = B(w1,...,wk) ∩ Λ.)

In order to transfer topological structure of (0, 1) to Λ observe that the family

{(m
2n ,

m+1
2n )|m,n ∈ ω, 0 < m+ 1 < 2n} forms a basis for the topology on (0, 1), and

that the subset of Λ representing (m
2n ,

m+1
2n ) isD(w1,...,wk) =C(w1,...,wk)−{(w1, . . . , wk−1,

wk, wk, . . . )}. Hence, if we define a topology τΛ on Λ by introducing

{D(w1,...,wk)|(w1, . . . , wk) is a finite selective path of Λ}

as a basis, the following obvious fact holds:
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3.3.5. FACT. (Λ, τΛ) is homeomorphic to (0, 1).

Now we define |=Λ on Λ, and show that there exists a topo-bisimulation between

(Λ, τΛ, |=Λ) and M .

In order to define |=Λ observe that either λ ∈ Λ gets stable or it keeps cycling. In

other words, either λ = (w1, . . . , wk−1, wk, wk, . . . ), or λ = (w1, . . . , wn, wn+1, . . . ),
where wi belongs to some cluster C ⊆ W , for i > n. In the former case we say that

wk stabilizes λ, and in the latter—that λ keeps cycling in C. Now define |=Λ on Λ by

putting

λ |=Λ P iff





wk−1 |= P if wk stabilizes λ,

ρ(C) |= P if λ keeps cycling in C ⊆ W, where ρ(C) is

some arbitrarily chosen representative of C.

Finally, define a function F : Λ→ W by putting

F (λ) =

{
wk−1 if wk stabilizes λ,
ρ(C) if λ keeps cycling in C.

3.3.6. PROPOSITION. F is a total topo-bisimulation between MΛ = 〈Λ, τΛ, |=Λ〉 and

M = 〈W,R, |=〉.

Proof Obviously F is well-defined, and is actually surjective. (For any wk ∈ W ,

F (w1, . . . , wk, wk+1, wk+1, . . . ) = wk, where (w1, . . . , wk) is a finite selective path

from w1 to wk, and wk+1 is a strong successor wk. Note that wk+1 exists, since every

cluster of W is proper.) Let us check that F : 〈Λ, τΛ〉 → 〈W, τR〉 is open. Recall that

R(v), for v ∈ W , are basic opens of τR. So, in order to check that F is continuous, we

need to show that the F inverse image of every R(v) is open in τΛ. Observe that for

any v ∈ W ,

F−1(R(v)) =
⋃

k∈ω, vRwk

D(w1,...,wk),

which is an element of τΛ. Indeed, suppose λ ∈ ⋃
k∈ω, vRwk

D(w1,...,wk). Then λ
belongs to one of D(w1,...,wk) with vRwk. Now λ ∈ D(w1,...,wk) implies wkRF (λ),
which together with vRwk and transitivity of R yield vRF (λ). Hence, F (λ) ∈ R(v),
and λ ∈ F−1(R(v)). Conversely, suppose λ ∈ F−1(R(v)). Then F (λ) ∈ R(v),
and vRF (λ). Now either λ is going infinitely to the left or is infinitely zigzagging.

In the former case, λ = (w1, . . . , wk, wk+1, wk+1, . . . ), where wk = F (λ). Hence,

λ ∈ D(w1,...,wk) with vRwk. In the latter case, λ = (w1, . . . , wn, wn+1, wn+2, . . . ),
where F (λ) ∈ C(wn+1). Hence, λ ∈ D(w1,...,wn,wn+1) with vRwn+1. In either case,

λ ∈ ⋃
k∈ω, vRwk

D(w1,...,wk), and F−1(R(v)) =
⋃
k∈ω, vRwk

D(w1,...,wk). Hence, F is

continuous.
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In order to show that F preserves opens, consider any basic set D(w1,...,wk) of τΛ
and show that F (D(w1,...,wk)) is open in τR. For this we show that

F (D(w1,...,wk)) = R(wk).

Suppose v ∈ F (D(w1,...,wk)). Then there exists λ = (w1, . . . , wk, . . . ) ∈ D(w1,...,wk)

such that F (λ) = v. Now either λ is going infinitely to the left or is infinitely zigzag-

ging. In the former case, λ = (w1, . . . , wk, . . . , wk+l, wk+l+1, wk+l+1, . . . ), where

wk+l = v. In the latter case, v is a representative of a cluster C where λ keeps cycling.

In either case, wkRv. Hence, v ∈ R(wk). Conversely, suppose v ∈ R(wk). Then

wkRv. Consider λ = (w1, . . . , wk, . . . , v, u, u, . . . ), where (w1, . . . , wk, . . . , v) is a

finite selective path of W from w1 to v containing (w1, . . . , wk) as an initial segment,

and u is a strong successor of v. (u exists, since every cluster of W is proper.) Then

λ ∈ D(w1,...,wk) and F (λ) = v. Hence F (D(w1,...,wk)) = R(wk), which is a basic open

of τR. So, F is open.

Moreover, as follows from the definition of |=Λ,

λ |=Λ P iff F (λ) |= P.

Now since every continuous and open map satisfying this condition is a topo-

bisimulation (cf. Theorem 2.1.5), so is our F . QED

3.3.7. COROLLARY. S4 is complete with respect to (0, 1).

Proof Suppose S4⊢ ϕ. Then by Theorem 3.2.13 there is a finite rooted Kripke model

M refuting ϕ. By Theorem 3.2.14 we can assume that every cluster ofM is proper. By

Proposition 3.3.6, M is topo-bisimilar to MΛ = 〈Λ, τΛ, |=Λ〉. Hence, MΛ is refuting ϕ.

Now since 〈Λ, τΛ〉 is homeomorphic to (0, 1), ϕ is refuted on (0, 1). QED

3.3.8. THEOREM. S4 is complete with respect to the real line IR.

Proof Suppose S4⊢ ϕ. Then by Corollary 3.3.7 there exists a valuation |=(0,1) on

(0, 1) refuting ϕ. Now since (0, 1) is homeomorphic to IR, ϕ is refuted on IR. QED

This provides an alternative proof of McKinsey and Tarski’s original proof. It should

be noted that we can improve a little bit on their result. Indeed, McKinsey and Tarski

proved that for any non-theorem ϕ of S4 there exists a valuation ν on IR falsifying ϕ.

3.3.9. COROLLARY. There exists a single valuation ν on IR falsifying all the non-

theorems of S4.
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Proof Enumerate all the non-theorems of S4. This can be done since the language of

S4 is countable. Let this enumeration be {ϕ1, ϕ2, . . . }. Since the interval (n, n+ 1) is

homeomorphic to IR, from Theorem 3.3.8 it follows that there exists a valuation νn on

(n, n+1) such that 〈(n, n+1), νn〉 falsifies ϕn. (Note that we need not know anything

about the shape of νn(ϕn).) Now take
⋃
n∈ω(n, n + 1). For any propositional letter P

let ν(P ) =
⋃
n∈ω νn(P ) be the valuation of P on IR. Note that each 〈(n, n + 1), νn〉

is an open submodel of 〈IR, ν〉, where the ‘identity embedding’ is a topo-bisimulation.

Hence, the truth values of modal formulas do not change moving from each 〈(n, n +
1), νn〉 to 〈IR, ν〉. Therefore, ϕn is still falsified on the whole IR for each n. Thus, we

have constructed a single valuation ν on IR falsifying all the non-theorems of S4. QED

This also shows that though very different from the standard canonical Kripke model

of S4, IR shares some of its universal properties.

3.3.3 Logical non-finiteness on the reals

Recall that two formulas ϕ and ψ are said to be S4-equivalent if S4 ⊢ ϕ ↔ ψ. It

is well known that there exist infinitely many formulas of one-variable which are not

S4-equivalent. E.g., consider the following list of formulas:

ϕ0 = P ;

ϕn = ϕn−1 ∧✸(✸ϕn−1 ∧ ¬ϕn−1).

We can easily construct a Kripke model on which all ϕn have different interpretations.

Let M = 〈ω,R, |=〉, where ω denotes the set of all natural numbers, nRm iff m ≤ n,

and n |= P iff n is odd. Then one can readily check that ϕn is true at all odd points

> n. Hence every ϕn has a different interpretation on M . It implies that the ϕn are

not S4-equivalent. Now we give a topological flavor to this result by showing that

interpreting a propositional variable as a certain subset of IR allows us to construct in-

finitely many S4-non-equivalent formulas of one variable. Corollary 3.3.9 already told

us such a uniform choice must exist, but the proof does not construct ν(P ) explicitly.

The following argument does, and thereby also highlights the topological content of

our modal completeness theorem.

We use ✸ and ✷ instead of the standard notations ( ) and Int( ) for the closure

and interior operators of topology. This modal notation shows its basic use in topology

because it allows us to write topological formulas in a more perspicuous fashion.

To proceed further we need to recall the definition of Hausdorff’s residue of a

given set. Suppose a topological space 〈W, τ〉 and X ⊆ W are given. ̺(X) = X ∩
✸(✸X − X) is called the Hausdorff residue of X . Let ̺0(X) = X, ̺1(X) = ̺(X)
and ̺n+1(X) = ̺̺n(X).

X is said to be of rank n, written r(X) = n, if n is the least natural number such

that ̺n(X) = ∅. X is said to be of finite rank if there exists a natural n such that X is

of rank n. X is said to be of infinite rank if it is not of finite rank.
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The point x ∈ X is said to be of rank n if x ∈ ̺n(X), but x /∈ ̺n+1(X). x ∈ X is

said to be of finite rank if there exists a natural n such that x is of rank n. x is said to

be of infinite rank if it is not of finite rank.

Obviously X is of rank n iff the rank of every element of X is strictly less than n,

and there is at least one element of X of rank n − 1; X is of finite rank iff there is a

natural n such that the rank of every element of X is strictly less than n; and X is of

infinite rank iff there is no finite bound on the ranks of elements of X .

If we interpret P as a subset X of IR, then ϕn will be interpreted as ̺n(X). So, in

order to show that different ϕn are S4-non-equivalent, it is sufficient to show that there

is X ⊂ IR such that ̺(X) ⊃ ̺2(X) ⊃ · · · ⊃ ̺n(X) ⊃ . . . . We have the following

3.3.10. PROPOSITION. There exists a subset X of IR such that ̺(X) ⊃ ̺2(X) ⊃
· · · ⊃ ̺n(X) ⊃ . . . .

Proof We construct X inductively. Fix a natural number k.

Step 1: Consider a sequence {xi1}∞i1=1 from (k − 1, k) converging to k − 1, and put

X1 = {k − 1} ∪
∞⋃

i1=1

{yi1i2}∞i2=1,

where {yi1i2}∞i2=1 is a sequence from (xi1+1, xi1) converging to xi1+1. Note that

✸X1 = X1 ∪ {xi1}∞i1=1,

✸X1 −X1 = {xi1}∞i1=1,

✸(✸X1 −X1) = {k − 1} ∪ {xi1}∞i1=1, and

̺(X1) = {k − 1}.

So, k − 1 is the only point of X1 of rank 1, and r(X1) = 2.

Step 2: Consider a sequence {xi1,i2i3
}∞i3=1 from (yi1i2+1, y

i1
i2

) converging to yi1i2+1, and put

X2 = {k − 1} ∪
∞⋃

i1=1

{yi1i2}∞i2=1 ∪
∞⋃

i1=1

∞⋃

i2=1

∞⋃

i3=1

{yi1,i2,i3i4
}∞i4=1,

where {yi1,i2,i3i4
}∞i4=1 is a sequence from (xi1,i2i3+1, x

i1,i2
i3

) converging to xi1,i2i3+1. Note that

X2 ⊃ X1, and

✸X2 = X2 ∪ {xi1}∞i1=1 ∪
⋃∞
i1=1

⋃∞
i2=1{xi1,i2i3

}∞i3=1,

✸X2 −X2 = {xi1}∞i1=1 ∪
⋃∞
i1=1

⋃∞
i2=1{xi1,i2i3

}∞i3=1,

✸(✸X2−X2)={k − 1} ∪⋃∞
i1=1{yi1i2}∞i2=1 ∪ {xi1}∞i1=1 ∪

⋃∞
i1=1

⋃∞
i2=1{xi1,i2i3

}∞i3=1,
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̺(X2) = {k − 1} ∪⋃∞
i1=1{yi1i2}∞i2=1, and

̺2(X2) = {k − 1}.

So, the points of X2 of rank 1 are yi1i2 , for arbitrary i1 and i2, k − 1 is the only point of

X2 of rank 2, and r(X2) = 3.

Step n: For n ≥ 1 consider a sequence {xi1,...,i2n−2

i2n−1
}∞i2n−1=1 from (y

i1,...,i2n−3

i2n−2+1 ,

y
i1,...,i2n−3

i2n−2
) converging to y

i1,...,i2n−3

i2n−2+1 , and put

Xn = {k − 1} ∪
∞⋃

i1=1

{yi1i2}∞i2=1 ∪ . . . ∪
∞⋃

i1=1

. . .

∞⋃

i2n−1=1

{yi1,...,i2n−1

i2n
}∞i2n=1,

where {yi1,...,i2n−1

i2n
}∞i2n=1 is a sequence from (x

i1,...,i2n−2

i2n−1+1 , x
i1,...,i2n−2

i2n−1
) to x

i1,...,i2n−2

i2n−1+1 . Also

let

A = {xi1}∞i1=1 ∪ . . . ∪
∞⋃

i1=1

. . .

∞⋃

i2n−2=1

{xi1,...,i2n−2

i2n−1
}∞i2n−1=1.

Then note that Xn ⊃ Xn−1 ⊃ · · · ⊃ X2 ⊃ X1, and

✸Xn = Xn ∪ A,

✸Xn −Xn = A,

✸(✸Xn −Xn) = A ∪ (Xn − [
⋃∞
i1=1 . . .

⋃∞
i2n−1=1{y

i1,...,i2n−1

i2n
}∞i2n=1]),

̺(Xn) = Xn − [
⋃∞
i1=1 . . .

⋃∞
i2n−1=1{y

i1,...,i2n−1

i2n
}∞i2n=1],

̺2(Xn) = ρ(Xn)− [
⋃∞
i1=1 . . .

⋃∞
i2n−3=1{y

i1,...,i2n−3

i2n−2
}∞i2n−2=1],

. . .

̺n(Xn) = {k − 1}.

So, the points of Xn of rank 1 are

Xn − [
∞⋃

i1=1

. . .

∞⋃

i2n−1=1

{yi1,...,i2n−1

i2n
}∞i2n=1],

the points of Xn of rank 2 are

Xn − [
∞⋃

i1=1

. . .
∞⋃

i2n−3=1

{yi1,...,i2n−3

i2n−2
}∞i2n−2=1 ∪

∞⋃

i1=1

. . .

∞⋃

i2n−1=1

{yi1,...,i2n−1

i2n
}∞i2n=1],
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and so on; finally, k − 1 is the only point of Xn of rank n, and r(Xn) = n+ 1.

Now let X1 be constructed in (0, 1), X2 in (1, 2), Xn in (n− 1, n), and so on. We put

X =
∞⋃

n=1

Xn.

Then n − 1 ∈ ̺n(X) and n − 1 /∈ ̺n+1(X), for any natural n. So, ̺(X) ⊃ ̺2(X) ⊃
· · · ⊃ ̺n(X) ⊃ . . . , and X contains points of every finite rank. QED

3.3.1. REMARK (INFINITE RANK). The X constructed above does not contain ele-

ments of infinite rank. However, a little adjustment of the above construction allow

us to construct a subset of IR with an element of infinite rank. Actually, it is possible

to construct a subset of IR containing elements of rank α, for any ordinal α < ℵ1.

Returning to our list of formulas, with P as the just constructed X , the interpre-

tation of every ϕn in IR will be different, in terms of some topologically significant

phenomenon. In the next section, we show that if we restrict ourselves to only “good”

subsets of IR, then the situation drastically changes.

3.4 Axiomatizing special kinds of regions

By interpreting propositional variables as certain subsets of the real line IR, we can

refute every non-theorem of S4 on IR. Certainly not all subsets of IR are required for

refuting the non-theorems of S4. In this section, we analyze the complexity of the

subsets of IR required for refuting the non-theorems of S4 We prefer to use ✸ and ✷

to denote the closure and interior operators of a topological space. For consistency we

also use ∧,∨ and ¬ to denote set-theoretical intersection, union and complement.

3.4.1 Serial sets on the real line

To start with, consider subsets of IR with the simplest intuitive structure. Call X ⊆ IR
convex if all points lying in between any two points of X belong to X . In other words,

X is convex if x, y ∈ X and x ≤ y imply [x, y] ⊆ X . Every convex subset of IR has

one of the following forms:

∅, (x, y), [x, y], [x, y), (x, y], (−∞, x), (−∞, x], (x,+∞), [x,+∞), IR.

3.4.1. DEFINITION. Call a subset of IR serial if it is a finite union of convex subsets of

IR. Denote the set of all serial subsets of IR by S(IR). So,

S(IR) = {X ∈ P(IR)|X is a serial subset of IR}.
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Obviously the X constructed in Proposition 3.3.10 is not serial, and actually this

was absolutely crucial in showing thatX has points of any finite rank. Indeed, we have

the following

3.4.2. LEMMA. r(X) = 0 for any X ∈ S(IR).

Proof First, r(Y ) = 0 for any convex subset Y of IR. For, if Y is convex, then

✸Y ∧ ¬Y consists of at most two points, ✸(✸Y ∧ ¬Y ) = ✸Y ∧ ¬Y , and ̺(Y ) =
Y ∧✸(✸Y ∧ ¬Y ) = Y ∧ (✸Y ∧ ¬Y ) = ∅. Hence r(Y ) = 0.

Now let X be a serial subset of IR. Then X =
∨n
i=1Xi, where every Xi is a

convex subset of IR, and actually we can assume that all Xi are disjoint. But then

̺(X) =
∨n
i=1 ̺(Xi) = ∅, and hence r(X) = 0. QED

It follows that if we interpret P as a serial subset of IR, then no two ϕn (n ≥ 1) from

the previous section define sets equal to each other.

Call a valuation ν of our language L to subsets of IR serial if ν(P ) ∈ S(IR) for any

propositional variable P . Since S(IR) is closed with respect to ¬,∧ and ✸, we have

that ν(ϕ) ∈ S(IR) for any serial valuation ν. Call a formula ϕ S-true if it is true in IR
under a serial valuation. Call ϕ S-valid if ϕ is S-true for any serial valuation on IR.

Let L(S) = {ϕ|ϕ is S-valid}.

3.4.3. FACT. L(S) is a normal modal logic over S4.

Obviously all ϕn (n ≥ 1) from the previous section are L(S)-equivalent. So, it is

natural to expect that there are only finitely many formulas in one variable which are

L(S)-non-equivalent, and indeed that L(S) is a much stronger logic than S4.

As a first step in this direction, we show that the Grzegorczyk axiom

Grz = ✷(✷(P → ✷P )→ P )→ P

belongs to L(S).

3.4.4. FACT. Grz is S-valid.

Proof Grz is S-valid iff X ⊆ ✸(X ∧ ¬✸(✸X ∧ ¬X)) for any X ∈ S(IR). Suppose

X ∈ S(IR). Since ✸X ∧ ¬X is finite, ✸(✸X ∧ ¬X) = ✸X ∧ ¬X . Hence ✸(X ∧
¬✸(✸X ∧ ¬X)) = ✸(X ∧ ¬(✸X ∧ ¬X)) = ✸(X ∧ (¬✸X ∨ X)) = ✸X , which

clearly contains X . So, X ⊆ ✸(X ∧ ¬✸(✸X ∧ ¬X)). QED

As a next step, we show that the axioms

BD2 = (¬P ∧✸P )→ ✸✷P , and

BW2 = ¬(P ∧Q ∧ ✸(P ∧ ¬Q) ∧ ✸(¬P ∧Q) ∧ ✸(¬P ∧ ¬Q)),

bounding the depth and the width of a Kripke model to 2, are S-valid.
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3.4.5. FACT. BD2 and BW2 are S-valid.

Proof Note that BD2 is S-valid iff ✸X ∧ ¬X ⊆ ✸✷X for any X ∈ S(IR), and that

BW2 is S-valid iff X ∧ Y ∧✸(X ∧ ¬Y ) ∧✸(Y ∧ ¬X) ∧✸(¬X ∧ ¬Y ) = ∅ for any

X, Y ∈ S(IR).
To show that ✸X∧¬X ⊆ ✸✷X for anyX ∈ S(IR), suppose xin✸X∧¬X . Then

x is a limit point of X not belonging to X . Since X is serial, there is y ∈ IR such that

either y < x and (y, x) ⊆ X , or x < y and (x, y) ⊆ X . In both cases x ∈ ✸✷X . So,

✸X ∧ ¬X ⊆ ✸✷X .

To show thatX∧Y ∧✸(X∧¬Y )∧✸(Y ∧¬X)∧✸(¬X∧¬Y ) = ∅ for anyX, Y ∈
S(IR), suppose x ∈ X ∧ Y ∧✸(X ∧¬Y )∧✸(Y ∧¬X). Then x /∈ ✷X and x /∈ ✷Y .

Hence there exist y, z ∈ IR such that y < x < z and (y, z) ∩ (¬X ∧ ¬Y ) = ∅, which

means that x /∈ ✸(¬X∧¬Y ). So,X∧Y ∧✸(X∧¬Y )∧✸(Y ∧¬X)∧✸(¬X∧¬Y ) = ∅.
QED

The following is an immediate consequence of our observations.

3.4.6. COROLLARY. S4 + Grz + BD2 + BW2 ⊆ L(S).

In order to prove the converse, and hence complete our axiomatization of the logic

of serial subsets of IR, observe that S4+Grz+BD2 +BW2 is actually the complete

modal logic of the following ‘2-fork’ Kripke frame 〈W,R〉, where W = {w1, w2, w3}
and w1Rw1, w2Rw2, w3Rw3, w1Rw2, w1Rw3:

✡
✡

✡
✡✡

❏
❏

❏
❏❏

•

• •

w1

w2 w3

Indeed, it is well known that Grz is valid on a Kripke frame iff it is a Noetherian

partial order, that BD2 is valid on a partially ordered Kripke frame iff its depth is

bounded by 2, and that BW2 is valid on a partially ordered Kripke frame of a depth

≤ 2 iff its width is bounded by 2. Now, denoting the logic of 〈W,R〉 by L(〈W,R〉),
we have the following:

3.4.7. THEOREM. S4 + Grz + BD2 + BW2 = L(〈W,R〉).

Proof Denote S4 + Grz + BD2 + BW2 by L. Then, 〈W,R〉 |= Grz,BD2,BW2.

Hence L ⊆ L(〈W,R〉). Conversely, since Grz is a theorem of L, every L-frame is

a Noetherian partial order. Since BD2 is a theorem of L, every L-frame is of depth
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≤ 2, hence L has the finite model property, and thus is complete with respect to finite

rooted partially ordered Kripke frames of depth ≤ 2. Since BW2 is a theorem of L,

then the width of finite rooted L-frames is also ≤ 2. But then it is routine to check

that every such frame is a p-morphic image of 〈W,R〉. Hence L(〈W,R〉) ⊆ L, and

L = L(〈W,R〉). QED

As a final move, we show that 〈W, τR〉 is an open and serial image of IR, meaning that

there is an open map f : IR→ W such that f−1(X) ∈ S(IR) for any subset X of W .

Recall that τR consists of the upward closed subsets of W , which obviously are ∅,
{w2}, {w3}, {w2, w3}, and W . Fix any x ∈ IR and define f : IR→ W by putting

f(y) =





w1 for y = x,
w2 for y < x,
w3 for y > x.

Then it is routine to check that f−1(∅) = ∅, f−1({w2}) = (−∞, x), f−1({w3}) =
(x,+∞), f−1({w2, w3}) = (−∞, x) ∪ (x,+∞), and f−1(W ) = IR. So, f is continu-

ous. Moreover, for any open subset U of IR, if x ∈ U , then f(U) = W ; and if x /∈ U ,

then f(U) ⊆ {w2, w3}, which is always open. Hence, f is open. Furthermore, from

the definition of f it follows that the f -inverse image of any subset of W is a serial

subset of IR. So, 〈W, τR〉 is an open and serial image of IR.

As a trivial consequence of this observation, we obtain that for every valuation |=
on 〈W,R〉 there is a serial valuation |=S on IR such that 〈W,R, |=〉 is topo-bisimilar to

〈IR, |=S〉. Hence, every non-theorem of L(〈W,R〉) is a non-theorem of L(S), and we

have the following:

3.4.8. COROLLARY. L(S) ⊆ L(〈W,R〉).

Combining Corollaries 3.4.6 and 3.4.8 and Theorem 3.4.7 one obtains:

3.4.9. THEOREM. L(S) = L(〈W,R〉) = S4 + Grz + BD2 + BW2.

3.4.2 Formulas in one variable over the serial sets

This section provides some more concrete information on ‘serial sets’. As L(S) is

the logic of the finite ‘2-fork’ frame, for every natural number n ≥ 0, there are only

finitely many L(S)-non-equivalent formulas built from the variables P1, . . . , Pn. In

this subsection we show that there are exactly 64 L(S)-non-equivalent formulas in one

variable, and describe them all.

3.4.10. THEOREM. Every formula in one variable is L(S)-equivalent to a disjunction

of the following six formulas:
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✷P ,

✷¬P ,

P ∧✷✸¬P ,

¬P ∧✷✸P ,

P ∧✸✷¬P ∧✸✷P , and

¬P ∧✸✷P ∧✸✷¬P .

Hence, there are exactly 64 L(S)-non-equivalent formulas in one variable.

Proof In line with our interest in tying up ‘modal’ and ‘topological’ ways of think-

ing, we give two different proofs of this result. One proceeds by constructing the

1-universal Kripke model of L(S), which is a standard technique in modal logic, the

other is purely topological, using some basic observations on serial subsets of IR.

First Proof Since L(S) is the logic of the ‘2-fork’ frame, we can easily construct the

1-universal Kripke model 〈W (1), |=(1)〉 of L(S):

✁
✁
✁
✁
✁
✁

✁
✁
✁
✁
✁
✁

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

• • • •

• •

w1 w2 w3 w4

w6 w5

Here wn |= P iff n is even. Now one can readily check that each point of W (1)
corresponds to one of the six formulas in the condition of the theorem. Hence every

formula in one variable is L(S)-equivalent to a disjunction of the above six formulas.

Since there are exactly 26 different subsets of W (1), we obtain that there are exactly

64 L(S)-non-equivalent formulas in one variable.

Second Proof Observe that there exists a serial subset X of IR such that ✷X 6=
✷¬X 6= X∧✷✸¬X 6= ¬X∧✷✸X 6= X∧✸✷¬X∧✸✷X 6= ¬X∧✸✷X∧✸✷¬X .

For example, let x < y < z < u, and take X = [x, y) ∪ (y, z) ∪ {u}. Then one can

readily check that

✷X = (x, y) ∪ (y, z),
✷¬X = (−∞, x) ∪ (z, u) ∪ (u,+∞),
X ∧✷✸¬X = {u},
¬X ∧✷✸X = {y},
X ∧✸✷¬X ∧✸✷X = {x}, and

¬X ∧✸✷X ∧✸✷¬X = {z}.



3.4. Axiomatizing special kinds of regions • 47

Hence, we can always interpret P as a serial subset of IR such that all the six formulas

of the theorem correspond to different serial subsets of IR.

Now, we prove that every subset of IR obtained by repeatedly applying ¬,∧,✷ to

a serial set X is a finite (including the empty) union of the following serial subsets:

T1 = ✷X ,

T2 = ✷¬X ,

T3 = X ∧✷✸¬X ,

T4 = ¬X ∧✷✸X ,

T5 = X ∧✸✷¬X ∧✸✷X , and

T6 = ¬X ∧✸✷X ∧✸✷¬X .

For this, first observe that Ti ∧ Tj = ∅ if i 6= j, and that
∨6
i=1 Ti = IR. So, these

six serial subsets of IR are mutually disjoint and jointly exhaustive. Next observe that

¬Ti = Tj ∨ Tk ∨ Tl ∨ Tm ∨ Tn, where i, j, k, l,m, n ∈ {1, 2, 3, 4, 5, 6} are different

from each other. Finally, ✷T1 = T1, ✷T2 = T2, and ✷T3 = ✷T4 = ✷T5 = ✷T6 = ∅.
Hence every subset of IR obtained by repeatedly applying ¬,∧,✷ to {T1, . . . , T6}

is a finite (including the empty) union of {T1, . . . , T6}.
Now suppose Y ⊆ IR is obtained by repeatedly applying ¬,∧,✷ to X . We prove

by induction on the complexity of Y that Y is equal to a finite (including the empty)

union of {T1, . . . , T6}.

Base case. Since X = T1 ∨ T3 ∨ T5 (and ¬X = T2 ∨ T4 ∨ T6), the base case (that is

when Y = X) is obvious.

Complement. Suppose Y = ¬Z andZ = Ti1∨· · ·∨Tik , where i1, . . . , ik ∈ {1, . . . , 6}.
Then Y = ¬(Ti1 ∨ · · · ∨ Tik) = ¬Ti1 ∧ · · · ∧ ¬Tik . Since every ¬Tij is equal to∨
is 6=ij

Tis , using the distributivity law we obtain that Y =
∨
is,it∈{1,...,6}

(Tis ∧ Tit).
Since for different is and it, Tis ∧ Tit = ∅, which is the empty union of Tis, we finally

obtain that Y is a finite union of {T1, . . . , T6}.

Intersection. Suppose Y = Z1∧Z2, Z1 = Ti1∨· · ·∨Tik andZ2 = Tj1∨· · ·∨Tjm , where

i1, . . . , ik, j1, . . . , jm ∈ {1, . . . , 6}. Similarly to the above case, using the distributivity

law we obtain that Y is a finite union of {T1, . . . , T6}.

Interior. Suppose Y = ✷Z and Z = Ti1 ∨ · · · ∨ Tik , where i1, . . . , ik ∈ {1, . . . , 6}.
Since Tis are mutually disjoint, Y = ✷Ti1 ∨ · · · ∨ ✷Tik . Now since {T1, . . . , T6} is

closed with respect to ✷, we obtain that Y is a finite union of {T1, . . . , T6}.

Hence, every subset of IR obtained by repeatedly applying ¬,∧,✷ to a serial set X is

equal to a finite (including the empty) union of {T1, . . . , T6}. Since there are exactly 26

different subsets obtained as a union of {T1, . . . , T6}, we obtain that there are exactly

64 different subsets of IR obtained by repeatedly applying ¬,∧,✷ to a serial set X .

This implies that there are exactly 64 L(S)-non-equivalent formulas in one variable.

QED
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The same technique can also be used to prove the normal form theorem over L(S) for

every formula with more than one proposition variable.

3.4.3 Countable unions of convex sets on the real line

Let us now be a bit more systematic. By Theorem 3.3.8, S4 is the complete logic

of IR, and hence sets of reals suffice as values ν(P ) in refuting non-theorems. But

how complex must these sets be? In first-order logic, e.g., we know that completeness

requires atomic predicates over the integers which are at least ∆0
2. With only simpler

predicates in the arithmetic hierarchy, the logic gets richer. In a topological space like

IR, it seems reasonable to look at the Borel Hierarchy G. How high up do we have to

go for our S4-counterexamples? One could analyze our construction in Section 3.3.3

to have an upper bound. But here we state some more direct information.

Consider the set τ of all open subsets of IR. Let B(τ) denote the Boolean closure

of τ . Since B(τ) contains all closed subsets of IR, then B(τ) is closed with respect

to ✸. Obviously S(IR) is properly contained in B(τ). It is natural to ask whether the

elements of B(τ) are enough for refuting all the non-theorems of S4. The answer is

negative: the modal logic is still richer.

3.4.11. FACT (BEZHANISHVILI AND GEHRKE). The complete logic of B(τ) is Grz.

Hence, we need to seek something bigger than B(τ). Let C∞(IR) denote the set of

countable unions of convex subsets of IR. Since every open subset of IR is a countable

union of open intervals, then τ ⊆ C∞(IR). Let B(C∞(IR)) denote the Boolean closure

of C∞(IR). Since τ ⊆ C∞(IR), we also have B(τ) ⊆ B(C∞(IR)). It follows that

B(C∞(IR)) is also closed with respect to ✸. Moreover, B(τ) is properly contained in

B(C∞(IR)), since the set Q of rationals belongs to B(C∞(IR)) but does not belong to

B(τ).

3.4.12. THEOREM (BEZHANISHVILI AND GEHRKE). The logic S4 is complete with

respect to B(C∞(IR)).

So, the Boolean combinations of countable unions of convex subsets of IR are exactly

what we need for refuting the non-theorems of S4. Since every countable union of

convex subsets of IR belongs to the Borel hierarchy G2 over the opens of IR, a very low

level of the Borel hierarchy suffices for refuting the non-theorems of S4. So, G itself is

more than sufficient for refuting the non-theorems of S4.

Summarizing, we constructed five Boolean algebras of subsets of IR forming a

chain under inclusion: S(IR) ⊂ B(τ) ⊂ B(C∞(IR)) ⊂ G ⊂ P(IR), where S(IR) is the

Boolean algebra of all serial subsets of IR, B(τ) the Boolean closure of the set of all

open subsets of IR, B(C∞(IR)) the Boolean closure of the set of all countable unions of

convex subsets of IR, G the Boolean algebra of all Borel subsets of IR, and P(IR) the

power-set of IR. All of these Boolean algebras are closed with respect to ✸. The modal

logic of the last three algebras is S4, that of the second one is Grz, and the modal logic

of the first is the logic of the ‘2-fork’ Kripke frame.
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3.4.4 Generalization to IR2

In this section, we shift aim in a different direction. We generalize our results on the

serial subsets of IR to the chequered subsets of IR2, and indicate further generalizations

to any Euclidean space IRn.

A set X ⊆ IR2 is convex if all points laying in between any two points of X belong

to X . It is said to be serial if X is a finite union of convex subsets of IR2. Denote the

set of all serial subsets of IR2 by S(IR2).
Here is a real difference between IR and IR2. Unlike S(IR), S(IR2) is not closed

with respect to complement. For instance, a full circle is obviously a convex subset of

IR2. However, its complement is not serial.

One natural way of overcoming this difficulty is to work with a smaller family

of chequered subsets of IR2, which also has a reasonable claim to being ‘the two-

dimensional generalization of the one-dimensional serial sets’.

A set X ⊆ IR2 is a rectangular convex if X = X1 × X2, where both X1 and X2

are convex subsets of IR [van Benthem, 1983b]. Every rectangular convex is a convex

set in the usual sense, but not vice versa: a circle is not a rectangular convex.

