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Abstract

This study examined spatial relationships between rocky shore polychaete assemblages and environmental variables over
broad geographical scales, using a database compiled within the Census of Marine Life NaGISA (Natural Geography In Shore
Areas) research program. The database consisted of abundance measures of polychaetes classified at the genus and family
levels for 74 and 93 sites, respectively, from nine geographic regions. We tested the general hypothesis that the set of
environmental variables emerging as potentially important drivers of variation in polychaete assemblages depend on the
spatial scale considered. Through Moran’s eigenvector maps we indentified three submodels reflecting spatial relationships
among sampling sites at intercontinental (.10000 km), continental (1000–5000 km) and regional (20–500 km) scales. Using
redundancy analysis we found that most environmental variables contributed to explain a large and significant proportion
of variation of the intercontinental submodel both for genera and families (54% and 53%, respectively). A subset of these
variables, organic pollution, inorganic pollution, primary productivity and nutrient contamination was also significantly
related to spatial variation at the continental scale, explaining 25% and 32% of the variance at the genus and family levels,
respectively. These variables should therefore be preferably considered when forecasting large-scale spatial patterns of
polychaete assemblages in relation to ongoing or predicted changes in environmental conditions. None of the variables
considered in this study were significantly related to the regional submodel.
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Introduction

Explaining the causes of variation in biodiversity at multiple

spatial scales is a major goal of ecology. The ability to relate these

fluctuations to changes in environmental drivers is becoming

increasingly important to understand the consequences of human

domination of the biosphere [1–3]. The scales of influence of

environmental drivers, including natural and anthropogenic ones,

range from the individual organism, as for the accumulation of

contaminants, to the planetary scale as in the case of climatic

variables [4–5].

Most ecological spatial studies span from the local scale, defined

by the distribution of replicated observations within sites (usually

10s to 100s of m apart), to the regional scale defined by a collection

of sites within a region (10s to 100s of km apart). There are several

reasons to examine ecological spatial variation at these scales.

First, there is ample evidence indicating that small-scale spatial

heterogeneity is ubiquitous in natural populations and assemblages

(e.g., [6]). Second, some of the processes accounting for local

spatial patterns may also affect assemblages at larger scales. For

example, local processes such as biotic interactions, behavior and

fine-grain environmental heterogeneity may also propagate in

space to generate large-scale patterns [7–8]. When patterns in

species richness are of concern, regional processes, such as

geographic, historic and evolutionary events may determine local

species pools and their interactions [9]. Elucidating variation at

one scale may therefore help understand variation at other scales.

Third, most populations are generally managed locally or
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regionally, so these scales are relevant for practical purposes of

species conservation (e.g. [10]). Finally, the analysis of spatial

patterns makes sense only within the geographic limits of focal taxa

distribution, setting a natural upper bound to the breadth of

ecological spatial analyses.

Of course there are exceptions to the general trend of ecological

spatial studies being conducted at the local and regional scales. For

example, investigations examining latitudinal gradients in species

richness and the distribution of migratory species and large

predatory fish are often conducted at the continental or global

scales [11]. These studies are becoming increasingly important to

understand the consequences of biotic homogenization, where

rapid changes in climatic conditions, human alteration of natural

habitats and species introductions make natural barriers to

organism’s distribution more permeable [12–14]. Relating envi-

ronmental and biological data over very broad spatial scales may

therefore help forecast the ecological consequences of these

changes. For example, knowledge of how species and assemblages

distribute along temperature gradients is key to forecast the

consequences of global warming on species distributional ranges

and interactions [15–16]. While the relationship between

temperature and macroecological patterns is well established for

many taxa, a similar understanding has remained elusive for other

environmental variables.

We examined the spatial relationships between rocky shore

polychaete assemblages and environmental variables over broad

geographical scales, using the database compiled by the Census of

Marine Life NaGISA (Natural Geography of In Shore Areas)

research program. We tested the general hypothesis that the set of

environmental predictors emerging as potentially important

drivers of variation in assemblages depended on the spatial scale

considered. This hypothesis reflected the view that the processes

maintaining differences in assemblages over large geographical

scales are different from those accounting for variability at smaller

scales (e.g. [17]). The opposite scenario is the one in which the

same set of environmental predictors can explain variation in

assemblages over a broad range of scales (e.g. [18]). In either case

our study aimed at identifying an appropriate subset of variables to

forecast patterns in polychaete assemblages in relation to ongoing

or predicted changes in environmental conditions.

