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ABSTRACT

Current Video-Oculography (VOG) permits multidimensional, drift-free, non-

invasive measurement of eye movements, but cannot be used for fine recording

of fast eye movements (saccades), which would require high spatial and high

temporal resolutions, corresponding to global data rates in the range of 300Mb/s

-5-10Gb/s. A new technique is proposed for achieving high accuracy using very

low spatial frequency sampling and reconstructing a high-resolution binary

image of the pupil from a low-resolution grey-level frame, acquired with a

solid-state sensor. A recursive fitting algorithm for eye position detection is also

introduced, allowing correct measurements also when the pupil contour is only

partially available.

INTRODUCTION

Analysis of eye movements is very common in a wide spectrum of research and

applicative fields, from neurophysiology to clinics or ergonomics.

For this reason many eye position measurement systems (oculometers) have

been proposed, in view of the disparate requirements typical of each

application. In particular, for a precise recording of fast eye movements

(saccades) a large bandwidth (at least 75Hz [1]) and high resolution (better than

0.2deg) are needed. Moreover, the study of small saccadic oscillations requires

a double bandwidth and a resolution ten times better. Only the search coil in a

magnetic field technique [2] satisfies nowadays these specifications over a wide

range of eye rotations; unfortunately it cannot be employed extensively in

humans, and particularly in children, because of its invasivity.

In recent years, some video-based oculometers have been developed. The

video-oculography (VOG) is based on a temporal sampling of the eye image by

means of a bi-dimensional sensing device (usually a solid-state sensor); the

pupil image edge is related to the eye position (referred to a craniotopic co-
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ordinate system) and to the displacement of the sensing device. In most YOG

realisations these relationships are not well explained, and some simplifications

are often used, introducing errors in the evaluation of eye position. The most

popular methods are based on the linearisation of the function describing the

position of the pupil centre, which yields to relevant errors for large rotation

angles; the pupil centre is usually found by averaging the co-ordinates of the

black pixels [3-6]: this method is correct only if the pupil image is completely

available, i.e. when there are no light reflexes on the pupil edge nor eye-lids

covering it. Another limit of all current VOG realisations is that either temporal

bandwidth or resolution is sacrified, so that saccades cannot be detected

correctly.

NEW APPROACH FOR VOG EYE POSITION MEASUREMENTS

We developed an accurate analytical model of the whole recording environment

(Figure 1), considering the patient head (PH) and eyes (PE), the optical system

(OS) and the sensing device (SD). Making some assumptions about the image

formation process, it is possible to show that the pupil image edge is well

described by an ellipse for gaze deviations from the frontal position with respect

to the sensing surface within a tolerance field (TF), whose amplitude depends

on the aperture diameter of the optical system and the eye-objective distance.

Figure 1: VOG Measurement System

For a diameter of 3mm and a distance of 20mm between PE and OS, TF is

±60deg, which is large enough for the requested recording range. We proved

that within this TF defocusing effects can be neglected and that it is possible to

relate the ellipse parameters to the eye position by solving a non-linear equation

system. However, some conditioning problems in the algorithm introduce the

need for a calibration procedure, in order to reduce the error propagation. For

each eye, the complete procedure we propose for a movement recording session

is described by the following two phases: 1) Instrument Calibration (1C),

divided in two steps: objective detection of the craniotopic co-ordinates of the

sensor plane and error-reduction calibration (for high precision measurements

only); 2) Eye Position Measurement (EPM), obtained in three steps: recognition

of the pupil-image edge, estimation of the ellipse parameters (fitting procedure)

and evaluation of eye rotation angles.
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Introducing the effects of the spatial sampling due to the discrete nature of

a solid-state sensor and a 256-grey-level quantisation, it is possible to evaluate

the Maximum Absolute Error (MAE) affecting the estimated rotation angles.

The simulation of the whole system has shown that image resolution effects are

more significant during the 1C phase than during the EPM one: a high spatial

resolution during EPM has few effects on instrument precision if the calibration

procedure has been executed with a lower resolution. A high spatial resolution

during 1C might instead allow to use a lower resolution in the measurement

phase. Figure 2 shows the MAE bounding obtainable in a measurement as a

function of the spatial resolution of the 1C and EPM phases.

Figure 2: Maximum Absolute Error as a function of image resolution during 1C

and EPM phases. MAE is expressed in hundredths of degree and log-scale.