A set X ⊆ IR2 is said to be chequered if it is a finite union of rectangular convex

subsets of IR2. Denote the set of all chequered subsets of IR2 by CH(IR2). Obviously

CH(IR2) ⊂ S(IR2). Note that unlike S(IR2), CH(IR2) does form a Boolean algebra.

Moreover, ✷X,✸X ∈ CH(IR2) for any X ∈ CH(IR2).

3.4.13. FACT. CH(IR2) forms a Boolean algebra closed with respect to ✷ and ✸.

Proof In order to show that CH(IR2) forms a Boolean algebra it is sufficient to show

that CH(IR2) is closed with respect to ¬. For this, observe that the complement of a

rectangular convex is a union of at most four rectangular convexes, and that the finite

intersection of rectangular convexes is again a rectangular convex. Now, suppose A ∈
CH(IR2). Then there exist rectangular convexes A1, . . . , An such that A =

⋃n
i=1Ai.

But ¬A =
⋂n
i=1 ¬Ai, which by the above observation and distributivity is chequered.

Since CH(IR2) forms a Boolean algebra, in order to show that CH(IR2) is closed

with respect to ✷ and ✸, it is sufficient to check that CH(IR2) is closed with respect to

✸. For the latter observe that the closure of a rectangular convex is again a rectangular

convex, and that the closure commutes with finite unions. Now suppose A ∈ CH(IR2).
Then there exist rectangular convexes A1, . . . , An such that A =

⋃n
i=1Ai. But then

✸A =
⋃n
i=1 ✸Ai, which is a chequered set by the above observation. QED

Hence, interpreting propositional variables as chequered subsets of IR2, every formula

of our language will be also interpreted as a chequered subset of IR2.

This approach leads to a logic, which we just sketch here. Call a valuation ν of

L to subsets of IR2 chequered if ν(P ) ∈ CH(IR2) for any propositional variable P .

Since CH(IR2) is closed with respect to ¬,∧ and ✸, we have that ν(ϕ) ∈ CH(IR2) for

any chequered interpretation ν. Call a formula ϕ CH-true if it is true in IR2 under a
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chequered valuation. Call ϕ CH-valid if ϕ is CH-true for any chequered valuation on

IR2. Let L(CH) = {ϕ|ϕ is CH-valid}.

3.4.14. FACT. L(CH) is a normal modal logic over S4.

Similarly to L(S), the Grzegorczyk axiom Grz is provable in L(CH). For this it is

sufficient to show that Grz is CH-valid.

3.4.15. FACT. Grz is CH-valid.

Proof Grz is CH-valid iff X ⊆ ✸(X ∧ ¬✸(✸X ∧ ¬X)) for any X ∈ CH(IR2).
Suppose X ∈ CH(IR2). Observe that, unlike S(IR), ✸X ∧ ¬X is not finite. However,

in this case the set ✸(✸X ∧ ¬X) − (✸X ∧ ¬X) is finite. Denote it by F . Then

✸(X∧¬✸(✸X∧¬X)) = ✸(X∧¬[(✸X∧¬X)∨F ]) = ✸(X∧(¬✸X∨X)∧¬F ) =
✸(X − F ). Now since F is finite, ✸(X − F ) = ✸X . Therefore, ✸(X ∧ ¬✸(✸X ∧
¬X)) = ✸X , which obviously contains X . So, X ⊆ ✸(X ∧ ¬✸(✸X ∧ ¬X)). QED

Now we show that the axioms

BD3 = ✸(✷P3 ∧✸(✷P2 ∧✸✷P1 ∧ ¬P1) ∧ ¬P2)→ P3, and

BW4 =
∧4
i=0 ✸Pi →

∨
0≤i6=j≤4 ✸(Pi ∧✸Pj),

which bound the depth and the width of a Kripke model to 3 and 4, respectively, are

also provable in L(CH). For this, we show that both BD3 and BW4 are CH-valid.

3.4.16. FACT. (1) BD3 is CH-valid.

(2) BW4 is CH-valid.

Proof (1) BD3 is CH-valid iff ✸(✷X3 ∧ ✸(✷X2 ∧ ✸✷X1 ∧ ¬X1) ∧ ¬X2) ⊆ X3

for any X1, X2, X3 ∈ CH(IR2). Observe that ✸✷X1 ∧ ¬X1 is a subset of the fron-

tier Fr(X1) = ✸X1 ∧ ¬✷X1 of X1. Hence, ✸(✷X3 ∧ ✸(✷X2 ∧ ✸✷X1 ∧ ¬X1) ∧
¬X2) ⊆ ✸(✷X3 ∧ ✸(✷X2 ∧ Fr(X1)) ∧ ¬X2). Let X∗

2 = ✷X2 ∧ Fr(X1) and

X∗
3 = ✷X3 ∧ Fr(X1). Also let ¬∗,✸∗ and ✷

∗ denote the corresponding operations

of a closed subspace Fr(X1) of IR2. Then ✸(✷X3 ∧ ✸(✷X2 ∧ Fr(X1)) ∧ ¬X2) =
✸(✷X3 ∧✸X∗

2 ∧ ¬X2) = ✸(✷X3 ∧✸
∗X∗

2 ∧ ¬X2) ⊆ ✸(✷X3 ∧✸
∗X∗

2 ∧ ¬✷X2) =
✸(✷X3 ∧ ✸

∗X∗
2 ∧ ¬∗X∗

2 ) = ✸(X∗
3 ∧ ✸

∗X∗
2 ∧ ¬∗X∗

2 ) = ✸
∗(X∗

3 ∧ ✸
∗X∗

2 ∧ ¬∗X∗
2 ).

Since Fr(X1) is of dimension 1, Fr(X1) is homeomorphic to a closed serial subspace

of IR. Since BD2 is S-valid in IR, ✸
∗(X ∧ ✸

∗Y ∧ ¬∗Y ) ⊆ X for any open subsets

X, Y of Fr(X1). Hence, ✸
∗(X∗

3 ∧✸
∗X∗

2 ∧ ¬∗X∗
2 ) ⊆ X∗

3 . Thus, ✸(✷X3 ∧✸(✷X2 ∧
✸✷X1 ∧ ¬X1) ∧ ¬X2) ⊆ X3, and BD3 is CH-valid.

(2) BW2 is CH-valid iff
∧4
i=0 ✸Xi ⊆

∨
0≤i6=j≤4 ✸(Xi∧✸Xj) for any X0,. . . X4∈

CH(IR2). Suppose x ∈ ∧4
i=0 ✸Xi. Then x is a limit point of all Xi. Since there are
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five Xi, and every Xi belongs to CH(IR2), there should exist Xi and Xj such that x is

a limit point of Xi ∧Xj . So, x ∈ ∨
0≤i6=j≤4 ✸(Xi ∧✸Xj). QED

As an immediate consequence we obtain that L(CH) ⊢ Grz,BD3,BW4. Hence, like

L(S), L(CH) is also a tabular logic. In a similar fashion, by induction on the dimension

of IRn, we can prove that the logic of chequered subsets of IRn is also tabular. In

particular, it validates BDn+1 and BW2n . Hence, we are capable of capturing the

dimension of Euclidean spaces.

3.5 A general picture

3.5.1 The deductive landscape

The logics that we have studied in this chapter fit into a more general environment.

Typical for modal logic is its lattice of deductive systems such as K, S4, S5 or GL.

These form a large family describing different classes of relational frames, with of-

ten very different motivations (cf. the series of books “Advances in Modal Logic2”).

Among the uncountably many modal logics, a small number are distinguished for one

of two reasons. Logics like S4 or S5 were originally proposed as syntactic proof theo-

ries for notions of modality, and then turned out to be semantically complete with re-

spect to natural frame classes, such as (for S4) transitive reflexive orders. Other modal

logics, however, were discovered as the complete theories of important frames, such

as the natural numbers with their standard ordering. What about a similar landscape of

modal logics on the topological interpretation?

Some well-known modal logics extending S4 indeed correspond to natural classes

of topological spaces. E.g., it is easy to see that the ‘identity logic’ with axiom ϕ →
✷ϕ axiomatizes the complete logic of all discrete spaces. And it also defines them

semantically through the usual notion of frame correspondence—which can be lifted

to the topological semantics in a straight- forward manner. But already S5 corresponds

to a less standard condition, viz. that every point has an open neighborhood all of

whose points have x in all their open neighborhoods. (Alternatively, this says that

every open set is closed.) Also, even rich topological spaces do not seem to validate

very spectacular modal logics, witness the fact that IR has just S4 for its modal theory.

We did find stronger logics with ‘general frames’ though, i.e., frames with a designated

interior algebra of subsets, such as IR with the serial sets. The latter turned out to be a

well-known modal ’frame logic’, and we have not been able so far to find really new

modal logics arising on the topological interpretation.

A related question is what becomes of the known general results on completeness

and correspondence for modal logic in the topological setting. There appear to be

some obstacles here. E.g., the substitution method for Sahlqvist correspondence (cf.

2http://www.aiml.net
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[Blackburn et al., 2001]) has only a limited range. It does work for axioms like the

above ϕ→ ✷ϕ, where it automatically generates the first-order condition

(∀x)(∃U ∈ τ)(x ∈ U & (∀y ∈ U)(y = x)),

i.e., discreteness. Likewise, it works for the S5 symmetry axiom P → ✷✸P , where it

produces the above-mentioned

(∀x)(∃U ∈ τ)(x ∈ U & (∀y ∈ U)(∀V ∈ τ)(y ∈ V → x ∈ V )).

The method also works for antecedents of the form ✷P—but things stop with an-

tecedents like ✸P or ✷✷P . The reason is that, on the topological semantics, one

modality ✷ expresses a two-quantifier combination

∃U ∈ τ such that ∀x ∈ U,

so that syntactic complexity builds up more rapidly than in standard modal logic, where

each modality is one quantifier over relational successors of the current world. Gen-

eral correspondence or completeness results for topological modal logics therefore

seem harder to obtain—and we may need different syntactic notions for them (see

[Gabelaia, 2002] for recent results in that direction).



CHAPTER 4

LOGICAL EXTENSIONS

Modal logics are, most notably, languages for describing relational structures. One

considers these formalisms, in contrast with first or second-order theories, because of

the nice balance between expressive power and computational properties. The logic

S4 introduced in Chapter 2 is the minimal normal modal logic with the topological

interpretation, as shown in Chapter 3. It is a general formalism with respect to topo-

logical structures as it is complete for all topological spaces. Such a high abstraction

is a beauty, but also a handicap. The language is not expressive enough and cannot

capture specifics of some interesting topological spaces.

An extremely useful technique in modal logics to gain expressive power without

leaving the guarded area of decidable languages is to add a modal operator. For in-

stance, if one needs to express notions connected to equality of states in Kripke se-

mantics, one may add a difference operator Dϕ which reads “there is a state different

from the current one that satisfies ϕ.” This is exactly what we do in this chapter. We

consider important topological relations not captured by S4 alone which can be safely

expressed by ‘adding’ appropriate new modal operators. We have entered the realm of

extended modal languages, see [de Rijke, 1993, van Benthem, 1991b].

The first limitation to overcome is S4’s locality. The formulas are evaluated at

points and provide local information, e.g., the point x is in the open set given by the in-

tersection of the interior of ϕ and ψ (M,x |= ✷ϕ∧✷ψ). By this information we know

a lot about the point x, but very little about the set denoted by ✷ϕ ∧ ✷ψ, we merely

know that there is one point satisfying it, the point x. Introducing an universal (or

global) modality is the solutions to this problem. For instance, with S4+(the universal

modality) one is able to express whether a topological space is connected or not, which

is clearly a global property of the space and not a local one of some points of the space.

We shall explain such behavior in Section 4.1. Extending with different modal oper-

ators enables different gains in expressive power, we present alternative extensions in

Section 4.2. These extensions can be viewed as a fragment of higher order languages.

We give a higher order formalism in Section 4.3 to give a general perspective.

53
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4.1 Universal reference

Even though ideas related to the universal modality have been around for a while,

[Prior, 1967], it is safe to say that it was ‘officially introduced’ as a modal logic ex-

tension tool in [Goranko and Passy, 1992]. In [Bennett, 1995], Bennett introduced the

universal language topologically interpreted to identify tractable fragments of a lan-

guage of topological relations over regions.

The truth definition of S4, Definition 2.1.1, is extended with the following:

M,x |= Eϕ iff ∃y ∈ X, M, y |= ϕ

M, x |= Uϕ iff ∀y ∈ X : M, y |= ϕ

The definition reads, for Eϕ, “there exists a point in the model satisfying ϕ,” and

dually for Uϕ, “all the points in the model satisfy ϕ.” The U and E modalities follow

the axiomatization of S5:

U(ϕ→ ψ)→ (Uϕ→ Uψ) (K)

Uϕ→ ϕ (T)

Uϕ→ UUϕ (4)

ϕ→ UEϕ (B)

In addition, the following ‘connecting’ principle is part of the axioms:

✸ϕ→ Eϕ (Con)

The axiomatization suggests to search for a normal form. The nesting of universal

modal operators is redundant, as the next proposition shows.

4.1.1. PROPOSITION. Every formula of S4u is equivalent to one without nested occur-

rences of E, U .

Proof Here is one way of seeing this. The following well formed formula is valid in

the semantics of S4u. Let ϕ[Eψ] be any formula containing a subformula Eψ. Then

we have

ϕ[Eψ]↔ (Eψ ∧ ϕ[⊤]) ∨ (¬Eψ ∧ ϕ[⊥])

The reason is that subformulas Eψ are globally true or false, across modalities ✷,✸,
E, U . This observation also produces an effective algorithm for finding the normal

form. E.g.

✷(Ep ∧ ¬✷Eq) ↔
(Ep ∧✷(⊤ ∧ ¬✷Eq)) ∨ (¬Ep ∧✷(⊥ ∧ ¬✷Eq)) ↔
(Ep ∧✷¬✷Eq) ∨ (¬Ep ∧✷⊥) ↔
(Ep ∧ ((Eq ∧✷¬✷⊤) ∨ (¬Eq ∧✷¬✷⊥)) ∨ (¬Ep ∧ ⊥) ↔
(Ep ∧ Eq ∧✷¬⊤) ∨ (Ep ∧ ¬Eq ∧✷¬⊥)) ∨ ⊥ ↔
(Ep ∧ Eq ∧ ⊥) ∨ (Ep ∧ ¬Eq) ↔
Ep ∧ ¬Eq
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QED

Another way of seeing this is by proving some more familiar reduction principles

(either in the semantics, or from the given axioms), such as

✸Eϕ↔ Eϕ, ✷Eϕ↔ Eϕ

Note that we do not get, e.g., E✷ϕ↔ ✷ϕ or E✷ϕ↔ Eϕ. The normal forms that we

obtain may be described as follows,

∨ ∧
[U |E]ϕ

where [U |E] is U or E or nothing, and ϕ is a formula of our original language S4.

One extends, together with the truth definition of the language, all of the tools in the

topo-approach (Chapter 2): first and foremost, topo-bisimulations. Definition 2.1.2

straightforwardly extends. In fact it is exactly the same, except for the constraint that

the relation has to be defined for all points of the spaces, in the ‘universal’ spirit of the

extended language.

4.1.2. DEFINITION (TOPOLOGICAL BISIMULATION). Given two topological models

〈X,O, ν〉, 〈X ′, O′, ν ′〉, a total topological bisimulation is a non-empty relation ⇌ ⊆
X ×X ′ defined for all x ∈ X and for all x′ ∈ X ′ such that if x ⇌ x′:

(base): x ∈ ν(p) iff x′ ∈ ν ′(p) (for any proposition p)

(forth condition): if x ∈ o ∈ O then

∃o′ ∈ O′ : x′ ∈ o′ and ∀y′ ∈ o′ : ∃y ∈ o : y ⇌ y′

(back condition): if x′ ∈ o′ ∈ O′ then

∃o ∈ O : x ∈ o and ∀y ∈ o : ∃y′ ∈ o′ : y ⇌ y′

If only conditions (i) and (ii) hold, the second model simulates the first one.

One must show that the above definition is adequate.

4.1.3. THEOREM. Let M = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν ′〉 be two models, x ∈ X ,

and x′ ∈ X ′ bisimilar points. Then, for any modal formula ϕ in S4u, M,x |= ϕ iff

M ′, x′ |= ϕ.

4.1.4. THEOREM. Let M = 〈X,O, ν〉, M ′ = 〈X ′, O′, ν ′〉 be two models with finite

O, O′, x ∈ X , and x′ ∈ X ′ such that for every ϕ in S4u, M,x |= ϕ iff M ′, x′ |= ϕ.

Then there exists a total bisimulation between M and M ′ connecting x and x′.

In words, extended modal formulas are invariant under total bisimulations, while finite

modally equivalent models are totally bisimilar.

The other fundamental tool of the topo-approach is the definition of model com-

parison games. Here is the extension of Definition 2.2.1.
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4.1.5. DEFINITION (TOPO-GAME). Consider two topological models 〈X,O, ν〉, 〈X ′,
O′, ν ′〉 and a natural number n. A topo-game of length n, notation TG(X,X ′, n), con-

sists of n rounds between two players, Spoiler and Duplicator, who move alternatively.

Spoiler is granted the first move and always chooses which type of round to engage.

The two sorts of rounds are as follows:

global





(i) Spoiler chooses a model Xs and picks a point

x̄s anywhere in Xs

(ii) Duplicator chooses a point x̄d anywhere in t he

other model Xd

local





(i) Spoiler chooses a model Xs and an open os

containing the current point xs of that model

(ii) Duplicator chooses an open od in the other

model Xd containing its current point xd

(iii) Spoiler picks a point x̄d in Duplicator’s open

od in the Xd model

(iv) Duplicator replies by picking a point x̄s in

Spoiler’s open os in Xs

The points x̄s and x̄d become the new current points. A game always starts by a global

round. By this succession of actions, two sequences are built: {x1, x2, . . . xn} and

{x′1, x′2, . . . x′n}. After n rounds, if xi and x′i (with i ∈ [1, n]) satisfy the same propo-

sitional atoms, Duplicator wins, otherwise, Spoiler wins. A winning strategy (w.s.)

for Duplicator is a function from any sequence of moves by Spoiler to appropriate

responses which always ends in a win. Spoiler’s winning strategy is defined dually.

The multi-modal rank of a S4u formula is the maximum number of nested modal op-

erators appearing in it (i.e., ✷, ✸, U and E modalities). The following adequacy of the

games with respect to the mereotopological language holds.

4.1.6. THEOREM (ADEQUACY). Duplicator has a winning strategy for n rounds in

TG(X,X ′, n) iff X,X ′ satisfy the same formulas of multi-modal rank at most n.

The interesting result is that of having a game theoretic tool to compare topological

models. Given any two models, they can be played upon. If Spoiler has a winning

strategy in a certain number of rounds, then the two models are different up to a certain

degree. The degree is exactly the minimal number of rounds needed by Spoiler to win.

On the other hand, one knows that if Spoiler has no w.s. in any number of rounds, and

therefore Duplicator has in all games, including the infinite round game, then the two

models are bisimilar.

4.1.1. EXAMPLE (COMPARING CUTLERY). As we did in Section 2.2, we can play on

‘table items’, i.e., regions in topological spaces. Differently from the local games, one
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2 Rounds 3 Rounds1 Round

Figure 4.1: Plays of topological games for the universal language S4u. Above the two

models is the number of rounds needed by Spoiler to win.

may notice that there is no starting points in the two models. Spoiler can decide where

to play, by means of a global move. By this added freedom, Spoiler can win games in

which the players compare spoons and forks, spoons and plates or even spoons with an

empty table cloth.

Similar to before, we have a way of tying Spoiler’s winning strategies with formulas

(of S4u) true in the models. Note that the formulas can be true in the entire model, not

in only two particular starting points, as before. This reflects our earlier observation

that E or U formulas are really true across a model.

Referring to Figure 4.1, we can write down a distinguishing formula of the appro-

priate multi-modal rank that is true in one model but not in the other. In the case of the

1 round game, Spoiler can win in one round since on the right model the formula Ep is

true, while its negation is true in the other model. Think of it as the empty table which

should be set, so there is no region p yet: U¬p.

By a similar reasoning we can write the formula E✷p (the interior of p is non

empty) for the 2 round game. This formula is only true in the left model. For the 3

round game, a distinguishing formula is U(p ↔ ✸✷p). This formula encodes closed

regularity of regions, i.e., coincidence with the closure of its interior. This formula is

true for the plate on the right but not for the spoon on the left. The negation of the

regularity formula can be written as E(p ∧ ✷✸¬p) ∨ E(¬p ∧ ✸✷p)). The first half

of this accounts for external lower-dimensional spikes in the region p, the second for

lower dimensional cracks. For the spoon the handle is a lower dimensional spike.

4.1.2. REMARK (INFINITE GAMES). The definition can be easily extended to infinite

games. Just let n → ∞ and hence the sequences xn, x′n be infinite. The Adequacy

Theorem is still valid. Duplicator has a winning strategy in the infinite round game iff

the models are bisimilar in our extended sense.

4.1.3. REMARK (STRATEGIES AND NORMAL FORMS). From the practical perspec-

tive of playing topological games, Spoiler should bear in mind that identifying formu-

las that differentiate the models is not enough. Spoiler may consume too many turns

if he is using a long formula (in terms of multi-modal depth) which has a shorter log-

ical equivalent. Similarly Duplicator may have the illusion of a win, if he makes the

same mistake. Once ‘difference formulas’ are identified in the models they should be

reduced to logically equivalent ones with the lowest multi-modal depth. Normal forms



58 • Chapter 4. LOGICAL EXTENSIONS

are of great help for this purpose. E.g., here is the game-theoretic content of our earlier

normal form for S4u. Having only one ‘outermost’ existential or universal modality

means that Spoiler needs to engage only once in a global round. Furthermore, since

such a modality is the first to appear, that is the first type of move Spoiler should play.

This can also be seen directly in the game. If Spoiler engages in more than one global

round, it is like jumping around the space, not having understood were the difference

between the models resides.

One might try to extend this line of reasoning to the inner S4 part. After all, S4

validates reduction laws like ✷✷ϕ ↔ ✷ϕ, or ✷✸✷✸ϕ ↔ ✷✸ϕ. Can this be used to

simplify Spoiler’s strategies? We have not been able to find a general principle here

that would be of much use.

The use of normal forms can lead to a redefinition of the rules. The new game

would have always one starting global round and thereafter only local rounds.

Finally, after having presented all the tools of the topo-approach for the extended

language, it is important to remark what S4u captures of the topological structure.

The relation between S4u and connected spaces has recent origins: [Shehtman,

1999] and [Aiello and van Benthem, 1999]. A topological space is defined to be con-

nected if the only two sets that are both open and closed are the empty set and whole

space itself. The definition is expressible in S4u in the following way:

U(✸p→ ✷p)→ Up ∨ U¬p (4.1)

In topology, an alternative definition of connected space (cf. page 30) states that a

space is connected if there do not exist two open sets whose union covers the whole

space and that are disjoint. Again we can express the phrasing of the theorem in S4u:

U(✷p ∨✷q) ∧ Ep ∧ Eq → E(p ∧ q) (4.2)

Here is the purely logical version of the well-known topological fact.

4.1.7. FACT. ⊢S4u
(4.1) implies ⊢S4u

(4.2).

Proof Ad absurdum, suppose that not (4.2):

¬(U(✷p ∨✷q) ∧ Ep ∧ Eq → E(p ∧ q))

Substituting the propositional variable q by ¬p, one obtains

¬(U(✷p ∨✷¬p) ∧ Ep ∧ E¬p→ E(p ∧ ¬p))
¬(U(✷p ∨ ¬✸p) ∧ ¬(¬Ep ∨ ¬E¬p)→ E⊥)

U(¬✸p ∨✷p) ∧ ¬(¬Ep ∨ ¬E¬p)
U(✸p→ ✷p) ∧ ¬(U¬p ∨ Up)
¬(¬U(✸p→ ✷p) ∨ (U¬p ∨ Up))
¬(U(✸p→ ✷p)→ Up ∨ U¬p)
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Thus, contradicting the hypothesis ⊢S4u
(4.1). QED

Results like this can be used for a systematic analysis of well-known topologi-

cal preservation phenomena. But a more striking example, one that builds on topo-

bisimulations and gives a semantic proof of the topological fact, is the following corol-

lary of Theorem 4.1.3.

4.1.8. COROLLARY (CONNECTEDNESS). Consider 〈X,O〉 and 〈X ′, O′〉, and a con-

tinuous surjective map f : X → X ′. If the topological space 〈X,O〉 is connected, then

the space 〈X ′, O′〉 is connected.

Proof Our first observation is a modal definition for connectedness, in the extended

modal language S4u. We say that a topological space 〈X,O〉 validates a modal formula

ϕ if ϕ is true at every point under every valuation. Now we have that the following two

statements are equivalent:

(i) 〈X,O〉 is connected

(ii) 〈X,O〉 |= U(✸p→ ✷p)→ Up ∨ U¬p

To see this, note that the antecedent of this extended formula holds if the denomination

of p is both open and closed, while the consequent says that either p = X or p = ∅.
Now, we return to the statement of the Corollary. We must show that 〈X ′, O′〉 is

connected. Suppose that it is not. Then there exists a valuation ν ′ and a point x′ such

that 〈X ′, O′, ν ′〉, x′ |= ¬(ii). Next, we use the given continuous map f to define a

simulation ↼ from M ′ to M (note the reversal in direction here):

x ↼ x′ iff x′ = f(x)

In particular, the definition of continuous map gives the forward simulation clause.

Moreover, the surjectiveness of f guarantees that ↼ is surjective and total on M ′.

Next, we define a valuation ν on M by ‘copying ν ′ along f ’:

ν(p) = f−1(ν ′(p))

The result is a simulation ↼ from 〈X ′, O′, ν ′〉 onto 〈X,O, ν〉 such that x ↼ x′ for

some point x ∈ X .

Finally, we note that the negated formulas ¬(ii) is logically equivalent (by some

syntactic manipulation) to the S4u formula without ✸

U(✷¬p ∨✷p) ∧ E¬p ∨ Ep

By Corollary 4.1.3, this formula also holds for X in M , and hence 〈X,O〉 is not con-

nected. A contradiction. QED

The above is another piece of evidence for the claimed usefulness of bisimulations.
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4.2 Alternative extensions

The universal extension is not the possibility to enhance the logical power. Here, we

present some alternatives.

4.2.1 Hybrid reference

Another way to enhance the logical power of the basic topological language is to con-

sider hybrid modal references, cf. [Areces, 2000]. The idea of hybrid logics is that of

naming worlds in Kripke structures enabling explicit reference and naming power at

the language level. The resulting languages are very expressive as one can jump ‘quite

freely’ from one world to another remembering names of places to visit or visited. A

similar approach is also feasible for spatial logics interpreted on topological spaces.

One simply gives a name, say r, to a region and directly refers to it at the level of the

language with an appropriate modal operator “at region r.”

4.2.1. DEFINITION (SYNTAX OF S4@). Let 〈X,O〉 be a topological space, and let P =
{p1, p2, . . . } be a countable set of proposition letters (i.e., region names). The well-

formed formulas of the language S4@ in the signature 〈X, 0, P 〉 are

F = ⊤ | p | ¬ϕ | ϕ ∧ ψ | ✷ϕ | @Aϕ

where p,A ∈ P and ϕ, ψ ∈ F .

4.2.2. DEFINITION (TOPOLOGICAL SEMANTICS OF S4@). A topological model M=
〈X,O, ν〉 is defined as for S4. The interpretation is as for S4 with the addition of the

following definitions:

M,x |= @Aϕ iff ∀y ∈ ν(A) M, y |= ϕ

M, x |= @aϕ iff ∃y ∈ ν(A) M, y |= ϕ

One can look at the @ operator in two ways. On the one hand, it is a restricted

version of the universal modality.

@Aϕ↔ U(A→ ϕ)

On the other hand, the operator resembles closely that of hybrid logics, though in S4@

there is no use of different sorts for propositional variables, nominals and states. Differ-

ent sorts could be used, for instance, if considering special points with unique names.

One would end up with the full topology of spatial regions and with names for some

particular witnessing points. (Think for example of the topology of Europe, giving

unique names to a certain number of distinguished points: the capitals of European

countries.) Exploiting nominals would provide for extra expressive power. Most no-

tably irreflexivity, which is not expressible in ordinary modal logics, can be expressed

in hybrid systems, [Gabbay, 1981].
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What one gets for the logic S4@ is a behavior that is a mixture of the universal

modality and of the hybrid @ operator.

@Aϕ↔ ¬@a¬ϕ (Dual@)

Purely topological behaviors are:

@aB ↔ @bA (Intersection)

@AB ∧@BC → @AC (4@)

Some hybrid behaviors are retained:

@A(ϕ→ ψ)→ (@Aϕ→ @Aψ) (K@)

A ∧@Aϕ→ ϕ (T@)

@AA (Label)

@A@Bϕ→ @Bϕ (Scope)

As with S4u there is also some purely topological power in the language. For instance,

one can express the regularity of a region:

@A✸✷A regularity of the region A

Though, other global topological properties fall beyond the power of S4@. For instance,

the property of a topological space to be connected or not, which is expressible in S4u
by (1), is not expressible in terms of S4@. To show this fact we need the basic tool

of our topo-approach: topo-bisimulations. Here is the adequate notion for the hybrid

language.

4.2.3. DEFINITION (TOPOLOGICAL BISIMULATION). Consider the language S4 and

two topological models 〈X,O, ν〉, 〈X ′, O′, ν ′〉. A topological bisimulation is a non-

empty relation ⇌ ⊆ X ×X ′ such that:

(i) ∀p ∈ P ∀x ∈ ν(p) ∃x′ ∈ ν ′(p) such that x ⇌ x′

(ii) ∀p ∈ P ∀x′ ∈ ν ′(p) ∃x ∈ ν(p) such that x ⇌ x′

(iii) (forth condition): x ∈ o ∈ O⇒ ∃o′ ∈ O′ : x′ ∈ o′ and ∀y′∈o′ : ∃y∈o : y ⇌ y′

(iv) (back condition): x′ ∈ o′ ∈ O′⇒ ∃o ∈ O : x ∈ o and ∀y ∈ o : ∃y′ ∈ o′ : y ⇌ y′

Now consider the two topological models formed one by the real interval (0, 1), the

other by the interval (0, 2)− {1}, both with the following valuation function:

ν(x) = x mod 2
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The topological space underlying the first model is connected, while the second is not

as it is the union of two open sets. Now consider the following bisimulation defined

for all x ∈ (0, 2):
x ⇌ x′ iff ν(x) = x mod 2

The S4u formula of Equation (4.1) is true on the first model, but not on the second one.

Therefore a total topo-bisimulation cannot be established, which implies that S4u can

distinguish between connected and non-connected spaces. If now one considers the

relation for all x ∈ (0, 2)− {1}:

x ⇌ x′ iff ν(x) = x mod 2

it is easy to see that it is a bisimulation as defined in Definition 4.2.3. Therefore,

connectedness is not expressible by means of S4@.

4.2.2 Until a boundary

Another source of inspiration for extension of the expressive power of the basic lan-

guage of topology comes from temporal formalisms. Consider the Since and Until

logic of [Kamp, 1968]. If one abstracts from the temporal behavior and interprets the

modality in spaces with dimensionality greater than one, one gets an operator express-

ing something to be valid up to a certain boundary region, a sort of fence surrounding

the current region. Here is a natural notion of spatial ‘Until’ in topological models:

M,x |= ϕUψ iff ∃A : O(A) ∧ x ∈ A ∧ ∀y ∈ A.ϕ(y)∧
∀z(z is on the boundary of A ∧ ψ(z))

Defining the dual modality ϕUDψ as usual is ¬(¬ϕU¬ψ) we get:

M,x |= ϕUDψ iff ∀A : O(A) ∧ x ∈ A→ (∃y ∈ A.ϕ(y)∨
∃z(z is on the boundary of A ∧ ψ(z)))

Using the notation of the basic modal language, we recall the topological definition of

boundary of a set A:

boundary(A) = ✸A ∧✸¬A
A graphical representation of the Until operator is presented in Figure 4.2. Its expres-

siveness is richer than that of the basic modal language of space. E.g., one can express

global properties inside connected components:

Uϕ⊥ iff some open component arount the current point is all ϕ

In connected spaces, this is equivalent to the universal modality U .

Which temporal principles valid in IR survive the move to more than one dimen-

sion? We do not provide a full axiomatization, but rather look at how temporal axioms
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Figure 4.3: Examples of Until models.

behave in space and which new ones may arise. Two useful equivalences for obtaining

normal forms in the one dimensional case are

tU(p ∨ q)↔ (tUp) ∨ (tUq)
(p ∧ q)Ut↔ (pUt) ∧ (qUt)

In our spatial setting, the first equivalence fails: Figure 4.3.a refutes the→ implication.

But the other direction remains a valid principle of monotonicity. As for the second

equivalence, its direction→ is a general monotonicity principle again. Conversely, we

get even have a stronger valid law:

p1Uq ∧ p2Ut→ (p1 ∧ p2)U(q ∨ t)

Proof Let O,O′ be the two open sets such that p1 is true everywhere inside O and p2

everywhere in O′, q is true on the boundary of O and t on the boundary of O′. Now

consider the set O ∩ O′. In such a set p1 ∧ p2 is true everywhere. In addition, every

boundary point x of O ∩ O′ is either a boundary point of O or of O′. In fact, consider

a boundary point x of (O ∩ O′), then x ∈ ✸(O ∩ O′) and x 6∈ ✷(O ∩ O′). Since

x 6∈ ✷(O ∩ O′), x 6∈ (O ∩ O′), as O ∩ O′ is open. Say x 6∈ O. Then x 6∈ ✷O, while

also x ∈ ✸O (as x ∈ ✸(O ∩O′)), that is, x is a boundary point of O. See Figure 4.3.b

for an illustration. Thus, our x must satisfy q ∨ t. QED
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Figure 4.4: More examples of Until models.

Burgess [1984] reviews basic tense logic providing, among other things, an ax-

iomatization of the Since and Until logic for total dense orders. Departing from these

axioms, we consider their spatial validity. First, we let us define an abbreviation G:

Gp↔ pU⊥

Here is the set of axioms:

G(p→ q)→ ((rUp)→ (rUq)) ∧ ((pUr)→ (qUr)) (4.3)

p ∧ (rUq)→ (rU(q ∧ (rSp))) (4.4)

(qUp)↔ ((q ∧ (qUp))Up)↔ qU(q ∧ (qUp)) (4.5)

((qUp) ∧ ¬(rUp))→ qU(p ∧ ¬r) (4.6)

((qUp) ∧ (sUr))→ (((q ∧ s)U(p ∧ r)) ∨ ((q ∧ s)U(p ∧ s)) ∨ ((q ∧ s)U(q ∧ r)))
(4.7)

For now, this serves as an illustration of ‘transfer’ of temporal logic principles to spatial

settings. Finally, as for topo-bisimulations for this richer language, we would need an

extension of the proposals in [Kurtonina and de Rijke, 1997] for dealing with the ∃∀-
complexity of the truth condition for the spatial Until.