Materials and Methods

Biological data
Polychaetes were sampled between 2003 and 2008 in algal-

dominated intertidal and shallow subtidal rocky shore habitats at

188 globally distributed sites, according to the standardized

protocol developed by NaGISA [19]. The original sampling

design consisted of five replicate quadrats of 25625 cm scraped

clean of all organisms at high, mid and low intertidal heights and

at 1, 5, and 10 m depths at each site. Samples were washed and

sieved in situ (mesh size of 0.5 mm) and preserved in 5% buffered

formalin. Individual polychaetes were sorted and identified

taxonomically in the laboratory. Due to logistical and taxonomic

constraints, the spatial and temporal replication and the level of

taxonomic resolution differed among sites, with samples being

sorted at various taxonomic levels (species, genus or family).

Because this paper focused mostly on large scale spatial patterns,

we pooled samples across depth strata (intertidal and subtidal) and

sampling years within sites and we examined abundance data at

the genus and family levels. Only sites that included at least five

quadrats per year were used in the analysis. With this restriction,

74 and 93 sites from nine geographical regions were retained for

the analysis at the genus and family level, respectively (Fig. 1,

Supplementary Table S1). The restricted data set included 211

genera and 55 families.

Figure 1. Distribution of sampling sites of polychaete assemblages. Numbers identify geographic regions (1, Alaska; 2, Canada-Maine; 3,
Argentina; 4, Venezuela; 5, Colombia; 6, Brazil; 7, South Africa; 8, Philippines; 9, Japan). Several of the locations of individual sites within a region are
superimposed on each other and cannot be distinguished at this scale (e.g. sites at the border between Canada and Maine). See supplementary Table
S1 for further details.
doi:10.1371/journal.pone.0012946.g001
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Environmental data
For each site we collected estimates of the long-term mean

values of three natural and nine anthropogenic environmental

variables that could plausibly influence the distribution of

polychaetes. Natural variables included sea surface temperature

(SST), primary productivity (PP) and Chlorophyll-a density

(CHA). For SST we used the climatological mean value for the

summer season, averaged between 1985 and 2001, derived from

the 4 km resolution AVHRR Pathfinder Project version 5.0 by the

NOAA NODC [20]. Mean net PP, expressed as mg carbon per

m2 per day, was estimated from the Vertically Generalized

Production Model (VGPM) for SeaWiFS by the OSU Ocean

Productivity Lab, spanning years from 1997 to 2007 with a 18 km

resolution [21]. CHA data were derived from SeaWiFS repro-

cessing 5.2 by the NASA GSFC Ocean Color Group and were

averaged between 1997 and 2009 with a 9 km resolution [22].

Anthropogenic variables included indexes of ocean acidification

(AC), ultraviolet radiation (UV), shipping activity (SH), invasive

species incidence (INV), human population density in coastal areas

(HUM) and various sources of pollution, including inorganic

(INP), organic (ORP), marine-derived (MARP) and nutrient

contamination (NUTC). These variables were obtained by

sampling 1 km resolution global maps of anthropogenic impacts

provided by Halpern et al. [3] and were expressed as indexes

ranging between 0 and 1. AC was estimated from the variation of

aragonite saturation state of the ocean between 1870 and 2000–

2009, while the UV index reflected the number of anomalously

high values in 2000–2004 compared to 1996–1999, derived from

the GSFC TOMS EP/TOMS satellite program by NASA. AC

and UV had a resolution of one degree latitude/longitude

(approximately 111 km in longitude at the equator or in latitude

everywhere). The SH index estimated commercial ship traffic

between 2004 and 2005, with data collected from the WMO

Voluntary Observing Ships Scheme by NOAA, while INV was

based on cargo traffic at ports and relied on data collected between

1999 and 2003. For HUM, LandScan 30 arc-second population

data of 2005 were used, while INP reflected urban runoff

estimated from land-use categories defined by the US Geologic

Survey (http://edcsns17.cr.usgs.gov/glcc/) between 2000 and

2001. ORP and NUTC were obtained from the FAO national

statistics (1992–2002) and were based on the average annual use of

pesticides and fertilizers (http://faostat.fao.org). MARP was

proportional to commercial shipping traffic and was derived from

port data collected between 1999 and 2005.