The relationship between frame spatial resolution during acquisition and

maximum absolute error during the above discussed evaluation of eye position

shows that an image sampling of 512x512 pixels is required in order to achieve

a 0.2deg spatial resolution. Since at least 256 grey-scale levels are needed to

detect the eye movement torsional component using cross-correlation

algorithms [3], a bit-rate of about 300Mb/s is necessary, considering that a

minimum sampling rate of 150Hz is required for a 75Hz bandwidth. Moreover,

when small saccadic oscillations must be recorded, the required bit-rate raises to

about lOGb/s, since 2048x2048 pixel frames at a sampling rate of 300Hz should

be acquired. Evidently, a so high throughput is not practically reachable with

common solid-state image sensors and acquisition electronics. For this reason,

existing VOG systems cannot perform simultaneously both high-spatial and

high-temporal resolutions.

EYE IMAGE BINARISATION AND RESOLUTION ENHANCEMENT

To overcome the above described throughput limits, we propose to build up a

binary, high-resolution pupil image using a reconstruction algorithm which
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realises the decoding of pupil-edge position stored in a low-resolution, grey-

level image. This solution permits to elude typical VOG high-rate data-transfer

problems by implementing a wide bandwidth, low spatial resolution, 256-grey-

level acquisition system an then increasing pupil image resolution.

Our pupil-image reconstruction method is based on the integration

properties of solid-state image sensors and, in particular, of diode arrays. These

devices are made up of a NxN matrix of photodiodes, each one of them giving

an output voltage proportional to the incident field intensity. This characteristic

allows to express the grey level of the generic pixel as follows:

G(m,n) = JJ Kf(x, y) w(raS-;c,«S- y) dx dy (1)

where 8 is the sampling step, AT is a conversion constant, w(x,y) is a weight

function &ndf(x,y) is the intensity of the incident field. For the considered diode

arrays, w(x,y) is a unitary square pulse of width 5; therefore the grey level of

each pixel depends on the field over a single photodiode sensing area, i.e. no

overlapping occurs. Let us divide the sensor surface into AtdV meshes of width 8

representing the NxN photodiodes sensing areas (Figure 3). Let us divide now

more finely each mesh into N̂ cN̂ - smaller ones of width S/TVp (both N and N?

are powers of 2), and assume that each small mesh is the sensing area of one

photodiode in a higher-resolution device. For each pixel (m,n) in the low-

resolution image (called macropixel, MAP), a pattern PAT[m,n] of N̂ cN̂

pixels in the high-resolution image (called micropixels, MIPs) can be defined.

I lightened region

high-resolution image

photodiode sensing area

(MAP)

faw-resolution image

photodiode sensing area

(MIP)

\darkregion [

Figure 3: Diode-array sensing surface lightened by a binary incident field

If G(m,n) is the generic MAP grey level and g(m,n,i,j) is the grey level of the

generic MIP inside the pattern PAT[m,n], from equation 1 comes:
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G(m,n) = ĝ(m,n,ij) (2)

where P={i,j\l<i<Nr,l<j<Nr}. If we consider now a binary incident field,

dividing with a straight-line edge the sensing surface into a lightened region and

a dark one, the grey level scale in the high-resolution image will be bounded by

the upper limit ĝ ox relative to those MIPs whose diode is completely

lightened. Let us discriminate three sets of MIPs as follows (Figure 3): L (MIPs

having grey level &%&%), * (MIPs having grey level 0) and T (MIPs having grey

level between 0 and gmax)- We showed that if N^4 the contribute of the terms

g(m,n,i,j) in Equation 2 is negligible for (i,j)e Pr\T and is null for (i,j)e Pr\

T. With this assumption, it is possible to evaluate the number NL of MIPs

lightened (i.e. belonging to class L) in the pattern PAT[m,n] as follows:

(3)

Moreover, since the maximum grey level in the low-resolution image

Nj? times larger than ĝ ox » we obtain:

The displacement of these lightened pixels inside the pattern PAT[m,n] must

define two regions and a rectilinear edge between them having the same

direction of that one dividing the dark and the lightened regions of the incident

field. If this edge is a straight line at least inside a 3x3 MAP lattice (condition

that can be satisfied for the pupil edge), its direction is easily found by means of

the local-gradient vector evaluated on the low-resolution image using the finite-

differences approximation:

Grad(m,n) = 0.5 [G(m+l,n) - G(m-l,n) , G(m,n+l) - G(m,n-l)J (5)

Because of the discrete domain, the number of distinct edge directions inside an

NyxNr MIP pattern is 4(N̂1). We conclude that each distinct pattern PAT[m,n]

is finally identified by two conditions: an integrative one (the number of

lightened MIPs) and a derivative one (the direction of the edge, i.e. the local-

gradient vector). When a grey-level low-resolution image is available, it is then

possible to build up a high-resolution binary image by selecting, for each MAP,

an NyxNr MIP pattern as follows:

PAT[m,n] = PAT[N̂  Grad(m,n)] (6)

This high-resolution binary-image reconstruction method can be

implemented in real time by storing all distinct N̂ xNf. MIP patterns in a RAM

device and addressing the selected one with the number of lightened MIPs and
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the edge direction. The storage capacity required depends on the reconstruction

factor Nfi 29Kbytes for N,-=8 and 983Kbytes for Nr=l6. An alternative

implementation is possible if only the co-ordinates of the edge-points are

required: in this way the amount of required memory decreases of 25% for

AL=8 and 50% for AW 6.

Figure 4: A) High-resolution eye image; B) low-resolution resampling; C)

segmentation and grey-level local stretching; D) binary high-resolution pupil-

image reconstruction.

The results of simulation using a binary incident field are very good,

showing more than 97% of exactly reconstructed points for Nr = 4, 8 and 16.

However, in the case of the pupil image, the incident field is not binary because

of the non-uniform iris reflectivity. Therefore, the eye image must be

segmented, extracting black MAPs (pupil region) and their adiacent ones (pupil-

edge transition region). The reconstruction method is then applied to these

MAPs, by redefining G^^ (see Equation 4) as the local-maximum grey level

inside a 3x3 lattice centred on the current MAP (local stretching). In the

example of Figure 4 a high-resolution (512x512) eye image is resampled with a

lower resolution (128x128) and then reconstructed to a high-resolution

(512x512) binary image. The segmentation procedure includes some iris-texture

pixels, which appear also in the reconstructed binary image. These undesired

MIPs can be easily removed with a median filter or with some image

compression algorithm.
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ESTIMATION OF THE PUPIL-IMAGE CONTOUR
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As introduced before, our method of eye position evaluation is based on the

best-fitting of an ellipse to the edge of the pupil image. If the entire contour of

the pupil is available, the best-fitting ellipse

gf.%, y) = ay; .% +2 0^2 ̂  + 022 )^ + 2 a; j x + 2 223 y + 7 = 0 (7)

can be found by minimising with a recursive algorithm the error function E,

evaluated as the sum of the square distances of the generic pupil edge point

from the ellipse, extended to all the Np edge points:

(8)

Unfortunately, in most cases the pupil contour is only partially available on the

acquired image, because of the light corneal reflection and the eye-lid occlusion.

The latter effect is particularly evident in strabismic subjects, on which current
VOGs cannot be used.
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Figure 5: A) Eye-lid partially occludes pupil image; B) Pupil image after

binarisation; C) Iterative estimation of the pupil-image contour

This problem can be solved by adopting a recursive point-selection algorithm

able to discriminate the edge points actually belonging to the pupil contour.
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The selection is possible by neglecting, in the evaluation of the error function,

the terms due to those points whose distance from a reference ellipse is larger

than a certain threshold.

The reference ellipse is chosen initially by means of a pseudo-inverse method

and updated for each iteration with the fitting ellipse found in the previous step.

The iteration is stopped when the parameter variations between two steps are

negligible. The number of steps required for convergence depends on the ratio p

between the number of points belonging to the pupil contour and the total

number of edge points: 2 steps for p=l, 5 steps for p=0.5 and 9 steps for p

=0.35. Convergence is ensured for p greater than 0.25. This limit results low

enough for an accurate eye position identification of most eye deviations also

for strabismic subjects.

CONCLUSIONS

The methods described in this paper permit to realise a non invasive, precise,

high-resolution and large-bandwidth oculometer, satisfying quite well all the

desired characteristics for an eye movement measurement system. They will be

implemented on a hardware prototype we have designed and which is very close

to be completed. This work was particularly motivated by the need to study

accurately saccadic eye movements in strabismic and amblyopic children,

within a project of the European Community aimed to help functional recovery

from these pathologies.
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