Axiom 4.3 is valid for the spatial Since and Until. If everywhere G p implies q,
then it must be the case that if the region r has a p boundary then it also has a q
boundary. Similarly, if a p region has a r boundary, so does the q region defined by the

same p points, cf. Figure 4.4.a. Axiom 4.4 does not make sense in the spatial setting

where there is no notion of past and, therefore, no Since operator. Axiom 4.5 expresses
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some kind of density and is valid in the spatial version if the model is dense, as it is

trivial to show by contraposition. Axiom 4.6 and Axiom 4.7 do not hold in spaces with

more than one dimensions. Here are two simple counter-examples, respectively for

Axiom 4.6 and Axiom 4.7, cf. Figure 4.4.b,c. Consider an open set A made of q points

with a boundary of p points. Inside A consider a number of isolated ¬r points, while

outside the open A there are only r points. It is easy to see that inside A the left hand

side of the implication of Axiom 4.6 is satisfied, while the right hand side is not. In

fact it is impossible to find an open set all made of q points with a continuous boundary

of ¬r points. A counter-example to Axiom 4.7 is also easy to build. Consider two

open circles of the same radius but different centers. Circle A is made of q points, its

circumference is made of p points, everywhere else it is ¬p. Circle B is built similarly

by replacing q by s and p by r. The circleA andB overlap. It is easy to check that there

does not exist an open set made of q ∧ s points whose boundary is made of exclusively

p∧ r points nor only of p∧ s points and also not only of p∧ r points. At most one can

hope for a weaker version of the axiom valid in the temporal case (Axiom 4.7):

((qUp) ∧ (sUr))→ ((q ∧ s)U((p ∧ r) ∨ (p ∧ s) ∨ (q ∧ r))).

Proving soundness for the spatial version of Since and Until has shown a fundamental

difference with the temporal version. The reasoning does not involve trees, but full

fledged topological spaces.

4.3 Standard logical analysis

The modal hierarchy of topological languages has a common root. All operators given

have truth conditions in a second-order language quantifying over both points and sets

of points. E.g., ✷p says that ∃A : O(A)∧ x ∈ A∧∀y : y ∈ A→ P (y). This language

has the following vocabulary:

∀x quantification over points

∀A quantification over sets of points

x = y identity

x ∈ A membership of points in sets

O(A) predicate of openness of sets

All fundamental topological notions are definable in this formalism. Here are two

relevant observations.

4.3.1. FACT. Formulas of the second-order language without free predicate variables

are preserved under topological homeomorphisms.

The proof is a simple induction.

4.3.2. FACT. All topological separation axioms Ti (with 0 ≤ i ≤ 4) are expressible in

the second-order language.
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For example, one can express the T2 axiom (defining the Hausdorff spaces) in the

following way:

∀x, y : (x 6= y → ∃A,B : O(A) ∧ O(B) ∧ ¬∃z(z ∈ A∧z ∈ B)∧x ∈ A∧y ∈ B)

Similarly we can write the definition of the axiom for T4 spaces:

∀C,D : (O(¬C) ∧O(¬D) ∧ ¬∃z(z ∈ C ∧ z ∈ D)

∃A,B : O(A) ∧O(B) ∧ ¬∃z(z ∈ A ∧ z ∈ B) ∧ ∀x ∈ C x ∈ A ∧ ∀x ∈ D x ∈ B)

Of course, this strong language has various much more tractable fragments, and

the goal in ‘modal topology’ is finding these. But the second-orderness in this analysis

maybe somewhat spurious. One can see this by the ‘deconstruction’ of Section 2.3.



CHAPTER 5

GEOMETRICAL EXTENSIONS

5.1 Affine Geometry

Extending the expressive power of a modal logic of space may go beyond mere logical

power, cf. Chapter 4. One can also enrich geometrical power by endowing spaces with

more structure. A first elementary example is the property of a point’s being in the

convex closure of a set of points. That is, there exists a segment containing the points

whose end-points are in the set. The notion of convexity is very important in many

fields related to space (e.g., computational geometry [Preparata and Shamos, 1985]),

but also in abstract cognitive settings (e.g., conceptual spaces [Gärdenfors, 2000]).

Capturing convexity modally involves a standard similarity type, that of frames of

points with a ternary relation of betweenness:

M,x |= Cϕ iff ∃y, z : M, y |= ϕ ∧M, z |= ϕ ∧ x lies in between y and z (5.1)

This definition is slightly different from the usual notion of convex closure. It is a one-

step convexity operator whose countable iteration yields the standard convex closure.

The difference between the two definitions is visible in Figure 5.9. On the left are three

points denoting a region. The standard convex closure operator gives the full triangle

depicted on the right. The one-step convexity, on the other hand, gives the frame of

the triangle and only when applied twice yields the full triangle. Another illustration is

presented in Figure 5.1. One-step convexity exhibits a modal pattern for an existential

binary modality:

∃yz : β(yxz) ∧ ϕ(y) ∧ ϕ(z)

From now on, we shall use the term convexity operator to refer to the one-step convex-

ity operator defined in (5.1).

5.1.1 Basic geometry

Geometrical modal logic starts from standard bits of mathematics, viz. affine geometry,

[Blumenthal, 1961]. For later reference, here are the affine base axioms in a language

67
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ϕ

ϕ

ϕ

ϕ

y

z

ϕ
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ϕ

Figure 5.1: The point x is in the one-step convex closure ϕ.

with two sorts for points and lines, and an incidence relation as presented by Goldblatt

[Goldblatt, 1987]:

A1 Any two distinct points lie on exactly one line.

A2 There exist at least three non-collinear points.

A3 Given a point a and a line L, there is exactly one line M that passes through a and

is parallel to L.

There are also some properties that further classify affine planes. In particular, an affine

plane is Pappian if every pair of its lines has the Pappus property:

A pair L,M of lines in an affine plane has the Pappus property if whenever

a, b, c is a triple of points on L, and a′, b′, c′ is a triple on M such that ab′

is parallel to a′b and ac′ is parallel to a′c, then b′c is parallel to bc′.

Affine spaces have a strong modal flavor, as shown by [Balbiani et al., 1997, Balbiani,

1998, Venema, 1999, Stebletsova, 2000], where two roads are taken. One merges

points and lines into one sort of pairs 〈point, line〉 equipped with two incidence rela-

tions. The other has two sorts for points and lines, and a matching modal operator.

But there are more expressive classical approaches to affine structure. Tarski [1959]

gave a full first-order axiomatization of elementary geometry in terms of a ternary

betweenness predicate β and quaternary equidistance δ. We display it as a kind of

‘upper limit’:

A1 ∀xy(β(xyx)→ (x = y)), identity axiom for betweenness.

A2 ∀xyzu(β((xyu) ∧ β(yzu))→ β(xyz)), transitivity axiom for betweenness,

A3 ∀xyzu(β(xyz) ∧ β(xyu) ∧ (x 6= y)→ β(xzu) ∨ β(xuz)) connectivity axiom for

betweenness,

A4 ∀xy(δ(xyyx)), reflexivity axiom for equidistance,
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A5 ∀xyz(δ(xyzz)→ (x = y)), identity axiom for equidistance,

A6 ∀xyzuvw(δ(xyzu) ∧ δ(xyvw)→ δ(zuvw)), transitivity axiom for equidistance,

A7 ∀txyzu∃v(β(xtu) ∧ β(yuz)→ β(xvy) ∧ β(ztv)), Pasch’s axiom,

A8 ∀txyzu∃vw(β(xut)∧β(yuz)∧ (x 6= u)→ β(xzv)∧β(xyw)∧β(vtw)), Euclid’s

axiom,

A9 ∀xx′yy′zz′uu′(δ(xyx′y′) ∧ δ(yzy′z′) ∧ δ(xux′u′) ∧ δ(yuy′u′) ∧ β(xyz)∧
β(x′y′z′) ∧ (x 6= y)→ δ(zuz′u′)), five-segment axiom,

A10 ∀xyuv∃z(β(xyz) ∧ δ(yzuv)), axiom of segment construction,

A11 ∀xyz(¬β(xyz) ∧ ¬β(yzx) ∧ ¬β(zxy), lower dimension axiom,

A12 ∀xyzuv(δ(xuxv)∧ δ(yuyv)∧ δ(zuzv)∧ (u 6= v)→ β(xyz)∨β(yzx)∨β(zxy),
upper dimension axiom,

A13 All sentences of the form ∀vw . . . (∃z∀xy(ψ∧ϕ→ β(zxy))→ ∃u∀xy(ψ∧ϕ→
β(xuy))), elementary continuity axioms.

Why is this beautiful complete and decidable axiomatization not all one wants to

know? From a modal standpoint, there are two infelicities in this system. The axioms

are too powerful, and one wants to look at more tractable fragments. But also, the ax-

ioms mix betweenness and equidistance—whereas one first wants to understand affine

and metric structure separately.

5.1.2 The general logic of betweenness

Our choice of primitives for affine space is again betweenness, where β(xyz) means

that point y lies in between x and z, allowing y to be one of these end-points. Line

structure is immediately available by defining collinearity in terms of betweenness:

xyz are collinear iff β(xyz) ∨ β(yzx) ∨ β(zxy)

‘Geometrical extensions’ of this sort can even define ‘extended modalities’, i.e., ‘logi-

cal extensions’ in our earlier terminology. Here is the existential “at some point:”

Eϕ iff 〈B〉(ϕ,⊤) (5.2)

This will work provided we require betweenness to satisfy:

∀x∀yβ(xxy).

Without this, the defined modality will just range over the connected component of the

current point of evaluation.
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Natural specific structures on which to interpret our modal language include the IRn

for any n. But affine spaces really form a much more general class of structures. What

are natural general frame conditions constraining these? As one does for temporal

logics, the universal first-order theory of ordinary real space suggests good candidates.

Consider just the betweenness part of Tarski’s elementary geometry. Axioms A1-A3

for identity, transitivity, and linearity are all plausible as general affine properties. They

are not sufficient, though, as one also wants some obvious variants of transitivity and

linearity with points in other positions stated explicitly. With Tarski, the latter are

theorems, but their proofs go through other axioms involving equidistance. Further

universal first-order assertions that hold in real space would express dimensionality of

the space, which does not seem a plausible constraint in general.

x

u

y

z

v

t

Figure 5.2: Pasch’s property.
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k l

Figure 5.3: Pappus property.

At the next level of syntactic complexity, one then finds existential axioms and

universal-existential ones, which require the space to have a certain richness in points.

The latter expresses typical geometrical behavior, witness Pasch’s axiom A7 (see Fig-

ure 5.2) and the earlier Pappus property (see Figure 5.3):

∀xx′yy′zz′∃jklβ(xyz) ∧ β(x′y′z′) ∧ β(xjy′) ∧ β(yjx′) ∧ β(xkz′)∧
β(zkx′) ∧ β(ylz′) ∧ β(zly′)→ β(jkl)

Moving to the opposite extreme of geometrical structure, consider the real line IR.

Its universal first-order theory includes the strong dimensionality principle

∀xyz, β(xyz) ∨ β(yxz) ∨ β(xzy) (5.3)



5.1. Affine Geometry • 71

The complete affine first-order theory here can be axiomatized very simply, by trans-

lating β(xyz) as y = x ∨ y = z ∨ x < y < z. This reduces the one-dimensional

geometry to the decidable theory of discrete unbounded linear orders. But it would

be of interest to also axiomatize the universal first-order betweenness theories of the

spaces IRn explicitly.

5.1.3 Modal languages of betweenness

Let us now turn to modal logic over affine spaces.

5.1.3.1 The basic language

Ternary betweenness models a binary betweenness modality 〈B〉:

M,x |= 〈B〉(ϕ, ψ) iff ∃y, z : β(yxz) ∧M, y |= ϕ ∧M, z |= ψ

Note that this is a more standard modal notion than the earlier topological modality: we

are working on frames, and there are no two-step quantifiers hidden in the semantics.

〈B〉 is expressive. For instance, it defines one-step convex closure as follows:

convex(ϕ) iff 〈B〉(ϕ, ϕ) (5.4)

Passing to points ‘in between’ two others yields the convex closure only after re-

peated applications of this operator, as shown in Figure 5.9. In a more elaborate set-up,

we could take a leaf from dynamic logic, and add an operation of Kleene iteration of

the betweenness predicate–much as ternary ‘composition’ is iterated in dynamic Ar-

row Logic (cf. Chapter 8 in [van Benthem, 1996]). Next, the existential modality has

a dual universal version: [B](ϕ, ψ)↔ ¬〈B〉(¬ϕ,¬ψ), which works out to

M,x |= [B](ϕ, ψ) iff ∀y, z : β(yxz)→M, y |= ϕ ∨M, z |= ψ

An implicational variant of this definition is also helpful sometimes:

M,x |= [B](¬ϕ, ψ) iff ∀y, z : β(yxz) ∧M, y |= ϕ→M, z |= ψ

One might think that there should be an independent conjunctive variant, saying

that both end-points have their property. But this is already definable—another sign of

the strength of the language:

[B](ϕ,⊥) ∧ [B](⊥, ψ)
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5.1.3.2 Versatile extensions

Betweenness is natural, but biased toward ’interior positions’ of a segment. But given

two points x and y, one can also consider all points z such that x lies in between y
and z, or all w such that y lies in between x and w. In this way, two points identify a

direction and a weak notion of orientation. There are two obvious further existential

modalities corresponding to this. Together with 〈B〉, they form a ‘versatile’ triple in

the sense of [Venema, 1992]. Such triples are often easier to axiomatize together than

in isolation. As an illustration, consider the table of Figure 5.4, which we have been

above above left side

below

Figure 5.4: A table and the regions for versatile betweenness modalities.

setting in earlier sections. Using versatile modalities, the legs of the table and its top

identify important zones of visual scenes, which also have names in natural language,

such as everything ‘above the table’.

5.1.3.3 Affine transformations

Affine transformations are the invariant maps for affine geometry. Their modal coun-

terpart are affine bisimulations which are mappings relating points verifying the same

proposition letters, and maintaining betweenness. We only display the definition for

our original ‘interior’ betweenness—since the versatile extensions are straightforward:

5.1.1. DEFINITION (AFFINE BISIMULATION). Given two affine models 〈X,O, β, ν〉,
and 〈X ′, O′, β′, ν〉, an affine bisimulation is a non-empty relation ⇌ ⊆ X × X ′ such

that, if x ⇌ x′:

(i) x and x′ satisfy the same proposition letters,

(ii) (forth condition): β(yxz)⇒ ∃y′z′ : β′(y′x′z′) and y ⇌ y′ and z ⇌ z′

(iii) (back condition): β′(y′x′z′)⇒ ∃yz : β(yxz) and y ⇌ y′ and z ⇌ z′

where x, y, z ∈ X and x′, y′, z′ ∈ X ′.

In [Goldblatt, 1987], isomorphisms are considered the only interesting maps across

affine models. But in fact, just as with topological bisimulations versus homeomor-

phisms (Theorem 2.1.5), affine bisimulations are interesting coarser ways of compar-

ing spatial situations. In the true modal spirit, they only consider the behavior of points
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inside their local line environments. Consider the two models consisting of 6 and 4

points, respectively, on and inside two triangles, with some atomic properties indicated,

Figure 5.5. The models are evidently not isomorphic, but there is an affine bisimula-

p q r

r

q

q

p q r

q

Figure 5.5: Affine bisimilar models.

tion. Simply relate the two r points on the left with the single r point on the right. Then

relate the top q point on the left with the top one on the right, the remaining two q points

on the left with the one on the right, and, finally, the p point on the left with the one of

the right. This affine bisimulation can be regarded as a sort of ‘modal contraction’ to a

smallest bisimilar model, as we did in Section 2.1.3. The models in Figure 5.6 are not

bisimilar though. One can check that no relation does the job—or, more simply, note

p r

r
q

p q rr

r

Figure 5.6: Affine bisimilar reduction.

that the modal formula q∧〈B〉(r, r) holds on the q point of the left model and nowhere

on the right. Affine bisimulations preserve truth of modal formulas in an obvious way,

and hence they are a coarser map than isomorphisms still giving meaningful geomet-

rical invariances. This is exactly as we found with topological bisimulations versus

homeomorphisms.

Incidentally, notice that there is a smaller bisimulation contraction for the left-hand

triangle. The reason is that not all its points are uniquely definable in our modal lan-

guage. The p and q points are uniquely definable, but all r points on the boundary

satisfy the same modal statements. The contraction will look like the picture to the

right, but with the middle point ‘in between’ the right point and the right point itself.

(This is not a standard 2D ‘picture’, and duplicating points cannot always be contracted
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if we insist on those.) This situation would change with a modality for proper between-

ness. Then the two middle r points become uniquely distinguishable as being properly

in between different pairs of points. But the top and right-bottom point remain indis-

tinguishable, unless we add versatile operators. It is a nice exercise to show that the

triangle does have every point uniquely definable in the original language when we

change the atomic proposition in the top vertex and the one center bottom to q and

that in the middle of the right edge to p. Consider the new valuation in Figure 5.7. In

1

2

3

45

6

p
q

q

q p

r

Figure 5.7: An irreducible affine model.

this case there does not exists a bisimilar contraction. Every point of the triangle is

distinguishable by a formula which is not true on any other point, see Figure 5.8. This

Point Formula

1 ϕ1 = p ∧ 〈B〉(q, r)
2 ϕ2 = p ∧ ¬ϕ1

3 ϕ3 = q ∧ 〈B〉(ϕ1, ϕ2)
4 ϕ4 = r
5 ϕ5 = q ∧ 〈B〉(ϕ2, ϕ4)
6 ϕ6 = q ∧ ¬ϕ3 ∧ ¬ϕ5

Figure 5.8: Formulas true at points of the model in Figure 5.7.

suggests a theory of unique patterns, depending on how points are labeled in geomet-

rical pictures.

5.1.4 Modal logics of betweenness

The preceding language has a minimal logic as usual, which does not yet have much

geometrical content. Its key axioms are two distribution laws:

〈B〉(ϕ1 ∨ ϕ2, ψ)↔ 〈B〉(ϕ1, ψ) ∨ 〈B〉(ϕ2, ψ)

〈B〉(ψ, ϕ1 ∨ ϕ2)↔ 〈B〉(ψ, ϕ1) ∨ 〈B〉(ψ, ϕ2)
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This minimal logic by itself has all the usual modal properties, decidability among

them. Other basic principles express basic universal relational conditions, such as be-

tweenness being symmetric in end-points, and all points lying ‘in between themselves’:

〈B〉(ϕ, ψ)→ 〈B〉(ψ, ϕ)

ϕ→ 〈B〉(ϕ, ϕ)

These facts are simple frame correspondences in the usual modal sense. A slightly

more tricky example is the earlier-mentioned relational condition ∀x∀yβ(xxy). This

is not definable as it stands, but the modal axiom

(ϕ ∧ 〈B〉(⊤, ψ))→ 〈B〉(ϕ, ψ)

corresponds to the related principle

∀x∀y∀z : β(zxy)→ β(xxy)

More generally, special modal axioms may correspond to more complex properties of

geometric interest. For example, consider associativity of the betweenness modality:

〈B〉(ϕ, 〈B〉(ψ, ξ))↔ 〈B〉(〈B〉(ϕ, ψ), ξ)

5.1.2. FACT. Associativity corresponds to the Pasch Axiom.

Proof Consider the Pasch Axiom A7 in Tarski’s list (Figure 5.2). Suppose that

∀txyzu∃v(β(xtu) ∧ β(yuz)→ β(xvy) ∧ β(ztv))

holds in a frame. Assume that a point t satisfies 〈B〉(ϕ, 〈B〉(ψ, ξ)). Then there exist

points x, u with β(xtu) such that x |= ϕ, u |= 〈B〉(ψ, ξ), and hence also points y, z
with β(yuz) such that y |= ψ and z |= ξ. Now by Pasch’s Axiom, there must be a point

v with β(xvy) and β(vtz). Now, v |= 〈B〉(ϕ, ψ) and hence t |= 〈B〉(〈B〉(ϕ, ψ), ξ).
The other direction is similar.

Conversely, assume that β(xtu) and β(yuz). Define a valuation on the space by

setting ν(p) = {x}, ν(q) = {y}, and ν(r) = {z}. Thus, u |= 〈B〉(q, r) and

t |= 〈B〉(p, 〈B〉(q, r)).

By the validity of modal associativity, then

t |= 〈B〉(〈B〉(p, q), r)

So there must be points v, w with β(vtw) such that v |= 〈B〉(p, q) and w |= r. By the

definition of ν, the latter means that w=z, the former that β(xuy). So indeed, u is the

required point. QED

The preceding correspondence may be computed automatically, as the associativ-

ity has ‘Sahlqvist form’. Thus, more general substitution methods apply for finding

geometrical correspondents: cf. [Blackburn et al., 2001].
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5.1.5 Special logics

For the affine modal logic of special models, additional considerations may apply. One

example is the real line IR, which was also conspicuous in the topological setting. This

time, the task is easy, as one can take advantage of the binary ordering <, defining

M,x |= 〈B〉(ϕ, ψ) iff ∃y, z : M, y |= ϕ ∧M, z |= ψ ∧ z ≤ x ≤ y

Given this notion, we can use shorthand for the modalities of temporal logic: Future

and Past (here, both including the present).

Fϕ := 〈B〉(true, ϕ)

Pϕ := 〈B〉(ϕ, true)

Conversely, on IR, these two unary modalities suffice for defining 〈B〉:

〈B〉(ϕ, ψ)↔ Pϕ ∧ Fψ

Thus, a complete and decidable axiomatization for our 〈B〉-language can be found us-

ing the well-known tense logic of future and past on IR [Segerberg, 1970].

Special models also raise special issues. We have already seen the universal axiom

Equation (5.3) defining one-dimensionality. What would be good versions for higher

dimensions? We will address this issue once more in our next section.

5.1.6 Logics of convexity

A binary modality for a ternary frame relation gives maximal flexibility. Nevertheless,

given the geometrical importance of convexity per se, here is a unary modal operator

for one-step convex closure:

M,x |= Cϕ iff ∃y, z : M, y |= ϕ ∧M, z |= ϕ ∧ x ∈ y—z

This is a fragment of the preceding modal language:

Cϕ↔ 〈B〉(ϕ, ϕ).

The axiomatic behavior is different though: distributivity fails. Of the axiom

C(ϕ ∨ ψ)↔ Cϕ ∨ Cψ

only the right-to-left monotonicity implication is valid. But the one-step convex closure

of a set of two distinct points is their whole interval, while the union of their separate

one-step closures is just these points themselves.

Earlier on, we already noted that one-step convex closure needs finite iteration to

yield the usual convex closure of geometry. This could be brought out again in a
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Figure 5.9: In a two dimensional space, the sequential application of the convexity

operator to three non aligned points results in two different regions: a triangle (only

the sides and corners of it) and the filled triangle.

language with an additional modality C∗, where the ∗ denotes Kleene iteration. This

interesting spatial use of dynamic logic is not pursued here, for a reason to be explained

below. First, note that the non-idempotence of C gives additional expressive power by

itself. In fact, it helps us distinguish dimensions! Here is how. The principle

CCϕ↔ Cϕ

holds on IR, but not on IR2. A counter-example on IR2 is shown in Figure 5.9. The

region p is given by three non-collinear points. Cp is then the bare triangle: convexity

has added the edges. Applying convexity again,CCp defines a different region, namely

the whole triangle with its interior. One may be inclined to rush to the conclusion that

principles of the form

Cn+1ϕ↔ Cnϕ (5.5)

determine the dimensionality of the spaces IRn for all n. But here is a surprise.

5.1.3. THEOREM. The principle CCCϕ↔ CCϕ holds in IR3.

Proof Here is a sketch. It will help the reader to visualize the situation using the

tetrahedron example in Figure 5.11.

Cϕ consists of all points in between two ϕ-points. CCϕ consists of all points in

between the latter, and the implication CCϕ → Cϕ corresponds (in the literal modal

frame-theoretic sense) to the betweenness property that

(β(yxz) ∧ β(uyv) ∧ β(szt))→
∧
{β(ixj)| i, j ∈ {u, v, s, t}}

This is true in one dimension, though not in higher ones.

On the plane, Cϕ consists of the same points. But we can give another descrip-

tion of CCϕ . If x lies in between two Cϕ-points, say on intervals y—z and u—v ,

respectively, then x lies in/on one of the triangles yzu or yzv. Therefore, CCϕ-points

lie on triangles of ϕ-points. Now consider any point r in CCCϕ, i.e., between points

s, t in/on such CCϕ triangles. Intersecting the segment s—t with the two triangle

boundaries, we get that r lies in a four sided polygon of ϕ-points, and hence, bisecting,

r is already in/on a triangle of ϕ-points: i.e., r is in CCϕ already.
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Figure 5.10: In a three dimensional space, the sequential application of the between-

ness operator to four non coplanar points results in two distinct regions: the wire-frame

of a tetrahedron and the filled tetrahedron.

Figure 5.11: Applying convexity from the wire-frame to the full tetrahedron.

In 3D, the description for CCϕ is different, because the two segments for the Cϕ-

points need not lie in the same plane. The outcome is that these points lie in/on a

4-hedron of ϕ-points. Now consider a generic point r in CCCϕ. It will lie in between

points in such 4-hedra. This situation is easier to picture: take the segment on which it

lies, and intersect that with the relevant faces of the 4-hedra. Then it is easy to see that

the point r lies inside a 6-hedron whose vertices are ϕ-points. But then, cutting this up

a number of times now, there is again a 4-hedron of ϕ-points in/on which we find r,
hence, it is in CCϕ already. QED

As a corollary, for real spaces, we can then define convex closure in our language

after all, using CC combinations. Hence, a full dynamic language, no matter how

interesting, is not strictly needed. But for the moment we note the following fact.

5.1.4. FACT. For any formula ϕ, Cn is a convex set in IRn.

But there are dimension highlighters in our language after all. An old theorem from

almost a century ago [Helly, 1923] comes to the rescue:

5.1.5. THEOREM (HELLY). If K1, K2, . . . , Km are convex sets in n-dimensional Eu-

clidean space En, in which m > n + 1, and if for every choice of n + 1 of the sets

Ki there exists a point that belongs to all the chosen sets, then there exists a point that

belongs to all the sets K1, K2, . . . , Km.

This theorem does have a modal version;

∧

f :{1,...,n+1}→{1,...,m}

E(
n+1∧

i=1

(Cnϕf(i))→ E(
m∧

i=1

Cnϕi)
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where E is the existential modality (defined in terms of betweenness in Equation 5.2),

Cn is convexity applied n times (Fact 5.1.4), and f is a function from {1, . . . , n + 1}
to {1, . . . ,m}.

5.1.6.1 Digression: A proof in the projective plane

A convenient form of representing geometrical spaces is by homogeneous coordinates

of the projective plane. In homogeneous coordinates (see for instance [Foley et al.,

1990]), a point in an n-dimensional space is represented by n+ 1 elements of a vector.

For example, the origin of the plane is represented by

P =




0
0
1




Representing points and sets of points in this form we look at convexity with two goals:

one, to see the relation between bisimulations and convexity; two, to show formally that

(5.5) does not hold.

The convexity operator applied to the regions formed by two generic points P1 =
(x1, y1, 1), P2 = (x2, y2, 1) of the plane denotes the segment, with a slight mix of

notation between the language level and model level,

C(P1

⋃
P2) =



x1(1− c) + x2c
y1(1− c) + y2c

1


 (5.6)

with c ∈ [0, 1]. In the following, we may abbreviate C(P1

⋃
P2) by P1(1 − c) + P2c,

even though it is not precise from an algebraic point of view.

5.1.6. LEMMA (AFFINE BISIMULATIONS). Affine transformations imply affine bisim-

ulations.

Proof We sketch the proof for the two dimensional case. First a geometrical fact,

affinely transforming a point P is represented, in homogeneous coordinates, by the

pre-multiplication of a square matrix, P̄ = T · P ,

T =



r11 r12 tx
r21 r22 ty
0 0 1


 (5.7)

where the upper 2×2 matrix is orthonormal, i.e., T−1 = T t and |T | = 1. For example,

if r11 = 1, r12 = 0, r21 = 0, r22 = 1 one gets a translation, while if r12 = 0, tx =
0, r21 = 0, ty = 0 one gets a scaling.

First, we show that affine transformations imply bisimulations. Disregard the val-

uation function. A generic point Pg ∈ P1—P2 is related, via an affine transformation,
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to the point T · Pg. We need to show that T · Pg ∈ T · P1—T · P2. We rewrite the last

membership relation as T · Pg = T · P1(1 − c) + T · P2c with c ∈ [0, 1]. It is now a

matter of simple matrix manipulation and substitution with Equation (5.6) and (5.7) to

show that the latter equation holds. QED

Actually, there are reasons to suspect that the implication in the opposite direction

holds in a vast number of cases. For instance, both affine bisimulations and affine

transformations preserve convexity in a very similar manner.

5.1.7. FACT. Cϕ does not necessarily denote a convex set in two or more dimensional

spaces.

Proof We give a counter-example, see also Figure 5.12. Consider 3 points P1, P2, P3.

P
2

P
3

P
1

P
12

P
2

P
3

P
12

P
1

(a) (b)

Figure 5.12: Convexity of a region made is not necessarily a convex region. In (a) it is

not, while in (b) it is.

A point of Cϕ is, for instance, P12 = P1(1 − 1
2
) + P2

1
2
. If we consider all the points

between P12 and P3 we see that they are in Cϕ iff the three points are collinear:



1
4
(x1 + x2 + 2x3)

1
4
(y1 + y2 + 2y3)

1
4
(z1 + z2 + 2z3)

1


 =




x1(1− c) + x2c
y1(1− c) + y2c
z1(1− c) + z2c

1




has solutions in c iff the values of the x{1,2}, y{1,2}, z{1,2} are pairwise linearly depen-

dent, i.e., iff the points P1, P2, P3 are collinear (Figure 5.12.(b)). QED

Finally, we consider what happens applying the convexity operator one more time.

5.1.8. FACT. CCϕ denotes a convex set in a three-dimensional space.

Proof If we apply convexity twice, we obtain

CCϕ = CC
⋃

i




xi
yi
zi
1


 =

{Pcc| ∀j, k, l,m, Pcc = (Pj(1− c1) + Pkc1)(1− c3) + (Pl(1− c2) + Pmc2)c3}
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The expression of a point between any two generic points of the previous set Pcc, P
′
cc

is

Pg =((Pj(1− c1) + Pkc1)(1− c3) + (Pl(1− c2) + Pmc2)c3)(1− c7)+
((Pj(1− c4) + Pkc4)(1− c6) + (Pl(1− c5) + Pmc5)C6)c7 (5.8)

if Pg belonged to the set of Pcc points, then it would have the form

Pg = ((Pj(1− d1) + Pkd1)(1− d3) + (Pl(1− d2) + Pmd2)d3)(1− d7) (5.9)

Substituting Pg of Equation 5.9 into Equation 5.8 yields an over-determined system of

equations, which in turn is an identity. Therefore the set of Pcc points is a convex set.

QED

We believe this proof lifts to higher dimensions.

5.1.7 First-order affine geometry

The above modal language is again a fragment of a first-order one, under the standard

translation. The relevant first-order language is not quite that of Tarski’s elementary

geometry for IR2, as we also get unary predicate letters denoting regions. In fact, one

open question which we have not been able to resolve is this. A formula ϕ(β, P,Q, ...)
is valid, say in the real plane, if it holds for any interpretation of the regions P , Q, ...

Thus, we would be looking at a universal fragment of a monadic second-order logic:

What is the complete monadic Π1
1 theory of the affine real plane?

We suspect it is recursively axiomatizable and decidable—perhaps using the Ehren-

feucht game methods of [Doets, 1987]. This is an extension of the affine part of

Tarski’s logic. But our previous discussion has also identified interesting fragments:

What is the universal first-order theory of the affine real plane?

As in our discussion of topology, the affine first-order language of regions is a natural

limit towards which modal affine languages can strive via various logical extensions.

From a geometrical viewpoint, one might also hope that ‘layering’ the usual language

in this modal way will bring to light interesting new geometrical facts.

Another major feature of standard geometry is the equal status of points and lines.

This would suggest a reorganization of the modal logic to a two-sorted one stating

properties of both points and segments, viewed as independent semantic objects. There

are several ways of doing this. One would be a two-dimensional modal language

in the spirit of [Marx and Venema, 1997], handling both points and pairs of points,

with various cross-sortal modalities. Another would treat both objects as primitives,

and then have cross-sortal modalities for “at an end-point,” “at an intermediate point,”

“at some surrounding segment.” We think the latter is the best way to go eventually,
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as it has the useful feature of replacing talk in terms of ternary relations, which are

hard to visualize, by binary ones, which are easier to represent. (This is of course

the key advantage of the geometer’s habit of working with points and lines.) More-

over, the two-sorted move would be in line with other modal trends such as Arrow

Logic [van Benthem, 1996, Venema, 1996], where transitions between points become

semantical objects in their own right. This gives more control over semantic struc-

tures and the complexity of reasoning. It would also help reflect geometrical duality

principles of the sort that led from affine to projective geometry.

5.2 Metric geometry

There is more structure to geometry than just affine point and line patterns. Tarski’s

equidistance also captures metric information. There are various primitives for this.

Tarski used quaternary equidistance—while ternary equidistance would do just as well

(x, y and z lie at equal distances). Our choice in this section is a different one, stressing

the comparative character of metric structure.

5.2.1 The geometry of relative nearness

Relative nearness was introduced in [van Benthem, 1983b] (see Figure 5.13):

N(x, y, z) iff y is closer to x than z is, i.e., d(x, y) < d(x, z)

where d(x, y) is any distance function.

This is meant very generally. The function d can be a geometrical metric, or some

x

y
z

Figure 5.13: From point x, y is closer than point z.

more cognitive notion of visual closeness (van Benthem’s original interest; cf. also

Gärdenfors ‘Conceptual Spaces’), or some utility function with metric behavior. Ran-

dell et al. [2001] develop the theory of comparative nearness for the purpose of robot

navigation, related to the earlier-mentioned calculus of regions RCC.

Relative nearness defines equidistance:

Eqd(x, y, z) : ¬N(x, y, z) ∧ ¬N(x, z, y)
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Tarski’s quaternary equidistance is expressible in terms of N as well. Details are post-

poned until Section 5.2.3 on first-order metric geometry.

Affine betweenness is also definable in terms of N , at least in the real spaces IRn:

β(xyz) iff ∀x′¬(N(y, x, x′) ∧N(z, x′, x))

Finally, note that even identity of points x = y is expressible in terms of N

x = y iff ¬N(x, x, y)

At the end of the XVIII century the mathematician Lorenzo Mascheroni proved in

his tractate The Geometry of Compasses that everything that can be done with compass

and ruler can be done with the compass alone. One can generate all of Mascheroni’s

constructions with the first-order logic of N and thereby achieve geometry, as we il-

lustrate in Section 5.2.1.1.