The general approach to retrieve these data was to overlay

global maps of sampling sites and abiotic variables and to directly

extract values with the Nearest Neighbour algorithm using the

Marine Geospatial Ecology Tools in ArcGIS (http://code.env.

duke.edu/projects/mget). When satellite remote sensing data were

missing for a particular site, we extracted the closest pixel value

without extrapolating.

Statistical analyses
Moran’s Eigenvector Maps. We used Moran’s Eigenvector

Maps (MEM) to examine spatial variation in multivariate genus

and family data and to identify the environmental variables that

explained spatial pattern at multiple scales [23]. MEM is an

extension of the approach known as Principal Coordinates of

Neighbour matrices (PCNM) [24]. PCNM is based on the

eigenvalue decomposition of a truncated matrix of geographic

distances among sampling sites that is obtained through principal

coordinate analysis. The truncation point usually corresponds to

the smallest distance required to keep all sites connected. This

procedure decomposes the spatial relationships among sampling

sites into components, the eigenvectors or principal coordinate

axes, which reflect variation at specific spatial scales. In general

only the axes associated with positive eigenvalues are considered,

with the first axes reflecting large-scale spatial structures and

subsequent axes depicting variation at increasingly finer scales.

However, not all axes associated with positive eigenvalues are

informative and a procedure is needed to select those that contain

significant spatial autocorrelation. These axes can then be used as

spatial explanatory variables in univariate or multivariate

regression models with biological data.

The eigenvalues resulting from the decomposition of the

truncated matrix of geographic distances are linearly related to

Moran’s I coefficients of spatial autocorrelation [23]. Hence,

Moran’s I statistic is used to identify the principal coordinate axes

that reflect significant spatial autocorrelation. In this context

PCNM is a special case of MEM. PCNM can be extended to the

more general framework defined by MEM in two important ways.

First, different neighbour networks can be used to define the

connectivity matrix among sampling sites, rather than using the

truncation distance. Second, one can define different spatial

weighting functions to weight the connections among sampling

sites as a function of distance. Together, a connectivity matrix and

a weighting function define a spatial weighting matrix that can be

used as a predictor to model spatial variation of biological data.

This matrix is a model of the spatial relationships among sampling

sites. The possibility to define different spatial weighting functions

enables great flexibility to model spatial variation of ecological

data that is at the core of MEM.

Choice of a spatial weighting matrix is a critical step that affects

the outcome of the analysis. Dray et al. [23] have suggested a data

driven approach to select a weighting matrix that is useful in the

absence of a clear theory to define and weight spatial connections

among sites (e.g. dispersal or propagation processes). The

approach consists of the following steps: (1) define different

combinations of connectivity matrices and weighting functions, (2)

compute MEM for each of these models, (3) use a multivariate

analogue of multiple regression like redundancy analysis (RDA,

[25]) to regress each model on multivariate biological data and

retain the set of eigenvectors that result in the most appropriate

model according to the corrected Akaike Information Criterion

(AICc, [26]) and (4) select the model with the lowest AICc.

Once an appropriate spatial weighting matrix is identified, the

eigenvectors associated with the corresponding MEM can be

grouped into submodels on the basis of the similarity of their

range. The range is computed by fitting a variogram model and

reflects the scale at which each eigenvector depicts spatial

variation. Different submodels can therefore be constructed to

reflect spatial variation at different scales. Each submodel then

becomes a response matrix in a multivariate regression approach

(e.g. RDA) with environmental variables as predictors.

We examined four ways of defining neighbour networks

[23,27]: Delaunay triangulation, Gabriel graph, relative neigh-

bourhood graph and distance criterion. In the last case two sites i

and j were considered as neighbours if dij,a, where dij is Euclidean

distance between sites and a is the threshold distance [23].