The further analysis of this structure can proceed along much the same lines as the

earlier one for affine geometry. In particular, as a source of basic constraints, one is

interested in the universal first-order theory of relative nearness. Its complete descrip-

tion is an open question right now, but here are some examples showing its interest.

First, comparative nearness induces a standard comparative ordering. Once a point x
is fixed, the binary order N(x, y, z) is irreflexive, transitive and almost-connected:

∀x∀y∀z∀u : (N(x, y, z) ∧N(x, z, u))→ N(x, y, u)) (transitivity)

∀x∀y : ¬N(x, y, y) (irreflexivity)

∀x∀y∀z∀u : N(x, y, z)→ (N(x, y, u) ∨N(x, u, z)) (almost-connectedness)

These are like the principles of comparative order in logical semantics for counterfac-

tuals [Lewis, 1973]. But additional valid principles are more truly geometrical, relating

distances from different standpoints. These are the following triangle inequalities

∀x∀y∀z∀u : N(x, y, z) ∧N(z, x, y)→ N(y, x, z)

∀x∀y∀z∀u : ¬N(x, y, z) ∧ ¬N(z, x, y)→ ¬N(y, x, z)

These seem pretty universal constraints on comparative nearness in general. Further

universal first-order properties of N reflect the two-dimensionality of the plane. Just

inscribe 6 equilateral triangles in a circle, and see that

on a circle with radius r, the largest polygon that can be inscribed of points

at distance r has 6 vertices.

This upper bound can be expressed in universal first-order form, because we can ex-

press equidistance in terms ofN . Other principles of this form concern the arrangement

of points on circles:
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on a circle C, any point has at most two points at each of its ‘equidistance

levels’ on C

and

circles with the same radius but different centers intersect in at most two

points.

To obtain the complete universal first-order theory of comparative nearness in the

Euclidean plane IR2, one would have to guarantee a planar embedding. Do our gen-

eral axioms, including the triangle inequalities, suffice for axiomatizing the complete

universal theory of all Euclidean spaces IRn?

5.2.1.1 Geometrical excursus: Mascheroni, Voronoi, and Delaunay

Having the predicate of comparative nearness is like having a compass. One is able to

draw circles, but does not know their radius. (Think of having a map with no scale on it

and to start comparing distances by using the compass alone.) If N(x, y, z) holds, we

know that the points y are those contained in the circle centered in x, whose radius is

given by the distance d(x, z). Via the defined notion of equidistance we can also refer

to the circumference of the regions. This allows us to look at modal and first-order

nearness geometry through some classical theorems in geometry.

Mascheroni’s geometry of compass. If one can define circumferences via equidis-

tance and one can ‘do’ all basic geometrical constructions with the compass alone via

Mascheroni constructions, then the logic of comparative nearness must be able to ex-

press all basic geometrical constructions.

1
p

2
p

3
p

5
p

4
p

6
p  c

Figure 5.14: The construction of a regular hexagon via Mascheroni’s construction.
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Here is an example. Let us construct a regular hexagon using the N relation alone,

see Figure 5.14.

p1 6= p2 6= p3 6= p4 6= p5 6= p6∧
E(c, p1, p2) ∧ E(c, p2, p3) ∧ E(c, p3, p4) ∧ E(c, p4, p5) ∧ E(c, p5, p6)∧
E(p1, p2, c) ∧ E(p2, p3, c) ∧ E(p3, p4, c) ∧ E(p4, p5, c) ∧ E(p5, p6, c)→
E(p6, p1, c) (5.10)

In the first line of Equation 5.10, we identify six disjoint points p1 . . . p6. In the second

line, we constrain the six points to lie on the same circumference centered in c. Finally,

we build circles of the same radius as that centered in c that connect the points pairwise.

As a result, the six segments p1—p2, p2—p3, p3—p4, p4—p5, p5—p6, p6—p1 define a

regular hexagon. The technique generalizes for the other geometrical constructions.

Voronoi diagrams. Imagine having a set of marked points scattered in space. Then

consider the partitioning of the space in regions, one for every marked point. A region

is defined as the set of points that are closest to the marked point than to any other

one. The Voronoi diagram of the marked points is the union of all the boundaries

of such regions, [Voronoi, 1908]. An example of the Voronoi diagram of four points

p1, p2, p3, p4 on the plane is depicted in Figure 5.15.(a). The definition of a Voronoi

p
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p

p

p
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4

(a) (b) (c)

Figure 5.15: (a) The Voronoi diagram of four points on the plane. (b) The circles

connecting neighboring points. (c) Delaunay triangulation.

region, also called cell, is, at a closer look, given in terms of comparative nearness.

Following this intuition, we define a cell of the points P = {p1, p2, . . . , pk} in terms of

the nearness relation:

cell(p, pl)↔
k∧

{i=1,i6=l}

N(pl, p, pi)

The interpretation is that p is in the cell of the point pl if it is closer to pl than to any
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other of the points in P . The whole Voronoi diagram is then:

diagram(p, P )↔
k∨

l=1

k∨

{m=1,m 6=l}

E(p, pl, pm) ∧
k∧

{j=1,m 6=j 6=l}

N(pl, p, pj)

A point p is in the Voronoi diagram of the set of points P if it is equidistant from two

given points and it is closer to these two points than to any other one of the set P .

Delaunay triangulation. By connecting with segments the points of P which share an

edge in the Voronoi diagram, one obtains a graph. The operation is called Delaunay

triangulation, [Delaunay, 1934]. If one thinks of the points of P as the vertices of a

polyhedron, then the Delaunay triangulation gives a procedure to partition the poly-

gon into tetrahedra. In Figure 5.15.(c) the Delaunay triangulation of four points on

the plane. To express this in terms of the comparative nearness operator, we use the

property that there are no points of P inside a circle circumscribing the three vertex of

a Delaunay triangle.

Delaunay(p, P )↔
k∨

l=1

k∨

{m=1,m 6=l}

k∨

{n=1,n6=m}

E(pl, pm, c) ∧ E(pm, pn, c) ∧ E(pn, pl, c)∧

k∧

{j=1,j 6=l,m,n}

N(pl, c, pj)∧

(B(p, pl, pm) ∨B(p, pm, pn) ∨B(p, pn, pl))

The construction is a bit laborious. One begins by constructing the circle passing for

any three given points of P . The center of such circle is c. If the circle contains no

point of P different from pl, pm, pn, then the three points form a Delaunay triangle.

The triangle is then defined by its three sides, which we denote via the betweenness

operator. Figure 5.15 shows the construction of the Voronoi and Delaunay triangulation

stepwise for four points of the plane. We remark that the definitions given here are

completely general and apply also to more than two dimensions. In three dimensions

for instance, via Delaunay triangulation, one partitions the space between the points of

P into a number of disjoint tetrahedra.

5.2.2 Modal logic of nearness

The ternary relation of comparative nearness lends itself to modal description, just like

ternary betweenness. We will just briefly sketch the resulting logic, which is like our

affine system in its broad outline. But the intuitive meaning of N also adds some new

issues of its own.
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5.2.2.1 Modal languages of nearness

First, one sets

M,x |= 〈N〉φ, ψ iff ∃y, z : M, y |= ψ ∧M, z |= ϕ ∧N(x, y, z)

The universal dual is also interesting in its spatial behavior:

φ

ψ

x

ψ

x
φ

φ

φ φ

ψ ψ

ψ

ψ
ψ

ψ ψ

φψ
φ

(a) (b)

Figure 5.16: Interpreting a modal operator of nearness and its dual.

M,x |= [N ]φ, ψ iff ∀y, z : N(x, y, z) ∧M, y |= ¬φ→M, z |= ψ

Dropping the negation, one gets an interchangeable version with the following intuitive

content:

if any point y around the current point x satisfies ϕ, then all points z further

out must satisfy ψ.

Moreover, there are obvious versatile versions of these modal operators, which look at

the same situation in a different way. For instance, using one of these in its universal

version, we can also express the appealing statement that

if any point y around the current point x satisfies ϕ, then all points z closer

to x must satisfy ψ.

See Figure 5.17 for an illustration. Finally, note that this language defines an existential

modality (assuming the mild condition that ∀y : N(x, x, y) ∨ x = y):

Eϕ iff ϕ ∨ 〈N〉(⊤, ϕ)

Without the stated condition, this existential modality will only range over connected

components.
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ϕ
y

ψ ψ
ψ

ψ

ψ

Figure 5.17: Versatile interpretation of the dual of a modal operator of nearness.

5.2.2.2 Modal logics of nearness

Modal logics of nearness again start with universally valid principles, with distribution

as the prime example:

〈N〉(ϕ ∨ ψ, ξ)↔ 〈N〉(ϕ, ξ) ∨ 〈N〉(ψ, ξ)
〈N〉(ϕ, ψ ∨ ξ)↔ 〈N〉(ϕ, ψ) ∨ 〈N〉(ϕ, ξ)

Universal constraints of earlier kinds will return as special axioms. Here is an example:

〈N〉(ϕ, ψ) ∧ ¬〈N〉(ϕ, ϕ) ∧ ¬〈N〉(ψ, ψ) ∧ 〈N〉(ψ, ξ)→ 〈N〉(ϕ, ξ) (transitivity)

In the above definition the two clauses ¬〈N〉(ϕ, ϕ) and ¬〈N〉(ψ, ψ) are necessary

to ensure that ϕ and ψ can be true only at a fixed distance from the current point.

Omitting them results in an invalid principle, as it may very well be the case that

〈N〉(ϕ, ψ) ∧ 〈N〉(ψ, ξ) ∧ ¬〈N〉(ξ, ϕ) if ϕ is true at points at different distances from

the current one. Another example of a universal constraint is almost-connectedness:

〈N〉(ϕ, ψ) ∧ ¬〈N〉(ϕ, ϕ) ∧ ¬〈N〉(ψ, ψ) ∧ Eξ → 〈N〉(ϕ, ξ) ∨ 〈N〉(ξ, ψ)
(almost-connectedness)

Irreflexivity seems harder to define (as usual in modal logics), but see below.

Special logics of nearness arise by looking at special structures, or at least, im-

posing more particular constraints. These can again be computed by correspondence

techniques. In a similar way, one can modally express the triangle inequalities. But in

fact, there is a more general observation to be made here. Note that our language can

define that ϕ holds in a unique point:

E!ϕ iff E(ϕ ∧ ¬〈N〉(ϕ, ϕ))

Now observe the following.

5.2.1. PROPOSITION. Every universal first-order property of N is modally definable.
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Proof Every such property is of the form

∀x1 . . . ∀xk : BC(N(xi, xj, xk))

where BC stands for any Boolean combination of nearness atoms. Now take proposi-

tion letters p1, . . . pk and write

E! p1 ∧ · · · ∧ E !pk → BC(N#(xi, xj, xk))

where N#(xi, xj, xk)) is defined as E(pi ∧ 〈N〉(pj, pk)). It is evident that this is a

modal frame correspondent. QED

This explains the definition of the triangle inequalities. Moreover, irreflexivity (whose

first-order definition is ∀x∀y¬N(x, y, y)) is definable after all by

E! p1 ∧ E !p2 → ¬E(p1 ∧ 〈N〉(p2, p2))

5.2.2.3 Modal extensions

Useful modal extensions of the base language are partly as in the affine case. But there

is also a novelty. In describing patterns, one may often want to say something like this:

for every ϕ-point around x, there exists some closer ψ-point.

Now this is not definable in our language, which uses uniform EE or AA quantifier

combinations. Mixing universal and existential quantifiers is more like temporal ‘Un-

til’ languages. Speaking generally, we want a new operator:

M,x |= 〈N∃∀〉(ϕ, ψ) iff ∀y(M, y |= ϕ→ ∃z(N(z, y, x) ∧M, z |= ψ))

The general logic of this additional modality over a ternary relation is a bit more

complex with respect to distribution and monotonicity behavior—but it can be axiom-

atized completely, at least minimally, over all abstract models.

Indeed, this universal-existential pattern is reminiscent of other modal logics nat-

urally involving ternary frame relations. One example is temporal logic of Since and

Until, which involves moving to some point around the current point in time, and then

saying something about all points in between. One existential-universal variant of the

preceding modality would indeed be a kind of spatial Until, stating that some point on

a circle around the current point satisfies ϕ, while all points in the interior satisfy ψ.

This is almost a metric analogue of the topological Until operator in Section 4.2.2, but

the latter should have the whole circle boundary satisfy ϕ, which requires one more

universal modality over equidistant points.

Another intriguing analogy is with a typical modal logic over comparative near-

ness, viz. conditional logic. The latter is mostly known in connection with counter-

factuals and default reasoning [Lewis, 1973, Nute, 1983, Veltman, 1985]. In general

conditional logic, one crucial binary modality reads

ϕ⇒ ψ iff every closest ϕ-world is ψ
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This satisfies the usual Lewis axioms for conditional semantics in terms of ‘nested

spheres’ (cf. [van Benthem, 1983a]):

ϕ⇒ ψ → ϕ⇒ ψ ∨ ξ
ϕ⇒ ψ ∧ ϕ⇒ ξ → ϕ⇒ ψ ∧ ξ
ϕ⇒ ψ ∧ ϕ⇒ ξ → ϕ ∧ ψ ⇒ ξ
ϕ⇒ ψ ∧ ξ ⇒ ψ → ϕ ∨ ξ ⇒ ψ
((ϕ ∨ ψ)⇒ ϕ) ∨ (¬((ϕ ∨ ψ)⇒ ξ)) ∨ (ψ ⇒ ξ)

The interesting open question here concerns modal-conditional reflections of the addi-

tional geometrical content of the N(x, y, z) relation. Lewis’ complete system is just

about ordering properties of comparisons from some fixed vantage point. This shows

in the fact that there are no significant axioms for iterated conditionals which require

shifts in vantage point. What is the conditional logic content of the triangle inequali-

ties?

5.2.3 First-order theory of nearness

As for the complete first-order theory of relative nearness, we have no special results

to offer, except for the promised proof of an earlier claim.

5.2.2. FACT. The single primitive of comparative nearness defines the two primitives

of Tarski’s Elementary Geometry in first order logic.

Proof The following defines betweenness (see Figure 5.18):

β(yxz) iff ¬∃x′ : N(y, x′, x) ∧N(z, x′, x)

y x’ z

x

Figure 5.18: Defining betweenness via nearness.

This allows us to define parallel segments in the usual way, as having no intersec-

tion points on their generated lines.

xx′||yy′ ↔¬∃c : β(xx′c) ∧ β(yy′c)∧
¬∃c′ : β(c′xx′) ∧ β(cyy′)∧
¬∃c′′ : β(xcx′) ∧ β(ycy′)
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Then, one defines equal segment length by

δ(x, y, z, u) iff ∃y′ : xu||yy′ ∧ xy||uy′ ∧ ¬N(u, z, y′) ∧ ¬N(u, y′z)

Intuitively, one moves one segment on the other matching end-points and preserving

length via parallel lines. Then state that the other end-points are at the same distance

from the joined point. See the depiction in Figure 5.19. QED

u
y’

xy

z

Figure 5.19: Equidistance in terms of betweenness.

Apart from this, much of our earlier discussion concerning affine first-order geometry

applies. Incidentally, no claim is made here for the originality of this approach per se.

There are many systems of logical geometry which have similar richness. A case in

point is the axiomatization of constructive geometry in [von Plato, 1995].

5.3 Linear algebra

Our final example of modal structures inside a spatial theory is different in spirit from

either topology or standard geometry. Connections between linear algebra and spatial

representation are well-known from a major qualitative visual theory, viz. mathemati-

cal morphology. Our treatment follows the lines of [Aiello and van Benthem, 1999]—

and especially [van Benthem, 2000], which also has further details. (A different con-

nection between mathematical morphology and modal logic is found in [Bloch, 2000],

which also includes a fuzzy version.) The flavor of this brand of spatial reasoning is

different from what we had before—but similar modal themes emerge all the same.

Mathematical morphology, developed in the 60s by Matheron and Serra, [Math-

eron, 1967, Serra, 1982], underlies modern image processing, where it has a wide va-

riety of applications. Compared with classical signal processing approaches it is more

efficient in image preprocessing, enhancing object structure, and segmenting objects

from the background. The modern mathematics behind this involves lattice theory:

[Heijmans, 1994]. Logicians may want to think of ‘linear algebras’ [Girard, 1987], an

abstract version of vector spaces:
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5.3.1. DEFINITION (LINEAR ALGEBRA). 〈X,⊓,⊔,⊥,⊸, ⋆, 0̌, 1̌〉 is a linear algebra

if

(i) 〈X,⊓,⊔,⊥, 〉 is a lattice with bottom ⊥;

(ii) 〈X, ⋆, 1̌〉 is a monoid with unit 1̌;

(iii) if x ≤ x′, y ≤ y′, then x ⋆ y ≤ x′ ⋆ y′ and x′ ⊸ y ≤ x ⊸ y′;

(iv) x ⋆ y ≤ z iff x ≤ y ⊸ z;

(v) x = (x ⊸ 0̌) ⊸ 0̌ for all x.

In line with our spatial emphasis of this chapter, we will stick with concrete vector

spaces IRn in what follows. Images are regions consisting of sets of vectors. Math-

ematical morphology provides four basic ways of combining, or simplifying images,

viz. dilation, erosion, opening and closing. These are illustrated pictorially in Fig-

ure 5.20. Intuitively, dilation adds regions together—while, e.g., erosion is a way of
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Figure 5.20: (a) Regions A and B, elements of the vector space IN2; (b) dilating A by

B; (c) eroding A by B; (d) closing A by B; (e) opening A by B.

removing ‘measuring idiosyncrasies’ from a region A by using region B as a kind of

boundary smoothener. (If B is a circle, one can think of it as rolling tightly along the

inside of A’s boundary, leaving only a smoother interior version of A.) More formally,

dilation, or Minkowski addition ⊕ is vector sum:

A⊕B = {a+ b | a ∈ A, b ∈ B} dilation
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This is naturally accompanied by

A⊖B = {a | a+ b ∈ A,∀b ∈ B} erosion

Openings and closing are combinations of dilation and erosions:

the structural opening of A by B (A⊖B)⊕B
the structural closing of A by B (A⊕B)⊖B

In addition, mathematical morphology also employs the usual Boolean operations

on regions: intersection, union, and complement. This is our third mathematization of

real numbers IRn in various dimensions, this time focusing on their vector structure.

Evidently, the above operations are only a small sub-calculus, chosen for its computa-

tional utility and expressive perspicuity.

5.3.1 Mathematical morphology and linear logic

The first connection that we note lies even below the level of standard modal languages.

The Minkowski operations behave a bit like the operations of propositional logic. Di-

lation is like a logical conjunction ⊕, and erosion like an implication −→, as seems

clear from their definitions (’combining an A and a B’, and ‘if you give me a B, I will

give an A’). The two were related by the following residuation law:

A •B ⊆ C iff A ⊆ B −→ C

which is also typical for conjunction and implication (cf. also clause (iv) in Defini-

tion 5.3.1). Thus, −→ is a sort of inverse to ⊕.

5.3.1.1 Resource logics

There already exists a logical calculus for these operations, invented under the multi-

plicative linear logic name in theoretical computer science [Troelstra, 1992], and inde-

pendently as the Lambek calculus with permutation in logical linguistics, cf. [Kurton-

ina, 1995]. The calculus derives ‘sequents’ of the form A1, . . . , Ak ⇒ B where each

expression A,B in the current setting stands for a region, and the intended interpreta-

tion, in our case, says that

the sum of the A’s is included in the region denoted by B.

Here are the derivation rules, starting from basic axioms A⇒ A:
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X ⇒ A Y ⇒ B

X, Y ⇒ A •B
X,A,B ⇒ C

X,A •B ⇒ C
(product rules)

A,X ⇒ B

X ⇒ A −→ B

X ⇒ A B, Y ⇒ C

X,A −→ B, Y ⇒ C
(arrow rules)

X ⇒ A

π[X]⇒ A
permutation

X ⇒ A A, Y ⇒ B

X, Y ⇒ B
cut (structural rules)

Derivable sequents typically include:

A,A −→ B ⇒ B (‘function application’)

A −→ B,B −→ C ⇒ A −→ C (‘function composition’)

Here is an example of a derivation, just for the flavor of the system:

A⇒ A B ⇒ B

A,A −→ B ⇒ B C ⇒ C

A,A −→ B,B −→ C ⇒ C

A −→ B,B −→ C ⇒ A −→ C

Another key example are the two ‘Currying’ laws, whose proof uses the • rules:

(A •B) −→ C ⇒ (A −→ (B −→ C))

(A −→ (B −→ C))⇒ (A •B) −→ C

This calculus is best understood in terms of resources. Think of each premise in an

argument as a resource which you can use just once when ‘drawing’ the conclusion.

In standard logical inference, the premises form a set: you can duplicate the same

item, or contract different occurrence of it without any change in valid conclusions.

This time, however, the premises form a bag, or multi-set, of occurrences: validating

only ‘resource-conscious’ versions of the standard logical laws. E.g., ‘Modus Ponens’

A,A −→ B ⇒ B is valid, but its variant A,A,A −→ B ⇒ B is not: there is one

unused resource left. A correct, and provable sequent using the latter resources is:

A,A,A −→ B ⇒ A •B

Or consider the classically valid sequent A, (A −→ (A −→ B))⇒ B. Here the above

calculus only proves A, (A −→ (A −→ B)) ⇒ A −→ B, and you must supply one

more resource A to derive

A,A, (A −→ (A −→ B))⇒ B.
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The related categorial grammar interpretation for this same calculus reads the prod-

uct • as syntactic juxtaposition of linguistic expressions, and an implication A −→ B
as a function category taking A-type to B-type expressions. The same occurrence-

based character will hold: repeating the same word is not the same as having it once.

The major combinatorial properties of this calculus LL are known, including proof-

theoretic cut elimination theorems, and decidability of derivability in NP time. More-

over, there are several formal semantics underpinning this calculus (algebraic, game-

theoretic, category-theoretic, possible worlds-style [van Benthem, 1991a]). Still, no

totally satisfying modeling has emerged so far.

5.3.1.2 Linear logic as mathematical morphology

Here is where the present setting becomes intriguing: mathematical morphology pro-

vides a new model for linear logic.

5.3.2. FACT. Every space IRn with the Minkowski operations is a model for all LL-

provable sequents.

This soundness theorem shows that every sequent one derives in LL must be a

valid principle of mathematical morphology. One can see this for the above examples,

or other ones, such as the idempotence of morphological opening (A⊖B)⊕B:

(((A⊖B)⊕B)⊖B)⊕B = ((A⊖B)⊕B)

In LL, the opening is (A −→ B) • A, and the idempotence law is literally derivable

using the above rules:

(A −→ B) • A⇒ (A −→ ((A −→ B) • A)) • A
(A −→ ((A −→ B) • A) • A)⇒ (A −→ B) • A)

The list might even include new principles not considered in that community. The

converse seems an open completeness question of independent interest:

Is multiplicative linear logic complete w.r.t the class of all IRn’s?

Or even w.r.t. two-dimensional Euclidean space?

Further, mathematical morphology laws ‘mix’ pure Minkowski operations⊕,−→with

standard Boolean ones. E.g. they include the fact that A −→ (B ∩ C) is the same as

(A∪B) −→ C = (A −→ C)∩ (B −→ C). This requires adding Boolean operations:

X,A⇒ B

X,A ∩ C ⇒ B

X,A,⇒ B

X,C ∩ A⇒ B

X ⇒ A X ⇒ B

X ⇒ A ∩B

X ⇒ A

X ⇒ A ∪B
X ⇒ A

X ⇒ B ∪ A
X,A⇒ B X,C ⇒ B

X,A ∪ C ⇒ B
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Note the difference between the two conjunctions. Product • and intersection have

some similarities, but the rules are different. E.g., A −→ (B • C) does not derive

(A −→ B) • (A −→ C), or vice versa. Conversely, dot product satisfied the ‘Curry

laws’, but (A∩B) −→ C is certainly not derivably equivalent to (A −→ (B −→ C)).
All these observations tally with known facts in mathematical morphology. Indeed, the

extended calculus is still sound—while its completeness remains an open question.

The Boolean operations look a bit like the ‘additives’ of linear logic, but they also

recall ordinary modal logic, which is where we are going now.

5.3.2 Richer languages

Evidently, the basic players in an algebra of regions in a vector space are the vectors

themselves. For instance, Figure 5.20.a represents the region A as a set of 13 vectors

departing from the origin. Vectors come with some natural operations, such as binary

addition, or unary inverse—witness the usual definition of a vector space. A vector v
in our particular spaces may be viewed as an ordered pair of points (o, e), with o the

origin and e the end point. Pictorially, this is an arrow from o to e. Now this provides

our point of entry into modal logic.

5.3.2.1 Arrow logic

Arrow logic is a form of modal logic where the objects are transitions or arrows, struc-

tured by various relations. In particular, there is a binary modality for composition

of arrows, and a unary one for converse. The motivation for this comes from dy-

namic logics, treating transitions as objects in their own right, and from relational

algebra, making pairs of points separate objects. This allows for greater expressive

power than the usual systems, while also lowering complexity of the core logics (see

[Blackburn et al., 2001, van Benthem, 1996] for overviews). Consider in particular the

pair-interpretation, with arrows being pairs of points (ao, ae). Here are the fundamental

semantic relations:

composition C(ao, ae)(bo, be)(co, ce) iff ao = bo, ae = ce, and be = co,

inverse R(ao, ae)(bo, be) iff ao = be, and ae = bo,

identity I(ao, ae) iff ao = ae.

An abstract model is then defined as any set of arrows as primitive objects, with

three relations as above, and a valuation function sending each proposition letter p to

the set of the arrows where property p holds.

5.3.3. DEFINITION (ARROW MODEL). An arrow model is a tuple M = 〈W,C,R, I,
ν〉 such that C ⊆ W ×W ×W , R ⊆ W ×W , I ⊆ W , and ν : W → P .
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Such models have a wide variety of interpretations, ranging from concrete models in

linguistic syntax to abstract ones in category theory [Venema, 1996]—but of relevance

to us is the obvious connection with vector spaces. Think of Cxyz as x = y + z, Rxy
as x = −y and Ix as x = 0. To make this even clearer, we use a modal arrow language

with proposition letters, the identity element 0, monadic operators ¬,−, and a dyadic

operator ⊕. The truth definition reads:

M,x |= p iff a ∈ ν(p)
M,x |= 0 iff Ix
M, x |= −ϕ iff ∃y : Rxy and M, y |= ϕ
M, x |= ¬ϕ iff not M,x |= ϕ
M, x |= ϕ ∨ ψ iff M,x |= ϕ or M,x |= ψ
M, x |= A⊕B iff ∃y∃z : Cxyz ∧M, y |= A ∧M, z |= B
M,x |= A⊖B iff ∀y∀z : Cyxz ∧M, z |= A→M, y |= B

This system can be studied like any modal logic. For the basic results in the area, we

refer to the above-mentioned publications.

5.3.2.2 Arrow logic as linear algebra

Most modal topics make immediate sense in linear algebra or mathematical morphol-

ogy. E.g., the above models support a natural notion of bisimulation:

5.3.4. DEFINITION (ARROW BISIMULATION). Let M,M ′ be two arrow models. A

relation ⇌⊆ W ×W ′ is an arrow bisimulation iff, for all x, x′ such that x ⇌ x′:

base x ∈ ν(p) iff x′ ∈ ν ′(p),

C-forth Cxyz only if there are y′z′ ∈ W ′ such that C ′x′y′z′, y ⇌ y′ and z ⇌ z′,

C-back C ′x′y′z′ only if there are yz ∈ W such that Cxyz, y ⇌ y′ and z ⇌ z′,

R-forth Rxy only if there are y′ ∈ W ′ such that R′x′y′ and y ⇌ y′,

R-back R′x′y′ only if there are y ∈ W such that Rxy and y ⇌ y′,

I-harmony Ix iff I ′x′.

Arrow bisimulation is a coarser comparison of vector spaces than the usual linear trans-

formations. It preserves all modal statements in the above modal arrow language, and

hence provide a lower level of visual analysis in linear algebra similar to what we have

found earlier for topology, or geometry.
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Next, logics for valid reasoning also transfer immediately. Here is a display of the

basic system of arrow logic:

(ϕ ∨ ψ)⊕ ξ ↔ (ϕ ∨ φ)⊕ ξ (5.11)

ϕ⊕ (ψ ∨ ξ)↔ (ϕ⊕ φ) ∨ (ϕ⊕ ξ) (5.12)

−(ϕ ∨ ψ)↔ −ϕ ∨ −ψ (5.13)

ϕ ∧ (ψ ⊕ ξ)→ ψ ⊕ (ξ ∧ (−ψ ⊕ ϕ)) (5.14)

These principles either represent or imply obvious vector laws. Here are some conse-

quences of (5.13), (5.14):

−(¬A)↔ ¬(−A)

−(A+B)↔ −B +−A
A+ ¬(−A+ ¬B)→ B

The latter ‘triangle inequality’ is the earlier rule of Modus Ponens in disguise. On

top of this, special arrow logics have been axiomatized with a number of additional

frame conditions. In particular, the vector space interpretation makes composition

commutative and associative, which leads to further axioms:

A⊕B ↔ B ⊕ A commutativity

A⊕ (B ⊕ C)↔ (A⊕B)⊕ C associativity

These additional principles make the calculus simpler in some ways than basic arrow

logic. The key fact about composition is now the vector law

a = b+ c iff c = a− b

which derives the triangle inequality. And there are also expressive gains. E.g., the

modal language becomes automatically ‘versatile’ in our earlier sense.

Again the soundness of the given arrow logic for vector algebra is clear, and we can

freely derive old and new laws of vector algebra. But the central open question about

arrow logic and mathematical morphology is again a converse:

What is the complete axiomatization of arrow logic over the standard vec-

tor spaces IRn?

In particular, are there differences of dimensionality that show up in different arrow

principles across these spaces?

Continuing with earlier topics, extending the basic modal language of arrows also

makes sense. E.g., in general arrow logic there may be many identity arrows, while in

vector space there is only one identity element 0. To express this uniqueness, we need

to move to some form of modal difference logic (cf. Chapter 4). Also, in mathematical
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morphology, one finds a device for stating laws that are not valid in general, but only

when we interpret some variables as standing for single vectors. An example is:

(X)t − Y = (X − Y )t (MM-form)

B → (A+ t)⇔ (B → A) + t (LL-form)

From right to left, this is LL derivable as the general law (S −→ X) • Y ⇒ S −→
(X • Y ). The converse of this is not LL derivable, but it only works when Y is a

singleton {t}. In the latter case, we have the special principle S ⇔ (S + {t}) − {t},
which we have to ‘inject’ into an otherwise fine LL derivation to get the desired result.

This trick is exactly the same as using so-called nominals in extended modal logics, cf.

[Areces, 2000], which are special proposition letters denoting just a single point. Other

natural language extensions include an infinitary version of the addition modality ⊕,

allowing us to close sets to linear subspaces.

Thus, the two fields are related, not just in their general structure, but also in their

modus operandi, including tricks for boosting expressiveness. Of course, one would

hope that the algorithmic content of arrow logics also makes sense under this connec-

tion, including its philosophy of ‘taming complexity’.

5.3.2.3 A worry about complexity

Issues of decidability and complexity have been largely ignored in this thesis. But one

part of the ‘modal program’ is the balance between moderate expressive power and

low complexity for various tasks: model checking, model comparison, and logical in-

ference. In particular, arrow logics were originally designed to make the spectacular

jump from undecidability in standard relational algebra to decidability. What happens

to arrow logics in mathematical morphology? Even though the logic of the standard

models appears to be effectively axiomatizable, i.e., recursively enumerable, undecid-

ability is lurking! One bad omen is the validity of associativity, a danger sign in the

arrow philosophy (cf. [van Benthem, 1996]).

Resorting to the tiling techniques introduced in [Harel, 1983], by encoding the

problem of tiling the IN × IN grid in the arrow logic of vector spaces, one can show its

undecidability. The idea of the proof is that of considering a denumerable set of colors

C and a set of tiles T = {t1, . . . , tl} (where each tile is a four-tuple of colors). Tiling

is defined as a map ρ : IN × IN → T such that the colors on touching edges coincide.

The problem is known to be undecidable, [Robinson, 1971].
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The tiling problem is encoded in the arrow logic of vector spaces as ϕT :

r ⊕ u = u⊕ r
⊤ = u⊕⊤ where u← t1 ∨ · · · ∨ tl
⊤ = r ⊕⊤ where r ← t1 ∨ · · · ∨ tl

l∧

i=1

u← ti ⊖
∨
{tj|topColor(ti) = bottomColor(tj)}

l∧

i=1

r ← ti ⊖
∨
{tj|rightColor(ti) = leftColor(tj)}

The argument to show undecidability becomes: T tiles IN × IN if and only if there

exists a non-trivial vector space IRk such that IRk |= ϕT . The key of the proof is to

show that indeed it is possible to encode the tiling problem in terms of the arrow logic

of vector spaces with the formula ϕT .

We may have gone overboard in our desire to express the truth about vectors. Thus,

the balance remains a continuing concern.

This chapter has shown modal structure in whichever direction one looks. There are

natural fine-structured modal versions of affine and metric geometry, and linear alge-

bra. These can be studied by general modal techniques—though much of the inter-

est comes from paying attention to special spatial features. The benefits of this may

be uniformity and greater sensitivity to expressive and computational fine-structure in

theories of space. As a pleasant side-effect, a number of open problems of expressivity,

complexity and complete axiomatization arise.



CHAPTER 6

A GAME-BASED SIMILARITY FOR IMAGE

RETRIEVAL

6.1 Introduction

Image retrieval is concerned with the recovering of elements from a collection of im-

ages according to some set of desired properties. The properties of images are related

to features which can be as diverse as textual annotations, color, texture, object shape,

and spatial relationships among objects. The way the features from different images

are compared, in order to have a measure of similarity among images, characterizes an

image retrieval architecture.

Though quite a young field of computer vision, image retrieval already counts nu-

merous frameworks, prototypes and commercial products. In [Smeulders et al., 2000],

a method for systematizing approaches to image retrieval and a unifying framework for

comparing systems is proposed. The work serves also as an excellent and up-to-date

overview of the field. A similar purpose is served by the book [Del Bimbo, 1999].

The kind of topological relationship among objects we focus on are those at the

qualitative level of mereotopology, that is, part-whole relations, topological relations

and topological properties of individual regions. Other image retrieval systems are

based on spatial relationships as the main retrieval feature. The work in [Tagare et al.,

1995] is founded on transformation of Voronoi diagrams and that in [Petrakis et al.,

2001] on graph matching. An older and known approach to image retrieval by spa-

tial relationship is in [Chang and Liu, 1984]. This work considers the projections of

regions onto two axes superimposed on the picture and simple interval relations over

the projections over the axes. The approach suffers from not being orientation invari-

ant and from the inability to deal with overlapping objects. On the positive side is

the compactness of the topological representation of spatial relationships (called 2D

strings). Other symbolic formalisms to handle qualitative topological relationships,

which have been deployed for image retrieval, are those presented in [Egenhofer, 1991,

Egenhofer and Franzosa, 1991, Del Bimbo et al., 1995]. Another trend in symbolic

101
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approaches to image retrieval are the knowledge based ones. Originally concerned with

the organization of knowledge attached to the image, the field has more recently seen

efforts to organize and handle spatial information obtained from the image. Such re-

cent systems [Russ et al., 1996, Aiello et al., 1999, Di Sciascio et al., 2000] make use

of description logics, a modern reasoning tool closely related to modal logics.

Following the agenda in [Smeulders et al., 2000], we set the boundaries of our ap-

proach to image retrieval in the context of this chapter. Smeulders et al. identify five

basic aspects of an image retrieval approach: image processing, features, interpreta-

tion and similarity, interaction, and system aspects. Here, we abstract from the image

processing and from the system aspects, that is, we do not consider how to process

images and extract features, nor how the images are stored and how systems are evalu-

ated. We concentrate on a specific sort of features, we define for it a precise similarity

measure and we consider only one set of modalities to interact with the system. Let us

be more precise. The features we are interested in are the topological configurations of

extended spatial entities and the topological spatial relations among different entities.

The similarity is assessed with respect to a game theoretic comparison of the features.

The interaction is based on query by example and query by sketch.

There are two requirements we desire to fulfill in our approach: on the one hand,

the system should be based on a formal framework the properties of which must be

well understood, on the other hand, the system should be actually implementable. The

first part of the thesis is the place to dig for tools in order to satisfy the first require-

ment. We have seen a number of modal formalisms to handle space of which we have

studied the formal properties such as their expressive power and their completeness.

The second requirement must also be handled with care. We not only need correct rep-

resentation and reasoning tools, we also need them to be compact and implementable.

By implementable we intend both that the reasoning procedures should be decidable

and should be decided in an amount of time acceptable for the average user. The in-

spiring model comes from the field of textual information retrieval (see for instance

[Baeza-Yates and Ribeiro-Neto, 1999, Witten et al., 1999]): our aim is having a com-

pact representations related to each picture such that all representations can be directly

and rapidly compared in the retrieval phase.

The language we choose to express the main spatial information of an image is

S4u, see Chapter 4. In the next section, we show why this language is adequate for

expressing basic topological properties of patterns by highlighting its mereotopological

strengths. Then we show how a similarity measure is built departing from the basic

formal tools of the topo-approach. We can then identify a compact representation for

images. Finally, we illustrate IRIS, a prototype based on the framework proposed.

6.2 A general framework for mereotopology

In Section 4.1, we have extensively studied the properties of the extended modal lan-

guage S4u in the context of the topo-approach. Before putting the language in action
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on the task of image retrieval, we highlight its mereotopological expressive power. We

now bring evidence to the claim that S4u is a general framework for mereotopolog-

ical representation and reasoning. We also define our personal point of view on the

connection with RCC identified in [Bennett, 1995].

6.2.1 Expressiveness

The language S4u is perfectly suited to express mereotopological concepts. The rela-

tion of parthood P(A, B) of a region A being inside the region B holds whenever it is

the case everywhere that A implies B:

P(A, B) := U(A→ B)

This captures exactly the set-inclusion relation of the models. As for connection C, two

regions A and B are connected if there exists a point where both A and B are true:

C(A, B) := E(A ∧B)

From here it is immediate to define all the basic eight RCC mereotopological predi-

cates. Referring to Figure 6.1, let us recall the RCC8 relations (which we know to be

definable in terms of S4u, [Bennett, 1995]):

A8

A7

A6

A5

A3A2

A1

B =

A4

Figure 6.1: The RCC8 relations.
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• A1 is Disconnected from B,

• A2 is in External Connection with B,

• A3 Overlaps with B,

• A4 is Tangential P of B,

• A5 is Proper P of B,

• A6 is Equal to B,

• A7 contains tangentially (Tangential P
−1 ) B,

• A8 contains (Proper P
−1 ) B,

Notice that the choice made in defining P and C is arbitrary. So, why not take a more

restrictive definition of parthood? Say, A is part of B whenever the closure of A is

contained in the interior of B?

P(A, B) := U(✸A→ ✷B)

As this formula shows, S4u is expressive enough to capture also this definition of part-

hood. In [Cohn and Varzi, 1998], the logical space of mereotopological theories is sys-

tematized. Based on the intended interpretation of the connection predicate C, and the

consequent interpretation of P (and fusion operation), a type is assigned to mereotopo-

logical theories. More precisely, a type is a triple τ = 〈i, j, k〉, where the first i refers to

the adopted definition of Ci, j to that of Pj and k to the sort of fusion. The index i, re-

ferring to the connection predicate C, accounts for the different definition of connection

at the topological level. Using S4u one can repeat here the three types of connection:

C1(A, B):= E(A ∧B)

C2(A, B):= E(A ∧✸B) ∨ E(✸A ∧B)

C3(A, B):= E(✸A ∧✸B)

Looking at previous mereotopological literature, one remarks that RCC uses a C3 def-

inition, while the system proposed in [Asher and Vieu, 1995] uses a C1. Similarly to

connectedness, one can distinguish various types of parthood, again in terms of S4u:

P1(A, B):= U(A→ B)

P2(A, B):= U(A→ ✸B)

P3(A, B):= U(✸A→ ✸B)

In [Cohn and Varzi, 1998], the definitions of the Ci are given directly in terms of topol-

ogy, and the definitions of Pj in terms of a first order language with the addition of a

predicate Ci. Finally, a general fusion φk is defined in terms of a first order language
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with a Ci predicate. Fusion operations are like algebraic operations on regions, such as

adding two regions (product), or subtracting two regions. One cannot repeat the gen-

eral definition given in [Cohn and Varzi, 1998] at the S4u level. Anyhow, one can show

that various instances of fusion operations are expressible. E.g., the product A×k B:

A×1 B:= A ∧B
A×2 B:= (✸A ∧B) ∨ (A ∧✸B)

A×3 B:= (✸A ∧✸B)

Usually uniform theories are found in the literature, that is, theories that combine def-

initions of Ci, Pi, and ×i with the same index i. Though, there are some exceptions,

e.g, [Cartwright, 1975] uses a C2, P1 combination. Non uniform theories separate the

topological part from the purely mereological one requiring the definition of parthood

and connection to be independent. Clearly, Pi cannot be defined in terms of Cj if i 6= j.
The above discussion has shown that S4u is a general language for mereotopology.

All the different types τ = 〈i, j, k〉 of mereotopological theories are expressible. In-

cidentally, notice that a mereotopological theory of space may combine definition of

parthood and connection with different indices. For instance, it is possible to have a

C1, P2 mereotopological theory.

Modal Fragment of

First-Order Logic

S4u

β

First-Order Logic

RCC
α

Figure 6.2: The positioning of S4u and RCC with respect to well-known logics.

The language S4u is a multi-modal language with nice computational properties. It

is complete with respect to topological models, it is decidable, it has the finite model

property. It captures a large and “well-behaved” fragment of mereotopology, though, it

is not a first-order language. In other words, it is not possible to quantify over regions.

A comparison with the best-known RCC is in order.

6.2.2 Comparison with RCC

RCC is a first order language with a distinguished connection predicate C3. The driving

idea behind this qualitative theory of space is that regions of space are primitive objects
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and connection is the basic predicate. This reflects in the main difference between RCC

and the proposed system, which on the contrary builds on point-based topology.

RCC and S4u capture different portions of mereotopology.

To show this, two formulas are given: an RCC formula which is not expressible in S4u
and, vice-versa, one expressible in S4u, but not in RCC. The situation is depicted in

Figure 6.2. In RCC, one can write:

∀A∃B : P(A,B) (α)

meaning that every region is part of another one (think of the entire space). On the

other hand, one can write a formula such as:

U(p↔ ✸✷p) (β)

which expresses the regularity of the region p. It is easy to see that α is not expressible

in S4u and that β is not in RCC.

This fact may be misleading. It is neither the motivations, nor the core philo-

sophical intuitions that draw the line between RCC and S4u. Rather, it is the logical

apparatus which makes the difference. To boost the similarities, consider again how

the main predicates of RCC can be expressed within S4u. Indeed one can define the

same predicates as RCC8. However, as remarked before the nature of the approach is

quite different. Take for instance the non tangential part predicate. In RCC it is defined

by means of the non existence of a third entity C:

NTTP(A,B) iff P(A,B) ∧ ¬P(B,A) ∧ ¬∃C[EC(C,A) ∧ EC(C,B)]

On the other hand, in S4u it is simply a matter of topological operations. As in the

previous table, for NTTP(A,B) it is sufficient to take the interior of the containing

region ✷B, the closure of the contained region ✸A and check if all points that satisfy

the latter ✸A also satisfy the former ✷B.

6.3 Comparing spatial patterns

At the beginning of the chapter, we introduced the problem of image retrieval and its

relying on similarity measures. Then, we advocated the adequacy of S4u as a general

language of mereotopology. We take the view that one should use S4u to talk about

spatial patterns in the context of image retrieval. Now there is a technical question.

How does one answer questions such as When are two spatial patterns the same?,

When is a pattern a sub-pattern of another one?, and, most importantly, How different

are two spatial patterns?
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6.3.1 Model comparison games distance

The answer to these questions comes from looking at the tools of the topo-approach

with a different twist. Consider the definition of topo-bisimulation and topo-game,

Definition 4.1.2 and Definition 4.1.5. Topo-bisimulations are an equivalence relation,

so one may very well use them to define identity of patterns. Via simulations, one can

also consider issues of a pattern being a sub-pattern of another one. Then, topo-games

were introduced as a refining notion of topo-bisimulations. Therefore, one may use

topo-games to define a measure of difference among spatial patterns. Think of it this

way. The less it takes Spoiler to win a game, the more different must the spatial patterns

be, the more unsimilar. On the opposite, the longer Duplicator can resist, the more

similar are the spatial patterns. In the limit, if Duplicator can resist forever, i.e., in the

infinite round game, the two patterns are topologically bisimilar. Now comes the tech-

nical problem. Topo-games are defined as a way of comparing two given topological

models, exactly in the spirit of the original definition of first-order model comparison

games à la Ehrenfeucht-Fraı̈ssé, but we need a similarity measure on the whole class

of models; we need a measure that behaves uniformly across all models for S4u.

The first intuition on turning model comparison games into a similarity measure

may be misleading in a pessimistic direction. To get to a similarity measure, we need

to define a distance in terms of topo-games. Distances require considering more than

just two models at a time. Consider, for example, three models and the three model

comparison games that can be played. The formulas, the points and open sets picked

in the three games may be completely unrelated one game from each other, therefore,

one may be discouraged and conjecture that model comparison games are not related

across different models of the same class.

Even though the remark on the unrelatedness of the strategies for different games

is true. It turns out that there is still an interrelation between model comparison games

over two given models and the whole class. Most importantly, the relation can be

defined to satisfy the three properties defining a distance measure. Here is how.

6.3.1. DEFINITION (ISOSCELES TOPO-DISTANCE). Consider the space of all topo-

logical models T . Spoiler’s shortest possible win is the function spw : T × T →
IN ∪ {∞}, defined as:

spw(X1, X2) =





n if Spoiler has a winning strategy in TG(X1, X2, n),

but not in TG(X1, X2, n− 1)

∞ if Spoiler does not have a winning strategy in

TG(X1, X2,∞)

The isosceles topo-model distance (topo-distance, for short) between X1 and X2 is the

function tmd: T × T → [0, 1] defined as:

tmd(X1, X2) =
1

spw(X1, X2)
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tmd=
spw

1 = 1

3

tmd=
spw

1 = 1

2
tmd=

spw
1 = 1

2 ϕ ϕ( )E

φEφE

Figure 6.3: On the left, three models and their relative distance. On the right, the

distinguishing formulas.

The distance was named ‘isosceles’ since it satisfies the triangular property in a pecu-

liar manner. Given three models, two of the distances among them (two sides of the

triangle) are always the same and the remaining distance (the other side of the triangle)

is smaller or equal. On the left of Figure 6.3, three models are displayed: a spoon, a

fork and a plate. Think these cutlery objects as subsets of a dense space, such as the

real plane, which evaluate to φ, while the background of the items evaluates to ¬φ. The

isosceles topo-distance is displayed on the left next to the arrow connecting two mod-

els. For instance, the distance between the fork and the spoon is 1
2

since the minimum

number of rounds that Spoiler needs to win the game is 2. To see this, consider the

formula E✷φ, which is true on the spoon (there exists an interior point of the region φ
associated with the spoon) but not on the fork (which has no interior points). On the

right of the figure, the formulas used by spoiler to win the three games between the

fork, the spoon and the plate are shown. Next the proof that tmd is a distance function,

in particular the triangular property, exemplified in Figure 6.3, is always satisfied by

any three topological models.

6.3.2. THEOREM (ISOSCELES TOPO-MODEL DISTANCE). tmd is a distance measure

on the space of all topological models.

Proof tmd satisfies the three properties of distances; i.e., for all X1, X2 ∈ T :

(i) tmd(X1, X2) ≥ 0 and tmd(X1, X2) = 0 iff X1 = X2

(ii) tmd(X1, X2) = tmd(X2, X1)
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(iii) tmd(X1, X2) + tmd(X2, X3) ≥ tmd(X1, X3)

As for (i), from the definition of topo-games it follows that the amount of rounds that

can be played is a positive quantity. Furthermore, the interpretation of X1 = X2 is that

the spaces X1, X2 satisfy the same modal formulas. If Spoiler does not have a w.s.

in limn→∞ TG(X1, X2, n) then X1, X2 satisfy the same modal formulas. Thus, one

correctly gets

tmd(X1, X2) = lim
n→∞

1

n
= 0.

Equation (ii), since for all X1, X2, then TG(X1, X2, n) = TG(X2, X1, n).

As for (iii), the triangular property, consider any three models X1, X2, X3 and the

three games playable on them,

TG(X1, X2, n), TG(X2, X3, n), TG(X1, X3, n) (6.1)

Two cases are possible. Either Spoiler does not have a winning strategy in all 3 games

(6.1) for any amount of rounds, or he has a winning strategy in at least one game.

If Spoiler does not have a winning strategy in all the games (6.1) for any number

of rounds n, then Duplicator has a winning strategy in all games (6.1). Therefore, the

three models satisfy the same modal formulas, spw → ∞, and tmd → 0. Trivially,

the triangular property (iii) is satisfied.

Suppose Spoiler has a winning strategy in one of the games (6.1). Via Theo-

rem 4.1.6 (adequacy), one can shift the reasoning from games to formulas: there exists

a modal formula γ of multi-modal rank m such that Xi |= γ and Xj |= ¬γ. Without

loss of generality, one can think of γ as being in normal form:

γ =
∨ ∧

[¬]U(ϕS4) (6.2)

This last step is granted by the fact that every formula ϕ of S4u has an equivalent

one in normal form whose modal rank is equivalent or smaller to that of ϕ.1 Let γ∗

be the formula with minimal multi-modal depth m∗ with the property: Xi |= γ∗ and

Xj |= ¬γ∗. Now, the other model Xk either satisfies γ∗ or its negation. Without loss

of generality, Xk |= γ∗ and therefore Xj and Xk are distinguished by a formula of

depth m∗. Suppose Xj and Xk to be distinguished by a formula β of multi-modal rank

h < m∗: Xj |= β and Xk |= ¬β. By the minimality of m∗, one has that Xi |= β, and

hence, Xi and Xk can be distinguished at depth h. As this argument is symmetric, it

shows that either

• one model is at distance 1
m∗ from the other two models, which are at distance

1
l
(≤ 1

m∗ ), or

1In the proof, the availability of the normal form is not strictly necessary, but it gives a better impres-

sion of the behavior of the language, see Section 4.1.



110 • Chapter 6. A GAME-BASED SIMILARITY FOR IMAGE RETRIEVAL

• one model is at distance 1
h

from the other two models, which are at distance
1
m∗ (≤ 1

h
) one from the other.

It is a simple matter of algebraic manipulation to check that m∗, l and h,m∗ (as in the

two cases above), always satisfy the triangular inequality. QED

The nature of the isosceles topo-distance triggers a question. Given three spatial mod-

els, why is the distance between two pairs of them always the same?

First an example, consider a spoon, a chop-stick and a sculpture by Henry Moore.

It is immediate to distinguish, via tmd, the Moore’s sculpture from the spoon and from

the chop-stick. The distance between them is high and the same. On the other hand, the

spoon and the chop-stick look much more similar, thus, their distance is much smaller.

Mereotopologically, it may even be impossible to distinguish them (null distance).

In fact one is dealing with models of a qualitative spatial reasoning language of

mereotopology. Given three models, via the isosceles topo-distance, one can easily

distinguish the very different patterns. In some sense they are far apart as if they were

belonging to different equivalence classes. Then, to distinguish the remaining two can

only be harder, or equivalently, the distance can only be smaller.

The division in classes of equivalence and the isosceles nature of the topo-distance

should not be interpreted as the topo-distance having only a finite number of values.

In general, the distance between any two patterns can be any value between 1 and 1
n

with n ∈ IN . One way of seeing this is considering two non-equivalent S4u formulas.

Such formulas can be chosen of any modal depth. Therefore, the distance could have

any value in the interval [0, 1]. What is true is that the distribution of the values is not

linear in the interval [0, 1], but rather it becomes increasingly more dense towards 0.

6.4 Computing similarities

The definition of a distance based on model comparison games is an important step,

but how can we complete our journey towards practice? We need to compute the topo-

distance. First, we give a general methodology, then we provide an algorithm for the

concrete case that is of most interest to us.

6.4.1 Methodology

A general methodology for the computation of the topo-distance among two topo-

models M,N might work as follows. First, one translates the topo-models M,N into

equivalent Kripke models (as we did in Section 2.1.3), then one checks the models

for traditional bisimilarity [Dovier et al., 2001]. If the models are not bisimilar, one

checks all the points for which a bisimulation can not be established. The inverse of the

minimal modal depth of the formulas distinguishing these points is the topo-distance.

An alternative and more direct approach is that of relating the points in the topolog-

ical spaces. The worry with topological semantics might be an exponential explosion
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due to the number of open sets (rather than the accessibility relation for ordinary Kripke

models). Still, one might measure input complexity in terms of both points and opens,

and still get a polynomial time algorithm to compute the topo-distance.

Here we shall not enter into the details of such general methods for computing

topo-distance, but rather concentrate on a specific case of practical interest.

6.4.2 Polygons of the plane

We make an ontological commitment to finite polygons of the real plane. This is com-

mon practice in various application domains such as geographical information systems

(GIS), in many branches of image retrieval and of computer vision, or in robot plan-

ning, just to mention the most common.

Consider the real plane IR2, any line in IR2 cuts it into two half-planes. We call a

half-plane closed if it includes the cutting line, open otherwise.

6.4.1. DEFINITION (REGION). A polygon is the intersection of finitely many open and

closed half-planes. An atomic region of IR2 is the union of finitely many polygons.

An atomic region is denoted by one propositional letter. More in general, any set of

atomic regions, simply called region, is denoted by a S4u formula. The polygons of

the plane equipped with a valuation function, denoted by MIR2 , are in full rights a

topological model as in Definition 2.1.1, a basic topological fact. A similar definition

of region can be found in [Pratt and Lemon, 1997]. In that article Pratt and Lemon also

provide a collection of fundamental results regarding the plane, polygonal ontology just

defined (actually one in which the regions are open regular).

From a model theoretic point of view, the advantage of working with MIR2 is that

we can prove a logical finiteness result and thus give a terminating algorithm to com-

pute the topo-distance between any two regions.

6.4.2.1 Finiteness

In general, there are infinitely many non equivalent S4 formulas and one can identify

appropriate Kripke models to show this (cf. [Blackburn et al., 2001]). In Section 3.4.1,

however we have seen how finite unions of convex intervals of the real line yield a finite

number (64) of modally different formulas (Theorem 3.4.10). Similar results (though

with a larger upper bound) hold for the plane where in place of intervals one considers

rectangles, cf. Section 3.4.4. The further extension needed here is to move from such

rectangles to generic polygons with a finite number of sides.

First, let us consider an example. Figure 6.4.a shows a model composed of two

closed polygons: one denoted by r and one by q. Relevant points of the union of these

two polygons are those on the frontiers, on the intersections of the frontiers and in the

interiors of each polygon. A distinguishing formula of minimal modal rank true at each

of these relevant points is shown in Figure 6.4.b.
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Point Formula

0 ✷¬r ∧✷¬q
1 ✸r ∧✸¬r ∧✷¬q
2 same as 1

3 same as 1

4 ✷r ∧✷¬q
5 ✸✷r ∧✸(r ∧ ¬✸✷r) ∧✷¬q
6 r ∧ ¬✸✷r ∧✷¬q
7 ✷r ∧✷q
8 ✷r ∧✸q ∧✸¬q
9 same as 8

10 same as 8

11 same as 4

(a) (b)

Figure 6.4: (a) A simple polygonal model of the plane; (b) relevant formulas.

Given the limitation on finiteness of the number of polygons of the space in our

definition of a polygonal model of the plane, one can get a grasp of why there are only

finitely many definable formulas. We shall not give a precise proof here: it would go

more or less like the one in Section 3.4.4, but now taking oblique orientations into

account, instead we sketch some concrete steps toward the result.

6.4.2. LEMMA (FINITENESS). There are only finitely many modally definable subsets

starting from any finite set of regions viewed as atoms.

We work by enumerating cases, i.e., considering Boolean combinations of planes,

adding to an ‘empty’ space one half-plane at the time, first to build one region r, and

then to build a finite set of regions. The goal is to show that only finitely many pos-

sibilities exist. We begin by placing a closed half plane denoted by r on an empty

bidimensional space, Figure 6.5.a. Let us follow what happens to points in the space

from left to right. On the left, points satisfy the formula ✷r. This is true until we reach

the closed frontier point of the half-plane, where ✸r ∧ ✸¬r ∧ r holds. Left of the

frontier, the points satisfy the formula ✷¬r. Similarly the formulas are defined for the

negate region in Figure 6.5.¬a, notice that this time the polygon is open. In fact, by

considering negation the roles of r and ¬r switch. Consider now a second plane in the

picture:
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Figure 6.5: Basic formulas defined by one region r.

• Intersection: the intersection may be empty (no new formula), may be a poly-

gon with two sides and vertices (no new formula, the same situation as with one

polygon), or it may be a line, the case of two closed polygons that share the

side (in this last case depicted in Figure 6.5.b—spike—we have a new formula,

namely, r ∧✷✸¬r).

• Union: the union may be a polygon with either one or two sides (no new for-

mula), two separated polygons (no new formula), or two open polygons sharing

the open side (this last case depicted in Figure 6.5.¬b—crack—is like the spike,

one inverts the roles r and ¬r in the formula: ¬r ∧✷✸r).

Finally, consider combining cases (a) and (b). By union, we get Figure 6.5.a, 6.5.c,

6.5.d. The only situation bringing new formulas is the latter. In particular, the point

where the line intersects the plane satisfies the formula: ✸✷r ∧ ✸(r ∧ ✷✸¬r). By

intersection, we get a segment, or the empty space, thus, no new formula.

The four basic configurations just identified yield no new configuration from the

S4u point of view. To see this, consider the Boolean combinations of the above config-

urations. We begin by negation (complement):
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¬a ¬b ¬a, ¬b �✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂

✄✁✄✁✄
✄✁✄✁✄
☎✁☎✁☎
☎✁☎✁☎

¬d

Union straightforwardly follows (where a stands for both a and ¬a, as both configura-

tions always appear together):
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⋃ �✁�
�✁�
�✁�

✂✁✂
✂✁✂
✂✁✂

a
�✁�✁�✁�✁�✂✁✂✁✂✁✂✁✂

b c
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂

d

�✁�
�✁�
�✁�

✂✁✂
✂✁✂
✂✁✂

a a, ¬b, ¬d a, c, d a, ¬b, c, d, ¬d a, ¬b, d, ¬d
�✁�✁�✁�✁�✂✁✂✁✂✁✂✁✂

b a, c, d b c, d d

c a, ¬b, c, d, ¬d c, d a, ¬b, c, d, ¬d a, ¬b, c, d, ¬d

�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂

d a, ¬b, d, ¬d d a, ¬b, c, d, ¬d a, ¬b, d, ¬d

The table for intersection follows, with the proviso that the combination of the two

regions can always be empty (not reported in the table) and again a and ¬a are repre-

sented simply by a:

⋂ �✁�
�✁�
�✁�

✂✁✂
✂✁✂
✂✁✂

a
�✁�✁�✁�✁�✂✁✂✁✂✁✂✁✂

b c
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂

d

�✁�
�✁�
�✁�

✂✁✂
✂✁✂
✂✁✂

a a, b, c, d b a, b, c a, b, d
�✁�✁�✁�✁�✂✁✂✁✂✁✂✁✂

b b b b b

c a, b, c b a, b, c, d a, b, c, d

�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂

d a, b, d b a, b, c, d a, b, c, d

We have thus gave a taste for the finiteness of the polygons of the real plane for S4. But

we have designed the whole topo-distance for the richer language S4u. This extension

is not a problem. Recalling the availability of a normal form for S4u (Section 4.1),

one sees that the finiteness result simply extends. The formulas above are simply pre-

ceded by an existential operator stating the existence of such a point in the model. For

instance in case a we have: E✷r, E(✸r ∧✸¬r ∧ r), and E(✷¬r).

Since the information related to a region is finite, we can compactly represent it.

We call topo-vector associated with the region r, notation ~r, an ordered sequence of

Boolean values. The values represent whether the region r satisfies or not a fixed se-

quence of S4u formulas:

E✷r E✷¬r . . . E(¬r ∧✷✸r) . . . E(✸✷¬r ∧✸(¬r ∧✷✸r))

The formulas are those identified in Figure 6.5 preceded by an existential operator. For

example, the topo-vector associated with a plate—a closed square r in the plane—is:

true true . . . false . . . false

Adding half-planes with different denotations r2, r3, . . . increases the number of de-

fined formulas. The definition of topo-vector is extended to an entire MIR2 model.
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The topo-vector is built such that the modal rank of the formulas is not decreasing

going from the positions with lower index to those with higher. The size of the topo-

vector grows by c · 2i, where c is a constant value and i is the number of the regions

in the model. This might seem a serious drawback. But then, the topo-vector has

to store all the information relevant for S4u about the model. Furthermore, its size

is often considerably smaller than that of the whole topological model. As a final

consideration, one should add that in practical situations the size of topo-vectors still

remains manageable.

6.4.3 The topo-distance algorithm

The topo-vector is a compact representation of a spatial pattern. One way of seeing

this is the following. Take any spatial pattern. Reduce it to the smallest topo-bisimilar

model, using the technique of Section 2.1.3. Consider all definable formulas from the

proposition letters present in the pattern and consider whether each formula is true

somewhere in the reduced model. This information is collected in the topo-vector.

Before giving an algorithm to compute the topo-vector for MIR2 , and in turn the

topo-distance, let us reconsider the example of Figure 6.4. The region q contributes

to the topo-vector only with three possible behaviors. Either the points are outside

of it ✷¬q, or they are q points. In the latter case all these points are also inside ✷r
and one only distinguishes the case for which the points are in the interior or on the

boundary. For the region r there is a bit more variety, because there is a spike. The

spike contributes because it yields a non regular portion, and because it intersects a

regular region. Summarizing, the topo-vector for the region looks like this:

E(✷r ∧✷q) E(✷r ∧✷¬q) E(✷¬r ∧✷q) E(✷¬r ∧✷¬q) . . .
true (7) true (4) false true (0) . . .

. . . r ∧ ¬✸✷r ∧✷q r ∧ ¬✸✷r ∧✷¬q . . .

. . . false true (6) . . .

where we have marked the point satisfying the part of the formula after the existential

operator. The name of the points refers to Figure 6.4.

Next we present the algorithm to compute the topo-vector for a generic pattern of

MIR2 with respect to S4u. Given an MIR2 model M , topo-vector(M) returns the

topo-vector associated with M .
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topo-vector(M)

~v ← initialized to all false values

loop on regions r of M with index i

loop on atomic regions a of r(i) with index j

loop on vertices v of a(j) with index k

update ~v with the
∧

✷[¬]g information

update ~v with the point v(k)

if v(k) is not free

update ~v with the
∧

✷[¬]g information

loop on intersections x of a(j) with all

regions of M with index l
update ~v with the point x(l)

return ~v

return ~v

If a point v(k) of an atomic region a(j) is contained in any polygon different from

a(j) and it is not contained in any other region, then the condition v(k) is not
free is satisfied. Standard computational geometry algorithms exist for this task,

[de Berg et al., 2000]. When the “update ~v with the point p” function is

called, one checks in which case p is (as shown after Lemma 6.4.2), then one consid-

ers the position in the topo-vector corresponding to the formula satisfied by the point.

Then one sets the values for that entry to true.2 When the “update ~v with the∧
✷[¬]g” function is called, one checks in the interior of which regions the current

point is and updates accordingly the ✷g1 ∧ ✷¬g2 ∧ . . . formulas (e.g., those for the

points 0, 4, 7, and 11 in Figure 6.4.

Consider again the simple model of Figure 6.4, repeated in Figure 6.6 for con-

venience. After initialization, the region r is considered and one starts looping on

the vertices of its polygons, first the point 1. The point is free, it is the vertex of

a full polygon (not a segment) and therefore the topo-vector is updated with a true

value in the positions corresponding to E(✷r ∧ ✷¬q), E(r ∧✸r ∧✸¬r ∧ ✷¬q), and

E(✷¬r ∧ ✷¬q). The points 2 and 3 update the values for the same formulas and thus

have no effect. The point 4 falls inside the first polygon of r, the topo-vector does not

need update. Intersections are then computed and the point 5 is found. The point needs

to update the vector for the formula E(✸✷r ∧ ✸(r ∧ ¬✸✷r) ∧ ✷¬q). The point 6 is

considered and the point needs to update the formula E(r ∧¬✸✷r ∧✷¬q). The algo-

rithm proceeds by considering the second region, q and its vertices 8, 9, and 10. The

three vertices all fall inside the region r and provide for the satisfaction of the formulas

E(✷r ∧✷q), E(✷r ∧✸q ∧✸¬q), and E(✷r ∧✷¬q).
2An obvious optimization to the algorithm is to avoid checking points for which all the associated

entries are already set to true.
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Figure 6.6: Computing the topo-vector on a simple model.

The final goal is to have an algorithm to compute the topo-distance not simply the

topo-vector. One can compute the topo-distance among two models by comparing the

respective topo-vectors. Here is the algorithm taking as input twoMIR2 modelsM1,M2

and outputting the value of the topo-distance between them.

topo-distance(M1, M2)

~v1 ← topo-vector (M1)

~v2 ← topo-vector (M2)

align ~v1 and ~v2

loop on ~v1 ~v2 with index i

if ~v1(i) 6= ~v2(i)

return 1
modal rank( ~v1(i))

return 0

The idea is to retrieve the topo-vectors associated with the two input models and then

loop over their elements. The inequality check can also be thought of as a xor, since

the elements of the array are Booleans. If the condition is never satisfied, the two topo-

vectors are identical, the two-models are topo-bisimilar and thus the topo-distance is

zero. The align command makes the topo-vectors of the same length and aligns the

formulas of the two in a way such that to the same index in the vector corresponds the

same formula. If a topo-vector contains a formula that the other one does not, the entry

is added to the vector missing it with a false value.

The basic properties of the topo-distance algorithm are the following.

6.4.3. LEMMA (TERMINATION). The topo-distance algorithm terminates.

The property is easily shown by noticing that a segment (a side of a polygon) can have

at most one intersection with any other segment, that the number of polygons forming

a region of MIR2 is finite, and that the number of regions of MIR2 is finite.
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6.4.4. LEMMA (CORRECTNESS). For any M,N ∈MIR2 , topo-distance(M,N)
= k iff the actual topo-distance between M and N is k.

Proof First, consider the case of bisimilar models. If M and N are topo-bisimilar,

by Definition 6.3.1 the topo-distance is 0. By Theorem 4.1.3, if the models are topo-

bisimilar they satisfy the same modal formulas, thus, topo-vector(M) and topo-
vector(N) are identical, which in turn means that topo-distance(M,N) = 0.

As for the other direction, if the topo-distance(M,N) = 0 then the topo-

vectors are identical. But since the topo-vectors comprise all non-equivalent modal

formulas for M and N , and since they are finite, Theorem 4.1.3 may be applied to

the finite bisimulation contractions. That is, the latter models are topo-bisimilar. By

Definition 6.3.1, if the models are topo-bisimilar, then topo-distance is 0.

Second, consider the case in which the models are not topo-bisimilar. The idea is

similar. One uses the adequacy theorem for model comparison topo-games in place of

the theorems for topo-bisimulations.

If the distance between M and N is k > 0, by Definition 6.3.1, Spoiler has a

winning strategy in any game of length at least 1
k
. By Theorem 4.1.6, all the en-

tries for the formulas of modal depth smaller than 1
k

in the topo-vector(M) and

topo-vector(N) must be the same. Since the topo-vectors comprise all non-

equivalent modal formulas for M and N , there must be an entry for at least one modal

formula of depth 1
k

which differentiate the two topo-vectors allowing Spoiler to win.

By the topo-distance algorithm, this means that topo-distance(M,N) = k.

As for the other direction, suppose that the topo-distance(M,N) = k > 0,

then the topo-vectors must be identical for all entries associated to formulas of modal

depth smaller than 1
k
, and there must be a difference for at least one entry associated

with a formula of modal depth 1
k
. Since the topo-vectors comprise all non-equivalent

modal formulas of minimal modal rank for M and N , the differentiating formula of

minimal modal rank for M and N has modal rank 1
k
. By Theorem 4.1.6, this means

that Spoiler’s shortest winning strategy needs exactly 1
k

rounds. By Definition 6.3.1,

the latter implies that the topo-distance between M and N is k. QED

By Lemma 6.4.3 and Lemma 6.4.4, we obtain the following result.

6.4.5. THEOREM (DECIDABILITY OF THE TOPO-DISTANCE). In the case of polygo-

nal topological models MIR2 over the real plane, the problem of computing the topo-

distance among any two models is decidable.

Given our further definitions, and the connection between Duplicator’s winning strate-

gies in infinite topo-games and topo-bisimulations, (cf. [Barwise and Moss, 1996]), we

also have the following result.