Inspection of the variogram suggested a value of dij around 50; we

then considered ten values of a equally spaced between 40 and 60

in the analysis.

We assumed that similarity in assemblages decreased with

distance according to the function f~1{
d
b
ij

max dij
� �b

, were

max dij
� �b

is the maximum distance defined within a given

neighbour network and b is a parameter. We examined integer

values of b equally spaced between 1 (indicating a linear decay of
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similarity with distance) and 10 (allowing for different concave-

down spatial relationships; preliminary analyses indicated that

concave-up functions were not appropriate). We computed MEM

for all combinations of binary connectivity networks and spatial

weights and identified the most appropriate spatial weighting

matrix according to AICc. An exponential variogram was fitted to

each of the eigenvectors computed from the selected weighting

matrix to estimate their range. Eigenvectors were then grouped

into three submodels, reflecting spatial variation at scales .10000,

between 1000 and 5000 and between 20 and 500 km, respectively.

Relation between environmental variables and spatial

variation. To identify which environmental drivers were

significantly related to variation in polychaete assemblages, we

first regressed the multivariate genus and family data over

environmental variables in a non-spatial RDA (i.e. without

distinguishing among spatial scales). We then examined scale-

specific relationships by regressing the three spatial submodels over

environmental variables in separate RDAs [25]. The variance

inflation factor was used to assess linear dependencies among the

original covariates and only those with a variance inflation factor

less than five were retained for subsequent analyses. Biological

data were Hellinger-transformed before the analysis and the effects

of sampling effort (number of years sampled and total number of

replicates) were assessed first. After partialling out the differences

in sampling effort among sites, the biological data were detrended

through RDA on X and Y geographic coordinates to remove the

effect of a linear spatial gradient. Analyses were done using

libraries spacemakeR, vegan and spdep in R2.10 [28].

Additional analyses were performed to assess the robustness of

results to three potential biases: (1) differences in sampling

intensity among sites, (2) spatial and temporal confounding effects

and (3) inaccuracy of satellite-derived data to characterize the

nearshore environment. To account for differences in sampling

intensity among sites, we used the number of pooled quadrats and

sampled years within sites as covariates in all analyses. To account

for spatial and temporal confounding effects, we repeated the

analysis at the genus and family levels by performing a RDA with

year as a covariate, using only those sites that were sampled in

multiple years both in the intertidal and the subtidal and

excluding regions that were sampled only at one site. The

residuals obtained from these analyses were averaged within sites

and used as response variables in the spatial analysis with

environmental covariates. Finally, to assess whether results were

robust to biases inherent in satellite-born data, we repeated the

analysis based on residuals by including as predictors only those

environmental variables that reflect specific human pressures in

the coastal environment. We also included SST as a covariate in

these analyses, since this variable poses no particular problem of

estimation along shorelines [20].

Results

Differences among sites in sampling effort (number of sampled

years and replicated samples within years) were significant and

accounted for 9% and 7% of variation in genus and family data,

respectively (RDA). There were also significant linear spatial

trends, accounting for 13% and 16% of variation at each of the

two levels of taxonomic resolution, respectively.

The spatial weighting matrix with the lowest AICc value was the

one originating from the distance criterion in analyses of both

genera and families, with a maximum Euclidean distance to define

neighbours of a=41 (Table 1). The selected weighting function

was the one reflecting a concave-down (b=3) and a linear (b=1)

decay of similarity with distance for genera and families,

respectively. Fifteen and 24 Moran’s eigenvectors were retained

as descriptors of spatial pattern for the two levels of taxonomic

resolution, accounting for 56% and 62% of variation in the

biological data, respectively (Table 1).