6.4.6. COROLLARY (DECIDABILITY OF TOPO-BISIMULATIONS).In the case of polyg-

onal topological models over the real plane, the problem of identifying whether two

models are topo-bisimilar is decidable.
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6.5 The IRIS prototype

The ultimate step toward practice of the spatial framework presented in the chapter is

the actual implementation of the similarity measure in a prototype. The topo-distance

is a building block of an image retrieval system, named IRIS Image RetrIeval based

on Spatial relationships, coded in Java and enjoying a Swing interface (Figure 6.8). An

overview of the programming behind IRIS with the presentation of the most relevant

source code passages can be found in Appendix C.

The actual similarity measure is built in IRIS to both index and retrieve images on

the basis of:

(i) The spatial intricacy of each region,

(ii) The binary spatial relationships between regions, and

(iii) The textual description accompanying the image.

Referring to Figure 6.7, one can get a glimpse of the conceptual organization of IRIS.

A spatial model, as in Definition 2.1.1, and a textual description (central portion of

the figure) are associated with each image of the collection (on the left). Each topo-

logical model is represented by its topo-distance vector, as built by the algorithm in

Section 6.4 and by a matrix of binary relationships holding between regions. Simi-

larly, each textual description is indexed holding a representative textual vector of the

text (right portion of the figure). In Figure 6.8, a screen-shot from IRIS after query-

ing a database of about 50 images of men and cars is shown. On the top-right is the

window for sketching queries. The top-center window serves to write textual queries

and to attach information to the sketched regions. The bottom window shows the re-

sults of the query with the thumbnails of the retrieved images (left to right are the most

similar). Finally, the window on the top-left controls the session.

We remark again the importance of moving from games to a distance measure

and of identifying the topo-vectors for actually being able to implement the spatial

framework. In particular, in IRIS once an image is placed in the database the topo-

vector for its related topological model is computed, thus off-line, and it is the only data

structure actually used in the retrieval process. The representation is quite compact

both if compared with the topological model and with the image itself. In addition,

the availability of topo-vectors as indexing structures enables us to use a number of

information retrieval optimizations, [Frakes and Baeza-Yates, 1992].

6.5.1 Implementing the similarity measure

In IRIS, the similarity measure is built on three components:

similarity(Iq, Ij) =
1

kn
(ktopo
u · dtopo(Iq, Ij) + kb

u · db(Iq, Ij) + ktext
u · dtext(Iq, Ij))
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Figure 6.7: The organization of IRIS together with the indexing data structures.

where Iq is the query image (equipped with its topological model and textual descrip-

tion), Ij is the j-th image in the visual database, ktopo
u , kb

u, and ktext
u are user defined

factors to specify the relative importance of topological intricacy, binary relationships

and text in the querying process, kn is a normalizing factor, dtopo(Iq, Ij) is the topo-

distance between Iq and Ij , db(Iq, Ij) and dtext(Iq, Ij) are the distances for the binary

spatial relationships and for the textual descriptions, respectively. In the context of

IRIS, the textual component is considered independent of the two spatial ones, while

the binary relationship and the topo-distance are also independent. In fact, the compar-

ison of the topological configuration of a given region does not affect the comparison

of its relations with other regions (it does not matter if a region is open regular or a

spike when considering if it is contained in another region or not). The user defined

factors k serve for experimentation purpose. So one can experiment with the relevance

of a factor in the retrieval process. Ideally, one should find the perfect balance between

the three components of the similarity measure and then fix these three parameters

once and for all (or fix them for a specific domain).

The entire Section 6.4 is concerned with the computation of dtopo(Iq, Ij). The topo-

distance component is simply:

dtopo(Iq, Ij) = topo-distance(t-vec(Iq), t-vec(Ij))

The second component db(Iq, Ij) of the similarity measure accounts for the binary

spatial relationships between objects. When an image is indexed, a matrix is built.
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Figure 6.8: The result of querying a database of men and cars.

This is a square matrix whose indices range over the regions present in the model.

The generic entry ei,j of the matrix represents the spatial relationship between region

i and region j and can be one of the following: disconnected, externally connected,

overlap, equal, tangential part, non-tangential part, and the inverses of the last two

(RCC8). Following [Egenhofer, 1997], we define a topological distance using RCC8

in the following way. Any two relations are at distance n if there is a path of length

n in the graph in Figure 6.9 connecting the two nodes representing the relations. Our

distance is slightly different from that in [Egenhofer, 1997] since we use a modification

of its original graph, though the underlying idea is the same. In the similarity measure,

one compares matrices b(M1,M2):

db(Iq, Ij) = b(b matrix(Iq), b matrix(Ij))

where b matrix(Ij) is the matrix of binary s8 relations associated with the regions

identified in the j-th image.

The third and last component dtext(Iq, Ij) of the similarity measure deals with tex-

tual annotation. The motivation comes from captions accompanying images in paper

documents or present ‘near’ images in hyper-media documents. We employ quite stan-

dard textual information retrieval techniques, see for instance [Frakes and Baeza-Yates,

1992], and therefore omit further explanation of this part of the similarity measure be-
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Figure 6.9: The binary relationships graph.

half for the standard definition of ‘textual distance’ between two image descriptions:

dtext(Iq, Ij) = (1− weighted occurrences(text vector(Iq), text vector(Ij))

length(text vector(Iq))
)

where text vector(Ij) is the list of meaningful words found in the description of the

j-th image, weighted occurences counts the number of instances of a word appearing

in two textual vectors weighted by a factor indicating the indexing power of the word.

A word is more powerful if it discriminates more, which in turns means that it occurs

in less descriptions in the whole collection of image captions. The dtext(Iq, Ij) follows

a common way of defining a cosine distance among word vectors, see for instance

[Witten et al., 1999].

6.6 Discussion

There are two abstractions on the idea of topo-distance that are worth noticing:

1. the transformation of model comparison games into distance measures for lan-

guages different from S4u,

2. the extension of the framework topo-bisimulation, topo-game, topo-distance to

modal spatial languages more expressive than the simple S4u.

1. The theoretical framework proposed is much more general than what we have shown

here. We were interested in a mereotopological framework and have therefore used the

language S4u interpreted on topological models, but an isosceles distance can be used

for any modal language equipped with negation, for which one has adequate notions

of model comparison games and bisimulation. Even the restriction to modal logic
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is not necessary, one can think of first-order logic, of the usual Ehrenfeucht-Fraı̈ssé

games, of elementary equivalence in place of bisimulation, and an isosceles distance

is then definable. The decidability result for the distance is the only thing that does

not necessarily extend, rather one has to consider the class of models and the logic

case by case. Of particular importance is then how the adequate topological games are

defined. The technique employed in Theorem 6.3.2 for the language S4u is, as we have

just mentioned, much more general. A question interesting per se, but out of the scope

of the present dissertation, is: which is the class of games (over which languages) for

which a notion of isosceles distance holds? We believe the class of such languages and

model comparison games to be quite vast.

2. The second abstraction step is, in some sense, an instance of the previous one. The

idea is to take the framework topo-bisimulation, topo-game, topo-distance, algorithm

to compute the distance to more expressive languages than S4u. The starting point is

then to identify an appropriate language of, say, qualitative shape with adequate model

comparison games. Then a newer version of IRIS can be built. We have seen a

number of modal languages more expressive than S4u together with adequate notions

of model comparison games in Chapter 4 and 5. All these languages are excellent

candidates for extending IRIS. The difficulty of the extension will mostly lie in the

identification of efficient algorithms to compute the various distance measures.

A separate remark regarding experimentation is in order. Having implemented a sys-

tem based on the topo approach is also an important step in the presented research. Ex-

perimentation is essential to asses applicability, but some preliminary considerations

are possible. We have noticed that the prototype is very sensible to the labeling of

segmented areas of images, i.e., to the assignment of proposition letters to regions. We

have also noticed that the mereotopological expressive power appears to enhance the

quality of retrieval and indexing over pure textual searches, but the expressive power

of S4u is still too limited. Notions of qualitative orientation, shape or geometry appear

to be important, especially when the user expresses his desires in the form of an image

query or of a sketch.

All in all, the idea of designing a spatial similarity measure based on formal model

comparison games is both intriguing and rewarding from the intellectual point of view.

Though, the gap between our implemented system and actually practical systems is still

to be filled. There is no indication that the topo-distance gives human-intuitive mean-

ings to the similarity of images, because a numerical distance can hide very different

types of visual distinction.

Another major concern is the following. The system proposed may result to be

very brittle when experimenting on real world images segmented automatically. The

misclassification of a region, or the misinterpretation of a boundary, not to mention

noise in the original image, can have a devastating impact on the values of the similarity

measure. Solutions to fill these gaps between our system and more effective ones are

bound to involve some genuine extensions of our pure topological framework.





CHAPTER 7

THICK 2D RELATIONS FOR DOCUMENT

UNDERSTANDING

7.1 Introduction

When Dave placed his own drawing in front of the ‘eye’ of HAL—in 2001: A Space

Odyssey—HAL showed to have correctly comprehended and interpreted the sketch.

“That’s Dr. Hunter, isn’t it?” [Rosenfeld, 1997]. But what would have happened if

Dave used the first page of a newspaper in front of the eye and started discussing its

contents? Considering HAL a system capable of AI, we expect HAL to recognize the

document as a newspaper, to understand how to extract information and to understand

its contents. Finally, we expect Dave and HAL to begin a conversation on the contents

of the document. In short, HAL has to be able to perform document image analysis.

Document image analysis is the set of techniques to recover syntactic and semantic

information from images of documents, prominently scanned versions of paper docu-

ments. An excellent survey of document image analysis is provided in [Nagy, 2000]

where, by going through 99 articles having appeared in the IEEE’s Transactions on

Pattern Analysis and Machine Intelligence (PAMI), Nagy reconstructs the history and

state of the art of document image analysis. Research in document images analysis is

useful and studied in connection with document reproduction, digital libraries, infor-

mation retrieval, office automation, and text-to-speech.

One may have different goals when performing document image analysis. For

instance, one may be in interested in the reconstruction of the reading order of a docu-

ment from its image. One way to achieve this is by performing the following interme-

diate steps. First, one identifies the basic components of the document, the so-called

document objects. Second, one identifies the logical function of the document objects

within the document (e.g., title, page number, caption). This is called logical label-

ing. Last, one infers the order in which the user is to read the document objects. This

phase is called the reading order detection. In the process, one moves from basic ge-

ometric information of the document composition, the layout structure, to semantic

125
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information, the logical structure. document objects and their spatial arrangement are

prototypical examples of elements of the layout structure, while the reading order is an

instance of the logical structure.

In Figure 7.1, we illustrate possible flows of information in document image analy-

sis. The first row represents the flow from the document image to its reading order. The

following row represents the flow from the image to the identification of the document

class. Discovering to which scientific publication belongs a given document image is

an example of document classification. One should interpret the arrows in the figure

as possible choices. It is perfectly normal to move from one row to another, or to stop

the analysis at the layout structure level. For example, systems for mail delivery do not

need to perform any document classification, or reading order detection.

Document
Objects

Detection

Detection

Layout

Reading
Order 

Detection

Document
Classification

Logical
Labeling

Identification

Genre

Document
Image

Syntactic Intermediate Semantic Semantic

Layout Structure Logical Structure

Input

Figure 7.1: Various tasks in document image analysis and understanding. Left to right,

from input data towards semantic content.

The first document image analysis systems were built to process documents of a

specific class, e.g., forms for telegraph input. One of the recent trends is to build

systems as flexible as possible, capable of treating the widest variety of documents.

This has led to categorize the knowledge used in a document image analysis system

into: class specific and general knowledge (e.g., [Cesarini et al., 1999]). In addition,

such knowledge can be explicitly available or implicitly hard-coded in the system.

Lee and Choy [2000] present a system to analyze technical journals of one kind

(PAMI) based on explicit knowledge of the specific journal. The goal is that of region

segmentation and identification (logical labeling). The knowledge is formalized in

“IF-THEN” rules applied directly to part of the document image and “IF-THEN” meta

rules. Though the idea of encoding the class specific knowledge of a document is

promising, it is not clear whether the proposed approach is scalable and flexible. Given

the specific form of the IF-THEN rules, the impression is that the system is not suited

for the analysis of documents different from PAMI. Experimental results show good
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performance in the task of logical labeling, especially in the detection of formulas and

drawings embedded in the main text.

There are a number of problems related to the rule based approaches found in the

literature. The most prominent is the high specificity of the rules. The specificity makes

it hard or impossible to extend such systems to documents of a class different from the

one for which the system was originally designed. Another problem is the lack of

proof of correctness or termination. Recent rule-based approaches for layout and log-

ical structure detection are presented in [Klink and Kieninger, 2001, Lee et al., 2000,

Niyogi and Srihari, 1996] while an older one is [Tsujimoto and Asada, 1992].

Given the difficulty in designing appropriate rules for the analysis of documents,

approaches based on learning are interesting. The document classification components

of the WISDOM++ system [Altamura et al., 2001] are based on first-order learning al-

gorithms [Esposito et al., 2000]. Another advantage of such systems is their flexibility

compared to the non-learning based systems. By training the system on a different

class of documents with similar layout, it should be possible to reuse the same archi-

tecture. On the negative side, the rules learned are not intuitive. More often than not,

these rules are impossible to modularize for further use on different document classes.

An important aspect of a document image analysis system working at the logi-

cal structure level is the representation of the information extracted from the docu-

ment. The key here is a modularity and standardization of the representation. Markup

languages are a good example of representation means with such qualities. The sys-

tem presented in [Worring and Smeulders, 1999] uses HTML as its final output form,

while [Altamura et al., 2001] uses XML. More abstract representations are labeled and

weighted graphs. These have been used in various systems such as, for instance, the

ones presented in [Li and Ng, 1999, Cesarini et al., 1998, Walischewski, 1997].

As we are investigating practical applications of spatial reasoning formalisms, it

is relevant to review approaches using these kind of formalisms. In particular, we

consider bidimensional extensions of Allen’s interval relations, that is, rectangular

relations. To the best of our knowledge, bidimensional Allen relations have been

used in document image analysis in three cases [Klink et al., 2000, Singh et al., 1999,

Walischewski, 1997]. In all these approaches, bidimensional Allen relations are used

as geometric features descriptors, at times as labels for graphs and at other times as

layout relations among document objects. Thus, the use of Allen relations is relegated

to feature comparison and it is not used for performing any other kind of reasoning.

We present a methodology based on inference with bidimensional qualitative spa-

tial relations for logical structure detection of document images. In particular, the

methodology addresses the issue of detecting the reading order in documents from an

heterogeneous collection without using any document specific knowledge.

The methodology is implemented in a prototype system named SpaRe (Spatial

Reasoning component) part of a larger architecture for logical structure detection in

a broad class of documents. In the next section, we give an overview of the architec-

ture. In Section 7.3, we describe the methodology based on the concept of document

encoding rule and of thick boundary interpretation of bidimensional Allen relations.
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Section 7.4 is dedicated to the experimental results and their discussion. Directions for

future work and a discussion of the methodology are presented in Section 7.5.

7.2 A logical structure detection architecture

In [Todoran et al., 2001a], we presented a logical structure detection architecture. De-

parting from a pre-processed document image the goal of such an architecture is that

of logically labeling the document objects and subsequently identify the reading order.

The system uses general document knowledge only, hence, it is applicable to docu-

ments of different classes.
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Figure 7.2: The flow of knowledge and data in the logical structure detection architec-

ture presented in [Todoran et al., 2001a].

Referring to Figure 7.2, one has a glimpse of the architecture presented in [Todoran

et al., 2001a]. The input is a pre-processed document image in which the document

objects have been segmented, local textual content recognized and font information

identified. The original document can be of any class as long as it is acceptable that

document objects are represented by rectangles. Overlapping document objects are

accepted by the system.

There are three modules: a logical labeler, a spatial reasoning reading order de-

tector, and a natural language processing ‘disambiguator’. logical labeling on the pre-

processed image is achieved via pre-trained classifiers.

The spatial reasoning module starts from the logically labeled layout of the doc-

ument and, using general document encoding rules, it outputs a number of reading

orders. The module is the subject of the remainder of the chapter.
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The natural language processing module starts from the spatially admissible read-

ing orders and the textual content of each one of the textual document objects. It

uses this information to prune the set of spatially admissible reading orders of those

which are linguistically not acceptable. This is performed by applying a combination

of statistical methods and shallow parsing techniques. The statistical tools are trained

on a large corpora of text. The training corpora is based on [Hersh et al., 1994] and

[Baayen et al., 1995] which are independent from the document classes analyzed. De-

tails of this module are presented in [Todoran et al., 2001b].

The output of the system is a reading order for the input document image. To

be more precise, the output is a list of reading orders for the document ranked in

order of linguistic plausibility (a probability is assigned to each reading order). Ex-

perimental results on each module and on the whole system have been presented in

[Aiello et al., 2000, Todoran et al., 2001b, Todoran et al., 2001a].

7.3 Methodology

We focus on the spatial reasoning module of the architecture presented in the previous

section. Figure 7.3 is a zoom-in of the spatial reasoning component in Figure 7.2 high-

lighting details. First, the generic document knowledge in the form of document en-

coding rules may have different origins. Second, the spatial reasoning module SpaRe,

is actually composed of two sub-modules. The first one, which performs inference

on the spatial relations of the layout and on the document encoding rules, is based

on constraint satisfaction techniques. The second one is a module to sort graphs, that

is, directed transitive cyclic ones. In the following sections, we analyze each of these

items.

7.3.1 Document encoding rules

A document encoding rule is a principle followed by the author of a document to

convey an intent of the author by layout details. document encoding rules can be one

of two types: general or class specific. Document encoding rules can be expressed in a

informal or in a formal manner. Informal rules are proposed in natural language or by

sketch. Examples are found in books such as [Reynold, 1979]. Examples of generic

and specific, and formal and informal rules are presented in Figure 7.4.

Let us consider a number of formal ways to express document encoding rules.

LATEX is a compiled markup language. Typically, there is a number of source files
with the main marked-up text (the .tex files), a number of style definition
files (.sty, .cls) and a compiler. The document encoding rules can reside
as macros in the .tex file, but the most common solution is that document en-
coding rules reside inside the style files. Consider the figure environment in the
class file for generating transactions for the ACM.1

1M. Aiello. (2001). http://www.acm.org/pubs/submissions/latex_style/
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Figure 7.3: The flow of knowledge and data in the spatial reasoning module SpaRe.

The document encoding rules originate from an expert, or from previous learning or are

given directly by the document author. The module itself is composed of a constraint

satisfaction problem solver and a handler for directed transitive cyclic graphs.

\newcounter{figure}
\def\thefigure{\@arabic\c@figure}
\def\fps@figure{tbp}
\def\ftype@figure{1}
\def\ext@figure{lof}
\def\fnum@figure{Fig.\ \thefigure}
\def\figure{\let\normalsize\footnotesize \normalsize

\@float{figure}}\let\endfigure\end@float
\@namedef{figure*}{\@dblfloat{figure}}
\@namedef{endfigure*}{\end@dblfloat}

The above definition, among other things,2 defines the figure as belonging to
a float environment [Goossens et al., 1994] whose default major features are: a
float occupies the top of a page; a float does not have to appear where it is

acmtrans2m.cls. The class file currently in use at ACM, an extension of the acmtrans2e.cls
version.

2See [Knuth, 1984] for details over the syntax and semantics of TEX.
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general class specific

informal “the caption neighbors its fig-

ure”

“the caption starts with the word

“Fig.” with font size 12pt, green text,

and it is centered”

formal ∀f ∈figure ∃c ∈caption: ∀c ∈caption→
neighbors(f, c) text starts(c, “Fig.”)∧point(c, 12)∧

font color(c, ‘Green’)∧centered(c)

Figure 7.4: Examples of generic and specific, and formal and informal rules. The

formal rules are expressed in a first-order like language for documents whose semantics

should be self-evident.

declared in the source; a float should not occupy more than 70% of the page
otherwise it is moved after the first \clearpage instruction; if a caption is
present it cannot be split across pages. The ACM transactions style file provides
further class specific definitions for displaying the caption which overwrite the
corresponding LATEX definitions.

\long\def\@makecaption#1#2{\vskip 1pc
\setbox\@tempboxa\hbox{#1.\hskip 1em\relax #2}
\ifdim \wd\@tempboxa >\hsize #1. #2\par \else
\hbox to\hsize{\hfil\box\@tempboxa\hfil}
\fi}

\def\nocaption{\refstepcounter\@captype \par
\vskip 1pc \hbox to\hsize{\hfil \footnotesize
Figure \thefigure\hfil}}

The second example of a document rule in LATEX places the word “Figure” the

figure counter immediately below the picture, placing a vertical space of 1pc
units (i.e., 12pt). The size of such text is set to the value of \footnotesize.

More abstractly, the document encoding rule for a figure says that a figure is

left to float in the main text, its preferred position is on top of a page and the

caption is placed immediately below. The figure and caption always appear in

the above/below spatial relation on one page.

WYSIWYG are computer systems in which the input of the user corresponds almost

exactly to the final layout of the document (WYSIWYG stands for ‘what you
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see is what you get’). A prototypical example is Microsoft’s Word. In these

sort of systems, it is hard to distinguish between the syntactic and the semantic

portion of document encoding rules, as they are hidden in the implementation.

The only control that the user has over the formal document encoding rules is

through the functionalities provided by an interface allowing the user to change

rule parameters.

In a common way of employing the WYSIWYG-style there are few strict docu-

ment encoding rules, while the user still enforces elements of style. In a typical

way of doing, captions may be put underneath a figure and also typically be

indented (apart from the one place where the user forgot to implement that).

However, when observing the text one could learn document encoding rules,

for example, that captions are always below the figure and immediately follow-

ing it provided there is one. In that case, one would require rules which can

express topological relationships with some form of tolerance as the user will

implement notions like alignment and marking with a limited precision. In ad-

dition, one would require rules which express topographic relationships as they

can be implemented in the freedom to move around on the 2D-screen where the

WYSIWYG-program runs, implying that the caption is always close to the fig-

ure. Finally, to address the inconsistencies of ad hoc rule implementation and

the lack of discipline to enforce them would require rules with a less than strict

character.

SGML languages are a family of interpreted markup languages, whose best known

members are HTML and XML. The eXtensible Markup Language, XML for

short, achieves a clear separation between content (the .\indexn{XML} file),

syntactic document encoding rules (.css, .xsl, .dtd) and semantics of the

document encoding rules (the browser’s interpretation of the document encoding

rules). For instance, the document encoding rule for a caption like<CAPTION>
A figure </CAPTION> could be the following:

• (syntax): inside a .css file

CAPTION

{dispaly: block; font-size: 12pt; color: #000000; text-align: center}
• (semantics): the browser will display the text “A figure” in one block of

text, in black color, using the default font, using the font size 12pt, and

center it.

To the same degree SGML as WYSIWYG offers the possibility to move around

the images of the document objects and hence implement document encoding

rules by habit rather than by a priori rules. As the user has no visual feedback,

the factual encoding rules are more informal than in the WYSIWYG paradigm.

Hence, here are needed topological and topographical rule sets to describe the

power of SGML but even more forgiving than in the WYSIWYG style.
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Abstract formal languages can also serve as document encoding languages, for in-

stance, first-order logic. The syntax and semantics are the usual ones for first-

order logic, taking special care in giving adequate semantics to spatial relations

and predicates.

A final example of a general document encoding rule stated informally in natural lan-

guage is the following:

“in the Western culture, documents are usually read top-bottom and left-right.” (7.1)

A problem of stating rules in natural language is ambiguity. In fact, we do not know if

one should interpret the “and” as commutative or not. Should one first go top-bottom

and then left-right? Or, should one apply any of the two interchangeably? It is not

possible to say from the rule merely stated in natural language.

In the next section, we define an abstract propositional formal language to express

qualitative spatial relations among document objects to formally express document

encoding rules.

7.3.2 Relations adequate for documents

Considering relations adequate for documents and their components, requires a pre-

liminary formalization step. This consists of regarding a document as a formal model.

At this level of abstraction a document is a tuple 〈D,R, l〉 of document objects D, a

binary relation R, and a labeling function l. Each document object d ∈ D consists of

the coordinates of its bounding box (defined as the smallest rectangle containing all

elements of that object)

D = {d | d = 〈id, x1, y1, x2, y2〉}

where id is an identifier of the document object and (x1, y1) (x2, y2) represent the

upper-left corner and the lower-right corner of the bounding box of the document ob-

ject. In addition, we consider the logical labeling information. Given a set of labels L,

logical labeling is a function l, typically injective, from document objects to labels:

l : D → L

In the following, we consider an instance of such a model where the set of rela-

tions R is the set of bidimensional Allen relations and where the set of labels L
is {title, body of text, figure, caption, footer, header, page number, graphics}. We

shall refer to this model as a spatial [bidimensional Allen] model. Bidimensional

Allen relations consist of 13×13 relations: the product of Allen’s 13 interval relations

[Allen, 1983, van Benthem, 1983b] on two orthogonal axes. (Consider an inverted co-

ordinate system for each document with origin (0,0) in the left-upper corner. The x
axis spans horizontally increasing to the right, while the y axis spans vertically to-

wards the bottom.) Each relation r ∈ A is a tuple of Allen interval relations of the
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form: precedes, meets, overlaps, starts, during, finishes, equals, and precedes i,
meets i, overlaps i, starts i, during i, finishes i. We shall refer to the set of Allen

bidimensional relations simply as A and to the propositional language over bidimen-

sional Allen relations as L the remainder of the chapter. Since Allen relations are

jointly exhaustive and pairwise disjoint, so is A. This implies that given any two doc-

ument objects there is one and only one A relation holding among them.

y

x

d

d

1

2

y

x

d

d
1

2

(a) (b)

Figure 7.5: (a) The document object d1 is Part of d2, as the projection of d1 on both

axes is during the projection of d2; (b) The document object d2 Overlaps with d2,

as the projection on x of d1 overlaps that of d2 and on y it overlaps i that of d2.

Document objects are represented by their bounding boxes and the relative position

of these objects plays a key role in the interpretation of the meaning of the document.

For example, if a document object is above another one it is likely that it should be read

before. If a document object is contained in another one, it is likely that the contained

one is a ‘part’ of the containing one, for instance the title of a remark inside a frame.

document objects can be also overlapping. This last feature is more common when the

document has different colors and colored text runs over pictures, logos and drawings.

All relations of the examples above are expressible in terms of L. For instance,

‘being part of’ is

Part(d1, d2) iff (during x(d1, d2) ∨ starts x(d1, d2) ∨ finishes x(d1, d2))∧
(during y(d1, d2) ∨ starts y(d1, d2) ∨ finishes y(d1, d2)) (7.2)

To analyze the expressive power ofL, we encode the basic RCC5 [Randell et al., 1992]

relations:

• Part−1(d1, d2) = Part(d2, d1),

• Equal(d1, d2) = equal x(d1, d2) ∧ equal y(d1, d2),
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• Disconnected(d1, d2) = precedes x(d1, d2) ∨ precedes i x(d1, d2)∨
precedes y(d1, d2) ∨ precedes i y(d1, d2),

• Overlap(d1, d2) = ¬Part(d1, d2) ∧ ¬Part−1(d1, d2)∧
¬Equal(d1, d2) ∧ ¬Disconnected(d1, d2)∧
¬ExternalConnection(d1, d2).

Similarly, one can encode RCC8 in L. Examples of document objects satisfying the

part and the overlap relations are presented in Figure 7.5.

Restricting attention to RCC relations one looses a feature of L of great impor-

tance, namely, its ordering expressivity with respect to the axes. Take for instance

the Disconnected relation. There are various ways in which two document ob-

jects can satisfy this relation. If either precedes x(d1, d2) ∧ equal y x(d1, d2) or

precedes i x(d1, d2) ∧ equal y x(d1, d2) holds, then it is true that the RCC8 predi-

cate Disconnected(d1, d2) holds, but the two situations are most different. In the

first case, d1 is to the left of d2, in the second case it is to the right. In other words,

in the first case it is likely that d1 is to be read before than d2 in the document, while

in the second case d2 is to be read before d1. This is one of the key features that we

exploit in using L to define document encoding rules.

Consider again the example of the relation between a figure and its caption in the

LATEX ACM transactions class file. This spatial relation is L definable:

(during x(figure, caption)∨ equals x(figure, caption))∧ precedes y(figure, caption)

The spatial relation between the word “Figure” and the figure counter is also L defin-

able:

meets x(“Figure ”,figure counter)∧
equals y(“Figure ”,figure counter) ∨ during i y(“Figure ”,figure counter)

Other features of the LATEX definitions are not L definable: trivially, all font and textual

features. But also size and distance features are not L definable, e.g., the fact that the

white space between a figure and a caption is of a fixed amount (1pc).

7.3.2.1 Document encoding rules with L
The language L is adequate to express mereotopological and ordering relations among

rectangles. Here, we show how to use this power to express formal unambiguous

document encoding rules.

Take the informal document encoding rule (7.1) expressed in natural language.

Consider the layout of a document as presented in Figure 7.6.a, where the numbering

of the document objects is provided counterclockwise. After having read the document

object 2, to which one should the reader move? Only having the layout and not the

content of the text there is not a unique choice. One would either move to the block of
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Figure 7.6: Layouts of documents considering text objects only.

text 4 or to block 3. In the first case, one has followed the left-right rule, in the latter

the top-bottom rule. No one would have proposed to move to block 1, this because it

is in violation of the top-bottom rule.

The top-bottom, left-right document rules are expressible in the language L by:

before in reading(d1, d2) iff precedes x(d1, d2) ∨meets x(d1, d2)∨
overlaps x(d1, d2) ∨ precedes y(d1, d2)∨
meets y(d1, d2) ∨ overlaps y(d1, d2) (7.3)

The equation reads “the document object d1 is ‘before in the reading order’ of the doc-

ument object d2 if the a Boolean combination of basic L relations are satisfied.” The

rule (7.3) is the formal counterpart to (7.1). Though the generality of (7.3) is also its

weakness. Too many document objects satisfy it, calling for the design of rules balanc-

ing between being more restrictive and being general. Consider the layout proposed in

Figure 7.6.b. It is hard to judge if one would follow the reading 1, 2, 6, 3, 5, 4 or the

reading 1, 6, 5, 2, 3, 4, but the reading 1, 6, 2, 3, 5, 4 surely seems odd. Without know-

ing the content of the document, we are inclined to consistently apply a column-wise

or row-wise rule. Therefore, a candidate for a general and yet more restrictive rule

in comparison with (7.3) is a column-wise document rule. In this case, one first goes

top-bottom, then left-right. A rule to encode this behavior is again expressible with L.

It has the following form:
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before in readingcol(d1, d2) iff

precedes x(d1, d2) ∨meets x(d1, d2)∨

(overlaps x(d1, d2)∧
(precedes y(d1, d2) ∨meets y(d1, d2) ∨ overlaps y(d1, d2)))∨

((precedes y(d1, d2) ∨meets y(d1, d2) ∨ overlaps y(d1, d2))∧
(precedes x(d1, d2) ∨meets x(d1, d2) ∨ overlaps x(d1, d2)∨
starts x(d1, d2) ∨ finishes i x(d1, d2) ∨ equals x(d1, d2)∨
during x(d1, d2) ∨ during i x(d1, d2) ∨ finishes x(d1, d2)∨
starts i x(d1, d2) ∨ overlaps i x(d1, d2))) (7.4)

The declarative code implementing this rules is presented on page 175. An analogous

row-wise rule is obtained by inverting the axes in (7.4).3

7.3.2.2 Thick boundary interpretation

The direct application of systems based on Allen or similar relations results in brittle

systems. This is because Allen relations rely on the precise identification of a boundary

of the interval. This means that some relations never occur in practical situations. One

goes directly from precedes to overlaps and from overlaps to during without ever

identifying an instance of meets, starts, or finishes. To solve this drawback of

Allen-like relations, we provide a less brittle interpretation of the relations.

Instead of considering two interval extremes to be equal when they have the same

coordinates, we consider them equal if they are closer than a fixed threshold distance

T. This can be seen as if the bounding boxes of the document objects have a thick

boundary. We name the set of thirteen Allen’s relations thus interpreted thick boundary

rectangle relations.

The thickness of the boundary is assumed identical for all objects in the document.

It is fixed with respect to the page size. The optimal value is found through experimen-

tation. There is a constraint on the T with respect to the size of the smallest document

object: it should not exceed half the size of the shortest side of all bounding boxes.

Referring to Figure 7.7, one sees how the A relations with their thick interpretation are

more tolerant in the establishment of a relation between two intervals. For example,

interval a meets interval b not only if xa2 = xb1, but also if xb1 − T ≤ xa2 ≤ xb1 + T .

With the thick boundary interpretation, Allen’s relation maintain the jointly exhaustive

and pairwise disjoint property, see [Todoran et al., 2001a] for a proof. The declarative

code with the clauses defining A with the thick boundary interpretation are reported in

Appendix C on pages 177–179.

3Its implementation is presented on page 175.
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Figure 7.7: The thick boundary interpretation of Allen’s relations. The interval b is

considered fixed and the threshold T is highlighted on its extreme points. The interval

a varies in all 13 possible positions. On the left, the equation of the standard interpre-

tation of Allen’s relations. On the right, the thick boundary interpretation.

7.3.2.3 Theoretical excursus

One might wonder about the connection between L and the family of languages pre-

sented in the first half of the thesis. The connection is strong, as we have already

remarked by showing the encoding of RCC8 in terms of L. But there is more.

The A relations are mereotopological relations, but they are also weak geometrical

relations. It is possible to define a notion of betweenness, see Section 5.1.2, in terms
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of L. Consider the following definition

β(d1, d, d2) iff ¬precedes i x(d1, d) ∧ ¬meets i x(d1, d)∧
¬overlaps i x(d1, d) ∧ ¬precedes i x(d, d2)∧
¬meets i x(d1, d) ∧ ¬overlaps i x(d, d2)∧
¬precedes i x(d1, d) ∧ ¬meets i y(d1, d)∧
¬overlaps i y(d1, d) ∧ ¬precedes i y(d, d2)∧
¬meets i y(d1, d) ∧ ¬overlaps i y(d, d2)

We call this notion Manhattan betweenness, in the spirit of the Manhattan distance. An

1

2

3

4

Figure 7.8: The document objects 2 and 4 lie ‘in between’ the document objects 1 and

3. 2 is strictly in between 1 and 3, while 4 is a limit case.

example of L-betweenness holding among three rectangles is presented in Figure 7.8.

One can check that it satisfies the universal betweenness axioms (Section 5.1) with one

minor adjustment. The identity axiom becomes β(d1, d, d1) → Part(d, d1), that is,

the equality relation in A2 is replaced by the ‘part’ relation.

To move from L to a modal logic of rectangles is possible. The techniques used

to perform the same move for the one-dimensional case are the most promising. The

idea of chopping intervals [Venema, 1991] could be extended to chopping rectangles.