Three submodels, reflecting variation at different spatial scales,

originated from each of the two spatial weighting matrices selected

by the AICc criterion. These submodels were identified by

computing the range of each eigenvector through an exponential

variogram and grouping the eigenvectors with a similar range

(Supplementary Figures S1 and S2). We identified an interconti-

nental scale (.10000 km), a continental scale (between 1000 and

5000 km) and a regional scale (between 20 and 500 km). We note

that these scales are larger than the spatial resolution at which

most environmental variables were obtained (between 1 and

18 km); exceptions included ocean acidification and UV radiation,

which were obtained at a resolution of one degree. Eigenvectors

are mapped for genera (Fig. 2) and families (Supplementary Fig.

S3) to illustrate the different scales perceived.

Eight of the 12 original environmental variables were retained

after accounting for linear dependency through the variance

inflation factor (Fig. 3). These variables accounted for 22% and

17% of variation in a non-spatial analysis of genus and family data,

respectively (Table 2). With the exception of inorganic pollution

(INP) and marine-derived pollution (MARP) all other environ-

mental variables contributed significantly to spatial variation in

polychaete genera (Table 2). All variables with the exception of

INP contributed significantly to the intercontinental spatial

submodel for genus data, accounting for 54% of the variation

(Table 2). A plot of the first two RDA axes for this submodel

illustrated the relationships among environmental variables and

the centroids of sites for each of the nine regions (Fig. 4a). A

positive correlation among ocean acidification (AC), organic

pollution (ORP) and primary productivity (PP) and between these

variables and the centroids of sites for Brazil and South Africa was

evident along the first axis of the plot. Along the second axis,

Table 1. Performance of different neighbour networks for the specification of the spatial weighting matrix.

Genus Family

Connectivity a AICc Nvar b %EV AICc Nvar b %EV

Delaunay 291 239.2 6 1 28.1 260.2 8 2 25.8

Gabriel 104 236.7 6 10 25.6 258.4 6 6 20.3

Relative 104 238.0 7 2 29.3 262.1 10 1 31.1

Nearest distance 41 250.2 15 3 56.3 272.2 24 1 61.6

%EV: percentage of explained variance; Nvar: number of variables; a is the threshold Euclidean distance below which two sites are considered as neighbours; b is the
parameter of the spatial weighting function influencing how similarity decays with distance.
doi:10.1371/journal.pone.0012946.t001
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Canada and Maine (one region) were related to the negative scores

of sea surface temperature (SST), whereas Alaska was related to

marine-derived pollution as reflected by ship traffic (MARP). INP,

nutrient contamination (NUTC), ORP, MARP and primary

productivity (PP) were significantly related to the continental

submodel, while no variable contributed significantly to the

regional spatial submodel (Table 2).

The analysis of family data highlighted AC, NUTC, ORP,

HUM (human population) and PP as significant environmental

variables (Table 2). All variables but INP were significantly related

to the intercontinental spatial submodel, explaining 53% of

variation (Table 2). A plot of the first two RDA axes for this

submodel indicated that Alaska was positively related to NUTC

and that Argentina, Brazil and South Africa were positively related

to INP (Fig. 4b). No other clear pattern of association emerged

from this plot. The environmental variables that were significantly

related to the continental submodel were INP, NUTC, ORP and

PP, while no variable contributed significantly to the regional

submodel for family data, similarly to what observed for genera

(Table 2).

Three regions, Argentina, Colombia and Brazil, were sampled

only at one site and the first two included only subtidal data,

whereas Philippines and Brazil were sampled only in one year

(Table S1). To assess the extent to which our results were robust to

spatial and temporal confounding effects, we performed a new

analysis excluding these regions and controlling for year effects (see

Methods: Relation between environmental variables and spatial variation).

We found that temporal variation explained only 4% and 6% of

variance in abundance of genera and families, respectively. Results

were qualitatively similar to those obtained in the original analysis,

with the strength of the relationship between environmental

predictors and polychaete assemblages decreasing from the

intercontinental to the regional scale (Supplementary Table S2

and S3). We note, however, that controlling for spatial and

temporal confounding effects increased the percentage of ex-

plained variance compared to the original analysis. There were

also some changes in patterns of significance, particularly at the

continental scale, with AC and HUM becoming significant

predictors for both genera and families and INP and NUTC

becoming not significant in the analysis of families (Supplementary

Table S3). The qualitative nature of the results remained

unchanged when only environmental variables reflecting human

pressures in the nearshore environment were included as

predictors in the analysis (Supplementary Table S4).

Discussion

We related spatial variation in polychaete assemblages at the

genus and family levels to several potentially important environ-

mental drivers. All drivers analyzed with the exception of

inorganic pollution (INP) explained a large and significant

proportion of variation of the intercontinental submodel for both

genera and families (54% and 53%, respectively). INP, nutrient

contamination (NUTC), organic pollution (ORP), marine-derived

pollution (MARP) and primary productivity (PP) were significantly

related to spatial variation of genera at the continental scale,

Figure 2. Eigenvector maps. Geographical representation of the eigenvectors used to define the spatial submodels for polychaete genera at the
intercontinental (eigenvectors 2, 4, 5, 6 and 3), continental (eigenvectors 9, 73, 72, 71 and 10) and regional (eigenvectors 66, 50, 57, 53 and 38) scales.
Eigenvectors are plotted in decreasing order of importance (amount of explained variance) from left to right and from top to bottom.
doi:10.1371/journal.pone.0012946.g002
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Figure 3. Maps of environmental variables used in the analysis.
doi:10.1371/journal.pone.0012946.g003
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explaining 25% of the variation. The same variables with the

exception of MARP were significantly related to spatial variation

of families, accounting for 32% of variability. This subset of

environmental drivers had therefore the potential to explain

spatial variation in polychaete assemblages at scales ranging from

1000 to .10000 km. Our results indicate that there was no clear

distinction between environmental variables accounting for

ecological variation at continental and intercontinental scales for

genera. For families, in contrast, the environmental predictors

accounting for spatial patterns at the continental scale were a

subset of those explaining intercontinental variation after control-

ling for spatial and temporal confounding (Supplementary Table

S3), None of the variables considered in this study were

significantly related to the regional submodel.

Few investigations have related spatial variation in benthic

assemblages to environmental explanatory variables at multiple

scales. An example is provided by the study of Hewitt and Thrush

[29] on the spatial and temporal distribution of macrofauna in an

estuaries system in New Zealand. These authors distinguished

between fine-scale and coarse-scale environmental variables and

compared the relative importance of these variables in describing

spatial and temporal variation of species abundance using

generalized linear models. Results indicated that, in general,

models combining fine-scale and coarse-scale environmental

variables explained a larger proportion of variation in macrofauna

assemblages than models based on one or the other type of

variable alone. Broitman and Kinlan [30] examined the scales of

spatial association among kelp biomass, chlorophyll a, SST and

coastal topography along rocky shores between Baja California

and Oregon. Using variograms, they found remarkably similar

spatial patterns between kelps and chlorophyll a and this

relationship was apparently driven by topographic forcing of

coastal upwelling. Broad-scale intercontinental spatial variation in

the structure of rocky shore upwelling ecosystems was examined

by Blanchette et al. [31]. These authors compared the diversity and

trophic structure of intertidal assemblages over a large number of

sites in four geographic regions influenced by upwelling. They

found an inverse relationship between environmental variability

(measured as the fraction of variance in SST contained in the

seasonal cycle) and the number of species across trophic levels,

suggesting that species diversity is relatively low in predictable,

strongly seasonal environments.

In our study, ocean acidification (AC), NUTC, ORP, human

population (HUM) and PP were significantly related to spatial

variation in both genera and families at one or both the

intercontinental and continental scales. Several studies have

documented changes in composition and abundance of macro-

faunal assemblages in eutrophic conditions at local spatial scales

[32–33]. High levels of PP and NUTC generally imply increased

food availability for different trophic groups. Similarly, there is

large evidence that organic pollution affects macrofauna assem-

blages in general [34] and polychaetes in particular [35] at small

spatial scales. Our study shows that these relationships hold when

examined over continental or intercontinental scales, suggesting

Table 2. Pseudo-F values from RDA analyses relating environmental variables to polychaete data in a non-spatial regression (i.e.
without distinguishing among spatial scales) and in each of the three spatial submodels originating from the spatial weighting
matrices selected for genera and families.