Also the technique of Halpern and Shoham [Halpern and Shoham, 1991] should work

for rectangles.

7.3.3 Inference

Equipped with a qualitative spatial language for document objects L, with document

encoding rules and the layout and logical labeling information, we are now in the posi-

tion to perform inference in order to achieve ‘understanding’ of a document. Following

is the definition of document understanding in this context.
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First, we define the notion of an admissible transition between document objects.

Given a pair of document objects d1 and d2, a document model 〈D,R, l〉 and a set

of document encoding rules S, we say that (d1, d2) is an admissible transition with

respect to R iff the bidimensional Allen relation (d1, d2) ∈ R is consistent with S.

A spatially admissible reading order with respect to a document model 〈D,R, l〉
and a set of document encoding rules S is a total ordering of document objects in D
with respect to the admissible transitions.

The understanding of the document with respect to a document model 〈D,R, l〉 and

a set of document encoding rules S is the set of spatially admissible reading orders.

Following the above definitions, we see that inference is performed by two follow-

ing steps. The first one is a constraint satisfaction step in which instances of bidimen-

sional Allen relations are matched against document encoding rules expressed in L.

The second one is a graph sorting procedure similar to topological sorting.

(a) (b)

Figure 7.9: A page from the Communications of the Association for Computing Ma-

chinery and a possible layout segmentation of it.

Consider the image from the magazine Communications of the Association for
Computing Machinery presented in Figure 7.9.a. A possible segmentation of its layout
(Figure 7.9.b) is formally represented by

[1, body\_of\_text, [13, 23, 93, 101], Times, 11, 0, 16]
[2, body\_of\_text, [100, 23, 180, 101], Times, 11, 0, 16]
[3, caption, [13, 107, 180, 122], Arial, 11, 0, 16]
[4, graphics, [13, 122, 115, 183], Courier , 11, 16, 0]
[5, figure, [115, 122, 180, 183], None , 11, 0, 16]
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[6, body\_of\_text, [13, 191, 93, 261], Times, 11, 0, 16]
[7, body\_of\_text, [100, 191, 180, 261], Times, 11, 0, 16]
[8, footer, [108, 267, 171, 270], Arial, 7, 0, 16]
[9, page\_number, [175, 267, 180, 270], Arial, 12, 0, 16]

where each element of the list represents one document object together with its layout

and logical labeling information. The first element is a unique identifier, the second is

the logical label, the third is the upper-left corner and the bottom-right corner of the

bounding box, the fourth is the font of the text (if applicable), then the size of the font,

the color of the font, and the last element is the color of the background.

Consider using the general document encoding rule (7.3). For all pairs of docu-

ment objects labeled by ”body of text”, we consider their bidimensional Allen relation.

Then we input these together with (7.3) into a constraint satisfaction solver. Obtaining

the following set of admissible transitions

[1, 2], [1, 6], [1, 7], [2, 6], [2, 7], [6, 2], [6, 7]

1

7

2 6

Figure 7.10: The graph of spatially admissible transitions for the body of text docu-

ment objects of the document in Figure 7.9.

One can view this as a directed graph of spatially admissible transitions, Figure 7.10.

There are two possible complete total orderings of this graph. They are

[1, 6, 2, 7] [1, 2, 6, 7]

Following the above definition, the two spatially admissible reading orders constitute

the ‘understanding’ of the document in Figure 7.9.b with respect to the set of document

encoding rules {(7.3)}. Once the set of spatially admissible transitions is identified, the

task it that of totally sorting the graph. The algorithm to perform the sorting of directed

transitive cyclic graphs is presented in Appendix B.
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7.4 Evaluation

The methodology proposed has been implemented in a prototype system: SpaRe.

The core of SpaRe is implemented in the declarative programming language Eclipse,4

making use of the finite domain constraint satisfaction libraries. Relevant passages of

Eclipse code are presented in Appendix C.3.

To test SpaRe, we used the Media Team Data-Base (MTDB) from the University

of Oulu, [Sauvola and Kauniskangas, 2000]. The data set consists of scanned docu-

ments of various types: technical journals, newspapers, magazines, and one-page com-

mercials. Elements from the data set are presented in Figure 7.11. We only used the

documents in English, resulting in a data set of 34 documents having 171 pages. The

MTDB data set has a ground truth at the document object level. Every document object

has a layout label and a logical label. The reading orders are part of the ground truth.

Of the 171 pages, 133 have a unique reading order, 32 have two independent reading

orders, 5 have three, and 1 has four. We considered the layout information from the

ground truth as the input to our system. As there is no ground truth for textual content

and font information, we used the TextBridge OCR package5 to extract these.

For evaluation purposes, the documents in the data set were split into three main

groups, based on their complexity:

• trivial documents containing up to 3 textual document objects;

• regular documents containing between 4 and 8 textual document objects;

• complex documents containing more than 8 textual document objects;

Out of 171 document pages, 98 are of type trivial, 66 of type regular and 7 are of type

complex.

The goal of the experimentation was to evaluate whether SpaRe is effective in the

detection of the reading order given the layout information. As subtasks, we were inter-

ested in evaluating the performance with different document encoding rules and with

different values of the threshold for the thick boundary interpretation of bidimensional

Allen relations.

The experiments consisted of three cases. In the first case, we have used the layout

and labeling information from the ground truth and the general document encoding

rule (7.3), denoted as General Rule on Ground Truth data. In the second case, we have

used the layout and labeling information from the ground truth and the column and

row-wise document encoding rules (7.4), denoted as Column/Row Rules on Ground

Truth data. In the last case, we have used the layout and labeling information from

an existing logical labeler (see Section 7.2) and the column and row-wise document

encoding rules (7.4), denoted as Column/Row Rules on the logical labeler data. For

each one of these we have varied the threshold of the thick boundary interpretation

from 0 to 400 dots.

4http://www-icparc.doc.ic.ac.uk/eclipse.
5TextBridge SDK 4.5, ScanSoft, http://www.scansoft.com.
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(a) (b) (c) (d)

Figure 7.11: Sample images from the MTDB data set.

7.4.1 Criteria

To evaluate SpaRe, we use precision and recall [Baeza-Yates and Ribeiro-Neto, 1999].

The set of reading orders detected (D) is compared to the ground truth. For 38 docu-

ments, the ground truth defines independent reading orders on non-intersecting subsets

of the textual objects within the same document. In these cases, the reading orders are

composed by one main sequence of document objects and one or two blocks to be read

independently; e.g., a page containing a frame with independent text. To account for

this portion of documents with multiple reading orders (20% of the whole data set),

we consider a reading order correct if it is identical to at least one permutation of the

independent reading orders as defined in the ground truth.

We refer to the set of permutations of the ground truth as the set of correct reading

orders (C). Then, the precision and recall are defined as follows:

p =
| D ∩ C |
| D | r =

| D ∩ C |
| C | (7.5)

The values lie between 0 and 1 inclusive, where 0 indicates the worst possible perfor-

mance and 1 the best possible one. Because there is only one reading order, the recall

can only be 1 if the correct reading is among the ones detected, or 0 if it is not. This

makes the recall less informative of the overall behavior of the system.

7.4.2 Results

We have evaluated the results in terms of the average precision and recall defined in

Equation 7.5.

General Rule on Ground Truth data. We have used the general document encoding

rule (7.3) on the ground truth layout and logical labels of the MTDB documents.
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Figure 7.12: Average precision for increasing threshold values (between 0 and 50)

using the general rule on the ground truth of the MTDB data set. The maximum value

is for the threshold value of 30.

The values of average precision with respect to increasing values of the threshold

are shown in Figure 7.12.

The average precision and recall of the system for the entire MTDB data set for

the threshold value of 15 are:

Document Number of SpaRe
group Documents p r

trivial 98 0.96 0.99

regular 66 0.31 0.97

complex 7 0.003 1.00

average 171 0.06 0.98

SpaRe detected 2714 reading orders for the 171 document pages in the data

set. In the case of a very rich and complex document, 2157 reading orders were

detected. For other four documents, 140, 50, 37 and 15 reading orders were

detected. For the remaining collection the average of reading orders detected

was of 1.74. In two cases, none of the reading orders as detected were correct.

Column/Row rule on Ground Truth data. We have used together the column and

row-wise document encoding rules on the ground truth layout and logical labels
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of the MTDB documents. The values of average precision with respect to in-

creasing values of the threshold are shown in Figure 7.13. The maximum value

of precision is for the threshold value of 15.

Figure 7.13: Average precision for increasing threshold values (between 0 and 50)

using the column/row rule on the ground truth of the MTDB data set.

The average precision and recall of the system for the entire MTDB data set for

the threshold value of 15 are:

Document Number of SpaRe
group Documents p r

trivial 98 0.97 0.99

regular 66 0.79 0.97

complex 7 0.88 1.00

average 171 0.89 0.98

SpaRe detected 190 reading orders for the 171 document pages in the data set.

For 16 documents 2 reading orders were detected, including the correct one.

In one case, none of the two reading orders as detected were correct. For one

document, 4 possible reading orders were detected and none of them was correct.

For the rest of 154 documents, SpaRe detected one reading order only and in

one case this was not correct.
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In the case of a two column scientific article composed of 6 textual document

objects, SpaRe detected 4 reading orders. These were all wrong because a short

subtitle (“Acknowledgments”) was too close to a white space in the neighboring

column and was considered the title of the neighboring row in a row-wise read-

ing. This row-wise connection was possible in four different ways, all incorrect.

In case of a first page of an article in a magazine composed of 3 textual docu-

ment objects, the title was on the left of the main text and centered vertically. In

a reading order, the title was considered by SpaRe to be a subtitle of one of the

two main bodies of text. It was placed incorrectly in the center of the reading

order instead of on top of it. For one document composed of 4 textual document

objects organized in one column with two subtitles and poorly typeset, SpaRe
wrongly detected the reading order. The reason is that the subtitles were almost

embedded in the main text and in overlap relation in the x axes instead of meet.

The problem disappears when increasing the threshold value above 25 points.

The column-wise document rule has as one of its conditions that two blocks meet

on the x axis. But with the boundary’s thickness set to 0, this never occurs in the

data set. On the other hand, allowing thickness, the meet relation holds among

some neighboring document objects.

Column/Row on the logical labeler data. We have used the column and row-wise

document encoding rules on the output of a logical labeling system on the MTDB

documents. The values of average precision with respect to increasing values of

the threshold are shown in Figure 7.14. The maximum value of precision is for

the threshold value of 15.

The average precision and recall of the system for the entire MTDB data set for

the threshold value of 15 are:

Document Number of SpaRe
group Documents p r

trivial 98 0.92 0.94

regular 66 0.74 0.92

complex 7 0.86 1.00

average 171 0.84 0.94

SpaRe detected 192 reading orders for the 171 document pages in the data set.

For 18 documents 2 reading orders were detected where the ground truth indi-

cates only one. For one document, 4 possible reading orders were detected and

none of them was correct. For the rest of 152 documents, SpaRe detected one

reading order only. For 11 documents the correct reading order was not detected

by SpaRe. In particular, for the simple documents 2 extra reading orders were

detected and the number of wrongly understood documents was of 6. For the

regular documents, the number of wrong detections was 5. For the 7 complex

documents, there were no errors.
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Figure 7.14: Average precision for increasing threshold values (between 0 and 50)

using the column/row rule on the data from the logical labeler.

All additional misdetections of the reading order using the logical labeler data

in place of the ground truth data are due to the misclassification of title objects.

They are confused with footers, captions or rulers. The misclassification in the

logical labeler data propagates to SpaRe. Eight additional documents are inter-

preted erroneously.

7.4.3 Discussion of the results

Variating the threshold in the thick boundary interpretation of Allen bidimensional re-

lations does influence the overall performance considerably. In Figure 7.15, we com-

pare the values of precision and recall for the three experimental cases increasing the

threshold from 0 (no thickness) to 400 points. We notice that the precision increases

considerably when the threshold goes from 0 to 5-10 points. Then it stabilizes showing

minor variation over a wide range of thicknesses.

Moving the thickness from 0 to the maximum values corrects the situations in

which boundary detection is not ideal. The reason for the stabilization of the preci-

sion between 15 and 100 points can bee interpreted as follows. In a document, docu-

ment objects need not be found perfectly aligned. As far as the variation is small, the

document layout is still intelligible. The acceptable variation depends on the specific

document. For example, in a multicolumn document without overlapping frames, it is
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necessary to allow a small variation because the elements of a column will never be

perfectly aligned; on the other hand, the variation should not go beyond half of the size

of the white space between two adjacent columns otherwise columns will be confused.

Letting the thickness grow much beyond 100, makes the precision fall down as

the thickness becomes too big with respect to the average document block size. The

document objects become ‘blurred’ entities and overlap becomes the most frequent

relation. Performance degrades rapidly.

Considering the maximum values in Figure 7.12, Figure 7.13, and Figure 7.14, we

notice that the maximum value is different for different rules.

The recall is stable and has always a high score between 0.9 and 1.0. This makes

this measure of little interest in the presented experimentation. The reason for this high

values resides in the fact that only one reading order is considered for the documents.

Figure 7.15: Comparing precision and recall for the three experimental cases with re-

spect to increasing threshold (from 0 to 400). From foreground to background, the

recall for the general rule on ground truth data, the recall for column/row rules on

ground truth data, the recall for column/row rules on the logical labeler data, the pre-

cision for the general rule on ground truth data, the precision for column/row rules on

ground truth data, and the precision for column/row rules on the logical labeler data.

From the comparison of the use of the column and row-wise rules on the ground

truth and on the logical labeler data (with threshold set to 15), one notices a small

degradation of the overall performance. On the whole collection this means an ap-

preciable decrease in performance, but not a total brake-down of the approach, as the
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precision goes from 0.89 to 0.84 and the recall from 0.98 to 0.94.

Considering the use of the general and the column and row-wise document encod-

ing rules, one notices a big difference with respect to precision. The problem with the

general document encoding rule is its generality. It looses almost none of the correct

readings of a document, but it finds too many. For instance, for a three column docu-

ment with an image in the central column composed of 14 textual document objects,

the general rule gives 2714 admissible reading orders while using the column-wise rule

one gets only the correct one. When performing the experiment with the column and

row-wise rules, we appreciate the sharp increase in precision, while the recall remains

unmodified. This means that the rules are less general to detect less reading orders, but

are not too specific to degrade the performance. Even on a heterogeneous collection

of documents such as the MTDB, the column and row-wise rules have high values of

recall and, most notably, precision. It is safe to conclude that the general rule is of no

interest when compared with the column and row-wise rules.

The average execution time of SpaRe is appreciably fast. On a standard Sparc 300

Mhz machine, it takes about 28 seconds of wall clock time to process the whole data

set. The median execution value for a document is of 10 milliseconds. The execution

time increases more than linearly with the number of document objects. Therefore,

there is a practical upper bound to the complexity and richness of document compo-

nents that can be analyzed.

7.5 Concluding remarks

We have shown the feasibility, and efficacy, of applying a symbolic approach to logical

structure detection in the context of document image analysis and understanding. The

approach is based on a spatial language of rectangles and basic mereotopological rect-

angle relations (bidimensional Allen relations). Inference is achieved via constraint

satisfaction techniques.

We have shown a bidimensional Allen based language to have appropriate expres-

sive power for the task of document understanding. Though, what the language misses

is a notion of neighbourhood or some other kind of weak metric expressivity. Consider-

ing the 11% of the documents understood erroneously using the column and row-wise

rules on the ground truth, one may argue that the correct order would have been cap-

tured by using a rule preferring neighboring text objects. Something not expressible in

bidimensional Allen. In [Todoran et al., 2001a], we move the first steps in this direc-

tion by using Voronoi diagrams.

The logical labeler adds 4% of misclassified reading orders. Little can be modified

in SpaRe to overcome these failures. When logical labels do not correspond with the

actual logical function of the objects, any symbolic approach shows brittleness.

Two notable features of the presented symbolic approach are its flexibility and

modularity. SpaRe is flexible enough to treat a wide variety of documents, including

scientific articles, newspapers, magazines and commercial hand-outs, in a single run.
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To increase the number of document classes handled, future work includes an ex-

tension to explicitly deal with independent reading orders. Independent reading orders

are the case of complex documents, such as newspapers where pieces of text indepen-

dent of one another coexist on the same sheet. The foreseeable key point of such an

extension lies in the identification of appropriate document rules.

Regarding the issue of execution time for rich documents, there are more efficient

alternatives. In [Aiello, 2002a], we propose the use of model checking techniques.

In conclusion, we do not know if HAL was equipped with a symbolic document im-

age analysis system or with one based on different technologies. The only thing we

know is that whenever a HAL-like machine will be available we expect it to read and

understand the contents of any printed document brought to its attention.



CHAPTER 8

CONCLUSIONS

8.1 Where we stand

Spatial structures and visual reasoning, in its broader sense, are the subject of this

thesis. Our personal take on the matter is the attempt to bring together two research

areas: the standard mathematical approach (topology, geometry, and linear algebra)

with a computational analysis of visual processing tasks. To build such a bridge, we

proposed a modal logic approach, which connects up with both:

(i) more tractable levels of spatial structure inside mathematical theories, and

(ii) more expressive power in computational tasks.

The results in the thesis show the connection meaningful by providing a number of

tools which are both useful for ‘deconstructing mathematics’ and for the analysis and

redesign of computational tasks. Next, we briefly summarize the main points.

Topo-approach. We proposed a framework for topological reasoning with a modal lan-

guage of visual patterns, emphasizing bisimulation and comparison games as a means

of calibrating similarity of visual scenes. Moreover, a pleasing side-effect was a new

take on elementary topology. Laying the basis for a more ambitious program of ‘modal

geometry’, exploring new fine-structure of tractable fragments of geometry; just as

modal logic itself does for first-order logic.

Logical extensions. We proposed and reconsidered a number of languages to increase

the expressive power of S4 within the bounds of the topo-approach. This has included

a new analysis of the universal language S4u of Bennett [1995]. We showed S4u to be

a language of connected spaces whose simulations preserve the truth of existentially

quantified formulas (the connection with connected spaces has also been presented in

[Shehtman, 1999], the results were independently obtained). We introduced an even

more expressive formalism: a spatial Since and Until logic.
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Geometrical extensions. Our walk through geometrical spaces showed modal struc-

tures wherever one looks. There are natural fine-structured modal versions of affine

and metric geometry. These can be studied by general modal techniques—though

much of the interest comes from paying attention to special spatial features. The ben-

efits of this may be uniformity and greater sensitivity to expressive and computational

fine-structure in theories of space.

Logical fragments of mathematical morphology. We established preliminary connec-

tions between logical axiomatizations of mathematical morphology. The links were

built on linear and on arrow logics, as both capture relevant fragments of what is a

fundamental qualitative theory of shape.

Games as similarity measures. We introduced a similarity measure for spatial patterns

based on model comparison games and implemented it in a image retrieval system.

Symbolic approach to document understanding. We showed the applicability of a sym-

bolic approach to document image understanding. The use of a thick boundary inter-

pretation of rectangular Allen relations has proven to be at the right expressive level to

perform reading order detection. We implemented a system based on the framework

which shows high accuracy when tested on heterogeneous collections of document

images for which no specific document knowledge is available.

8.2 Final remarks on theory and practice

The words theory and practice may be dangerous. The risk we take is that the terms

are considered in contraposition rather than as distinct aspects of the same research

process; which has been our own experience. Still, we found a few concerns that

differentiate more theoretical branches of spatial reasoning from more practical ones.

Ontology: regions vs. points. A long debated matter in temporal reasoning is the oppo-

sition of instant based ontologies with interval based ones, cf. [van Benthem, 1983b].

A similar dichotomy holds for spatial reasoning, opposing point-based theories to re-

gion based ones; the latter are more frequent in philosophy, artificial intelligence and

cognitive science. Unfortunately, mathematical region-based theories are much scarcer

than those based on points (cf. [Johnstone, 1977, Johnstone, 1982, Sambin, 1987,

Vickers, 1994]), leaving researchers with few tools to approach the subject.

Our own experience shows that a theory of space must work with regions. What

matters is that one can refer to regions and their properties. Our modal approach was

designed to do just that. For instance, consider the languages S4 and S4u. The first can

express only properties of a point and its neighbourhoods. This has no immediate prac-

tical application. On the other hand, S4u expresses properties of regions, their spatial

structure, and their relations with other regions. These basic spatial descriptors make

S4u a promising candidate for applications, as we saw in Chapter 6. The design of the
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formalism for document image analysis (Chapter 7) also needs to express properties

of regions. In analyzing a document image, the prominent properties are those of the

spatial arrangement of extended objects detected in the document, not those of specific

points inside the document.

Boundaries: inferred vs. detected. The theories of space based on topology (Chap-

ters 2–4) tend to put special emphasis on boundaries. After all, topology can be seen

as the theory of connected entities and a connected entity is a collection of points up to

a boundary. Now, boundaries are puzzling spatial entities which are located in space,

but which do not take any space [Casati and Varzi, 1999, Aiello, 2001b]. Thus, while

our spatial topological theories heavily rely on boundaries, the chances of detecting a

boundary (in the sense of formal topology) in real life images and spatial patterns are

none. A system relying on that detection is likely to be brittle and unsuccessful.

Of the two prototypes presented in the thesis, SpaRe is most affected by bound-

aries. As it works with real images, and uses topological regions, it is very sensitive to

the precise location of boundaries. After a first round of experimentation, we realized

that a number of erroneous analyses were due to boundary problems. We solved this

by giving a different interpretation of boundaries, cf. Chapter 7.

Model classes: across vs. within. Theoretical research in spatial logics is interested

in results for a specific class of models or across such classes. Take completeness:

McKinsey and Tarski [1944] efforts went in showing completeness of S4 with respect

to the real line; [Shehtman, 1999] showed completeness of S4u+ (the connectedness

axiom) for connected topological spaces. Another example are Ehrenfeucht-Fraı̈ssé

games, which are typically used to compare across different structures.

In our applications, one is more interested in restricting attention within some par-

ticular class of models, and then use tools which behave uniformly on it. A typical

example is our use of Ehrenfeucht-Fraı̈ssé games to compare different images, viewed

as constellations of regions in the same kind of mathematical space. In particular, the

key step from theory to practice in Chapter 6 is a move from a general model compar-

ison game to a distance measure within a fixed class of spatial structures.

Our analysis of space and of applications of spatial theories is only a small step which

generates more questions than answers. We identified many new open problems along

the way in the thesis. Thus, our work also serves as a pilot study for a broader modal

geometry developed with a view to potential applications.

Most likely, the next spatial reasoning task that awaits us consists of closing the disser-

tation in hand and laying it down on a flat solid surface. Alternatively, by appropriate

‘point and click’-ing we shall get rid of the window containing the current text. What-

ever we do next, there is just no way of avoiding spatial reasoning.





APPENDIX A

A BIT OF TOPOLOGY

A topological space, in its general definition, is just a set with a tiny bit of extra struc-

ture. It is a collection of elements, a membership function and, in addition, a family of

subcollections with three simple properties.

A.0.1. DEFINITION (TOPOLOGICAL SPACE). A topological space is a pair 〈X,O〉,
where X is a set and O ⊆ P(X) a family of subsets of X such that:

1. ∅ ∈ O and X ∈ O,

2. O is closed under arbitrary unions,

3. O is closed under finite intersections.

Related definitions to that of a topological space follow.

(i) An element of O is called an open. A subset A of X is called closed if X −A is

open.

(ii) A point s ∈ X is a limit point of a subset A of X if for each o ∈ O such that

s ∈ o, (o− {s}) ∩ A is not empty.

(iii) The interior of a set A ⊆ X is the union of all open sets contained in A.

(iv) The closure of a set A ⊆ X is the intersection of all closed sets containing A or,

equivalently, the union of the set A with all its limit points.

(v) Given a set A, the set of points y such that for any open set o containing y both

o ∩ A 6= ∅ and o ∩ (X − A) 6= ∅ hold, is called the frontier, or boundary, of A.

(vi) A family of open sets B is a base of the space X if all open sets are unions of

members of B. Such a family is a subbase of X , if the collection of all finite

intersections of elements of B is a base for X .
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A.0.1. EXAMPLE (TOPOLOGICAL SPACES). Typical examples of topological spaces

are the indiscrete topology, the discrete topology, metric spaces, and Cantor space.

(i) indiscrete topology 〈X, {∅, X}〉

(ii) discrete topology 〈X,P(X)〉

(iii) metric spaces every metric space is a topological space. A base that builds up

the topology is the family of sets {x|distance(x, p) < r} for arbitrary points p of

the space and nonnegative r. This is called the standard topology.

(iv) Cantor space all infinite sequences of 0, 1. A base that builds up the topology is

the family of sets Aσ, consisting of all the sequences extending the finite initial

segment σ.

As a point of notation, when considering intervals in one dimensional metric spaces,

we write (a, b) for {x|a < x < b}. Square brackets denote that the frontier point

belongs to the interval, e.g. (a, b] stands for {x|a < x ≤ b}.

A.0.2. DEFINITION (CONNECTED SPACE). A topological space X is connected if the

only sets which are both open and closed are ∅ and X .

A.0.2. EXAMPLE (CONNECTED SPACE). Examples of connected spaces are the met-

ric spaces IRn with the standard topology, for any positive integer n. Non-connected

spaces are the rationals CQ. E.g., consider the two non-empty open and closed sets

(−∞,
√

2) and (
√

2,∞).

A.0.3. DEFINITION (COMPACT SPACE). Let X be a topological space. A collection

Vi ∈ P(X) is a covering of X if
⋃
i Vi = X . It is an open covering if all the Vi are

open. A topological space X is said to be compact if every open covering has a finite

subcovering.

A.0.3. EXAMPLE (COMPACT SPACE). No space IRn is compact. But all (and only)

their bounded subsets are compact.

A.0.4. DEFINITION (DENSE). A set A in a topological space X , is said to be dense in

X , if all points of X are a point or a limit point of A. A topological space is said to be

dense if all its points are limit points for itself.

Another interesting way to discern topological spaces uses their richness in terms

of points and open sets. If there are enough of them one can ‘separate’ points. This

formally shows in so-called ‘separation axioms’:

A.0.5. DEFINITION (SEPARATION AXIOMS). A topological space X is called
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(i) T0 if for any two distinct points x1 and x2 (∈ X), there exists an open set o ∈ X
containing one but not the other,

(ii) T1 if for any two distinct points x1 and x2 (∈ X), there exist an open set o1 ∈ X
containing x1 but not x2 and there exists an open set o2 ∈ X containing x2 but

not x1,

(iii) T2 (Hausdorff) as T1 with the additional requirement that o1 ∩ o2 = ∅,

(iv) T3 (regular) as T1 and for every closed set and point not contained in it there

exist two disjoint open sets containing the point and the closed set respectively,

(v) T4 (normal) as T1 and for every two closed disjoint sets there exists two disjoint

open sets each containing one of the closed sets.

The fundamental way to move from a topological space to another space is through

continuous mappings. Those preserving, among all, the property of openness.

A.0.6. DEFINITION (CONTINUITY). A map f : X → X ′ between two topological

spaces 〈X,O〉, 〈X ′, O′〉 is continuous if for all opens o′ ∈ O′, f−1[o′] is in O: i.e.,

inverse images of open sets are open.

Continuous mappings are the building block for defining the equivalence of topological

spaces. If two continuous mappings exist that composed, either way, yield the identity

on each space, then the two spaces are topologically equivalent. The equivalence is

named in topology homeomorphism.

A.0.7. DEFINITION (HOMEOMORPHISM). Two topological spaces 〈X, O〉 , 〈X ′, O′〉
are homeomorphic if there are continuous maps f : X → X ′ and g : X ′ → X such

that f ◦ g, g ◦ f are both identity maps.

A basic topological fact about homeomorphic spaces is that of having the same cardi-

nality. But the converse is not generally true: topology demands more structure that

pure counting.

A.0.4. EXAMPLE (HOMEOMORPHISM). The two subsets (0, 1) and (1,∞) of the met-

ric space IR with the standard topology are homeomorphic. The two inverse func-

tions f(x) = g(x) = 1
x

are continuous and compose to identity maps both ways.

By a similar construction of homeomorphisms, the real plane IR2 and a unit circle

x ∈ IR2 : d(x, 0) < 1 are homeomorphic. Also Cantor space is homeomorphic to [0, 1].
Two non-homeomorphic spaces are the real plane IR2 and a three dimensional unit

ball x ∈ IR3 : d(x, 0) < 1.

Topology also provides a more general notion than homeomorphism.
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A.0.8. DEFINITION (HOMOTOPY). LetX andX ′ be topological spaces, and let f0 and

f1 be continuous maps from X to X ′. f0 is homotopic to f1 (notation f0 ≃ f1) if there

exists a continuous map F : X × I → X ′ such that for all x F (x, 0) = f0(x) and

F (x, 1) = f1(x), where I is [0, 1]. F is called an homotopy from f0 to f1.

A.0.9. DEFINITION (HOMOTOPY TYPE). Two topological spaces X and X ′ are of the

same homotopy type if there exists two continuous maps f : X → X ′ and g : X ′ → X
such that g ◦ f is homotopic to the identity mapping on X and f ◦ g is homotopic to

the identity mapping on X ′.

A.0.5. EXAMPLE (HOMOTOPY). Homeomorphic spaces are also homotopic. There-

fore, an example of homotopic spaces is the real line and the real unit interval (see

Example A.0.4). A more interesting example is the homotopy between a single point

and any real metric space IRn.

The real plane without its origin IR2 − (0, 0) and the unit circle are an example of

non-homotopic spaces.



APPENDIX B

SORTING TRANSITIVE DIRECTED GRAPHS

We extend the notion of topological sorting a directed acyclic graph [Knuth, 1968,

Knuth and Szwarcfiter, 1974]. Instead of a directed ‘acyclic’ graph, we sort a directed

‘cyclic’ graph whose edge relation is transitively closed. We call the latter directed

transitive cyclic graph. More formally, a directed transitive cyclic graph is a graph

G = 〈V,E〉 such that if (i, j) ∈ E and (j, k) ∈ E, then (i, k) ∈ E. In what follows,

we assume that there are n vertices |V | = n and m edges |E| = m. The problem

of sorting a directed transitive graph G consists of creating sequences of nodes of the

graph such that for any pair of nodes u and v in G appearing in any sequence, then

(u, v) must be an edge of G.

Algorithms to perform topological sorting of directed acyclic graphs work iterating

the following procedure until all nodes have been visited. First, a node v with no

predecessors

∀u 6= v ¬∃(u, v) ∈ E
is identified. The node v is placed in the output. Then, all the edges (v, u) such that

∀u 6= v (v, u) ∈ E are removed from the graph. In other words, the set of edges E of

the graph is replaced by its subset E/{(v, u) ∈ E} without the edges departing from

the node v. If the original graph is acyclic, then the algorithm outputs a topological

sorting of the input graph, otherwise the output is incorrect. The complexity of this sort

of algorithms is O(m + n). Notice that the algorithm does not return any clue on the

incorrectness of the output in the case the input graph is cyclic. This is rather natural

when considering the complexity of topological sorting and that of identifying cycles

in directed graphs. It is well known that the latter is in NL-hard (see, for instance,

[Toda, 1990]).

The algorithm for sorting transitive cyclic directed graphs takes as input a connected

graph G = 〈V,E〉 and outputs a sequence of nodes v1 · v2 · v3 · . . . · vn such that:

1. for all i: vi ∈ V ,

2. |v1 · v2 · v3 · . . . · vn| = |V |,
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3. for all i 6= j: vi 6= vj ,

4. if i < j: (vi, vj) ∈ E.

One starts by removing all self-loops (v, v) ∈ E to setup the graph. Then the main

cycle of the algorithm begins by considering all the nodes and counting the number of

edges departing from each one, also known as degree of the node: deg(v) = |{(v, w) ∈
E| w ∈ V }|. Then one chooses a node with the highest degree, which has to be the

same as the number of nodes of the graph minus one. In other words, the node is

related — is ‘before’ — all other nodes of the graph. As we allow for cycles, there can

be more than one node satisfying this condition. Once a node with maximal degree has

been chosen, we remove it from the graph together with all the edges connected to it,

both outgoing and incoming, and repeat the procedure on the remaining subgraph.

1

7

2 6

Figure B.1: A simple directed transitive cyclic graph.

Consider the simple example in Figure B.1. The input graph is G = 〈{1, 2, 6, 7}
{(1, 2), (1, 6), (1, 7), (2, 6), (2, 7), (6, 2), (6, 7)}〉, it is easy to check that it meets the

input conditions. The first step of the algorithm is to create a list of nodes and their

occurrences: L = {(1, 3), (2, 2), (6, 2), (7, 0)}. The node 1 is selected as first node of

the output, as its degree is 3 = |V |−1. The list L is then updated to L = {(2, 2), (6, 2),
(7, 0)}. Two choices are possible at the following iteration: either 2 or 6. Suppose the

first item is chosen, then L becomes {(6, 1), (7, 0)}. Finally, the output is updated

with 6 and 7, respectively, yielding the final output of {1, 2, 6, 7} (also {1, 6, 2, 7} is a

correct solution, and it can be computed by backtracking to the point in which v2 was

chosen in place of v3).

Let us now proceed with a more precise definition of the algorithm. The prelimi-

nary step of the algorithm consists of the construction of a list L of pairs (v, o), where

o is the degree of v, i.e., o = deg(v). In pseudo-code, we have:
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fail ← false;
for all v such that (v, v) ∈ E;
E ← E/(v, v);

while(|V | > 0 and (not fail))

sort L in descending order of occurrences

% let (v∗, l) be the first element of L

if (l 6= |V | − 1)

fail ← true;

else

output ← output + v∗;

V ← V/v∗;

for all w such that (v, w) ∈ E or (w, v) ∈ E;
E ← (E/(v∗, w))

⋂
(E/(w, v∗));

update(L);

Given that sorting a set of up to n values, each of which is an integer in the interval [0,n-

1] can be performed with a bucket sort in O(n), one can conclude that the complexity

of the proposed algorithm is in theO(n2) class.1 If the algorithm terminates with fail
set to false, then a correct sorting of the original directed transitive graph graph G will

be found in the variable output. If no check is performed on the input graph, nothing

can be said in case the algorithm returns true for the variable fail. On the other hand,

if the input graph is tested to be transitively closed, then fail set to true indicates that

no sorting for the input graph G exists. Algorithms to transitively close a graph can be

found in the literature [Warshall, 1962, Munro, 1971, Arlazarov et al., 1970], and are

also relatively inexpensive: O(n3), O(n2.376), and O( n3

ln(n)
), respectively.

1It is possible to devise an algorithm for directed transitive graph sorting with lower asymptotic

complexity, though this is beyond the scope of the presented material. The steps of such an algorithm

consist of: 1) finding strongly connected components of the graph, which is in O(n + m); 2) consider

the graph of the strongly connected components; 3) topologically sort the new graph. This algorithm

has O(n + m) complexity where n is the number of nodes and m the number of edges.