Spatial scale

Variables Non-spatial Intercontinental Continental Regional

Genera AC 3.6** 16.7** 1.7 0.1

INP 0.9 2.1 2.8* 0.6

NUTC 1.8* 3.6* 4.4* 0.1

ORP 3.1** 7.7** 6.3** 0.1

MARP 1.4 2.9* 2.6* 0.1

HUM 2.4** 7.6** 1.6 0.1

PP 3.1** 9.9** 7.7** 0.3

SST 1.7* 6.7** 1.8 0.1

%EV 21.8 53.6 24.8 1.6

Families AC 1.9** 16.0** 1.5 0.3

INP 1.1 2.0 4.5** 0.6

NUTC 2.3** 5.3** 10.1** 0.2

ORP 3.0** 7.6** 8.7** 0.4

MARP 1.2 4.0** 1.4 0.4

HUM 2.2** 7.1** 2.7 0.2

PP 3.4** 9.3** 11.1* 0.1

SST 1.3 10.2** 1.6 0.2

%EV 17.1 53.2 31.6 2.9

%EV: percentage of explained variance; Intercontinental scale: .10000 km; Continental scale: 1000–5000 km; Regional scale: 20–500 km. Codes for variables (and
resolution in km): AC: acidification (1 degree latitude/longitude, approximately 111 km in longitude at the equator or in latitude everywhere); INP: inorganic pollution
(1 km); NUTC: nutrient contamination from (fertilizers, 1 km); ORP: organic pollution (pesticides, 1km); MARP: marine pollution (proportional to commercial shipping
traffic, 1km); HUM: human population data (1 km); PP: primary productivity data (18 km); SST: sea-surface temperature (4 km).
*, P,0.05;
**, P,0.01.
doi:10.1371/journal.pone.0012946.t002
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that nutrient contamination and pollution can affect macrofauna

assemblages over much larger areas than currently thought. The

significant relationship with HUM further stresses the general

association between polychaete assemblages and environmental

conditions at broad spatial scales.

Much less is known about the relationship between spatial

variation in benthic assemblages and acidification. Correlative

analyses suggest that decreasing pH may impact calcareous species

directly, while inducing long-term changes in abundance and of

non-calcareous species through indirect effects [36]. Additional

correlative evidence comes from a study examining spatial

relationships between estuarine macrofauna assemblages and acid

sulphate run-off associated with the Richmond River in NSW,

Australia [37]. This study highlighted a negative correlation

between the abundance of some polychaete species and pH in the

estuary, although this pattern was probably mediated by variation

in soluble aluminium concentration. Hence, despite increasing

concern about the ecological consequences of ocean acidification

[38] and accumulating evidence indicating that temporal fluctu-

ations in pH affect the dynamics of marine organisms [39], little is

known about how large-scale spatial variation in acidification

relates to changes in marine assemblages.

Direct causal evidence of ecological effects of acidification on

macrofauna assemblages comes from a mesocosm experiment

where exposure to acidified conditions reduced diversity and

altered species composition compared to controls [40]. These

effects likely reflected variation in the physiological ability of

different organism to buffer extracellular pH. However, no

individual taxon emerged as particularly sensitive or particularly

tolerant to reduced pH to be considered as ‘indicator’ of acidified

conditions. Similarly, the association between AC and polychaete

assemblages documented in our study reflected changes in the

relative abundance of widespread genera and families, rather than

in the presence-absence of ‘indicator’ taxa. The dominant genera

in Brazil and South Africa, the regions associated with the AC

index in the RDA plot (Fig. 4a), included Lumbrineris, Magelona,

Gunnarea, Pomatoleios and Dodecaceria. Postulating a mechanism

whereby acidification should have favored these geographically

distributed genera remains problematic at this stage. It should be

noted that AC was also related to SST in the RDA plot for families

(Fig. 4b), reflecting a known correlation between these variables.

However, we assessed the influence of each predictor variable after

accounting for the effects of other covariables, such that AC was

significant after controlling for variation in SST.