APPENDIX C

IMPLEMENTATIONS

This appendix consists of a number of short system descriptions and the presentation

of selected declarative code. The system described are:

1. the applet topax for the visualization of the selective unraveling technique as

presented in Chapter 3,

2. the image retrieval prototype IRIS described in Chapter 6, and

3. the document analysis prototype SpaRe described in Chapter 7.

The full source code for these systems is available electronically at http://www.
aiellom.it/phd/source. Other implementations related to the thesis can be

found at http://www.aiellom.it/java, including one of Ehrenfeucht-Fraı̈ssé

games. The latter is described and motivated in [Agostini and Aiello, 1999].

C.1 Topax

What follows is the content of the web page http://www.aiellom.it/java/
topax. It is a Java applet for the visualization of the selective unraveling presented in

Section 3.3.1, together with instructions on how to use the applet and some motivations.

The centered text in typewriter font does not appear in the web page and was

added for this presentation. The colors refer to the web-page and the electronic pdf

version of the thesis (the hard copy of the thesis has only gray-levels). The contents of

the web-page start on the next page.
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This page presents a Java applet for the visualization of the modal logic construction

presented in [Aiello et al., 2001]. Instructions on how to use the applet and its motiva-

tion can be found below on this page.

NOTE, if a window has not popped-up, it means that the applet is not running

properly. Please refer to the troubleshooting section.

[In the web-page, the applet appears here.]

Motivations and use

The aim of the applet is the visualization of a construction relating Kripke semantics

and topological semantics for modal logics, in particular, for the modal logic S4.

A bit of history

The first completeness result for the modal logic S4 (we refer to a standard book in

modal logic for its syntax and its standard Kripke semantics such as [Blackburn et al.,

2001]) was given by Tarski in the late 30s [Tarski, 1938]. Later, together with McK-

insey [McKinsey and Tarski, 1944], Tarski showed S4 to be complete with respect to

any metric space without isolated points. The topological interpretation was some-

what abandoned when the possible worlds semantics was introduced for modal logics

thanks to the independent efforts of a number of researchers, including Kripke. The

graph like possible worlds semantics made modal logics more accessible and easy to

use, completely replacing in common practice the topological semantics for modal

logics. Recently the topological interpretation has received new attention in relation to

spatial representation and reasoning (e.g., [Bennett, 1995]).

Standard Kripke models for S4

A known fact for the logic S4 is that its models can be viewed as trees of mutually

accessible clusters. This means that a model can be partitioned into a number of clus-

ters (cliques) of worlds which are all mutually accessible. An example of a cluster of

4 worlds is presented on the right (Figure C.1). The various clusters are ordered

from a higher cluster that can access all other clusters to those which can access none.

An example is given by the picture below (Figure C.2).

The model is not a tree with respect to the possible worlds (the blue circles), but

rather a directed graph. Though, if considering the clusters (the red rectangles) as the

basic elements and considering the green arrows, then the S4 model is a tree.

Evaluating colors

A model comprises a valuation function usually assigning a propositional letter to each

world. Now viewing every propositional letter as a (different) color, we can visualize

a valuation as a coloring of each world (may be in many different colors). In the two
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Figure C.1: The blue circles are possible worlds of the models and the arrows represent

an element of the accessibility relation. This is a cluster of 4 mutually accessible

worlds.

Figure C.2: The red rectangles denote the clusters of mutually accessible nodes (for

which the accessibility relation is given by the yellow arrows). A green arrow means

that all the worlds in the origin cluster are related to all the worlds in the endpoint

cluster.

pictures above, the valuation function related all worlds with the color blue. In the

applet, we can evaluate a world of the starting tree of clusters to any color.

Towards topological spaces

The tree of clusters of mutually accessible points can also be regarded as a topological

space. In fact, it is an Alexandroff’s space. A possible world becomes a point of the

Alexandroff space, while all accessible worlds from a given one define its least open

neighborhood [Vickers, 1989]. One can achieve more, and move from an Alexan-

droff space to the Cantor space, and then to the real line. To achieve completeness

on the Cantor space, we selectively unravel an Alexandroff space generated by a tree

of clusters into the Cantor space (an infinite complete binary tree). The full formal
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description of selective unraveling is presented in [Aiello et al., 2001], while the tool

to show the correctness of the transition is that of topo-bisimulations, introduced in

[Aiello and van Benthem, 1999]. Note that in the topological space model of S4, the

worlds are not the nodes of the Cantor tree, but rather the full infinite branches. So

the colors visualized by the applet are only the preliminary colors assigned to the

branch (not the colors assigned to obtain the exact topo-bisimulation, again refer to

[Aiello et al., 2001] for the details of the construction).

Using the applet

First, one creates an S4 model as a tree of clusters of colors. The window S4 model

editor serves this purpose. The background color of the window is the current color.

By clicking on the window a cluster is created with the current color as the color of

one of the worlds of the cluster. By pressing the Change Color button, a color chooser

window pops up. In this manner one can choose the new current color. The current

color becomes the new background color of the window. By clicking on an existing

cluster a node of the current color is added to the cluster. If clicking outside any

cluster, a new one is created. The clusters are represented by the average color of all

their worlds. The tree is built considering as root the upper cluster (if more clusters are

on the highest row of the window, a dummy cluster with one world of white color is

the root), then the clusters below are considered as children in the tree and associated

to the closest cluster going first up and the right.

We present an example of using the applet. First, one builds the S4 model as a tree

of clusters.

(a) (b)

(c) (d)

In the S4 model editor window with yellow background, we click in the window
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and we create a first cluster with one world of yellow color, (a) and (b). Then we press

the Change Color button and select a new color: green. We click below the yellow

cluster and create a new cluster with one world of green color (c). We then select

blue as the current color. We click on the yellow cluster (which now gets as color the

average of yellow and blue, i.e., green). Finally, we click below the yellow/blue cluster

to obtain a new blue cluster (d).

When we close the S4 model editor window, the model we have just built becomes

the current model. By pressing the Paint button the model is selectively unraveled

into the Cantor space. In particular the default values for Depth of rendering and for

Visualization mode are used.

The default value for the depth of rendering is 5, while the default value for the

visualization mode is circle. The latter means that the nodes of the binary tree are

represented as thick circumferences. The root is the central circle. Then the second

level of the binary tree is the surrounding circumference, which is divided in two half

circumferences. The left son of the root is the left half circumference, the right son is

the right half circumference.

By setting the depth of rendering to 12 and the Color Randomness to 0.4 we obtain

the renderings

(e) (f)

depending on the Visualization mode. (e) uses the circle mode, while (f) uses square

mode. In the latter, the root of the Cantor tree is on top and the sons of each node are

in the line below. The length of a son is the half of the one of the parent.
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The color randomness lets a node be rendered with a little variance from the orig-

inal color in the tree of clusters. In this way, it is possible to better identify the single

nodes in the Cantor tree and to obtain more appealing renderings. (Please be careful in

setting the depth of rendering. Depending on the computing power of your machine,

you may be waiting for a long time or even get an out of memory error. On my Mac

12 is the limit, while on the Sun at work it is 18.)

Finally, by bringing the color randomness to 0.5 and moving the visualization mode

to big circle we obtain the following rendering of the selective unraveling

Two final remarks:

• by rearranging the colors one can move further on to the real interval (0,1). For

details we refer to [Aiello et al., 2001].

• the Cantor space obtained has a fractal structure. It is easy to identify patterns

that repeat themselves. Subtrees of the unraveled model are identical to the

whole model and different subtrees at different depths are also identical with

respect to each other. For instance, one can see the green pattern to repeat itself

in the circle visualization mode above. It starts on the top-left part of the circle

and it repeats moving counter-clockwise on the figure.

Troubleshooting

The applet will only run in Java2 enabled browsers. If your browser does not support

Java2, you may try to download the whole applet on your machine and run it with
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semanticDB

textHash (the inverted matrix of textual occurrences)
(private list of models) model    model     model     ...

Model

image path
description (caption)
matrix (RCC relations)
(private list of regions) region     region     ...

Region

name
color
(private list of polygons) polygon     polygon     ...

Figure C.3: The design of the spatial data structures.

appletviewer. In alternative, you can try the page with the Java-plug-in.

Contact and bibliographic information follows.

C.2 IRIS

The image retrieval prototype IRIS, presented in Chapter 6 is implemented in Java.

Here we present the main data structures behind the implementation.

The spatial data structures

The spatial data structures are implemented according to the schema presented in Fig-

ure C.3. Classes are presented together with their most relevant variables. See Fig-

ure 6.7 for a more functional view of the data structures within IRIS.

public class semanticDB
extends java.lang.Object
implements java.io.Serializable
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Field Summary

textHash textMatrix

Constructor Summary

semanticDB()

Method Summary

void addModel(model m)
java.awt.Graphics draw(java.awt.Graphics g)
int getFree()
java.lang.String paramString())
void remove() )
int scanModels() )
model scanModels(int i)

public class model
extends java.lang.Object
implements java.io.Serializable

Field Summary

java.lang.String description

java.lang.String imagePath

int[][] matrix

Constructor Summary

model()

Method Summary

void addRegion(region r)
void computeMatrix()
int contains(java.lang.String name)
java.awt.Graphics draw(java.awt.Graphics g)
int freeRegions()
java.lang.String paramString()
void printMatrix()
void remove()
region scanRegions(int i)

public class region
extends java.lang.Object
implements java.io.Serializable
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Field Summary

java.awt.Color color

java.lang.String description

int freePolygons

java.lang.String name

boolean[] open

java.awt.Polygon[] polygons

boolean transparent

boolean[] vector

Constructor Summary

region()

Method Summary

void addPolygon(java.awt.Polygon p,
boolean o)

void computeVector()
java.awt.Graphics draw(java.awt.Graphics g,

int xshift, int yshift)
void endRegion()
boolean[] getVector()
boolean printVector()
void remove()
void reset()

C.3 SpaRe

SpaRe consists of an Eclipse program using the finite domain library1 and a number

of Perl scripts. The Perl scripts, which are not documented here, serve for the analysis

of the output and to coordinate SpaRe with the other modules of the document im-

age analysis system. We present source code in the thesis as an useful companion to

Chapter 7. Being declarative code it should be fairly readable.

Selected Eclipse passages

The following listing of Eclipse clauses is not the full SpaRe implementation, but

just the most relevant portions. It starts with the invocations of Eclipse libraries, then

sets the type of analysis to perform and which document rules to adopt. Then there is

the main clause as called by the overall document analysis system (go) which takes

as a input a list of documents (i.e., a list of document object positions and labels)

and returns a list of lists of admissible reading orders. Following there is the body

of clauses necessary to check the document rules on the given input. Then, there is

1http://www-icparc.doc.ic.ac.uk/eclipse.
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the encoding of the various document rules to be used in the analysis. Finally, Allen

relations are defined for both axes. Note the use of a threshold in the definition, which

slightly deviates from the usual interpretation of Allen’s relations.

:-lib(fd).
:-lib(listut).

%************************************************
%
% type of analysis, set from calling function
%
%************************************************

threshold(15).

% this can be one of the following:
% general, verticalColumns, horizontalColumns

rule_set(verticalColumns).

% this can be one of the following:
% general, small caption, big caption
rule_figure(general).
rule_title(general).

%***********************************
%
% main call to SpaRe
%
%***********************************

go_each(H,Stream):-
scan(25,H,Texts,Stream),
scanNoWrite(20,H,Titles,Stream),
merge_titles(Titles,Texts,TBcouples),
text_analyze(Texts,[],OutputVer,verticalColumns),
text_analyze(Texts,[],OutputHor,horizontalColumns),
text_analyze(Titles,[],Output3,general), !,
quicksort_couples(OutputVer, SortedVer), !,
quicksort_couples(OutputHor, SortedHor), !,
quicksort_couples(Output3, Sorted3), !,
elements(Texts, Texts_elements),
elements(Titles, Titles_elements),
findall(PathVer, path(Texts_elements, SortedVer, PathVer),

BVreading_orders),
findall(PathHor, path(Texts_elements, SortedHor, PathHor),

BHreading_orders),
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findall(Path3, path(Titles_elements, Sorted3, Path3),
Treading_orders),

append(BVreading_orders,BHreading_orders,
BHVreading_orders),

merge_title_text_all(BHVreading_orders,Treading_orders,
TBcouples,OutputDuplicates),

remove_dups(OutputDuplicates, OutputEmptyList),
remove([], OutputEmptyList, Output),
length(Output, M),
nl, write(’Number of pahts ’), write(M),nl,
length(Titles, Ltitles),
length(Texts, Ltexts),
Blocksnumber is Ltitles+Ltexts,
factorial(Blocksnumber,Fact),
writeln(Stream, [Blocksnumber, Fact,M]).

%***********************************
%
% Checking the rules on the
% input for body text
%
%***********************************

text_analyze([B1|Rest], Old, Out, R):-
append(Rest, Old, Checklist),
text_check(B1, Checklist, Out2, R),
append([B1], Old, Old2),
text_analyze(Rest, Old2, Out3, R),
append(Out3, Out2, Out).

text_analyze([], _, [], _).

% CHECK TITLE BLOCKS AGAINST BODY TEXT

text_check([Id1, T1, B1], [[Id2, T2, B2]|Rest], Out, R):-
before_in_reading(B1, B2, R),
text_check([Id1, T1, B1], Rest, Out2, R),
append([[Id1,Id2]],Out2, Out).

text_check(B1, [_|Rest], Out, R):-
text_check(B1, Rest, Out2, R),
append([], Out2, Out).

text_check(_, [], [], _).
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%***********************************
%
% Checking the rules on the
% input for title
%
%***********************************

merge_titles([[Id, T1, [X1,X2,Y1,Y2]]|TT],Texts,Merged):-
title_check([Id, T1, [X1,X2,Y1,Y2]],Texts,Blocks),
take_leftuppermost(Blocks,[Id2|_]),
merge_titles(TT,Texts,Merged2),
append([[Id,Id2]], Merged2, Merged).

merge_titles(_,_,[]).

take_leftuppermost([[Id, T1, [X1,Y1,X2,Y2]]|T],[Idb, T1b,
[X1b,Y1b,X2b,Y2b]]):-

take_leftuppermost(T,[Idb, T1b, [X1b,Y1b,X2b,Y2b]]),

take_leftuppermost([[Id, T1, [X1,Y1,X2,Y2]]|T],[Idb, T1b,
[X1b,Y1b,X2b,Y2b]]):-

take_leftuppermost(T,[Id, T1,[X1,Y1,X2,Y2]]),
X1b#>=X1, Y1b#>=Y1.

take_leftuppermost([B],B).

% CHECK TITLE BLOCKS AGAINST BODY TEXT

title_check([Id1, T1, B1], [[Id2, T2, B2]|Rest], Out):-
title_body(B1, B2),
title_check([Id1, T1, B1], Rest, Out2),
append([[Id2, T2, B2]],Out2, Out).

title_check(B1, [_|Rest], Out):-
title_check(B1, Rest, Out2),
append([], Out2, Out).

title_check(_, [], []).

%***********************************
%
% Encoding of Layout rules in
% rectangle model
%
%***********************************
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% GENERAL %

before_in_reading(B1, B2, general):-
precedes_X(B1, B2).

before_in_reading(B1, B2, general):-
meets_X(B1, B2).

before_in_reading(B1, B2, general):-
overlaps_X(B1, B2).

before_in_reading(B1, B2, general):-
precedes_Y(B1, B2).

before_in_reading(B1, B2, general):-
meets_Y(B1, B2).

before_in_reading(B1, B2, general):-
overlaps_Y(B1, B2), precedes_X(B1,B2).

% VERTICAL COLUMNS %

before_in_reading(B1, B2, verticalColumns):-
precedes_X(B1, B2).

before_in_reading(B1, B2, verticalColumns):-
meets_X(B1, B2).

before_in_reading(B1, B2, verticalColumns):-
overlaps_X(B1, B2),
(precedes_Y(B1,B2); meets_Y(B1,B2); overlaps_Y(B1,B2)).

before_in_reading(B1, B2, verticalColumns):-
(precedes_Y(B1, B2); meets_Y(B1,B2); overlaps_Y(B1,B2)),
(precedes_X(B1,B2); meets_X(B1,B2); overlaps_X(B1,B2);
starts_X(B1,B2); finishesi_X(B1,B2); equals_X(B1,B2);
during_X(B1,B2); duringi_X(B1,B2); finishes_X(B1,B2);
startsi_X(B1,B2); overlapsi_X(B1,B2)).

% HORIZONTAL COLUMNS %

before_in_reading(B1, B2, horizontalColumns):-
precedes_Y(B1, B2).

before_in_reading(B1, B2, horizontalColumns):-
meets_Y(B1, B2).
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before_in_reading(B1, B2, horizontalColumns):-
overlaps_Y(B1, B2),
(precedes_X(B1,B2); meets_X(B1,B2); overlaps_X(B1,B2)).

before_in_reading(B1, B2, horizontalColumns):-
(precedes_X(B1, B2);meets_X(B1,B2);overlaps_X(B1,B2)),
(precedes_Y(B1,B2); meets_Y(B1,B2); overlaps_Y(B1,B2);
starts_Y(B1,B2); finishesi_Y(B1,B2); equals_Y(B1,B2);
during_Y(B1,B2); duringi_Y(B1,B2); finishes_Y(B1,B2);
startsi_Y(B1,B2); overlapsi_Y(B1,B2)).

%%%
% RULES FOR TITLES
%%%

title_body(T,B):-
(precedes_Y(T,B);meets_Y(T,B)).

%%%
% RULES FOR FIGURES
%%%

% general

make_one_block(B1, B2):-
rule_figure(general),
figure(B1),
caption(B2),
precedes_Y(B1, B2).

make_one_block(B1, B2):-
rule_figure(general),
figure(B1),
caption(B2),
precedesi_Y(B1, B2).

% smallCaption

make_one_block(B1, B2):-
rule_figure(smallCaption),
figure(B1),
caption(B2),
precedes_Y(B1, B2),
(startsi_X(B1, B2); duringi_X(B1, B2);
finishesi_X(B1, B2); equals_X(B1, B2)).
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make_one_block(B1, B2):-
rule_figure(smallCaption),
figure(B1),
caption(B2),
precedesi_Y(B1, B2),
(startsi_X(B1, B2); duringi_X(B1, B2);
finishesi_X(B1, B2); equals_X(B1, B2)).

%***********************************
%
% Allen’s interval relations
%
%***********************************

% be careful that the threshold should never be
% bigger than half of the smalles document object!!!
% I’m not implementing this check.

precedes_X([_, _, Xf1, _], [Xo2, _, _, _]):-
threshold(T),
Xo2-Xf1 #>= T.

meets_X([_, _, Xf1, _], [Xo2, _, _, _]):-
threshold(T),
Xf1-Xo2 #<T, Xo2-Xf1 #< T.

overlaps_X([Xo1, _, Xf1, _], [Xo2, _, Xf2, _]):-
threshold(T),
Xf1-Xo2 #>= T,
Xf2-Xf1 #>= T,
Xo2-Xo1 #>=T.

starts_X([Xo1, _, Xf1, _], [Xo2, _, Xf2, _]):-
threshold(T),
Xo1-Xo2#< T, Xo2-Xo1#< T,
Xf1-Xf2#>= T.

during_X([Xo1, _, Xf1, _], [Xo2, _, Xf2, _]):-
threshold(T),
Xo1-Xo2 #>= T,
Xf2-Xf1 #>= T.

finishes_X([Xo1, _, Xf1, _], [Xo2, _, Xf2, _]):-
threshold(T),
Xf1-Xf2 #< T, Xf2-Xf1 #<T,
Xo2-Xo1 #>= T.

equals_X([Xo1, _, Xf1, _], [Xo2, _, Xf2, _]):-
threshold(T),
Xo1-Xo2 #< T, Xo2-Xo1 #< T,
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Xf1-Xf2 #< T, Xf2-Xf1 #< T.

finishesi_X(B1, B2):-
finishes_X(B2, B1).

duringi_X(B1, B2):-
during_X(B2, B1).

startsi_X(B1, B2):-
starts_X(B2, B1).

overlapsi_X(B1, B2):-
overlaps_X(B2, B1).

meetsi_X(B1, B2):-
meets_X(B2, B1).

precedesi_X(B1, B2):-
precedes_X(B2, B1).

% AND ON THE Y AXIS

precedes_Y([_, _, _, Yf1], [_, Yo2, _, _]):-
threshold(T),
Yo2-Yf1 #>= T.

meets_Y([_, _, _, Yf1], [_, Yo2, _, _]):-
threshold(T),
Yf1-Yo2 #<T, Yo2-Yf1 #< T.

overlaps_Y([_, Yo1, _, Yf1], [_, Yo2, _, Yf2]):-
threshold(T),
Yf1-Yo2 #>= T,
Yf2-Yf1 #>= T,
Yo2-Yo1 #>=T.

starts_Y([_, Yo1, _, Yf1], [_, Yo2, _, Yf2]):-
threshold(T),
Yo1-Yo2#< T, Yo2-Yo1#< T,
Yf1-Yf2#>= T.

during_Y([_, Yo1, _, Yf1], [_, Yo2, _, Yf2]):-
threshold(T),
Yo1-Yo2 #>= T,
Yf2-Yf1 #>= T.

finishes_Y([_, Yo1, _, Yf1], [_, Yo2, _, Yf2]):-
threshold(T),
Yf1-Yf2 #< T, Yf2-Yf1 #<T,
Yo2-Yo1 #>= T.
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equals_Y([_, Yo1, _, Yf1], [_, Yo2, _, Yf2]):-
threshold(T),
Yo1-Yo2 #< T, Yo2-Yo1 #< T,
Yf1-Yf2 #< T, Yf2-Yf1 #< T.

finishesi_Y(B1, B2):-
finishes_Y(B2, B1).

duringi_Y(B1, B2):-
during_Y(B2, B1).

startsi_Y(B1, B2):-
starts_Y(B2, B1).

overlapsi_Y(B1, B2):-
overlaps_Y(B2, B1).

meetsi_Y(B1, B2):-
meets_Y(B2, B1).

precedesi_Y(B1, B2):-
precedes_Y(B2, B1).
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⇌, see topological bisimulation

Dϕ, see difference operator

Eϕ, see modal operator

K, see modal logic

LATEX, see document encoding rule

MIR2 , see Real plane

IR2, see Real plane

S(IR), see serial set

S4u, see modal logic

TG(X,X ′, n, x1, x
′
1), see topological

game

T2, see infinite binary tree

Ti, see separation axioms

tmd, see topological distance

topax, see selective unraveling

TG(X,X ′, n), see topological game

Uϕ, see modal operator

~r, see topo-vector

(X,O), see topological space

2-fork frame, 44

2D strings, 101

ACM, 129

Communications, 140

transaction class file, 129, 135

admissible transition, 140

affine bisimulation, 72

⇌, 72

reduction, 73

affine geometry, 81

Alexandroff space, 24, 28, 165

Allen relations, 133

Ansel Adams, 1

arrow bisimulation, 97

arrow logics, 4

arrow model, 96

Axiom

(4@), 61

(4), 10

(Con), 54

(Dual@), 61

(Dual.), 10

(Intersection), 61

(K@), 61

(K), 10

(Label), 61

(N), 10

(R), 10

(Scope), 61

(T@), 61

(T), 10

distribution, 28

Grzegorczyk, 43

Pasch, 75

axiomatization, 3

S4, 10

S5, 21, 54

elementary geometry, 68
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bag, see multi-set

base, 155

basic sets, 26

betweenness, 3, 67, 138

Manhattan, 139

bidimensional Allen relations, 177

Borel Hierarchy, 48

boundaries

inferred vs. detected, 153

boundary, 155

brittleness, 4

canonical topological space, 26

Cantor space, 3, 28, 156, 165, 167, 168

2ω, 33

cantorization, 32

categorial grammar, 95

chequered, 49

chop-stick, 11

Chu morphism, 13

closure, 155

cluster, 30, 164–168

cycling, 33

initial, 30
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SAMENVATTING

This is an abstract of the thesis in Dutch.2

Ruimtelijke structuren zijn essentieel voor perceptie en cognitie. Een groot deel van

onze dagelijkse informatieuitwisselingen betreft de vraag wat er aan de hand is en

waar. Daarnaast vormen ruimtelijke representaties een goede bron voor geometrische

intuı̈ties die een verklaring vormen voor algemene cognitieve taken. Hoe representeren

we objecten die in de ruimte zijn gelocaliseerd? Hoe kunnen we over dit soort objec-

ten redeneren? Bijvoorbeeld bij het opdekken van een tafel, wat zijn vanuit ruimtelijk

oogpunt beschouwd de basis eigenschappen van, zeg, een lepel in relatie tot de rest van

het bestek en de rest van de ruimte? Een ander basisaspect van perceptie is dat wij in

staat zijn verschillende visuele scenes te vergelijken en eenzelfde object in deze ver-

schillende scenes te identificeren. Zo kunnen we vaststellen welke feestelijk gedekte

tafels ‘hetzelfde’ zijn. Logica verschaft middelen voor deze taak.

We moeten voorzichtig zijn als we het begrip ruimte in een logische theorie vatten en

er vervolgens logische hulpmiddelen op loslaten. We kunnen namelijk niet verwach-

ten dat de werkelijke ruimte in al zijn verscheidenheid zonder meer gevat is in onze

formele theorie van deze ruimte. Zo zal onze theorie bepaalde natuurlijke, ruimtelijke

aspecten niet kunnen behandelen, terwijl daarentegen sommige niet-natuurlijke, ruim-

telijke fenomenen een rol zullen spelen. We zijn er echter ook niet op uit een volledige

representatie van de ruimte te geven, maar we proberen de meest in het oog springende

ruimtelijke fenomen uit te drukken.

Onze bijdrage met deze dissertatie is tweeledig. In de eerste plaats onderzoeken wij

nieuwe en bestaande ruimtelijke formalismen met het expliciete doel om logica’s te

identificeren met een redelijke uitdrukkingskracht die tegelijkertijd mooie, meta-logis-

che eigenschapppen bezitten. In de tweede plaats onderzoeken we de haalbaarheid

2The samenvatting is mandatory for all thesis defended in the Netherlands which are written in

English. Many thanks to Eva Hoogland for the translation.
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van praktische toepassingen van dit soort kwalitatieve, ruimtelijke logica’s. Hiertoe

bestuderen we twee symbolische benaderingen van patroonherkenning.

Dit proefschrift bestaat uit zeven technische hoofdstukken, een introductie, een afslui-

tend hoofdstuk en drie appendices. De hoofdstukken 2 tot 5 vormen de theoretische

kern van de dissertatie, de hoofdstukken 6 en 7 vormen de praktische component.

De eerste twee hoofdstukken geven de grenzen van onze benadering aan: Hoofd-

stuk 2 geeft aan wat we wel en niet kunnen uitdrukken, Hoofdstuk 3 behandelt welke

axioma’s we kunnen toestaan. Daarna analyseren we twee soorten uitbreidingen van

deze benadering: logische (Hoofdstuk 4) en axiomatische uitbreidingen (Hoofdstuk 5).

In Hoofdstuk 2 brengen we de topologische interpretatie van modale logica’s op-

nieuw tot leven door deze op te vatten als een algemene taal voor ruimtelijke patronen.

Zo definiëren we een notie van bisimulatie voor topologische modellen aan de hand

waarvan verschillende visuele scenes kunnen worden vergeleken. De resulterende no-

tie van gelijkheid verfijnen we later door Ehrenfeucht-Fraı̈ssé spelen te introduceren

die op ruimtelijke structuren kunnen worden gespeeld.

In Hoofdstuk 3 onderzoeken we de topologische interpretatie van modale logica

in moderne termen, waarbij we gebruik maken van de notie van bisimulatie die we

zojuist hebben geı̈ntroduceerd. We beschouwen modale logica’s met een interessante

topologische inhoud en presenteren ondermeer een nieuw bewijs van de volledigheid

van S4 ten opzichte van de reëele getallen (eerder bewezen door McKinsey en Tarski)

en ook een volledigheidsbewijs van de logica van eindige verenigingen van convexe

verzamelingen reëele getallen.

In het volgende hoofdstuk beschouwen we logische uitbreidingen van de topolo-

gische modale benadering van ruimte. We introduceren universele en hybride moda-

liteiten en onderzoeken in hoeverre deze bijdragen aan de uitdrukkingskracht. Ook

bekijken we een ruimtelijke versie van de tijdslogica van Since en Until. Een beknopte

vergelijking met hogere-orde formalismen geeft een algemeen beeld van (uitgebreide)

modale, ruimtelijke, logica’s.

We vervolgen onze modale ruimetelijke onderzoekingen in Hoofdstuk 5 door over

te stappen op affine en metrische geometrieën, en op vectoralgebra. Dit levert een

nieuwe onderverdeling in ruimtelijke patronen die analogieën suggereren tussen voor-

noemde wiskundige theorieën in termen van modale logica’s, conditionele logica’s en

tijdslogica’s. We onderzoeken de uitdrukkingskracht in termen van het ontwerp van de

taal, bisimulaties en correspondentieverschijnselen. We leren verscheidene overeen-

komsten tussen de verschillende gebieden, kennen, en stuiten op open vragen.

In Hoofdstuk 6 kijken we met andere ogen naar model-vergelijkende spelen ten-

einde een maat te ontwikkelen waarmee de gelijkenis van beelden bepaald kan worden.

Dit soort spelen kunnen namelijk niet alleen gebruikt worden om te beslissen of twee

gegeven modellen gelijk zijn, maar ook om een maat op te stellen die de verschillen

binnen een klasse van modellen bepaalt. We laten zien hoe dit mogelijk is voor het ge-

val van de ruimtelijke modale logica S4u. Deze benadering geeft ons dus een maat voor

ruimtelijke gelijkheid die gebaseerd is op topologische, model-vergelijkende spelen.
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Als een toepassing geven we een algoritme dat effectief de gelijkheidsmaat berekent

voor een klasse van modellen die volop gebruikt wordt in de informatica: polygonen

van het reëele vlak. Aan het eind van dit hoofdstuk geven we een overzicht van een

geı̈mplemeneerd systeem gebaseerd op onze gelijkheidsmaat.

In het laatste hoofdstuk gebruiken we een propositionele taal van kwalitatieve

rechthoeken om de leesvolgorde van documenten te achterhalen. Hiertoe definiëren

we eerst de notie van een ‘document-codeer-regel’ en analyseren we formalismen die

deze regels zouden kunnen uitdrukken, zoals LATEX, SGML talen, etc. Met behulp van

deze regel construeren we vervolgens een detector die de leesvolgorde van documen-

ten achterhaalt. De document-codeer-regels die we bij deze constructie gebruiken zijn

uitgedrukt in de propositionele taal van rechthoeken. Om te zorgen dat ons systeem

de toets aan de realiteit doorstaat, introduceren we de notie van een thick boundary

interpretation voor een kwalitatieve relatie. Als we het systeem testen op een collectie

van heterogene documenten, zien we een mate van recall van 89%.

Tot besluit bevat het proefschrift drie appendices. Appendix A is een kort overzicht

van basis topologische noties die gebruikt worden in de Hoofdstukken 2, 3 en 4. Ap-

pendix B geeft een algoritme dat gerichte, transitieve, cyclische graven sorteert volgens

het syteem uit Hoofdstuk 7. In Appendix C komen drie implementaties aan bod die

allen aan dit proefschrift zijn gerelateerd.
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Common Sense Time and Special Relativity

ILLC DS-1997-03: Arthur Nieuwendijk

On Logic. Inquiries into the Justification of Deduction

ILLC DS-1997-04: Atocha Aliseda-LLera

Seeking Explanations: Abduction in Logic, Philosophy of Science and Artificial

Intelligence

ILLC DS-1997-05: Harry Stein

The Fiber and the Fabric: An Inquiry into Wittgenstein’s Views on Rule-Following

and Linguistic Normativity

ILLC DS-1997-06: Leonie Bosveld-de Smet

On Mass and Plural Quantification. The Case of French ‘des’/‘du’-NP’s

ILLC DS-1998-01: Sebastiaan A. Terwijn

Computability and Measure

ILLC DS-1998-02: Sjoerd D. Zwart

Approach to the Truth: Verisimilitude and Truthlikeness

ILLC DS-1998-03: Peter Grunwald

The Minimum Description Length Principle and Reasoning under Uncertainty

ILLC DS-1998-04: Giovanna d’Agostino

Modal Logic and Non-Well-Founded Set Theory: Translation, Bisimulation, Inter-

polation



ILLC DS-1998-05: Mehdi Dastani

Languages of Perception

ILLC DS-1999-01: Jelle Gerbrandy

Bisimulations on Planet Kripke

ILLC DS-1999-02: Khalil Sima’an

Learning efficient disambiguation

ILLC DS-1999-03: Jaap Maat

Philosophical Languages in the Seventeenth Century: Dalgarno, Wilkins, Leibniz

ILLC DS-1999-04: Barbara Terhal

Quantum Algorithms and Quantum Entanglement

ILLC DS-2000-01: Renata Wassermann

Resource Bounded Belief Revision

ILLC DS-2000-02: Jaap Kamps

A Logical Approach to Computational Theory Building (with applications to soci-

ology)

ILLC DS-2000-03: Marco Vervoort

Games, Walks and Grammars: Problems I’ve Worked On

ILLC DS-2000-04: Paul van Ulsen

E.W. Beth als logicus

ILLC DS-2000-05: Carlos Areces

Logic Engineering. The Case of Description and Hybrid Logics

ILLC DS-2000-06: Hans van Ditmarsch

Knowledge Games

ILLC DS-2000-07: Egbert L.J. Fortuin

Polysemy or monosemy: Interpretation of the imperative and the dative-infinitive

construction in Russian

ILLC DS-2001-01: Maria Aloni

Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch

Rationality in Discovery—a study of Logic, Cognition, Computation and Neu-

ropharmacology

ILLC DS-2001-03: Erik de Haas

Logics For OO Information Systems: a Semantic Study of Object Orientation from

a Categorial Substructural Perspective



ILLC DS-2001-04: Rosalie Iemhoff

Provability Logic and Admissible Rules

ILLC DS-2001-05: Eva Hoogland

Definability and Interpolation: Model-theoretic investigations

ILLC DS-2001-06: Ronald de Wolf

Quantum Computing and Communication Complexity

ILLC DS-2001-07: Katsumi Sasaki

Logics and Provability

ILLC DS-2001-08: Allard Tamminga

Belief Dynamics. (Epistemo)logical Investigations

ILLC DS-2001-09: Gwen Kerdiles

Saying It with Pictures: a Logical Landscape of Conceptual Graphs

ILLC DS-2001-10: Marc Pauly

Logic for Social Software

ILLC DS-2002-01: Nikos Massios

Decision-Theoretic Robotic Surveillance

ILLC DS-2002-2: Marco Aiello

Spatial Reasoning: Theory and Practice