Our analyses highlighted similar patterns of association between

environmental variables and polychaete assemblages at the genus

and family levels, indicating that the coarser level of taxonomic

resolution can be used to describe spatial variation at the finer

level. The use of broad taxonomic categorizations as surrogates to

infer spatial or temporal pattern of variability for species or genera

is desirable to reduce sorting time, to increase taxonomic accuracy

and to improve the efficiency of any sampling design. This is

known as taxonomic sufficiency, a problem that has received a

great deal of attention in the context of biodiversity assessment and

in the analysis of environmental impacts [41–43]. Several studies

have shown that high level taxa can indeed be used as surrogates

for species or genera in spatial analyses at the local or regional

scale (e.g. [44–45]; but see [46] for a different example). Our

results suggest that the concept of taxonomic sufficiency may also

work at very broad spatial scales.

The result indicating negligible variation at the regional scale

should be taken with caution. First, environmental variables like

AC and PP had a coarse spatial resolution and could never explain

variation below 100 and 20 km, respectively. Second, spacing

among sites did not enable detection of spatial structure below

20 km (the smallest range identified by variograms). Third,

although we obtained data from nine widely distributed regions,

Figure 4. RDA plots. These illustrate the association between region
centroids and environmental variables for (a) genera and (b) families.
Regions include: Alaska (Al), Canada (Ca), Maine (Ma), Argentina (Ar),
Venezuela (Ve); Colombia (Co), Brazil (Br), South Africa (Sa), Philippines
(Ph), Japan (Jp). Environmental variables include: Acidification (AC),
inorganic pollution (run-off, INP); nutrient contamination (fertilizers,
NUTC); organic pollution (pesticides, ORP); marine pollution (propor-
tional to commercial shipping traffic, MARP); human population (HUM);
sea-surface temperature SST).
doi:10.1371/journal.pone.0012946.g004
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some regions were sampled more intensively than others and

samples were pooled across depth strata within sites, further

reducing spatial resolution. Finally, many investigations have

shown that spatial variation in marine benthic assemblages can be

very large at scales ranging from metres to few kilometers

(reviewed in [6]). The limited ability of our analyses to detect

small-scale spatial variation could explain why environmental

drivers accounted for only 22% and 17% of variation in the non-

spatial analyses of genera and families, respectively.

Additional caveats must be considered when interpreting the

results of investigations conducted at very large spatial scales, such

as the present one. These studies often combine data collected at

multiple sites over different time spans, so the potential for spatial

and temporal confounding effects is large. This is particularly true

when there are few spatial replicates [47]. Moreover, using

satellite-derived data to characterize the nearshore environment

may be problematic, particularly for those environmental variables

that are estimated from the optical properties of surface sea-water

[22]. We showed that when the most critical environmental

variables were excluded from the analysis and when temporal

variation in the most intensively sampled regions were controlled

for, the qualitative nature of the results did not differ. Thus, our

analyses appeared robust to likely sources of spatial and temporal

confounding effects and inaccuracy of estimated environmental

data.

The PCNM technique has been used to describe spatial

variation in a wide range of systems, from microbial communities

to forests [24,48–51]. Moran’s eigenvectors maps have been

proposed as a generalization of PCNM [23]. We have shown that

this technique was appropriate in detecting intercontinental and

continental scales of variation in polychaete assemblages and in

identifying the environmental variables that related to the

biological data at the different scales. As we have noted, however,

our sampling design was not adequate to characterize spatial

patterns at small scales. While maintaining a properly replicated

and balanced sampling design may be difficult when dealing with

broad geographical analyses, future studies should increase

replication at the site scale to allow for a more meaningful

comparison between small-scale and large-scale spatial patterns.
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Figure S2 Exponential fits to empirical variograms of the

eigenvectors used to define the spatial submodels for polychaete

genera. Envelops correspond to the 0.025 and 0.975 quantiles of

the distribution of 999 variograms obtained by permutation of the

original data.

Found at: doi:10.1371/journal.pone.0012946.s006 (1.58 MB TIF)

Figure S3 Exponential fits to empirical variograms of the

eigenvectors used to define the spatial submodels for polychaete

families. Envelops correspond to the 0.025 and 0.975 quantiles of

the distribution of 999 variograms obtained by permutation of the

original data.
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